
FOCUS 19

Integrated Parallel Rendering for AVS/Express

Louise M. Lever and James S. Perrin
Manchester Computing, University of Manchester

AVS/Express is a leading visualization application
development package, which was described in CSAR
Focus Issue 10. To summarize, the AVS/Express
visualization package was extended by the Manchester
Visualization Centre, in collaboration with AVS, KGT and
SGI. The first goal was to provide a multi-pipe parallel
renderer, enabling AVS/Express to be used in immersive
environments such as a CAVE or RealityCenter, while
increasing rendering performance by parallelizing the
rendering as much as possible. The shortcoming of this
project was that many users were left with a single CPU
for the computation of their visualization application.
Our second goal was therefore to develop a toolkit
to enable parallel computation within AVS/Express.
The two projects are respectively known as Multi-Pipe
Express (MPE) and the Parallel Support Toolkit (PST).

This article continues with the progress of the
integration of the MPE and PST projects, to produce a
powerful visualization architecture for high-performance
computation and visualization.

Enabling integrated multi-processor computation and rendering for
High-Performance Visualization

Introduction

Overview
AVS/Express MPE and PST provide a strong visualization
application development system. PST allows users to
use parallelized modules within their applications to
perform visualization tasks across many processors, in
both shared memory systems and clusters. The end
result of PST computation is typically a mesh dataset
e.g., the sets of triangles produced in an isosurface
calculation. For desktop users and existing MPE users,
this data would normally be returned to the main
application, pre-processed for rendering i.e., conversion
to triangle strips and mapping of datamaps to RGBA
colours, and then passed to the rendering system.
For MPE users wishing to visualize large datasets this
is a serious drawback, as all renderable geometry is
channelled through the single threaded main application
for pre-processing and rendering distribution. Even
shared memory systems are impaired by the serialized
pre-processing stage. Figure 1 shows the standard
rendering architecture.

Figure 1: Standard Rendering Architecture, where PST output
data is sent back to the main application for pre-processing

before being distributed for parallel rendering.

The first step towards the development of an integrated
system was to parallelize the pre-processing stage. In this
mode of operation the PST nodes are responsible for
pre-processing of their generated output. For desktop
or single-pipe users this parallelization still provides a
considerable performance gain. Figure 2 shows the Level
1 Parallel Rendering Architecture, where pre-processing
is performed in parallel by PST before being sent back
to the main application for rendering distribution.
The second step is to enable tighter integration with
the MPE rendering system. Typically, renderable data
is encapsulated by the MPE renderer and distributed
to the rendering nodes. Recent changes to MPE now
effectively enables “empty” objects to be placed into
the scene-graph for rendering. The main application is
now only responsible for controlling the position and
orientation of these objects with the context of the
scene. In this mode, PST is now also responsible for
encapsulation of its renderable data, ready for rendering
by MPE. On both shared memory systems and cluster
solutions one or more Distributed Object Handlers
(DOH) listen for incoming objects from the PST nodes,
the contents of which are placed into the “empty”
objects. Figure 3 shows the Level 2 Parallel Rendering
Architecture, where both pre-processing and rendering

FOCUS 20

encapsulation are performed by PST in parallel, with the
resultant data sent directly to the rendering nodes via
the Distributed Object Handlers.

Figure 2: Level 1 Parallel Rendering Architecture, where PST
output is pre-processed in parallel before it is returned to the

serial application for rendering distribution.

Figure 3: Level 2 Parallel Rendering Architecture, where PST
output is both pre-processed and encapsulated ready for

rendering and is sent directly to the Distributed Object Handlers
as needed. Only empty objects are contained within the main

scene graph.

The previous bottleneck is now avoided and reference
objects are rendered within the application scene-graph.
By providing a set of DOH threads, further improvements
have been made, adding modes of operation allowing
the reference objects to be rendered synchronously
or asynchronously. Most visualization tasks within

AVS/Express (and PST) are carried out in chunks, so for
example one isosurface is comprised of many chunks
of a chosen number of triangles. Such chunking of data
improves handling of memory and rendering speed.
Under asynchronous behaviour, chunks of renderable
data are rendered and hence cached by the graphics
hardware immediately. This approach has two benefits,
a) users can see the visualization progressively appear
as it is produced, which is particularly useful for large
datasets and b) the graphics pipes can cache more easily
when geometry is streamed into them.

Synchronous behaviour is used when progressive
updates are not desired and the user wishes to see
the new output when it is all available and ready to
display.

With appropriate multipipe configurations it is possible
to achieve database decomposition techniques for both
shared memory and distributed cluster architectures.
Database decomposition allows many direct PST to MPE
connections, where each MPE node renders only the
partial scene-graph generated by a local PST node. Only
a final compositing stage is required to produce the final
image. Figure 4 shows a distributed architecture enabling
Database Decomposition, where each rendering node
only renders 1/3 of the isosurface data and frame-buffer
compositing is used to get the final image. Figure 5
shows an example of the Lattice Boltzmann dataset as
rendered using database decomposition.

Figure 4: Example of a configuration for enabling Database
Decomposition, where each render node only renders a partial

scene-graph and frame-buffer compositing is used to get the final
image.

 FOCUS 21

Figure 5: The Lattice-Boltzmann dataset as rendered with Database Decomposition and Frame-Buffer Compositing.

As high-performance computation and visualization
increase in complexity and sheer problem size, the
availability of graphics resources becomes the next
major bottleneck facing users. While many customers
do possess systems with thousands of CPUs, most
current visualization solutions are limited to a few
graphics pipes, typically in the region of 4 to 16.

Given the size of some problems and the utilization
of thousands of CPUs using PST, the relatively small
number of pipes becomes a bottleneck in itself.
Hundreds of CPUs producing renderable data will
now swamp the pipes, leaving users unable to visualize
satisfactorily.

Our next major task therefore is to develop a Massively
Parallel Renderer (MPR) which will use the available
CPUs as software based render nodes, bypassing the
need for hardware graphics pipes. The AVS/Express
MPE Renderer will be extended to scale up to possibly
thousands of processors and enable a software based
solution. To achieve this, the MPR will build upon the
existing OpenGL solution by employing the MesaGL
library. In this manner the existing framework within

The Next Hurdle

Contacts

Louise M. Lever:
louise.lever@manchester.ac.uk

James S. Perrin:
james.perrin@manchester.ac.uk

George W. Leaver:
george.leaver@manchester.ac.uk

http://www.sve.man.ac.uk/mvc/Research/mpe/
http://www.sve.man.ac.uk/mvc/Research/PST/

MPE and PST will be able to migrate without the
need for a whole new render system to be developed.
However, there are still remaining issues to be
considered, which will require investigation if the MPR
is to be successful. The main obstacles to success are
a) scalability of PST computation, b) scalability of MPE
render nodes and c) efficient management of large-scale
frame-buffer composition. The latter problem requires
careful consideration of distribution and composition
techniques, if the MPR is to handle thousands of
generated frame-buffers.

