CSAR Service - Management Report

August 2001

This report documents the quality of the CSAR service during the month of August 2001.

A more comprehensive report is provided quarterly, which additionally covers wider aspects of the Service such as information on Training, Application Support and Value-Added services.

This and other such reports are made available through the Web to staff within EPSRC and the other Research Councils, to CfS staff and CSAR Service users. The reports are indexed in a similar way to that which other useful information and news are listed for selection.

1. Introduction

This document gives information on Service Quality and on actual usage of the CSAR Service during the reporting period of August 2001. The information, in particular, covers the availability and usage of the following three main CSAR Service High Performance Computing (HPC) systems:

- ➤ Cray T3E-1200E/776 (Turing)
- SGI Origin2000/128 (Fermat)
- ➢ SGI Origin3000/512 (Green)

The information is provided in both textual and graphical form, so that it is easier to see trends and variances.

August has seen the T3E workload remain very high and the Origin 2000 (Fermat) with a high utilisation.

The percentage of Turing CPU capacity used by jobs larger than 64 PEs was 55%.

August also saw the utilisation on the Origin 3000 (Green) climbing, and the percentage of Green CPU capacity used by jobs larger than 64 PEs was 80%.

2. Service Quality

This section covers overall Customer Performance Assessment Ratings (CPARS), HPC System availability and usage, Service Quality Tokens and other information concerning issues, progress and plans for the CSAR Service.

2.1 CPARS

Notes:

<u>Table 1</u> gives the measure by which the quality of the CSAR Service is judged. It identifies the metrics and performance targets, with colour coding so that different levels of achievement against targets can be readily identified. Unsatisfactory actual performance will trigger corrective action.

CSAR Service - S	Service Qual	ity Report -	Performance	Targets
------------------	--------------	--------------	-------------	---------

			Performan	ce Targets		
Service Quality Measure	White	Blue	Green	Yellow	Orange	Red
HPC Services Availability						
Availability in Core Time (% of time)	> 99.9%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less
Availability out of Core Time (% of time)	> 99.8%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less
Number of Failures in month	0	1	2 to 3	4	5	>5
Mean Time between failures in 52 week rolling period (hours)	>750	>500	>300	>200	>150	otherwise
Fujitsu Service Availability						
Availability in Core Time (% of time)	> 99.9%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less
Availability out of Core Time (% of time)	> 99.8%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less
Help Desk						
Non In-depth Queries - Max Time to resolve 50% of all queries	< 1/4	< 1/2	<1	<2	< 4	4 or more
Non In-depth Queries - Max Time to resolve 95% of all queries	< 1/2	<1	<2	< 3	< 5	5 or more
Administrative Queries - Max Time to resolve 95% of all queries	< 1/2	<1	<2	< 3	< 5	5 or more
Help Desk Telephone - % of calls answered within 2 minutes	>98%	> 95%	> 90%	> 85%	> 80%	80% or less
Others						
Normal Media Exchange Requests - average response time	< 1/2	<1	<2	< 3	< 5	5 or more
New User Registration Time (working days)	< 1/2	<1	<2	< 3	< 4	otherwise
Management Report Delivery Times (working days)	< 1	< 5	< 10	< 12	< 15	otherwise
System Maintenance - no. of sessions taken per system in the month	0	1	2	3	4	otherwise

Table 1

Table 2 gives actual performance information for the period of August 1st to 31st inclusive.

Overall, the CPARS Performance Achievement in August was satisfactory (see Table 3); i.e. Green measured against the CPARS performance targets.

The Fujitsu availability figures are included in Table 2, but not Table 3 as they have zero weighting in CPARS terms.

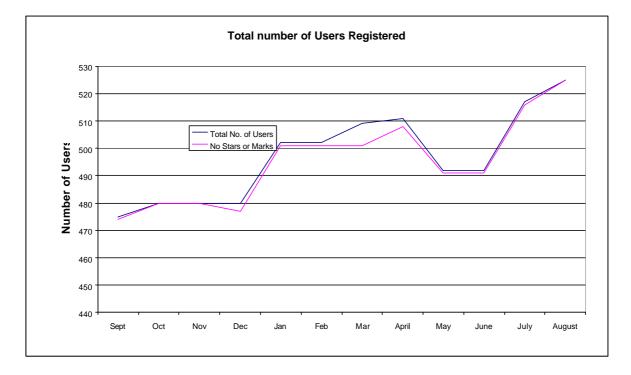
										200	00/1)/1	
Service Quality Measure	Sept	Oct	Nov	Dec	Jan	Feb	March	April	May	June	July	Aug	
HPC Services Availability													
Availability in Core Time (% of time)	100%	100%	100%	94.90%	99.70%	99.70%	100%	100%	99.70%	99.70%	98.49%	98.49%	
Availability out of Core Time (% of time)	100%	100%	99.40	98.49%	99.50%	99.40	99.40	99.40	99.40	99.40	98.49%	100%	
Number of Failures in month	0	0	2	4	1	1	1	1	3	3	4	2	
Mean Time between failures in 52 week rolling period (hours)	730	1095	673	584	584	626	674	674	584	584	438	398	
Fujitsu Service Availability													
Availability in Core Time (% of time)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Availability out of Core Time (% of time)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Help Desk													
Non In-depth Queries - Max Time to resolve 50% of all queries	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	
Non In-depth Queries - Max Time to resolve 95% of all queries	<2	<1	<3	<3	<5	<5	<3	<5	<2	<2		<1	
Administrative Queries - Max Time to resolve 95% of all queries	<2	<0.5	<0.5	<5	<2	<2	<3	<0.5	<0.5	<0.5	<1	<2	
Help Desk Telephone - % of calls answered within 2 minutes	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Others													
Normal Media Exchange Requests - average response time	<0.5	0	<0.5	<0.5	<0.5	<0.5	0	0	<0.5	<0.5	<0.5	<0.5	
New User Registration Time (working days)	0	0	0	0	0	0	0	0	0	0	0	0	
Management Report Delivery Times (working days)	10	10	10	10	10	10	10	12	10	10	10	10	
System Maintenance - no. of sessions taken per system in the mon	2	1	2	1	0	2	1	2	0	0	1	2	

Table 2

1. HPC Services Availability has been calculated using the following formulae, based on the relative NPB performance of Turing and Fermat at installation:

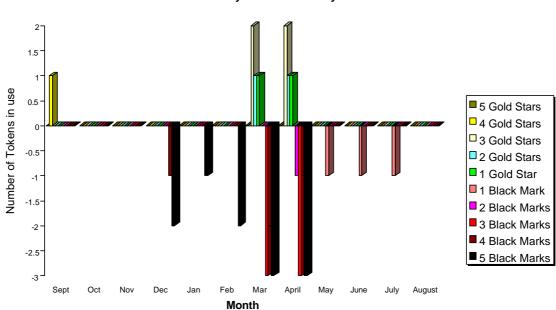
[Turing availability x 122 / (122 + 3.5)] + [Fermat availability x 3.5 / (122 + 3.5) x 1.556]

2 Mean Time between failures for Service Credits is formally calculated based on a rolling 12 month period.


<u>Table 3</u> gives Service Credit values for the month of August. These will be accounted on a quarterly basis, formally from the Go-Live Date. The values are calculated according to agreed Service Credit Ratings and Weightings.

										200	00/1	
Service Quality Measure	Sept	Oct	Nov	Dec	Jan	Feb	March	April	May	June	July	Aug
HPC Services Availability												
Availability in Core Time (% of time)	-0.058	-0.058	-0.058	0.195	-0.039	-0.039	-0.058	-0.058	-0.039	-0.039	0.039	0.039
Availability out of Core Time (% of time)	-0.047	-0.047	0	0	-0.039	0.000	0	0	0	0	0	-0.047
Number of Failures in month	-0.009	-0.009	0	0	-0.008	-0.008	-0.008	-0.008	0	0	0.008	0
Mean Time between failures in 52 week rolling period (hours)	-0.008	-0.009	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	0	0
Help Desk												
Non In-depth Queries - Max Time to resolve 50% of all queries	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019
Non In-depth Queries - Max Time to resolve 95% of all queries	0	-0.016	0.016	0.016	0.031	0.031	0.016	0.031	0	0	-0.016	0
Administrative Queries - Max Time to resolve 95% of all queries	0	-0.019	-0.019	0.046	0	0	0.016	-0.019	-0.019	-0.019	-0.016	0.016
Help Desk Telephone - % of calls answered within 2 minutes	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
Others												
Normal Media Exchange Requests - average response time	-0.002	0	-0.002	-0.002	-0.002	-0.002	0	0	-0.002	-0.002	-0.002	0
New User Registration Time (working days)	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019
Management Report Delivery Times (working days)	0	0	0	0	0	0	0	0.003	0	0	0	0
System Maintenance - no. of sessions taken per system in the mont	0	-0.003	0	-0.003	-0.004	0	-0.003	-0.003	-0.004	-0.004	-0.003	0
·												
Monthly Total & overall Service Quality Rating for each period:	-0.08	-0.10	-0.06	0.11	-0.05	-0.03	-0.04	-0.05	-0.06	-0.06	-0.02	-0.02

Table 3


2.2 Service Quality Tokens

The current position at the end of August 2001 is that none of the 525 registered users of the CSAR Service had used Service Quality Tokens.

The graph above shows the total number of registered users on the CSAR Service and the number of users holding a neutral view of the service.

The graph below illustrates the monthly usage trend of quality tokens:

Service Quality Tokens - Monthly Trends

The current status of the Stendahl tokens is that there are no users with outstanding black marks against the systems.

	Consortia		Reason Given
No of Stars or Marks		Date Allocated	

SUMMARY OF SERVICE QUALITY TOKEN USAGE

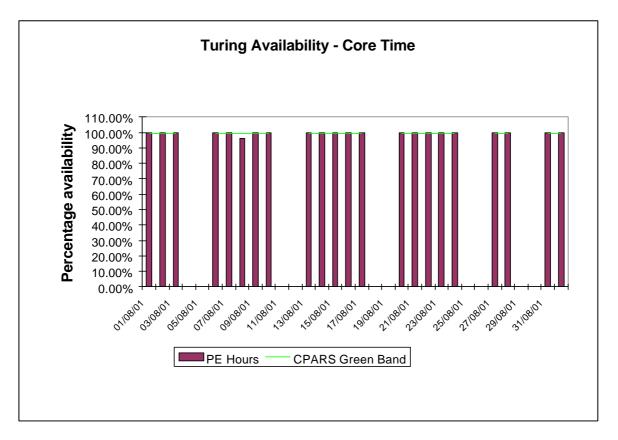
2.3 Throughput Target against Baseline

The Baseline Target for throughput was fully achieved this month due to plenty of work over the period. The actual usage figure was 153% of Baseline capacity.

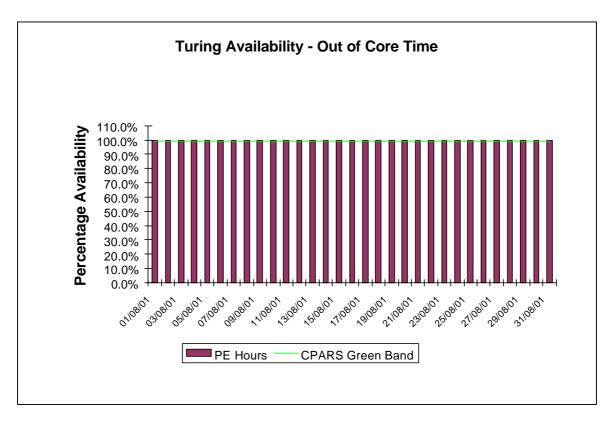
Job Throughput Against Baseline CSAR Service Provision

	Baseline Capacity for Period (T3E PE Hours)	Actual Usage in Period (T3E PE Hours)	Actual % Utilisation c/w Baseline during Period
1. Has CfS failed to deliver Baseline MPP Computing Capacity for EPSRC?	359,450	551,454	153.42%
	Baseline Capacity for Period (T3E PE Hours)	Job Time Demands in Period	Job Demand above 110% of Baseline during Period (Yes/No)?
2. Have Users submitted work demanding > 110% of the Baseline during period?	359,450	576,403	Yes
		Number of Jobs at least 4 days old at end Period	Number of Jobs at least 4 days old at end Period is not zero (Yes/No)?
Are there User Jobs oustanding at the end of the period over 4 days old?		5	Yes
 Have Users submitted work demands above 90% of the Baseline during period? 		Minimum Job Time Demands as % of Baseline during Period 96%	Minimum Job Time Demand above 90% of Baseline during Period (Yes/No)? Yes
	Number of standard Job Queues (ignoring priorities)	Average % of time each queue contained jobs in the Period	Average % of time each queue contained jobs in the Period is > 97%?
5. Maiority of Job Queues contained iobs from Users for more than 97% during period?	4	71.0%	No

Period: 1st to 31st August 2001

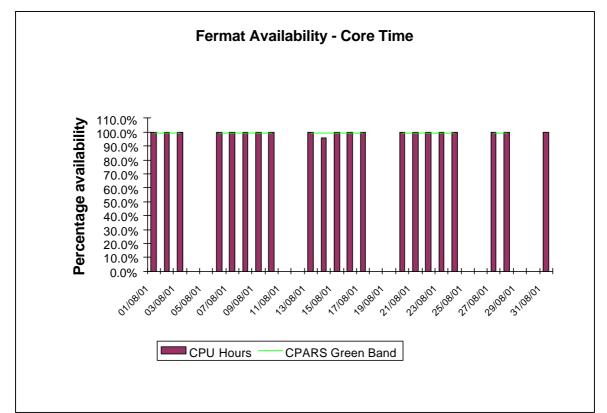

3. System Availability

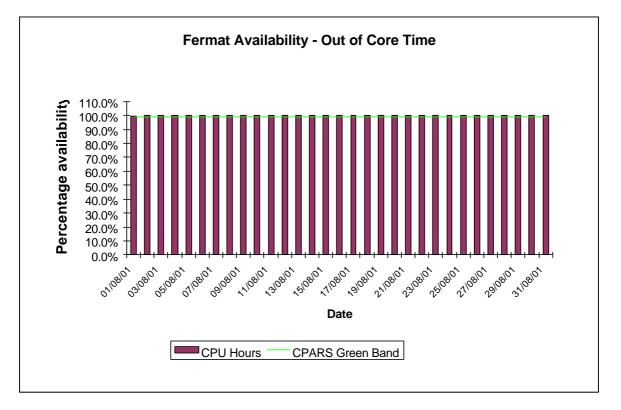
Service availability each reporting period is calculated as a percentage of actual availability time over theoretical maximum time, after accounting for planned breaks in service for preventative maintenance.


3.1 Cray T3E-1200E System (Turing)

The following graphs show the availability of Turing both in core time and out of core time respectively during the period of 1^{st} to 31^{st} August.

Turing availability for August:


Availability of Turing in core time during August was good with the exception of the 8th when a user job caused a unstable system situation.



Availability of Turing out of core time during August was good.

3.2 SGI Origin2000 System (Fermat)

The following graphs show the availability of Fermat both in core time and out of core time respectively.

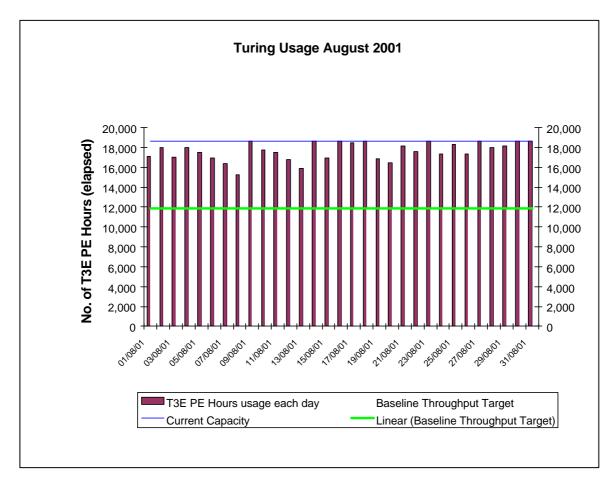
Availability of Fermat in core time during August was good with the exception of a reboot on the 14th.

Availability of Fermat out of core time during August was good with the exception of three unscheduled re-boots.

4. HPC Services Usage

Usage information is given in tabular form, in Appendices, and in graphical format. The system usage information for the period of August 1st to 31st, this provided by Project/User Group, totalled by Research Council and overall. This covers:

CPU usage	Turing: 551,454 PE Hours Fermat (Interactive): 783 CPU	Fermat (Batch): 63,498 Hours Hours
 Fujitsu CPU usage User Disk allocation HSM/tape usage 	Green: 207,246 Hours Fuji: 2,877.01 CPU Turing: 74.18 GB Years 1,318.60 GB Years	Hours Fermat: 76.76 GB Years


In addition, the following graphs are provided to illustrate usage per month, historically:

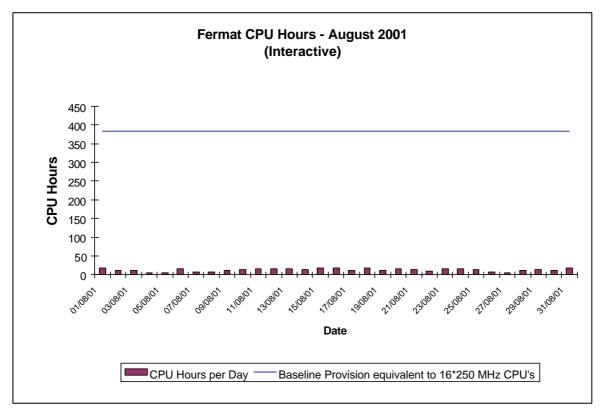
- a) MPP (T3E/Origin) Usage by month, showing usage each month of CPU (MFOP Years as per NPB), split by Research Council and by system. The Baseline and the overall Capacity are shown by overlaid horizontal lines.
- b) SMP (Origin) Usage by month, showing usage each month in CPU Hours, split by Research Council and giving the equivalent GFLOP-Years as per NPB. The Baseline Capacity is shown by an overlaid horizontal line.
- c) High Performance Disk (T3E) allocated for User Data by month, showing the allocated space each month in GBytes, split by Research Council. The Baseline Capacity (1 Terabyte) is shown by an overlaid horizontal line.
- d) Medium Performance Disk (Origin) allocated for User Data by month, showing the allocated space each month in GBytes, split by Research Council. The Baseline Capacity (1.5 Terabytes) is shown by an overlaid horizontal line.
- e) HSM/Tape Usage (T3E) by month, showing the volumes held each in GBytes, split by Research Council. The Baseline Capacity (16 Terabytes) available will be shown by an overlaid horizontal line.

4.1 Cray T3E-1200E System (Turing)

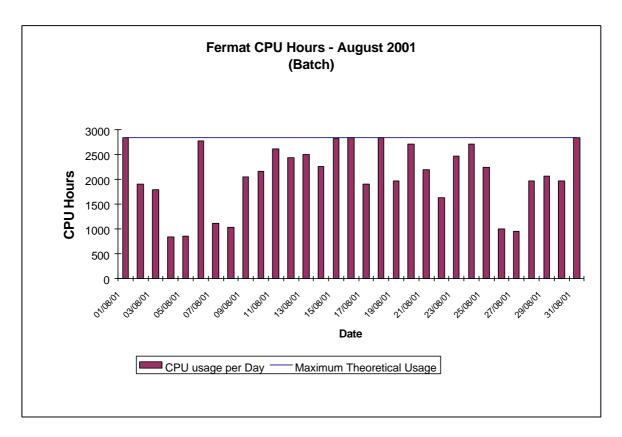
The following graph shows the usage of Turing during each day of August 2001. Note that there is some variance on a day-to-day basis as the accounts record job times, and thus CPU usage figures, at the time of job completion which could be the second actual day for large jobs. At present, there is a 24 hour limit on jobs so that they are check-pointed, and computational time lost due to any failure is well managed. Higher limits can be set for individual jobs on request.

Turing usage for August:

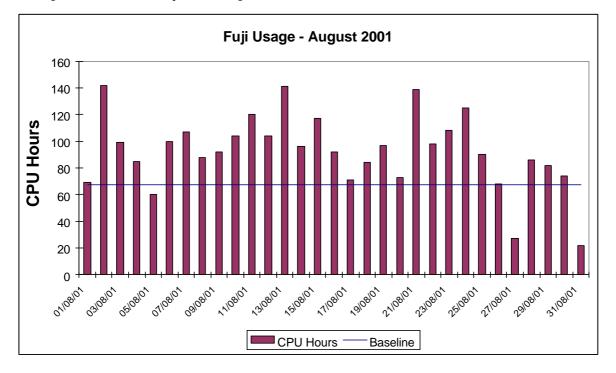
The above usage graph for the Turing system shows that the overall workload was variable.


The graph also indicates the workload reached 100% of maximum theoretical capacity some part of the month.

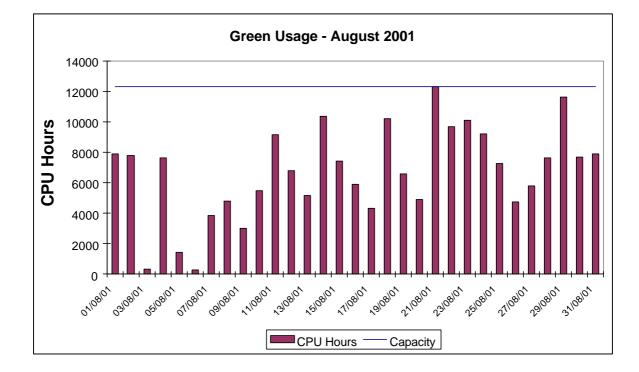
Fine tuning of the CfS scheduling system will continue to ensure minimal wasting of PE resource, in order to fit in a number of different sized jobs (e.g. 32, 64, 128, 256) thus facilitating maximised job throughput.


In particular, Turing will continue to start large jobs above 256 PEs, including 512 PEs, every night they are queued subject to the overall workload.

4.2 SGI Origin2000 System (Fermat)

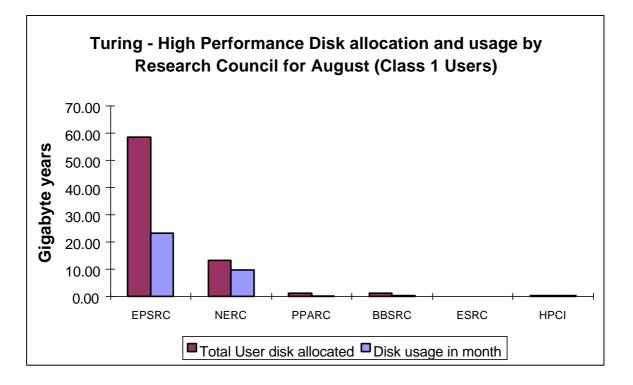

The usage of the Origin system was low. The groups most heavily using the Fermat system are CSE006 (Briddon), CSN006 (Price), CSN015 (Proctor) and HPCI Daresbury.

The graph above shows the interactive usage of the upgraded Origin 2000 (Fermat).

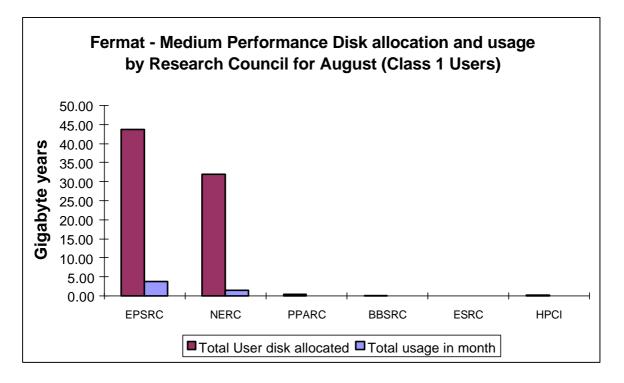


The above graph to a different scale shows the variable batch utilisation of the Origin 128.

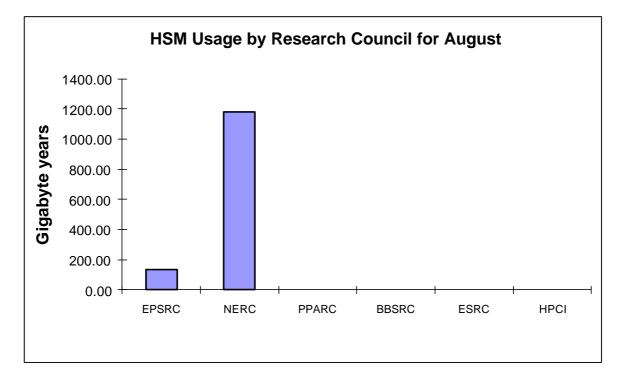
Fuji utilisation was again variable over the month with the overall position resulting in usage above baseline.



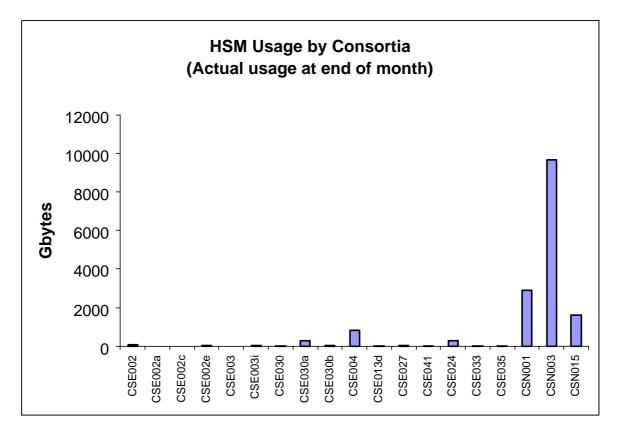
4.4 SGI Origin3000 System (Green)


The above graph shows the utilisation of the now upgraded Green for the month of August, which saw the system running at 57% of capacity on average.

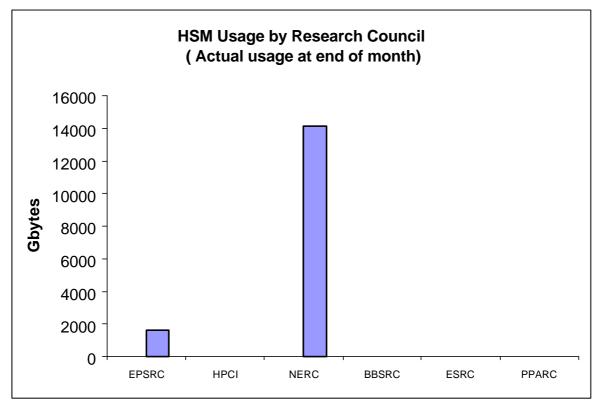
4.5 Disk/HSM Usage Charts


The graphs below show current disk and HSM allocations and usage.

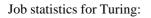
The preceding graph shows actual usage on average against the current allocation of disk on the Turing system.

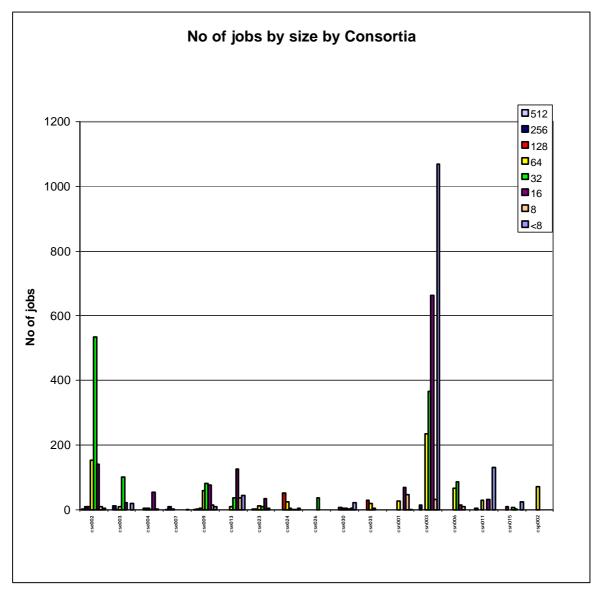


The above graph shows the disk allocations against usage on average of the disk on Fermat.

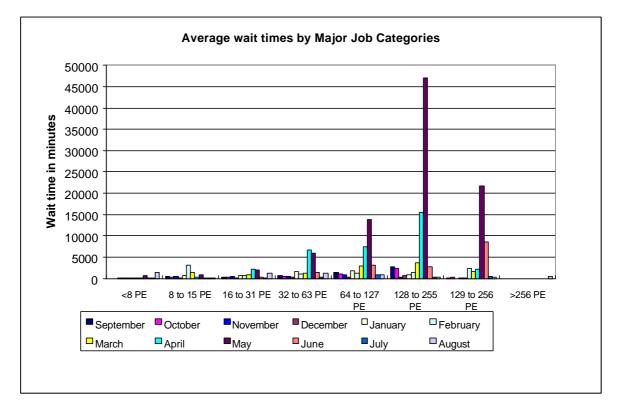


The above graph shows the total usage of the HSM facility by Research Council.

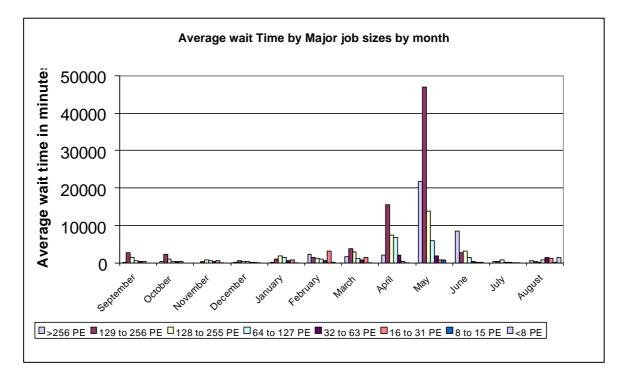

The next two graphs give actual usage of HSM by Consortia and by Research Council.

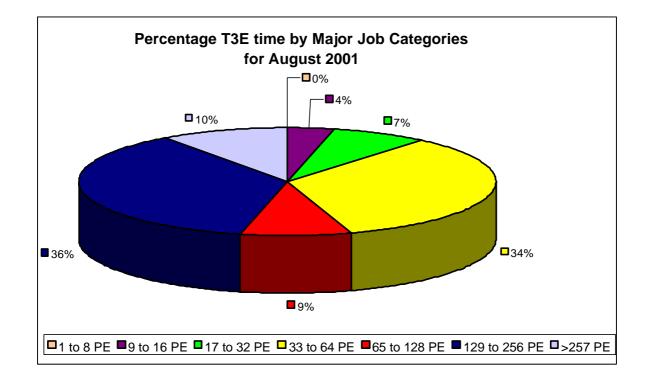


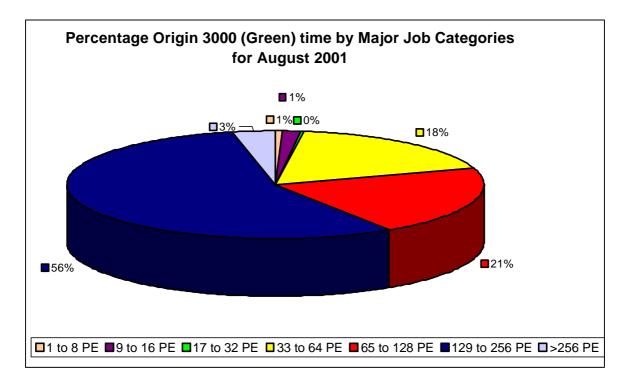
CSE002 (Gillan), CSE003 (Taylor) CSE004 (Sandham), CSE024 (Tennyson), CSN001 (Webb), CSN003 (O'Neill) & CSN015 (Proctor) were the major users of HSM resource.

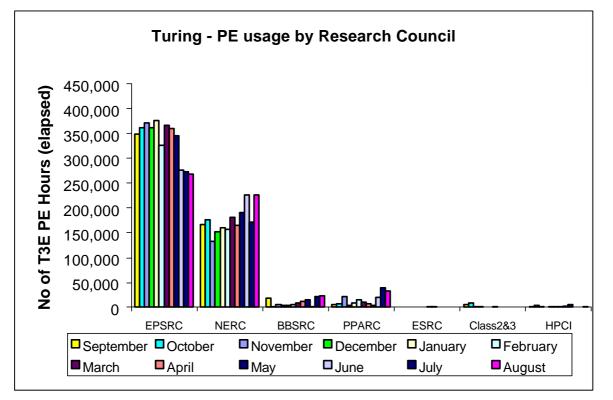


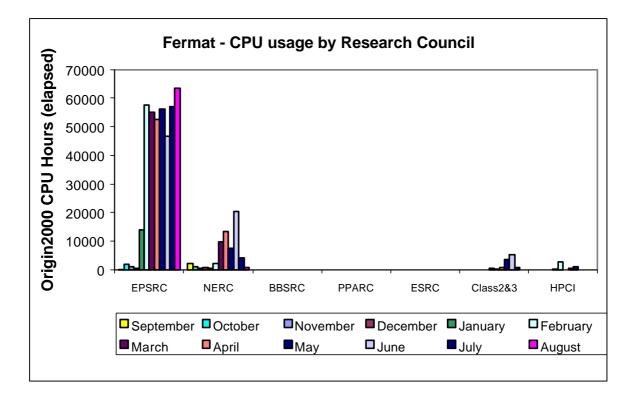
4.6 Processor Usage and Job Statistics Charts




The above graph shows the number of jobs of the major sizes run in the period 1^{st} to 31^{st} August 2001.

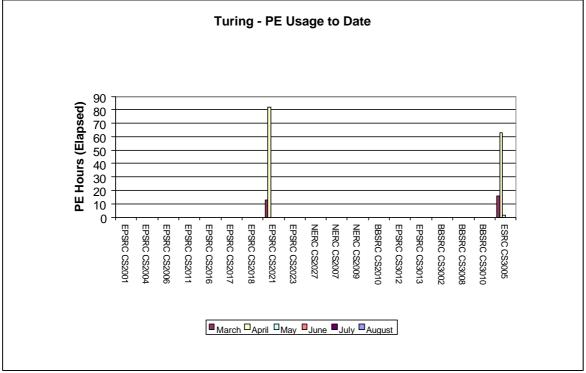

The next graph shows the wait times in minutes on Turing for the major categories of jobs.


The chart above shows the average wait time trend on Turing over the last 12 months. Wait times for all jobs have fallen as Green is now in full production usage as a 512 PE machine. The trend of falling job times has indeed continued.


The largest proportion of the workload on Turing, 55%, was greater than 64 PEs in size.

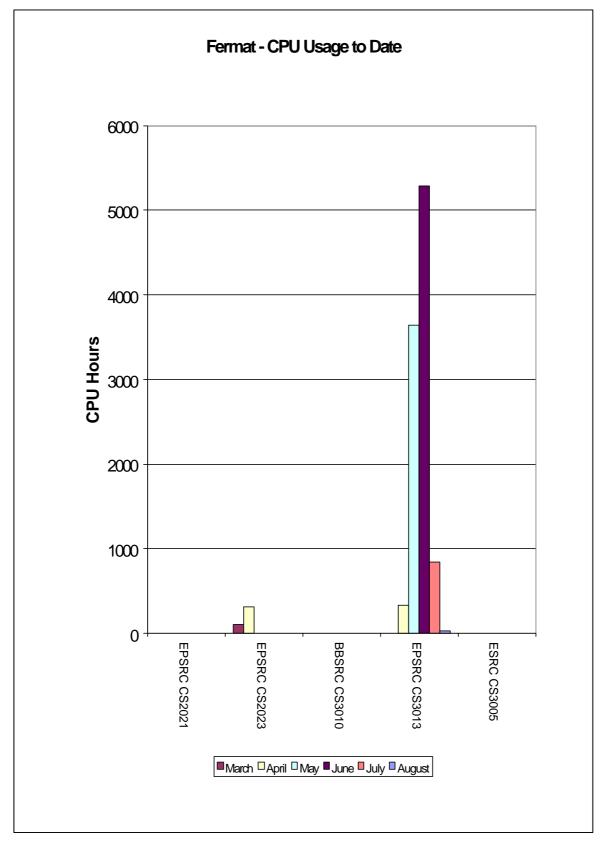
The major allocation of the workload on Green, 80%, was greater than 64 PEs in size.

Turing PE usage is shown by Research Council during the past 12 months of service in the above chart.

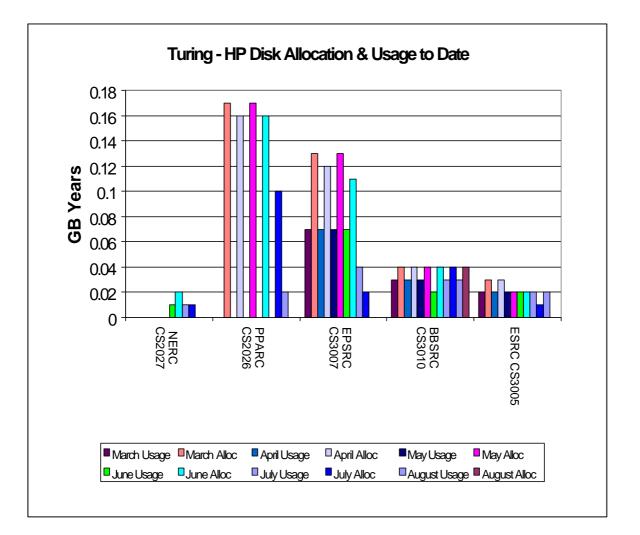


Origin 2000 CPU usage is shown by Research Council during the past 12 months of service in the above chart.

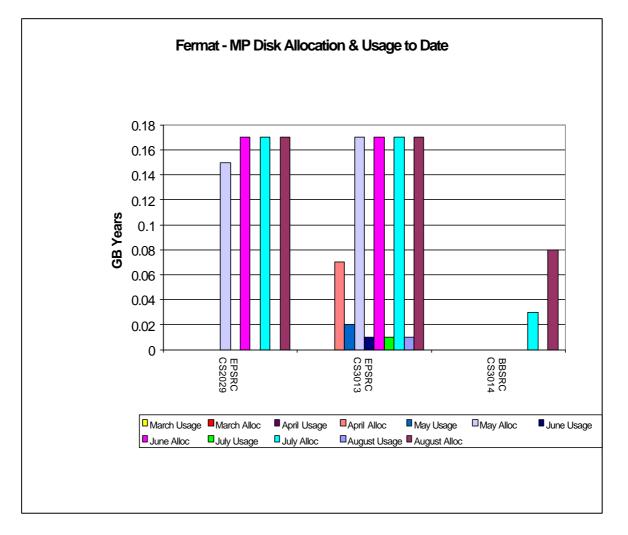
CfS


4.7 Class 2 & 3 Usage Charts

The next series of charts show the usage of the system by the class 2 & class 3 users. The usage is shown by project and identifies the Research Council of the individual projects.

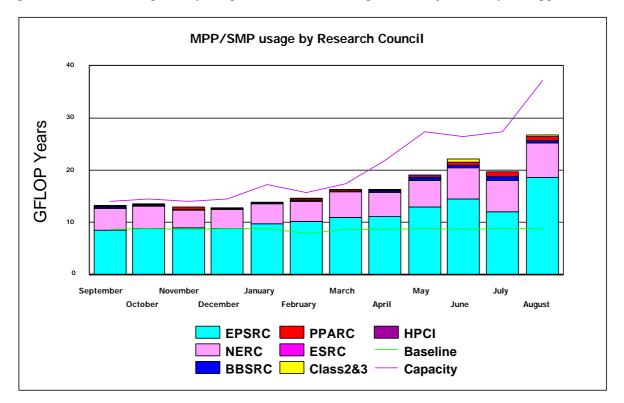


The above chart shows the most significant PE usage of the Turing system by class 2 and class 3 users.

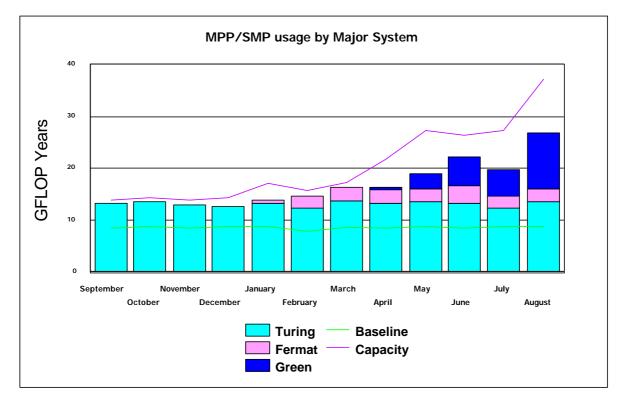

CfS

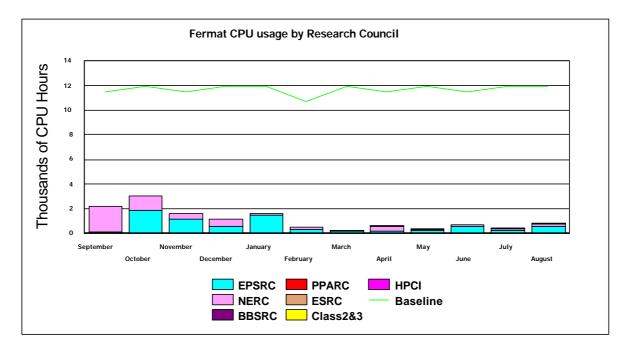
The above chart shows the CPU usage of the Fermat system by class 2 and class 3 users.

The above chart shows the most significant disk allocations on the Turing system for class 2 and class 3 users.

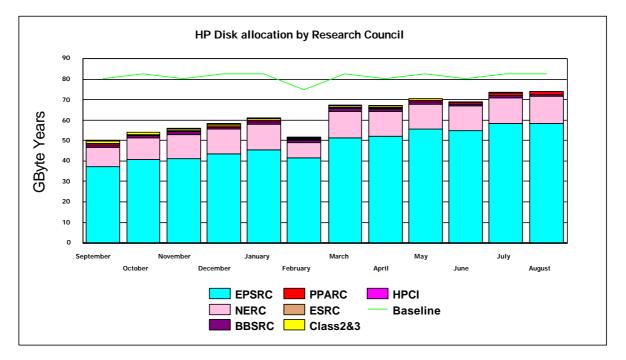


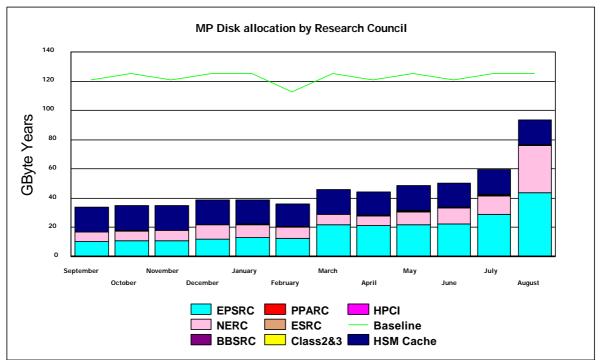
The above chart shows the most significant disk allocations on the Fermat system for class 2 and class 3 users. There is currently no HSM usage by class 2 and class 3 users.


4.8 Charts of Historical Usage


In all the Usage Charts, the baseline varies dependant on the number of days in each month, within a 365-day year.

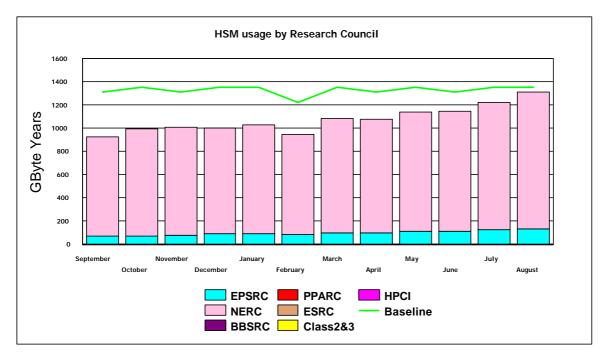
The graph below shows the GFLOP Year utilisation on Turing and Fermat by Research Council for the previous 12 months; usage in July being reduced due to the outage for the major Green system upgrade.


The graph below shows the historic SMP/MPP usage on the major systems, with the upgrades to Fermat showing in January 2001 and Green showing in April to August 2001.

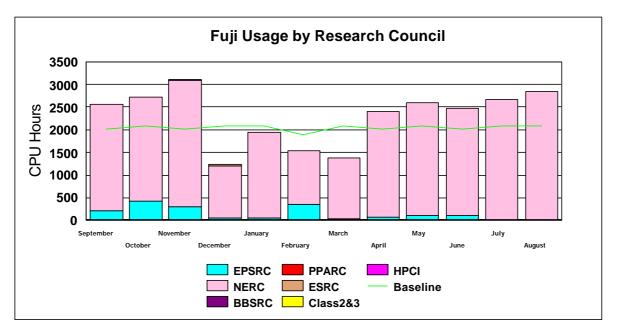


The above graph shows the historic interactive usage of the 'Baseline' Fermat system (equivalent to 16@250Mhz CPU's)

The next series of graphs illustrates the usage of the disk and HSM resources of the system.



The preceding graph illustrates the historic allocation of the High Performance Disk on Turing, which is now approaching the Baseline level.


The graph above illustrates the historic allocation of the Medium Performance Disk on Fermat, which is now beginning to grow more rapidly with the growth in usage of both Fermat and Green.

The graph below shows the historic HSM usage by Research Council funded projects, now close to Baseline. The primary usage is for NERC.

CfS

The next chart shows the historic usage of the Fuji system.

The Fujitsu system usage was above baseline this month.

4.8 Guest System Usage Charts

There is currently no Guest System usage.

5. Service Status, Issues and Plans

5.1 Status

The service continues to run almost at full capacity.

During the month, 55% of the jobs run on Turing were larger than 64 PEs in size.

The Origin 128 (Fermat) continues to be heavily used.

During the month, 80% of the jobs run on Green were larger than 64 PEs in size.

The batch usage of Green is currently at 57% of the machine's capacity.

5.2 Issues

The environmental issues, although no longer as evident, are still receiving Management attention.

5.3 Plans

Plans are underway for the implementation of a SAN solution to the service.

6. Conclusion

August 2001 saw the overall CPARS rating at Green with the baseline being exceeded by 53%.

The largest proportion of the workload continues to be of the larger job sizes.

Continued management attention will be given to maximise the throughput of the Service, whilst balancing as fairly as practicable the shares between Projects and jobs of the varying sizes.

Appendix 1 contains the accounts for August 2001

Appendix 2 contains the Percentage shares by Consortium for August 2001

Appendix 3 contains the Percentage shares by Research Council for August 2001

Appendix 4 contains the Training, Applications and Optimisation support figures to the end of August 2001

Appendix 5 contains a reference table of the Consortia name, the subject area and the PI name.

Appendix 1

The summary accounts for the month of August 2001 can be found at the URL below

http://www.csar.cfs.ac.uk/admin/accounts/summary.shtml

Appendix 2

Descenteres DE time and constantin for Turing in August 2004		Descentene ODU time and another for	Format in Automat 2004
Percentage PE time per consortia for Turing in August 2001		Percentage CPU time per consortia for Consortia	
Consortia	% Machine Time	CSE002	<u>% Machine Time</u>
CSE002 CSE003	15.10	CSE002 CSE003	0.00
	6.67		44.31
CSE007	4.34	CSE007	0.07
CSE021	0.00	CSE021	0.00
CSE023	0.10	CSE023	7.79
CSE025	0.00	CSE025	0.00
CSE030	0.02	CSE030	0.30
CSE051	0.00	CSE051	0.00
CSE055	0.14	CSE055	0.00
CS0057	0.00	CS0057	0.00
CSE006	0.41	CSE006	83.81
CSE026	0.57	CSE026	4.89
CSE004	1.93	CSE004	0.14
CSE013	4.06	CSE013	0.86
CSE014	0.00	CSE014	0.00
CSE016	0.20	CSE016	0.00
CSE027	0.00	CSE027	0.04
CSE040	0.00	CSE040	0.00
CSE041	0.00	CSE041	0.00
CSE043	0.00	CSE043	0.00
CSE052	1.78	CSE052	0.00
CSE053	0.59	CSE053	0.00
CSE056	0.00	CSE056	0.00
CSE008	0.00	CSE008	0.00
CSE009	6.79	CSE009	1.17
CSE024	1.05	CSE024	0.00
CSE033	0.00	CSE033	4.24
CSE035	4.82	CSE035	0.00
CSE019	0.00	CSE019	0.00
CSE020	0.00	CSE020	0.00
CSE066	0.09	CSE066	0.00
CSE034	0.00	CSE034	0.00
CSE036	0.00	CSE036	0.02
HPCI Southampton	0.00	HPCI Southampton	0.00
HPCI Daresbury	0.02	HPCI Daresbury	0.02
HPCI Edinburgh	0.05	HPCI Edinburgh	0.44
CSN001	0.32	CSN001	0.18
CSN003	32.49	CSN003	0.97
CSN005	0.00	CSN005	0.00
CSN006	6.84	CSN006	0.00
CSN007	0.00	CSN007	0.00
CSN010	0.00	CSN010	0.00
CSN011	0.11	CSN011	0.00
CSN012	0.00	CSN012	0.00
CSN015	1.32	CSN015	0.02
CSN017	1.91	CSN017	0.00
CSN036	0.00	CSN036	0.03
CSB001	3.65	CSB001	0.00
CSB002	0.56	CSB002	4.78
CSP002	5.96	CSP002	0.00
CSP003	0.00	CSP003	0.00
CSP004	0.00	CSP004	0.00
CS2018	0.00	CS2018	0.00
CS2021	0.00	CS2021	0.00
CS2023	0.00	CS2023	0.00
CS2026	0.00	CS2024	0.00
CS2027	0.00	CS2027	0.00
CS2029	0.00	CS2029	0.00
CS3001	0.00	CS3001	0.00
C\$3002	0.00	CS3002	0.00
C\$3005	0.00	CS3005	0.00
CS3007	0.00	CS3007	0.00
CS3008	0.00	CS3008	0.00
CS3010	0.00	CS3010	0.00
CS3012	0.00	CS3012	0.00
CS3013	0.00	CS3013	0.04

Appendix 2

Canactin Xallecation Second Second CSE002 23.46 CSE003 3.31 CSE003 1.15 CSE007 3.33 CSE021 0.00 CSE023 0.043 CSE023 0.22 CSE023 0.00 CSE024 0.00 CSE025 0.00 CSE050 0.00 CSE026 0.00 CSE051 0.26 CSE055 0.00 CSE056 0.11 CSE056 0.02 CSE051 0.26 CSE056 0.04 CSE054 0.05 CSE056 0.04 CSE041 1.34 CSE056 0.00 CSE041 0.00 CSE014 0.00 CSE041 0.00 CSE014 0.00 CSE041 0.05 CSE032 0.00 CSE040 0.00 CSE041 0.00 CSE041 0.05 CSE041 0.00 CSE041 0.05 CSE041 0.00 CSE040	
CSE003 9.15 CSE007 3.31 CSE007 1.38 CSE007 0.03 CSE021 0.00 CSE023 11.84 CSE022 0.00 CSE023 11.84 CSE023 0.22 CSE023 11.84 CSE030 22.99 CSE036 27.98 CSE051 0.28 CSE056 0.00 CSE056 0.11 CSE056 0.00 CSE056 0.11 CSE056 0.00 CSE056 0.11 CSE056 0.00 CSE056 0.11 CSE056 0.00 CSE056 0.13 CSE013 0.18 CSE013 1.08 CSE014 0.00 CSE040 0.00 CSE040 0.00 CSE040 0.00 CSE041 0.00 CSE041 0.55 CSE053 0.00 CSE043 0.44 CSE043 0.12 CSE040 0.00 CSE043 0.00 CSE053	
CSE007 1.38 CSE07 0.43 CSE021 0.00 CSE023 0.00 CSE023 0.22 CSE023 0.00 CSE030 0.21 0.82 0.00 CSE030 2.19 CSE030 2.798 CSE051 0.28 CSE055 0.00 CSE056 0.11 CSE055 0.00 CSE056 0.11 CSE056 0.00 CSE056 0.11 CSE056 0.00 CSE056 0.92 CSE056 0.00 CSE040 0.52 CSE014 0.32 CSE041 0.00 CSE041 0.00 CSE041 0.05 CSE041 0.00 CSE041 0.05 CSE041 0.00 CSE041 0.00 CSE041 0.00 CSE041 0.00 CSE041 0.00 CSE041 0.00 CSE041 0.00 CSE040 0.01 CSE041 0.00 CSE040 0.0	
CSE0210.00CSE0230.00CSE0230.22CSE0230.00CSE0240.00CSE0250.00CSE03021.99CSE03027.98CSE0510.250.000.25CSE0560.11CSE0550.00CSE0560.12CSE0560.00CSE0570.05CSE0560.00CSE0580.05CSE0560.00CSE0590.05CSE0560.00CSE041.34CSE0260.00CSE040.00CSE0140.00CSE040.00CSE0140.00CSE040.00CSE0140.00CSE040.00CSE0410.00CSE040.00CSE0410.00CSE040.04CSE0430.12CSE0530.11CSE0530.00CSE0540.00CSE0560.00CSE0550.00CSE0560.00CSE0560.00CSE0560.00CSE0560.00CSE0560.00CSE0560.00CSE0560.00CSE0570.00CSE0560.00CSE0580.00CSE0560.00CSE0590.00CSE0560.00CSE0590.00CSE0560.00CSE0500.00CSE0560.00CSE0500.00CSE0560.00CSE0510.00CSE0560.00CSE0520.00CSE0560.00CSE0540.00 <td></td>	
CSE0210.00CSE0230.00CSE0230.22CSE0230.00CSE0240.00CSE0250.00CSE03021.99CSE03027.98CSE0510.250.000.25CSE0560.11CSE0550.00CSE0560.12CSE0560.00CSE0570.05CSE0560.00CSE0580.05CSE0560.00CSE0590.05CSE0560.00CSE041.34CSE0260.00CSE040.00CSE0140.00CSE040.00CSE0140.00CSE040.00CSE0140.00CSE040.00CSE0410.00CSE040.00CSE0410.00CSE040.04CSE0430.12CSE0530.11CSE0530.00CSE0540.00CSE0560.00CSE0550.00CSE0560.00CSE0560.00CSE0560.00CSE0560.00CSE0560.00CSE0560.00CSE0560.00CSE0570.00CSE0560.00CSE0580.00CSE0560.00CSE0590.00CSE0560.00CSE0590.00CSE0560.00CSE0500.00CSE0560.00CSE0500.00CSE0560.00CSE0510.00CSE0560.00CSE0520.00CSE0560.00CSE0540.00 <td></td>	
CSE0230.22CSE03311.84CSE0250.00CSE0350.00CSE03021.99CSE03027.98CSE0510.26CSE0550.00CSE0560.11CSE0550.00CSE0660.92CSE0660.04CSE0260.05CSE0260.00CSE0260.05CSE0260.00CSE0260.05CSE0260.00CSE0271.38CSE0130.18CSE0270.05CSE040.00CSE0270.05CSE0410.00CSE0410.05CSE0430.00CSE0420.04CSE0430.00CSE0430.04CSE0430.00CSE0440.00CSE0430.00CSE0530.11CSE0530.00CSE0640.00CSE0660.00CSE0650.00CSE0660.00CSE0640.00CSE0680.00CSE0530.01CSE0680.00CSE0540.05CSE0330.33CSE0540.00CSE0350.00CSE0540.00CSE0350.00CSE0540.00CSE0360.00CSE0540.00CSE0360.00CSE0540.00CSE0350.00CSE0540.00CSE0360.00CSE0540.00CSE0360.00CSE0540.00CSE0360.00CSE0540.00CSE0360.00CSE035 <t< td=""><td></td></t<>	
CSE0250.00CSE03027.98CSE03021.99CSE03027.98CSE0510.26CSE0510.25CSE0560.11CSE0550.00CSE0600.92CSE0660.44CSE0260.05CSE0260.05CSE03011.34CSE0310.18CSE0410.00CSE0140.00CSE0410.01CSE0140.00CSE0410.05CSE0271.38CSE0410.05CSE0410.00CSE0410.05CSE0410.00CSE0410.05CSE0410.00CSE0420.34CSE0430.12CSE0530.11CSE0560.00CSE0640.00CSE0430.00CSE0540.00CSE0430.00CSE0550.00CSE0560.00CSE0560.00CSE0560.00CSE0570.68CSE090.65CSE0580.00CSE0590.00CSE0590.00CSE0310.33CSE0340.04CSE0350.00CSE0350.00CSE0360.00CSE0360.03CSE0360.00CSE0360.03CSE0360.00CSE0360.03CSE0360.00CSE0360.03CSE0360.00CSE0360.03CSE0360.00CSE0360.03CSE0360.00CSE0360.03CSE0360.00CSE036<	
SE03021.99SE03027.98SE0510.26CSE0310.25SE0550.11CSE0550.00SE0060.92CSE0060.44SE0070.55CSE0060.04SE0080.05CSE0080.00SE00411.34CSE0133.32SE0131.08CSE0140.00SE0140.00CSE0440.00SE015CSE040.00CSE040.00SE0160.15CSE0410.000.00SE0170.05CSE0410.000.00SE0410.06CSE0410.000.00SE0430.14CSE030.000.00SE0430.14CSE0330.000.00SE0430.14CSE0330.000.00SE0640.00CSE0680.000.00SE0680.00CSE0680.000.00SE0096.88CSE0090.550.00SE0240.00CSE0330.000.00SE0350.00CSE0360.000.00SE0440.00CSE0340.000.00SE0260.00CSE0360.000.00SE0260.00CSE0360.000.00SE0260.00CSE0360.000.00SE0360.03CSE0360.000.00SE0260.04CSE0360.000.00SE0260.00CSE0360.000.00 <td></td>	
CSE051 0.26 CSE055 0.01 CSE056 0.00 CSE056 0.11 CSE056 0.00 CSE060 0.92 CSE026 0.00 CSE040 0.13 CSE026 0.00 CSE041 1.08 CSE031 0.18 CSE013 1.08 CSE014 0.00 CSE014 0.00 CSE017 1.38 CSE044 0.00 CSE041 0.00 CSE045 0.04 CSE041 0.00 CSE040 0.05 CSE043 0.012 CSE043 0.04 CSE043 0.01 CSE052 0.34 CSE033 0.00 CSE043 0.01 CSE033 0.00 CSE045 0.00 CSE033 0.00 CSE040 0.00 CSE033 0.33 CSE040 0.00 CSE033 0.33 CSE040 0.00 CSE033 0.33 CSE041 0.00 CSE033 0.00	
CSE056 0.11 CSE056 0.00 CSE006 0.92 CSE006 0.44 CSE026 0.05 CSE026 0.00 CSE011 1.08 CSE013 0.18 CSE012 0.05 CSE014 0.00 CSE013 0.15 CSE014 0.00 CSE014 0.05 CSE017 1.38 CSE014 0.05 CSE040 0.00 CSE041 0.05 CSE041 0.00 CSE041 0.05 CSE041 0.00 CSE041 0.05 CSE041 0.00 CSE041 0.05 CSE041 0.00 CSE041 0.04 CSE043 0.12 CSE041 0.04 CSE043 0.00 CSE052 0.34 CSE052 0.00 CSE054 0.01 CSE056 0.00 CSE055 0.00 CSE035 0.00 CSE054 0.40 CSE035 0.00 CSE055 0	
S2E006 0.92 CSE006 0.44 S25026 0.05 CSE026 0.00 S2E014 1.134 CSE004 3.32 S2E013 1.08 CSE013 0.18 S2E014 0.00 CSE014 0.00 S2E014 0.00 CSE016 0.00 S2E04 0.05 CSE027 1.38 S2E04 0.00 CSE040 0.00 S2E041 0.05 CSE041 0.00 S2E052 0.34 CSE053 0.00 S2E056 0.00 CSE066 0.00 S2E064 0.00 CSE053 0.00 S2E056 0.00 CSE056 0.00 S2E066 0.00 CSE066 0.00 S2E067 6.88 CSE009 0.55 S2E024 0.40 CSE033 0.33 S2E035 0.80 CSE035 0.00 S2E041 0.00 CSE035 0.00 S2E042 0.	
CSE026 0.05 CSE026 0.00 CSE014 11.34 CSE013 3.32 CSE014 0.00 CSE014 0.00 CSE015 0.15 CSE014 0.00 CSE014 0.00 CSE014 0.00 CSE015 0.15 CSE014 0.00 CSE040 0.05 CSE040 0.00 CSE041 0.05 CSE043 0.12 CSE052 0.34 CSE053 0.00 CSE064 0.00 CSE056 0.00 CSE065 0.00 CSE066 0.00 CSE066 0.00 CSE067 0.55 CSE07 6.88 CSE07 0.00 CSE08 0.00 CSE03 0.00 CSE03 0.05 CSE035 0.00 CSE04 0.04 CSE035 0.00 CSE03 0.06 CSE034 0.00 CSE03 0.06 CSE034 0.00 CSE036 0.03 <td></td>	
CSE004 11.34 CSE004 3.32 S3013 1.08 CSE013 0.18 S26014 0.00 CSE014 0.00 CSE016 0.15 CSE016 0.00 S26014 0.05 CSE016 0.00 S26040 0.05 CSE041 0.00 S26040 0.04 CSE043 0.12 S26042 0.34 CSE052 0.00 S26043 0.11 CSE053 0.00 S26043 0.11 CSE053 0.00 S26045 0.00 CSE053 0.00 S26046 0.00 CSE038 0.00 S26047 0.40 CSE033 0.33 S26048 0.40 CSE033 0.33 S26049 0.40 CSE033 0.33 S26049 0.40 CSE033 0.33 S26049 0.00 CSE034 0.00 S2604 0.00 CSE036 0.01 S2604 0.0	
SE013 1.08 CSE013 0.18 SE014 0.00 CSE014 0.00 SE016 0.15 CSE016 0.00 SE027 0.05 CSE027 1.38 SE040 0.00 CSE040 0.00 SE041 0.05 CSE041 0.00 SE043 0.04 CSE043 0.12 SE056 0.34 CSE052 0.00 SE046 0.00 CSE053 0.00 SE045 0.11 CSE053 0.00 SE008 0.00 CSE056 0.00 SE009 6.88 CSE09 0.55 SE035 0.80 CSE033 0.33 SE035 0.80 CSE036 0.00 SE044 0.40 CSE034 0.00 SE035 0.80 CSE036 0.00 SE040 0.00 CSE036 0.00 SE040 0.00 CSE036 0.00 SE040 0.00 <td< td=""><td></td></td<>	
SE014 0.00 CSE014 0.00 SSE016 0.15 CSE016 0.00 SSE047 0.05 CSE027 1.38 SSE040 0.00 CSE040 0.00 SSE041 0.05 CSE040 0.00 SSE043 0.04 CSE043 0.12 SSE053 0.111 CSE053 0.00 SSE064 0.00 CSE063 0.00 SSE056 0.00 CSE063 0.00 SSE064 0.00 CSE063 0.00 SSE056 0.00 CSE068 0.00 SSE040 0.00 CSE069 0.55 SSE04 0.40 CSE03 0.00 SSE040 0.60 CSE03 0.00 SSE040 0.00 <td></td>	
SEE014 0.00 CSE014 0.00 CSE016 0.15 CSE016 0.00 SE027 0.05 CSE027 1.38 SE040 0.00 CSE040 0.00 SE041 0.05 CSE040 0.00 SE041 0.05 CSE043 0.12 SE063 0.04 CSE052 0.00 SE064 0.00 CSE063 0.00 SE065 0.00 CSE063 0.00 SE066 0.00 CSE068 0.00 SE009 6.88 CSE009 0.55 SE024 0.40 CSE035 0.00 SE033 0.05 CSE036 0.00 SE034 0.40 CSE035 0.00 SE035 0.80 CSE036 0.00 SE044 0.40 CSE036 0.00 SE035 0.00 CSE036 0.00 SE046 0.04 CSE036 0.00 SE036 0.01	
SE016 0.15 CSE016 0.00 SE027 0.05 CSE027 1.38 SE040 0.00 CSE040 0.00 SE041 0.05 CSE041 0.00 SE043 0.04 CSE043 0.12 SE042 0.34 CSE052 0.00 SE053 0.11 CSE053 0.00 SE064 0.00 CSE066 0.00 SE005 0.00 CSE066 0.00 SE006 0.00 CSE03 0.00 SE008 0.00 CSE03 0.00 SE019 0.00 CSE03 0.00 SE024 0.40 CSE03 0.00 SE035 0.80 CSE034 0.00 SE040 0.00 CSE036 0.00 SE036 0.44 CSE036 0.00 SE036 0.44 CSE036 0.00 SE034 0.00 CSE036 0.00 SE036 0.44 CS	
SE027 0.05 CSE027 1.38 SE040 0.00 CSE040 0.00 SE041 0.05 CSE041 0.00 SE043 0.04 CSE043 0.12 SE055 0.34 CSE053 0.00 SE056 0.011 CSE053 0.00 SE056 0.00 CSE062 0.00 SE009 0.688 CSE009 0.55 SE033 0.06 CSE033 0.33 SE034 0.40 CSE033 0.33 SE035 0.80 CSE035 0.00 SE036 0.00 CSE033 0.33 SE035 0.80 CSE035 0.00 SE036 0.00 CSE034 0.00 SE036 0.00 CSE036 0.00 SE036 0.00 CSE036 0.00 SE036 0.03 CSE036 0.00 SE049 0.00 HPCI Daresbury 0.05 SE036 0.03	
SE040 0.00 CSE040 0.00 SE041 0.05 CSE041 0.00 SE043 0.44 CSE052 0.00 SE062 0.34 CSE052 0.00 SE063 0.11 CSE053 0.00 SE066 0.00 CSE066 0.00 SE008 0.00 CSE008 0.00 SE009 6.88 CSE009 0.55 SE033 0.05 CSE033 0.33 SE035 0.80 CSE035 0.00 SE040 0.40 CSE035 0.00 SE035 0.80 CSE035 0.00 SE046 0.40 CSE036 0.00 SE040 0.00 CSE035 0.00 SE044 0.00 CSE034 0.00 SE040 0.44 CSE034 0.00 SE036 0.03 CSE036 0.01 SE036 0.03 CSE036 0.01 SE036 0.03 <t< td=""><td></td></t<>	
SE041 0.05 CSE041 0.00 SE043 0.04 CSE043 0.12 SE052 0.34 CSE052 0.00 SE056 0.00 CSE056 0.00 SE066 0.00 CSE056 0.00 SE008 0.00 CSE008 0.00 SE009 6.88 CSE009 0.55 SE024 0.40 CSE033 0.05 SE033 0.05 CSE033 0.33 SE041 0.40 CSE033 0.33 SE034 0.40 CSE033 0.33 SE035 0.80 CSE034 0.00 SE041 0.00 CSE034 0.00 SE036 0.03 CSE036 0.01 SE036 0.03 <t< td=""><td></td></t<>	
SE043 0.04 CSE043 0.12 SE052 0.34 CSE052 0.00 SE063 0.11 CSE053 0.00 SE066 0.00 CSE056 0.00 SE068 0.00 CSE066 0.00 SE008 0.00 CSE008 0.00 SE024 0.40 CSE008 0.00 SE025 0.88 CSE008 0.00 SE024 0.40 CSE024 0.40 SE033 0.05 CSE035 0.00 SE019 0.00 CSE036 0.00 SE020 0.00 CSE020 0.00 SE034 0.00 CSE036 0.01 SE036 0.04 CSE036 0.01 SE037 0.00 CSE036 0.00 SE036 0.03 CSE036 0.01 SE037 0.00 CSE036 0.01 SE036 0.03 CSE036 0.01 SE036 0.03 <t< td=""><td></td></t<>	
SSE052 0.34 CSE052 0.00 SSE053 0.11 CSE053 0.00 SSE056 0.00 CSE056 0.00 SSE058 0.00 CSE056 0.00 SSE059 6.88 CSE009 0.55 SSE032 0.40 CSE033 0.33 SSE033 0.65 CSE035 0.00 SSE034 0.00 CSE035 0.00 SSE035 0.80 CSE036 0.00 SSE044 0.00 CSE036 0.00 SSE035 0.80 CSE036 0.00 SSE040 0.00 CSE036 0.00 SSE034 0.00 CSE036 0.00 SSE035 0.03 CSE036 0.01 HPCI Southampton 0.00 CSE036 0.01 HPCI Southampton 0.00 CSEN03 1.65 SN003 2.40 CSN001 11.06 SN005 0.00 CSN005 0.00 SN005<	
SE063 0.11 CSE053 0.00 SE066 0.00 CSE066 0.00 SE008 0.00 CSE008 0.00 SE009 6.88 CSE009 0.55 SE024 0.40 CSE033 0.03 SE033 0.05 CSE034 0.00 SE034 0.00 CSE035 0.00 SE035 0.80 CSE035 0.00 SE040 0.00 CSE036 0.00 SE041 0.00 CSE036 0.00 SE066 0.04 CSE036 0.00 SE066 0.04 CSE036 0.00 SE036 0.03 CSE036 0.01 PCI Southampton 0.00 CSE036 0.01 PCI Southampton 0.00 CSE036 0.01 PCI Edinburgh 0.11 HPCI Southampton 0.00 SN001 10.04 CSN003 1.65 SN005 0.00 CSN006 1.11 SN00	
SE056 0.00 CSE056 0.00 SE008 0.00 CSE008 0.00 SE009 6.88 CSE009 0.55 SE024 0.40 CSE024 0.04 SE033 0.05 CSE033 0.33 SE035 0.80 CSE035 0.00 SE019 0.00 CSE020 0.00 SE020 0.00 CSE036 0.00 SE036 0.00 CSE036 0.00 SE040 0.00 CSE036 0.00 SE036 0.00 CSE036 0.00 SE036 0.00 CSE036 0.00 SE036 0.00 CSE036 0.00 SE036 0.03 CSE036 0.01 PCI Southampton 0.00 CSE036 0.01 PCI Edinburgh 0.11 HPCI Southampton 0.00 SN003 2.40 CSN003 1.65 SN005 0.00 CSN006 1.11 SN006 4.58	
SE008 0.00 CSE008 0.00 SE009 6.88 CSE009 0.55 SE024 0.00 CSE009 0.55 SE033 0.05 CSE033 0.33 SE035 0.80 CSE035 0.00 SE044 0.00 CSE035 0.00 SE035 0.80 CSE036 0.00 SE040 0.00 CSE036 0.00 SE040 0.00 CSE036 0.00 SE040 0.00 CSE036 0.00 SE040 0.00 CSE036 0.00 SE036 0.03 CSE036 0.00 SE036 0.03 CSE036 0.00 SE036 0.03 CSE036 0.00 IPCI Southampton 0.00 CSE036 0.01 IPCI Daresbury 0.11 HPCI Southampton 0.10 SN005 0.00 CSN005 0.00 SN005 0.00 CSN005 0.00 SN005	
SE009 6.88 CSE009 0.55 SE024 0.40 CSE024 0.04 SE035 0.05 CSE033 0.33 SE036 0.80 CSE035 0.00 SE019 0.00 CSE019 0.00 SE026 0.00 CSE020 0.00 SE026 0.04 CSE020 0.00 SE026 0.04 CSE036 0.00 SE026 0.04 CSE036 0.00 SE036 0.03 CSE036 0.00 SE036 0.03 CSE036 0.00 SE037 0.01 HPCI Southampton 0.00 IPCI Edinburgh 0.11 HPCI Southampton 0.00 IPCI Edinburgh 0.11 HPCI Southampton 1.05 SN003 2.40 CSN005 0.00 SN005 0.00 CSN006 1.11 SN005 0.00 CSN005 0.00 SN005 0.00 CSN005 0.00	
SE009 6.88 CSE009 0.65 SE024 0.40 CSE024 0.04 SE035 0.05 CSE033 0.33 SE034 0.80 CSE035 0.00 SE04 0.00 CSE035 0.00 SE04 0.00 CSE019 0.00 SE060 0.00 CSE020 0.00 SE066 0.04 CSE066 0.00 SE034 0.00 CSE034 0.00 SE036 0.03 CSE036 0.01 PCI Southampton 0.00 MPCI Southampton 0.00 PCI Edinburgh 0.11 HPCI Southampton 0.00 SN001 10.04 CSN003 1.65 SN005 0.00 CSN005 0.00 SN006 1.11 SN007 0.00 SN005 0.00 CSN005 0.00 SN006 0.00 CSN005 0.00 SN010 0.00 CSN011 0.00 SN015 </td <td></td>	
SE024 0.40 CSE024 0.04 SE033 0.05 CSE033 0.33 SE036 0.80 CSE035 0.00 SE019 0.00 CSE019 0.00 SE020 0.00 CSE020 0.00 SE036 0.04 CSE066 0.00 SE036 0.03 CSE034 0.00 SE036 0.03 CSE034 0.00 SE036 0.03 CSE036 0.01 PCI Southampton 0.00 HPCI Southampton 0.00 PCI Southampton 0.01 10.04 CSN003 1.65 SN001 10.04 CSN005 0.00 0.00 SN003 2.40 CSN005 0.00 0.00 SN005 0.00 CSN005 0.00 0.00 SN006 4.58 CSN007 0.00 0.00 SN010 0.000 CSN011 0.00 0.00 SN015 0.13 CSN015 27.66	
SE033 0.05 CSE033 0.33 SE035 0.80 CSE035 0.00 SE019 0.00 CSE019 0.00 SE020 0.00 CSE020 0.00 SE036 0.04 CSE066 0.00 SE036 0.04 CSE066 0.00 SE036 0.03 CSE034 0.00 SE036 0.03 CSE036 0.01 PCI Southampton 0.00 CSE036 0.01 PCI Southampton 0.00 HPCI Southampton 0.00 PCI Banesbury 0.11 HPCI Edinburgh 0.10 SN001 10.04 CSN003 1.65 SN005 0.00 CSN005 0.00 SN006 4.58 CSN006 1.11 SN007 0.00 CSN011 0.00 SN010 0.00 CSN011 0.00 SN011 0.00 CSN011 0.00 SN011 0.00 CSN012 0.16	
SE035 0.80 CSE035 0.00 SE019 0.00 CSE019 0.00 SE020 0.00 CSE020 0.00 SE066 0.04 CSE036 0.00 SE036 0.03 CSE036 0.00 SE036 0.03 CSE036 0.01 SE036 0.03 CSE036 0.01 PCI Southampton 0.00 HPCI Southampton 0.00 PCI Edinburgh 0.11 HPCI Edinburgh 0.10 SN001 10.04 CSN003 1.65 SN003 2.40 CSN005 0.00 SN005 0.00 CSN005 0.00 SN006 4.58 CSN005 0.00 SN011 0.00 CSN011 0.00 SN011 0.00 CSN011 0.00 SN011 0.00 CSN012 0.16 SN015 0.13 CSN015 27.66 SN015 0.13 CSN017 0.10 SN036	
SE019 0.00 CSE019 0.00 SE020 0.00 CSE020 0.00 SE046 0.04 CSE066 0.00 SE034 0.00 CSE034 0.00 SE036 0.03 CSE036 0.01 PCI Southampton 0.00 HPCI Southampton 0.00 PCI Daresbury 0.11 HPCI Daresbury 0.05 PCI Edinburgh 0.11 HPCI Edinburgh 0.10 SN001 10.04 CSN001 11.06 SN005 0.00 CSN005 0.00 SN006 4.58 CSN005 0.00 SN010 0.00 CSN007 0.00 0.00 SN010 0.00 CSN011 0.00 0.00 SN010 0.00 CSN011 0.00 0.00 SN010 0.00 CSN011 0.00 0.00 SN011 0.46 CSN011 0.00 0.00 SN012 0.13 CSN015 27.66 SN015 </td <td></td>	
SE020 0.00 CSE020 0.00 SE066 0.04 CSE066 0.00 SE034 0.00 CSE034 0.00 SE036 0.03 CSE036 0.01 SE036 0.03 CSE034 0.00 SE036 0.03 CSE036 0.01 SE036 0.03 CSE036 0.01 SCI Daresbury 0.11 HPCI Southampton 0.00 SE020 CSN001 11.06 SE036 0.00 SN001 10.04 CSN003 1.65 SE036 0.00 SN005 0.00 CSN005 0.00 SE036 0.00 SE036 0.00 SE036 SE036	
SE066 0.04 CSE066 0.00 SE034 0.00 CSE034 0.00 SE036 0.03 CSE036 0.01 PCI Southampton 0.00 HPCI Southampton 0.00 PCI Edinburgh 0.11 HPCI Daresbury 0.05 PCI Edinburgh 0.11 HPCI Edinburgh 0.10 NN01 10.04 CSN001 11.06 SN005 0.00 CSN003 1.65 SN006 0.00 CSN005 0.00 SN006 0.00 CSN007 0.00 SN010 0.00 CSN011 0.00 SN011 0.46 CSN011 0.00 SN012 0.00 CSN012 0.16 SN015 0.13 CSN015 27.66 SN015 0.05 CSN017 0.00 SN015 0.05 CSN017 0.00 SN046 0.05 CSN017 0.00	
SE034 0.00 CSE034 0.00 SE036 0.03 CSE036 0.01 PCI Southampton 0.00 HPCI Southampton 0.00 PCI Daresbury 0.11 HPCI Daresbury 0.05 PCI Edinburgh 0.11 HPCI Edinburgh 0.10 SN001 10.04 CSN001 11.06 SN003 2.40 CSN003 1.65 SN005 0.00 CSN003 1.65 SN006 4.58 CSN006 1.11 SN007 0.00 CSN007 0.00 SN010 0.046 CSN011 0.00 SN011 0.46 CSN012 0.00 SN012 0.00 CSN012 0.16 SN012 0.01 CSN015 27.66 SN015 0.05 CSN017 0.00 SN036 0.05 CSN036 0.00	
SE036 0.03 CSE036 0.01 Cl Suutampton 0.00 HPCI Southampton 0.00 Cl Daresbury 0.11 HPCI Daresbury 0.05 Cl Edinburgh 0.11 HPCI Edinburgh 0.10 N001 10.04 CSN001 11.06 N003 2.40 CSN003 1.65 N006 0.00 CSN006 0.00 N006 0.00 CSN006 1.11 N007 0.00 CSN006 1.11 N007 0.00 CSN007 0.00 N011 0.46 CSN011 0.00 N012 0.00 CSN011 0.00 N012 0.00 CSN012 0.16 N015 0.13 CSN015 27.66 N017 0.01 CSN017 0.00 N036 0.05 CSN036 0.00	
PCI Southampton 0.00 HPCI Southampton 0.00 PCI Daresbury 0.11 HPCI Daresbury 0.05 PCI Edinburgh 0.11 HPCI Edinburgh 0.10 N001 10.04 CSN001 11.06 SN005 0.00 CSN003 1.65 SN006 4.58 CSN005 0.00 SN007 0.00 CSN007 0.00 SN010 0.00 CSN011 0.00 SN010 0.04 CSN011 0.00 SN011 0.04 CSN012 0.16 SN012 0.00 CSN012 0.16 SN015 0.13 CSN015 27.66 SN036 0.05 CSN017 0.10	
PCI Daresbury 0.11 HPCI Daresbury 0.05 PCI Edinburgh 0.11 HPCI Edinburgh 0.10 N001 10.04 CSN001 11.06 SN003 2.40 CSN003 1.65 SN005 0.00 CSN005 0.00 SN006 4.58 CSN007 0.00 SN007 0.00 CSN010 0.00 SN010 0.00 CSN010 0.00 SN011 0.466 CSN012 0.16 SN012 0.00 CSN012 0.16 SN012 0.00 CSN012 0.16 SN015 0.13 CSN015 27.66 SN017 0.01 CSN017 0.10 SN046 0.05 CSN017 0.00	
PCI Edinburgh 0.11 HPCI Edinburgh 0.10 SN001 10.04 CSN001 11.06 SN003 2.40 CSN003 1.65 SN005 0.00 CSN003 1.65 SN006 4.58 CSN006 1.11 SN007 0.00 CSN007 0.00 SN010 0.04 CSN011 0.00 SN011 0.46 CSN012 0.00 SN012 0.00 CSN012 0.10 SN012 0.03 CSN012 0.10 SN012 0.03 CSN015 27.66 SN017 0.01 CSN017 0.01 SN036 0.05 CSN036 0.00	
N001 10.04 CSN001 11.06 N003 2.40 CSN003 1.65 N006 0.00 CSN005 0.00 N006 4.58 CSN006 1.11 N007 0.00 CSN007 0.00 N011 0.04 CSN011 0.00 N011 0.46 CSN011 0.00 N012 0.00 CSN012 0.16 N015 0.13 CSN015 27.66 N017 0.01 CSN017 0.10 N036 0.05 CSN036 0.00	
SN001 10.04 CSN001 11.06 SN003 2.40 CSN003 1.65 SN006 0.00 CSN005 0.00 SN006 4.58 CSN006 1.11 SN007 0.00 CSN007 0.00 SN011 0.00 CSN011 0.00 SN012 0.00 CSN012 0.16 SN015 0.13 CSN015 27.66 SN017 0.01 CSN017 0.10 SN045 0.05 CSN017 0.10	
\$N003 2.40 CSN003 1.65 \$N006 0.00 CSN005 0.00 \$N006 4.58 CSN006 1.11 \$N007 0.00 CSN007 0.00 \$N010 0.00 CSN010 0.00 \$N011 0.46 CSN011 0.00 \$N012 0.00 CSN012 0.16 \$N015 0.13 CSN015 27.66 \$N017 0.01 CSN017 0.10 \$N036 0.05 CSN036 0.00	
N005 0.00 CSN005 0.00 N006 4.58 CSN006 1.11 N007 0.00 CSN007 0.00 N010 0.00 CSN010 0.00 N011 0.46 CSN011 0.00 N012 0.00 CSN012 0.16 N015 0.13 CSN015 27.66 N017 0.05 CSN036 0.00	
N006 4.58 CSN006 1.11 N007 0.00 CSN007 0.00 N010 0.00 CSN010 0.00 N011 0.46 CSN011 0.00 N012 0.00 CSN012 0.16 N015 0.13 CSN015 27.66 N017 0.05 CSN016 0.10	
N007 0.00 CSN007 0.00 N010 0.00 CSN010 0.00 N011 0.46 CSN011 0.00 N012 0.00 CSN012 0.16 N015 0.13 CSN015 27.66 N017 0.01 CSN017 0.10 N036 0.05 CSN036 0.00	
SN010 0.00 CSN010 0.00 SN011 0.46 CSN011 0.00 SN012 0.00 CSN012 0.16 SN015 0.13 CSN015 27.66 SN017 0.01 CSN017 0.10 SN036 0.05 CSN036 0.00	
SN011 0.46 CSN011 0.00 SN012 0.00 CSN012 0.16 SN015 0.13 CSN015 27.66 SN017 0.01 CSN017 0.10 SN036 0.05 CSN036 0.00	
SN012 0.00 CSN012 0.16 SN015 0.13 CSN015 27.66 SN017 0.01 CSN017 0.10 SN036 0.05 CSN036 0.00	
SN015 0.13 CSN015 27.66 SN017 0.01 CSN017 0.10 SN036 0.05 CSN036 0.00	
SN017 0.01 CSN017 0.10 SN036 0.05 CSN036 0.00	
SN017 0.01 CSN017 0.10 SN036 0.05 CSN036 0.00	
\$N036 0.05 C\$N036 0.00	
B002 1.48 CSB002 0.10	
SP002 0.69 CSP002 0.00	
P003 0.03 CSP003 0.04	
0.55 CSP004 0.80 CSP004 0.55	
22018 0.00 CS2018 0.00	
2026 0.13 CS2026 0.00	
2029 0.00 CS2029 0.22	
S3001 0.00 CS3001 0.00	
\$3002 0.00 C\$3002 0.00	
\$3005 0.03 C\$3005 0.00	
S3010 0.05 CS3010 0.00	
S3012 0.00 CS3012 0.00	
S3012 0.00 CS3012 0.00 0.00 S3012 0.00	

Percentage usage o	f HSM by Consortium for August 2001
Consortium	% Usage
CSE002	0.72
CSE003	0.11
CSE030	2.03
CSE004	5.20
CSE013	0.07
CSE027	0.13
CSE041	0.08
CSE024	1.88
CSE033	0.08
CSE035	0.05
CSN001	18.30
CSN003	61.11
CSN015	10.09

Issue 1.0

Appendix 3

Percentage PE usage	on Turing by Reserch Council f	or August 2001	Percentage CPU usage on Fermat by Reserch Council for August 2001				
Research Council	<u>% Usage</u>		Research Council	<u>% Usage</u>			
EPSRC	48.68		EPSRC	98.73			
нрсі	0.07		НРСІ	0.02			
NERC	41.08		NERC	1.25			
BBSRC	4.21		BBSRC	0.00			
ESRC	0.00		ESRC	0.00			
PPARC	5.96		PPARC	0.00			

Percentage Disc alloc	Percentage Disc allocated on Turing by Research Council for August 2001			Percentage Disc allocated on Fermat by Research Council for August 2001				
Research Council	% Allocated		Research Council	% Allocated				
EPSRC	79.19		EPSRC	57.43				
HPCI	0.23		HPCI	0.17				
NERC	17.75		NERC	41.60				
BBSRC	1.60		BBSRC	0.22				
ESRC	0.03		ESRC	0.00				
PPARC	1.52		PPARC	0.59				

Percentage HSM usage by Research Council for August 2001						
<u>% usage</u>						
10.35						
0						
89.51						
0						
0						
0						
	<u>% usage</u> 10.35 0 89.51 0 0					

4	nn	en	di	ix	4
•	PP	CII	u	LA.	т.

App The following tables show the training and support resource usage by the consortias in person days to the current month. Optimisation support for August totalled 10.5 man days.

Code	PI	Subject	Application Support for August 2001	Total Application Support from July 2000	Optimisation Support for August 2001	Total Optimisation Support from July 2000	Total Support Used	Training Used
			1					
Cse002	Dr Phil Lindan	Support for the UKCP		10.75			142.75	-
Cse003	Prof. Ken Taylor	HPC Consortiums 98- 2000		6		15.5	24.5	6
Cse004	Dr Neil Sandham	UK Turbulence						2
Cse006	Dr Patrick Briddon	Covalently Bonded Materials						
Cse007	Dr Matthew Foulkes	Quantum Many Body Theory					1	2
Cse008	Dr Mark Vincent (Hillier)	Model Chemical Reactivity						
Cse009	Dr Ben Slater (Catlow)	HPC in Materials Chemistry		6		3	9	
Cse010	Dr John Williams	Free Surface Flows					15.95	
Cse011	Dr John Williams	Open Channel Flood Plains					2.18	
Cse013	Prof Michael Leschziner	Complex Engineering Flows						3
Cse014	Dr Cassiano de Oliverira (Goddard)	Probs in Nuclear Safety						
Cse016	Dr Stewart Cant	Turbulent Combustion						
Cse017	Dr Kai Luo	Large Eddy Simulation and Modelling of Buoyant Plumes and Smoke Spread in Enclosures						
Cse018	Dr Stewart Cant	Turbulent Flames						
Cse019	Dr Jason Lander (Berzins)	ROPA						
Cse020	Dr Marek Szularz	Symmetric Eigenproblem						
Cse021	Dr Julie Staunton	Magentisim						1
Cse022	Mr Niall Branley (Jones)	Turbulent Flames						

	1	Û.		Û.			
Cse023	Allen	Liquid Crystalline Materials					
Cse024	Dr Robert Allan (Tennyson)	ChemReact 98-2000					-
Cse025	Dr Niels Rene Walet(Bishop)	Nuclear Theory Progamme					1.5
Cse026	Dr Maureen Neal	Molecular Dynamics					
Cse027	Dr M Imregun	Excitation Mechanisims					
Cse028	Prof. P.W. Bearman	Bridge Design					
Cse029	Dr David Aspley (Leschziner)	Validation of Turbulence Models					
Cse030	Prof M Cates (VIPAR)	HPC for Complex Fluids	21		5	51	7
Cse033	Dr M Imregun	Tubomachinery core compressor					
Cse034	Dr Paul Durham	R&D of liner/non- linear systems					
Cse035	Dr Stephen Jenkins	Ab Initio Simulations					
Cse036	Prof lain Duff	R&D of linear/non- linear systems					
Cse040	Dr Ken Badcock	-					
Cse041	Dr M Imregun	Flutter and Noise Generation					
Cse043	Dr J J R Williams	Numerical Simulation of flow over a rough bed					4
Cse051	Prof B L Gyorffy	Ab initio calculations of magnetic anisodropies in Fe					
Cse052	Miss Francesca Di Mare (Hayes)	Heat Transfer in Gas Turbine Combustors					
Cse053	Prof M A Leschziner	Coupling Rans Near- Wall Turbulence Models with Large Eddy Simulation Strategies					
Cse055	Dr Julia Staunton	Ab-initio theory of magnetic antiotropy in transition metal ferromagnets					
Cse056	Dr Mehmet Imregun	Aerothermoelasticity modelling of air riding seals for large gas turbines					
Cse066	Dr Keir Novik	Novel clay-polymer					

CfS

		nanocomposites				
		using diversity- discovery methods: synthesis, processing and testing				
Csn001	Mrs Beverly de Cuevas (Webb)	HPCI Global Ocean Consortium	1		3	1
Csn002	Dr Mark Vincent (Hillier)	Pollutant Sorption on Mineral Surf				
Csn003	Dr Lois Steenman- Clark (O'Neill)	UGAMP				4
Csn005	Dr Huw Davies	Constraining Earth Mantle			27	6
Csn006	Dr John Brodholt (Price)	Density Functional Methods				
Csn007	Dr John Brodholt (Price)	Density Functional Methods				
Csn008	Hulton	Sub-Glacial Process				
Csn009	Dr Roger Proctor					
Csn010	Dr Jason Lander (Mobbs)	Flow over Complex terrain				
Csn011	Dr Ed Dicks (Thorpe)	Exchange of Polluted Air				
Csn012	Prof Tennyson	fuji user				
Csn013	Dr L Steenman- Clark (Voke)	Large-Eddy Simulation Extended by Extreme Value Theory for the Prediction of Dispersion, Concentration Threshold Boundaries and Field Connectivity				
Csn014	Prof Llewellyn- Jones	A new Data Assimilation Scheme to optimise the information on the surface-atmosphere interface from satellite observations of Top-of-the- Atmosphere Brightness Temperature				
Csn015	Dr Roger Proctor	Atlantic Margin Metocean Project	2		2	3
Csn017	Dr Antony Payne	Stability of the Antarctic Ice Sheet				2
Csn036	Prof Keith Haines	Assimilation of Altimeter, Radiometer and in situ data into the OCCAM Model				

		Analysis of water properties and transports.				
Csb001	Dr David Houldershaw (Goodfellow)	Macromolecular Interactions	1.5		3.5	2
Csb002	Dr Adrian Mulholland (Danson)	Stability of Enzymes at high temp				
Csb003	Dr John Carling (Williams)	Anguilliform Swimming				
Csp002	Dr Sandra Chapman	Nonlinear process in solar system and astrophysical plasmas				4
Csp003	Prof Andrew Lyne	Computing Resources for Precision timing of Millisecond Pulsars	1		2	4
Csp004	Prof K L Bell	A Programme for Atomic Physics for Astrophysics at Queen's University, Belfast (2001 – 2005)				
Css001	Dr I J Turton	Human Systems Modelling				
Css002	Dr Robert Crouchley	Dropout in panel surveys				2
Hpcid	Dr Robert Allan					1
Hpcie	Dr David Henty					
Hpcis	Dr Denis Nicole					
ukhec	Ms K Jaffri					2
Cs2001	Dr Sudhir Jain	3D Ising Spin Glass				
Cs2002	Dr Ingrid Stairs (Lyne)	Millisecond Pulsars			0.25	
Cs2004	Dr A. Paul Watkins	Internal Combustion Engine				
Cs2006	Prof. Walter Temmerman	Superconductivity & Magmetisim				
Cs2007	Choularton	Precipitation in the Mountains				1
Cs2008	Dr Matthew Genge	Extraterrestrial Mineral Surfaces			7.91	
Cs2009	Dr Roger Proctor	Atlantic Margin Metocean Project				
Cs2010	Dr Christopher Dempsey	Helical membrane- lytic peptides				
Cs2011	Dr D Drikakis	Transition & Turbulence in Physiological Flows				

		1			1	
Cs2012	Prof Ning Qin	Monotone Integrated Large Eddy Simulation				1.5
Cs2014	Dr Vladimir Karlin	Dynamics of intrinsically unstable premixed flames				2
Cs2015	Mr Pablo Tejera-Cuesta	Nonlinear Methods in Aerodynamics				1.5
Cs2016	Dr Jim Miles	Investigation of Scaline Properties of Hierarchical Micromagnetic Models				
Cs2017	Mr Markus Eisenbach	Ab initio calculations of magnetic anisotropies in Fe inclusions in Cu				
Cs2018	Mr Maxim Chichkine	Study of defect clusters in silicon for sub-micron technologies				
Cs2019	Dr Guy H Grant	Theoretical studies of flavoproteins				
Cs2020	Prof John Barker	Predicting the applicability of Aquifer Storage Recovery (ASR) in the UK				
Cs2021	Dr A R Mount	A Computational Study of the Luminescence of Substituted Indoles				1
Cs2022	Dr Philippa Browning	Numerical simulation of forced magnetic reconnection				2
Cs2023	Prof W Ewen Smith	The use of DFT methods for the accurate prediction of the Ramen spectrum of large molecules				
Cs2024	Prof J G Doyle	Modelling of late-type stellar chromospheres				
Cs2026	Dr R J Greenall	Molecular dynamics simlulations of AT- tract DNA				
Cs2027	Dr Anthony Kay	Mathematical Model of the Circulation of Lake Baikal				
Cs2028	Dr James F Annett	Numerical Tests of Disorder Effects in D-Wave Superconductorsors				
Cs2029	Prof B L Gyorffy	Ab-initio calculations of unconventional electronic, magnetic and lattice properties of magnitudes				

Cs2030	Prof G J Morgan	Spin Diffusion in Magnetic Multilayers					
Cs3001	Mr John Andrew Staveley	Helical Coherent Structures				0	3
Cs3002	Dr Keir Novik	Simulations of DNA oligomers					2
Cs3003	Dr Eric Chambers	Band III peptide fragments					
Cs3004	Prof Nick Avis	Computational Steering and Interactive Virtual Environments					1
Cs3005	Mr Behrouz Zarei	Simulation of Queuing Networks					3
Cs3006	Mr F Li	Quantifying Room Acoustic Quality					1
Cs3007	Emma Finch	Development of a 3D Crustal Lattice Solid Model		7	5	12	-
Cs3008	Dr B J Alsberg	Development of a 3D QSAR method based on quantum topological descriptors					
Cs3009	Dr D Flower	Epitope Prediction Methods based on molecular dynamics simulation					
Cs3010	Dr K Kemsley	Investigation of electromyographic recordings of muscle activity during chewing, and of relationships with perceived flavour and texture, in model and real food systems				-	1
Cs3012	Prof Jim Austin	Evaluation of binary neural networks on a vector parallel processor			3	3	2
Cs3013	Prof Rasmita Raval	Structure and function of Chiral Bioarrays: A fundamental approach to proteomic devices	T				
CS014	Dr John Brooke	Enabling UK Academic Grid Application Development and Testing					

Cada	DI	Cubicot	Cubicat Area
Code	PI	Subject	Subject Area
Caa002	Dr Nicolae Herrison (Cillen)	Support for the LIKCD	Dhysics
Cse002	Dr Nicolas Harrison (Gillan)	Support for the UKCP HPC Consortiums 98- 2000	Physics
Cse003	Prof. Ken Taylor		Physics
Cse004	Dr Neil Sandham	UK Turbulence	Engineering
Cse006	Dr Patrick Briddon	Covalently Bonded Materials	Materials
Cse007	Dr Matthew Foulkes	Quantum Many Body Theory	Physics
Cse008	Dr Mark Vincent (Hillier)	Model Chemical Reactivity	Chemistry
Cse009	Dr Ben Slater (Catlow)	HPC in Materials Chemistry	Chemistry
Cse010	Dr John Williams	Free Surface Flows	Engineering
Cse011	Dr John Williams	Open Channel Flood Plains Complex Engineering Flows	Engineering
Cse013	Dr David Aspley (Leschziner)		Engineering
Cse014	Dr Cassiano de Oliverira (Goddard) Dr Stowart Capt	Probs in Nuclear Safety	Engineering
Cse016	Dr Stewart Cant Dr Stewart Cant	Turbulent Combustion Turbulent Flames	Engineering
Cse018		ROPA	Engineering Information
Cse019	Dr Jason Lander (Berzins)		Technology
Cse020	Dr Marek Szularz	Symmetric Eigenproblem	Information Technology
Cse021	Dr Julie Staunton	Magentisim	Physics
Cse022	Mr Niall Branley (Jones)	Turbulent Flames	Engineering
Cse023	Allen	Liquid Crystalline Materials	Robin Pinning
Cse024	Dr Robert Allan (Tennyson)	ChemReact 98-2000	Chemistry
Cse025	Dr Niels Rene Walet (Bishop)	Nuclear Theory Progamme	Physics
Cse026	Dr Maureen Neal	J90 move	
Cse027	Dr M Imregun	J90 move	
Cse028	Prof. P.W. Bearman	J90 move	
Cse029	Dr David Aspley (Leschziner)	J90 move	Engineering
Cse030	Prof M Cates	HPC for Complex Fluids	Physics
Cse031	Brebbia	J90 move	
Cse033	Dr M Imregun	Tubomachinery core compressor	Chemistry
Cse034	Dr Paul Durham	R&D of liner/non-linear systems	Mathematics
Csn001	Mrs Beverly de Cuevas (Webb)	HPCI Global Ocean Consortium	
Csn002	Dr Mark Vincent (Hillier)	Pollutant Sorption on Mineral Surf	
Csn003	Dr Lois Steenman-Clark (O'Neill)	UGAMP	
Csn005	Dr Huw Davies	Constraining Earth Mantle	
Csn006	Dr John Brodholt (Price)	Density Functional Methods	
	Dr John Brodholt (Price)	Density Functional Methods	
Csn008	Hulton	Sub-Glacial Process	
Csn009	Dr Roger Proctor		
Csn010	Dr Jason Lander (Mobbs)	Flow over Complex terrain	
Csn011	Dr Ed Dicks (Thorpe)	J90 move	
Csb001	Dr David Houldershaw (Goodfellow)	Macromolecular Interactions	
Csb002	Dr Adrian Mulholland (Danson)	Stability of Enzymes at high temp	
Csb003	Dr John Carling (Williams)	J90 move	
Css001	Dr Stan Openhaw	Human Systems Modelling	ļ
Css002	Dr Robert Crouchley	Dropout in panel surveys	ļ
Hpcid	Dr Robert Allan		
Hpcie	Dr David Henty		
Hpcis	Dr Denis Nicole		
Cs2001	Dr Sudhir Jain	3D Ising Spin Glass	
Cs2002	Dr Ingrid Stairs (Lyne)	Millisecond Pulsars	
Cs2003	Mr Tom Coulthard	Holocene Sediment Fluxes	<u> </u>
Cs2004	Dr A. Paul Watkins	Internal Combustion Engine	
Cs2005	Mr Sean Walsh	Arabidopsis Genome	
002000		Cup area and untituity 9. Ma areatining	
Cs2006	Prof. Walter Temmerman	Superconductivity & Magmetisim	
	Prof. Walter Temmerman Choularton	Precipitation in the Mountains	
Cs2006			