CSAR Service - Management Report

January 2001

This report documents the quality of the CSAR service during the month of January 2001.

A more comprehensive report is provided quarterly, which additionally covers wider aspects of the Service such as information on Training, Application Support and Value-Added services.

This and other such reports are made available through the Web to staff within EPSRC and the other Research Councils, to CfS staff and CSAR Service users. The reports are indexed in a similar way to that which other useful information and news are listed for selection.

1. Introduction

January has seen the T3E workload remain high and the upgraded Origin 2000 (Fermat) fully utilised.

This document gives information on Service Quality and on actual usage of the CSAR Service during the reporting period of January 2001. The information, in particular, covers the availability and usage of the following two main CSAR Service High Performance Computing (HPC) systems:

- ➤ Cray T3E-1200E/776 (Turing)
- SGI Origin2000/128 (Fermat)

The information is provided in both textual and graphical form, so that it is easier to see trends and variances.

2. Service Quality

This section covers overall Customer Performance Assessment Ratings (CPARS), HPC System availability and usage, Service Quality Tokens and other information concerning issues, progress and plans for the CSAR Service.

2.1 CPARS

<u>Table 1</u> gives the measure by which the quality of the CSAR Service is judged. It identifies the metrics and performance targets, with colour coding so that different levels of achievement against targets can be readily identified. Unsatisfactory actual performance will trigger corrective action.

CSAR Service - Service Quality Report - Performance Targets

	Performance Targets						
Service Quality Measure	White	Blue	Green	Yellow	Orange	Red	
HPC Services Availability							
Availability in Core Time (% of time)	> 99.9%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less	
Availability out of Core Time (% of time)	> 99.8%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less	
Number of Failures in month	0	1	2 to 3	4	5	> 5	
Mean Time between failures in 52 week rolling period (hours)	>750	>500	>300	>200	>150	otherwise	
Fujitsu Service Availability							
Availability in Core Time (% of time)	> 99.9%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less	
Availability out of Core Time (% of time)	> 99.8%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less	
Help Desk							
Non In-depth Queries - Max Time to resolve 50% of all queries (working days)	< 1/4	< 1/2	< 1	< 2	< 4	4 or more	
Non In-depth Queries - Max Time to resolve 95% of all queries (working days)	< 1/2	< 1	< 2	< 3	< 5	5 or more	
Administrative Queries - Max Time to resolve 95% of all queries (working days)	< 1/2	< 1	< 2	< 3	< 5	5 or more	
Help Desk Telephone - % of calls answered within 2 minutes	>98%	> 95%	> 90%	> 85%	> 80%	80% or less	
Others							
Normal Media Exchange Requests - average response time (working days)	< 1/2	< 1	< 2	< 3	< 5	5 or more	
New User Registration Time (working days)		< 1	< 2	< 3	< 4	otherwise	
Management Report Delivery Times (working days)		< 5	< 10	< 12	< 15	otherwise	
System Maintenance - no. of scheduled sessions taken per system in the month	0	1	2	3	4	otherwise	

Table 1

Table 2 gives actual performance information for the period of January 1st to 31st inclusive.

Overall, the CPARS Performance Achievement in January was satisfactory (see Table 3); i.e. Green measured against the CPARS performance targets.

The Fujitsu availability figures are included in Table 2, but not Table 3 as they have zero weighting in CPARS terms.

CSAR Service - Service Quality Report - Actual Performance Achievement

	2000/1											
Service Quality Measure	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan
HPC Services Availability												
Availability in Core Time (% of time)	96.11%	99.70%	100%	100%	99.70%	100%	100%	100%	100%	100%	94.90%	99.70%
Availability out of Core Time (% of time)	98.52%	99.50%	99.5%	99.40	99.40	100%	100%	100%	100%	99.40	98.49%	99.50%
Number of Failures in month	4	2	1	1	2	0	0	0	0	2	4	1
Mean Time between failures in 52 week rolling period (hours)	230	486	437	515	461	461	626	730	1095	673	584	584
Fujitsu Service Availability												
Availability in Core Time (% of time)	100%	100%	100%	100%	100%	100%	98.4%	100%	100%	100%	100%	100%
Availability out of Core Time (% of time)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Help Desk												
Non In-depth Queries - Max Time to resolve 50% of all queries	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Non In-depth Queries - Max Time to resolve 95% of all queries	<1	<2	<1	<2	<1	<2	<2	<2	<1	<3	<3	<5
Administrative Queries - Max Time to resolve 95% of all queries	<0.5	<2	<1	<2	<0.5	<0.5	<2	<2	<0.5	<0.5	<5	<2
Help Desk Telephone - % of calls answered within 2 minutes	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Others												
Normal Media Exchange Requests - average response time	0	0	0	0	0	0	0	<0.5	0	<0.5	<0.5	<0.5
New User Registration Time (working days)	0	0	0	0	0	0	0	0	0	0	0	0
Management Report Delivery Times (working days)	10	10	10	10	10	10	10	10	10	10	10	10
System Maintenance - no. of sessions taken per system in the mon	2	2	1	1	2	2	2	2	1	2	1	0
											1	Fable 2

Notes:

1. HPC Services Availability has been calculated using the following formulae, based on the relative NPB performance of Turing and Fermat at installation:

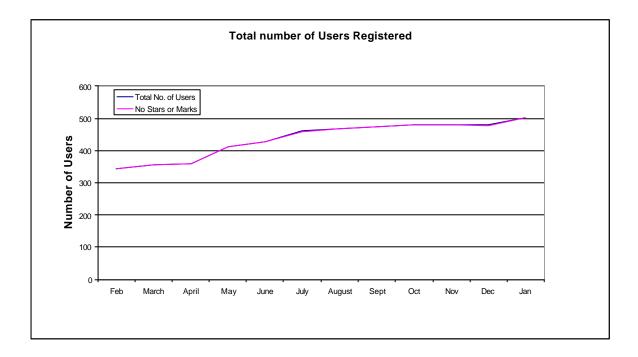
[Turing availability x 122 / (122 + 3.5)] + [Fermat availability x 3.5 / (122 + 3.5) x 1.556]

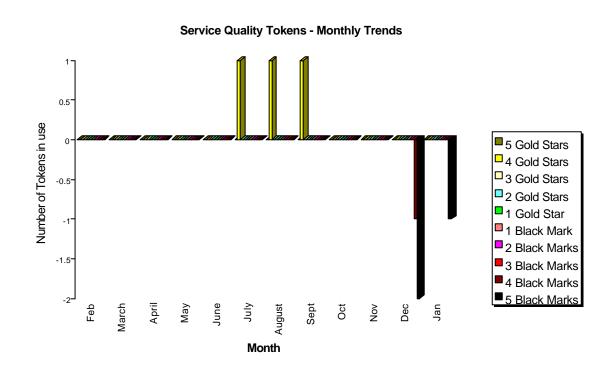
2 Mean Time between failures for Service Credits is formally calculated based on a rolling 12 month period.

<u>Table 3</u> gives Service Credit values for the month of January. These will be accounted on a quarterly basis, formally from the Go-Live Date. The values are calculated according to agreed Service Credit Ratings and Weightings.

CSAR Service - Service Quality Report - Service Credits

Availability in Core Time (% of time) 0.077 Availability out of Core Time (% of time) 0.000 Number of Failures in month 0.000 Mean Time between failures in 52 week rolling period (hours) 0.000	-0.039 -0.039 0	April -0.058 -0.039 -0.008 0	May -0.058 -0.008 -0.008	June -0.039 0	-0.058 -0.047 -0.009	Aug -0.058 -0.047 -0.009	-0.058 -0.047 -0.009	Oct -0.058 -0.047	Nov -0.058 0	Dec 0.195 0	Jan -0.039 -0.039
Availability out of Core Time (% of time) Number of Failures in month 0.000 Mean Time between failures in 52 week rolling period (hours) 0.000 Help Desk 0.000	-0.039 0	-0.039 -0.008	0	0 0	-0.047	-0.047	-0.047	-0.047			
Availability out of Core Time (% of time) 0.000 Number of Failures in month 0.000 Mean Time between failures in 52 week rolling period (hours) 0.000 Help Desk 0.000	-0.039 0	-0.039 -0.008	0	0 0	-0.047	-0.047	-0.047	-0.047			
Number of Failures in month 0.006 Mean Time between failures in 52 week rolling period (hours) 0.008 Help Desk 0.008	0	-0.008	-0.008	0					0	0	-0.039
Mean Time between failures in 52 week rolling period (hours)	Ť			Ŭ	-0.009	-0.009	-0.009				2.000
Help Desk	0	0	-0.008				0.000	-0.009	0	0	-0.008
				0	0	-0.008	-0.008	-0.009	-0.008	-0.008	-0.008
Non In-depth Queries - Max Time to resolve 50% of all queries -0.019											
	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019
Non In-depth Queries - Max Time to resolve 95% of all queries -0.016	0	-0.016	0	-0.016	0	0	0	-0.016	0.016	0.016	0.031
Administrative Queries - Max Time to resolve 95% of all queries	0	-0.016	0	-0.019	-0.019	0	0	-0.019	-0.019	0.046	0.000
Help Desk Telephone - % of calls answered within 2 minutes -0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
Others											<u> </u>
Normal Media Exchange Requests - average response time	0	0	0	0	0	0	-0.002	0	-0.002	-0.002	-0.002
New User Registration Time (working days) -0.015	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019
Management Report Delivery Times (working days)	0	0	0	0	0	0	0	0	0	0	0
System Maintenance - no. of sessions taken per system in the mon	0	-0.003	-0.003	0	0	0	0	-0.003	0	-0.003	-0.004


Monthly Total & overall Service Quality Rating for each period: 0.01 0.06 0.09 0.06 0.06 0.09 0.08 0.09 0.08 0.01 0.006 0.11 0.005


Table 3

2.2 Service Quality Tokens

The current position at the end of January 2001 is that one of the 502 registered users of the CSAR Service had used Service Quality Tokens.

The graph below shows the total number of registered users on the CSAR Service and the number of users holding a neutral view of the service.

The graph below illustrates the monthly usage trend of quality tokens:

The current status of the Stendahl tokens, is that there are three users with outstanding black marks against the system, due to the queue times being long on the Turing system.

SUMMARY OF SERVICE QUALITY TOKEN USAGE

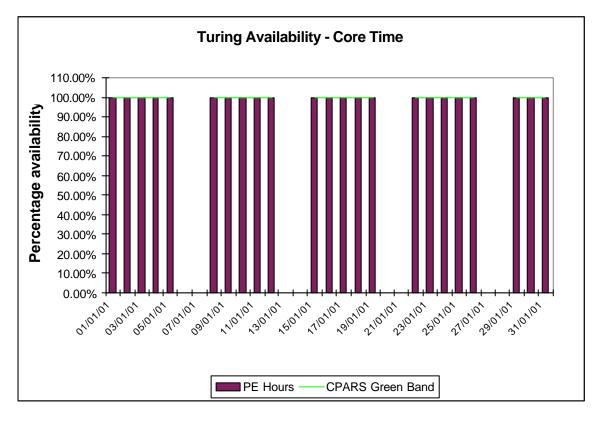
No of Stars or	Consortia	Date	Reason Given
Marks		Allocated	
5 Black Marks	CSN003	24/01/01	Excessive Queue times

2.3 Throughput Target against Baseline

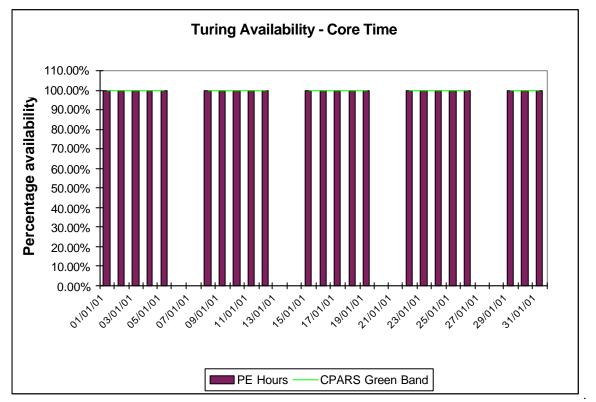
The Baseline Target for throughput was fully achieved this month due to plenty of work over the period. The actual usage figure was 149% of Baseline capacity.

Job Throughput Against Baseline CSAR Service Provision

Period:	1st to 31st January	2001	
	Baseline Capacity for Period (T3E PE Hours)	Actual Usage in Period (T3E PE Hours)	Actual % Utilisation c/w Baseline during Period
1. Has CfS failed to deliver Baseline MPP Computing Capacity for EPSRC?	367,726	550,801	149.79%
	Baseline Capacity for Period (T3E PE Hours)	Job Time Demands in Period	Job Demand above 110% of Baseline during Period (Yes/No)?
2. Have Users submitted work demanding > 110% of the Baseline during period?	367,726	557,026	Yes
		Number of Jobs at least 4 days old at end Period	Number of Jobs at least 4 days old at end Period is not zero (Yes/No)?
3. Are there User Jobs oustanding at the end of the period over 4 days old?		9	Yes
4. Have Users submitted work demands above 90% of the Baseline during period?		Minimum Job Time Demands as % of Baseline during Period 121%	Minimum Job Time Demand above 90% of Baseline during Period (Yes/No)? Yes
	Number of standard Job Queues (ignoring priorities)	Average % of time each queue contained jobs in the Period	Average % of time each queue contained jobs in the Period is > 97%?
5. Maiority of Job Queues contained jobs from Users for more than 97% during period?	4	63.0%	No

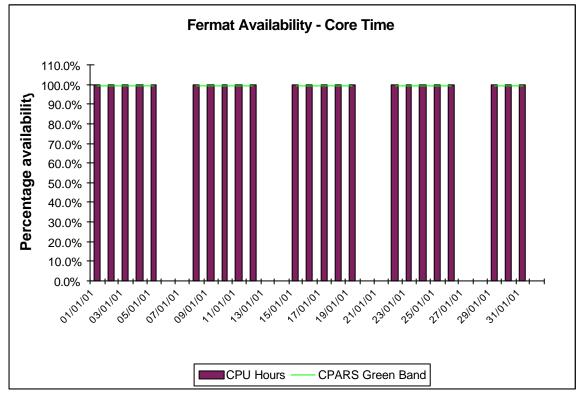

3. System Availability

Service availability each reporting period is calculated as a percentage of actual availability time over theoretical maximum time, after accounting for planned breaks in service for preventative maintenance.

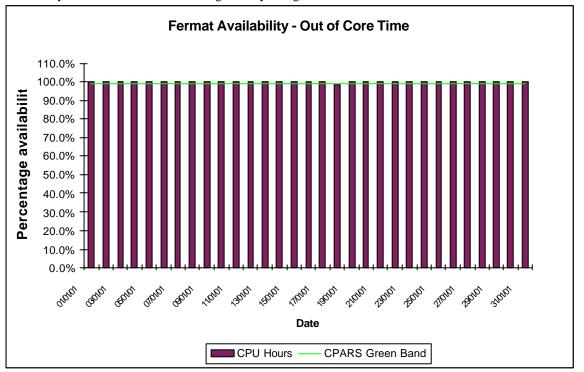

3.1 Cray T3E-1200E System (Turing)

The following graphs show the availability of Turing both in core time and out of core time respectively during the period of 1^{st} to 31^{st} January.

Turing availability for January:


Availability of Turing in core time during January was excellent.

Availability of Turing out of core time during January was good.


3.2 SGI Origin2000 System (Fermat)

The following graphs show the availability of Fermat both in core time and out of core time respectively.

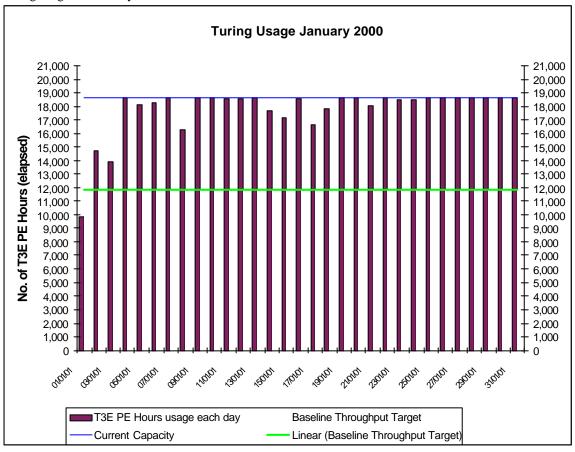
CfS

Availability of Fermat in core time during January was good.

Availability of Fermat out of core time during January was good.

4. HPC Services Usage

Usage information is given in tabular form, in Appendices, and in graphical format. The system usage information for the period of January 1st to 30th is provided by Project/User Group, totalled by Research Council and overall. This covers:


• CPU usage	Turing: 550,801 PE Hours Fermat	(Batch): 13,067.9 Hours
•	Fermat (Interactive): 1,619.95 CPU	J Hours
• Fujitsu CPU usage	Fuji: 1,948.98 CPU Hours	
User Disk allocation	Turing: 61.18 GB Years	Fermat: 21.81 GB Years
• HSM/tape usage	1,037.55 GB Years	

In addition, the following graphs are provided to illustrate usage per month, historically:

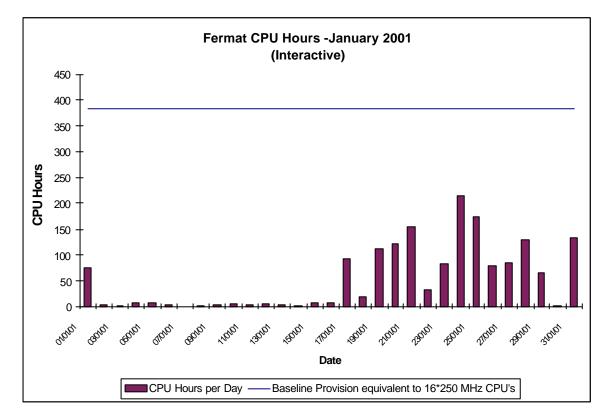
- a) MPP (T3E/Origin) Usage by month, showing usage each month of CPU (MFOP Years as perNPB), split by Research Council and by system. The Baseline and the overall Capacity are shown by overlaid horizontal lines.
- b) SMP (Origin) Usage by month, showing usage each month in CPU Hours, split by Research Council and giving the equivalent GFLOP-Years as per NPB. The Baseline Capacity is shown by an overlaid horizontal line.
- c) High Performance Disk (T3E) allocated for User Data by month, showing the allocated space each month in GBytes, split by Research Council. The Baseline Capacity (1 Terabyte) is shown by an overlaid horizontal line.
- d) Medium Performance Disk (Origin) allocated for User Data by month, showing the allocated space each month in GBytes, split by Research Council. The Baseline Capacity (1.5 Terabytes) is shown by an overlaid horizontal line.
- e) HSM/Tape Usage (T3E) by month, showing the volumes held each in GBytes, split by Research Council. The Baseline Capacity (16 Terabytes) available will be shown by an overlaid horizontal line.

4.1 Cray T3E-1200E System (Turing)

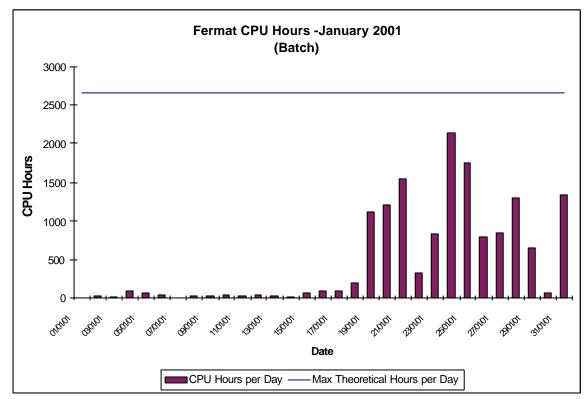
The following graph shows the usage of Turing during each day of January 2001. Note that there is some variance on a day-to-day basis as the accounts record job times, and thus CPU usage figures, at the time of job completion which could be the second actual day for large jobs. At present, there is a 12 hour limit on jobs, so that they are check-pointed, and computational time lost due to any failure is well managed.

Turing usage for January:

The above usage graph for the Turing system shows that the overall workload was variable, though as can be seen from the graph, there were few periods with low work volumes.

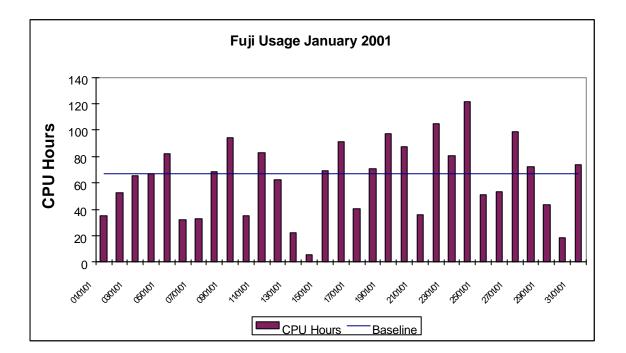

The above graph also indicates the workload reached 100% of maximum theoretical capacity for a large part of the month.

Fine tuning of the CfS scheduling system will continue to ensure minimal wasting of PE resource, in order to fit in a number of different sized jobs (e.g. 32, 64, 128, 256) thus facilitating maximised job throughput.


In particular, Turing will continue to start large jobs above 256 PEs, including 512 PEs, every night they are queued subject to the overall workload.

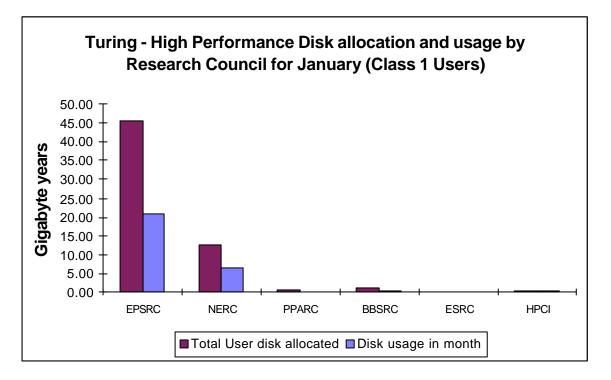
4.2 SGI Origin2000 System (Fermat)

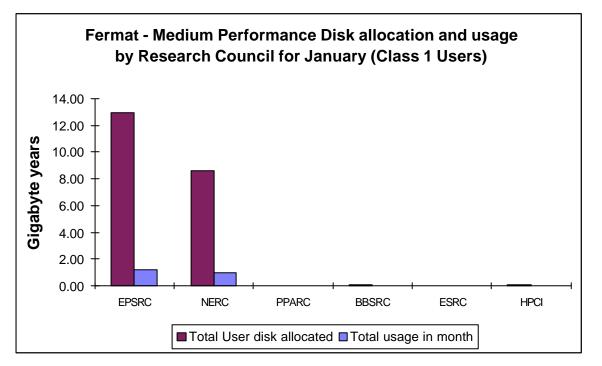
The usage of the Origin system was low at the beginning of the month but grew with the new batch queuing system and release of processors for batch work. The groups most heavily using the Fermat system are CSE006 (Briddon) and CSN003 (O'Neil).



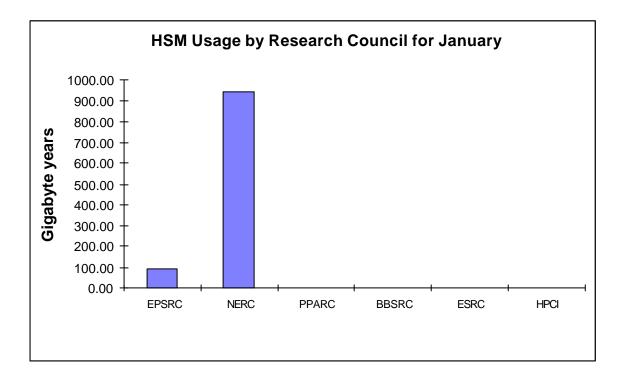
The graph above shows the interactive usage of the upgraded Origin 2000 (Fermat).

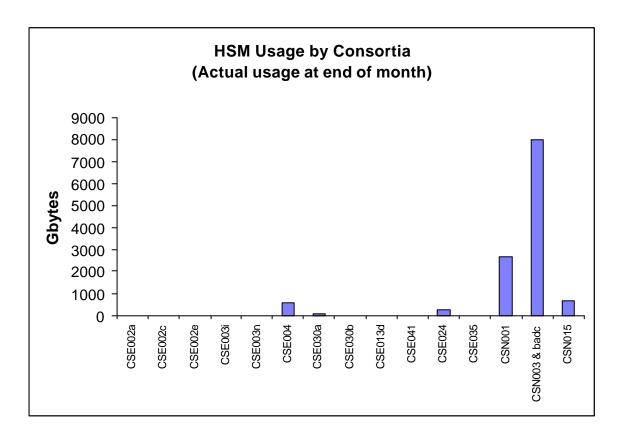
The above graph to a different scale shows the growing batch utilisation of the Origin 128.

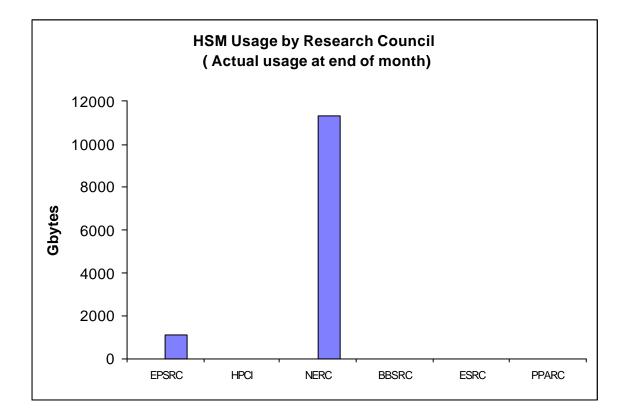

4.2.1 Fujitsu VPP 300/8 System (Fuji)

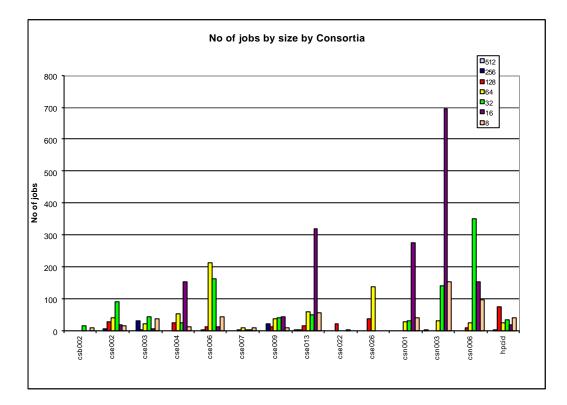

Fuji utilisation was again variable over the month with the overall position resulting in usage below baseline.

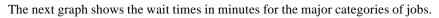
4.3 Disk/HSM Usage Charts

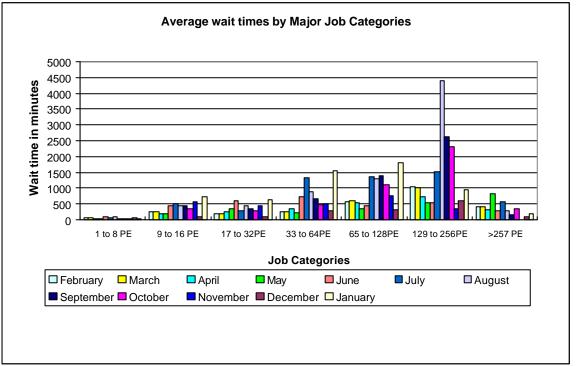

The graphs below show current disk and HSM allocations and usage.


The preceding graph shows actual usage on average against the current allocation of disk on the Turing system.

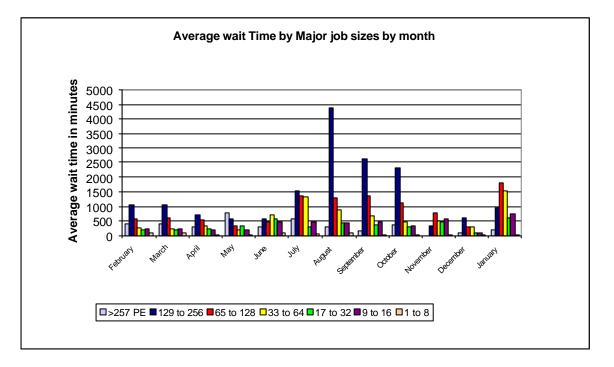

The above graph shows the disk allocations against usage on average of the disk on Fermat.


The above graph shows the total usage of the HSM facility by Research Council.

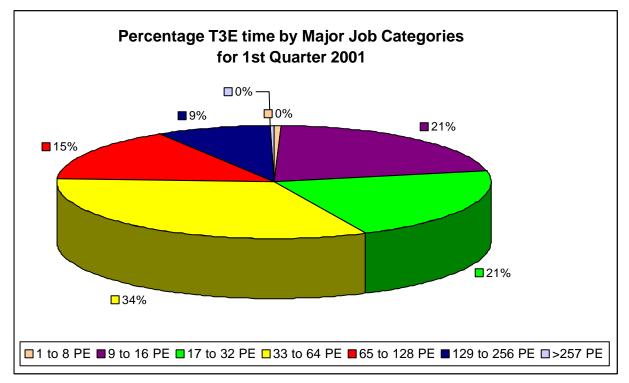

CSE002 (Gillan), CSE004 (Sandham), CSE024 (Tennyson), CSN001 (Webb), CSN003 (O'Neill) & CSN015 (Proctor) were the major users of HSM resource.



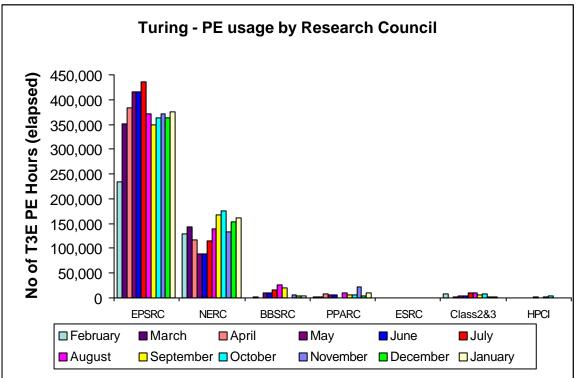
Job statistics for Turing:



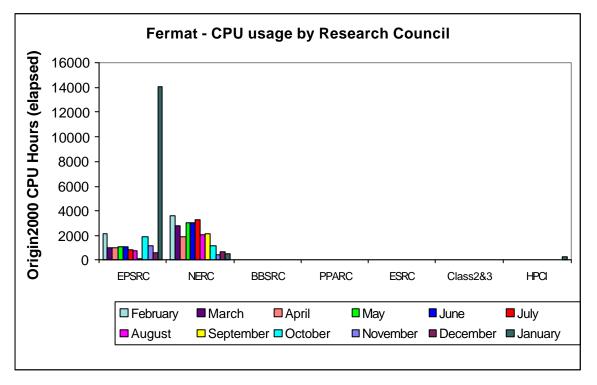
The above graph shows the number of jobs of the major sizes run in the period 1st to 31st January 2001.



The chart above shows the average wait time trend over the last 12 months. Wait times for jobs in the range of 33 to 256 PE's have increased recently due to the heavy workload on the system .



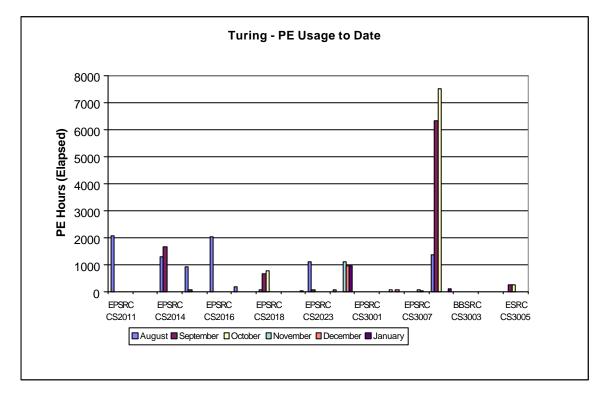
It can be seen from the above graph that enhancements to the scheduling on Turing did reduce the average wait times in November/December, however the times have again started to climb due to the volumes of work on Turing.



The largest proportion of the workload on Turing, 58%, was greater than 32 PEs in size.

The proportion of work greater than 128 PEs in size remained significantly high, with negligible jobs above 256 PEs.

Turing PE usage is shown by Research Council during the past 12 months of service in the above chart.

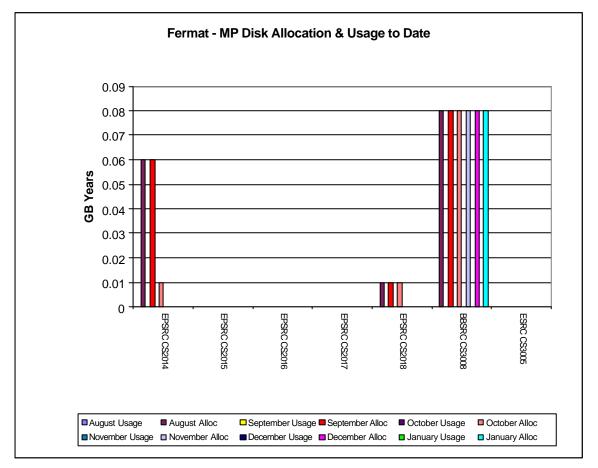


Origin 2000 CPU usage is shown by Research Council during the past 12 months of service in the above chart.

CfS

4.4 Class 2 & 3 Usage Charts

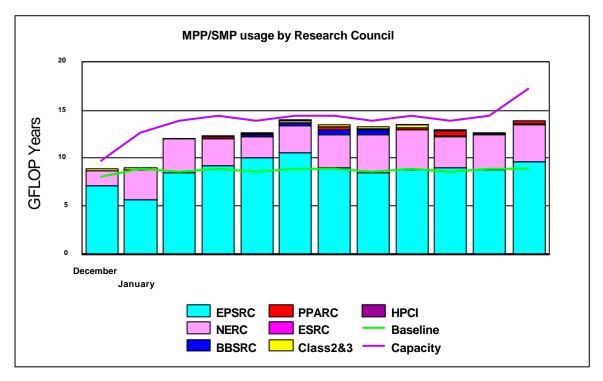
The next series of charts show the usage of the system by the class 2 & class 3 users. The usage is shown by project and identifies the Research Council of the individual projects.



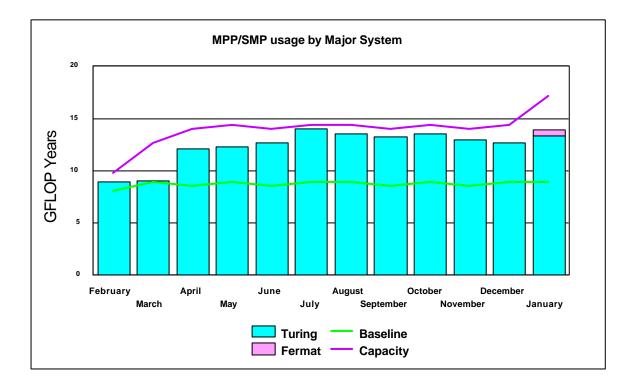
The above chart shows the most significant PE usage of the Turing system by class 2 and class 3 users.

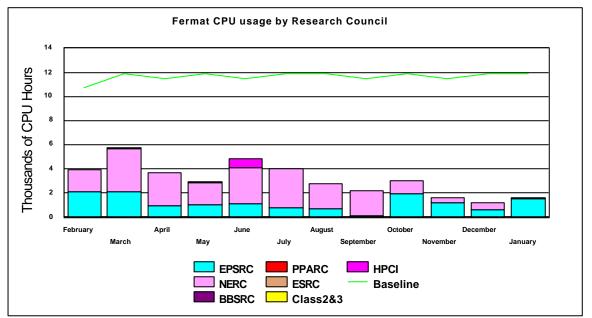
The chart showing the CPU usage of the Fermat system by class 2 and class 3 users, has not been included due to near zero usage.

The above chart shows the most significant disk allocations on the Turing system for class 2 and class 3 users.

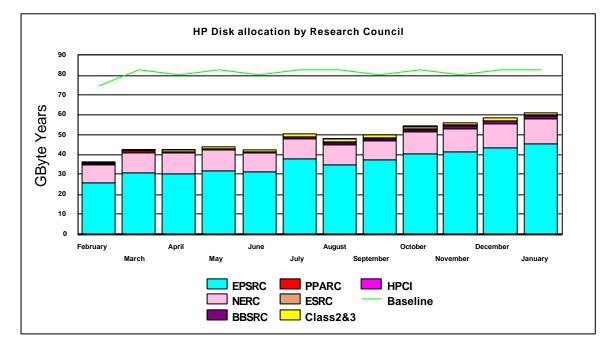


The above chart shows the most significant disk allocations on the Fermat system for class 2 and class 3 users. There is currently no HSM usage by class 2 and class 3 users.

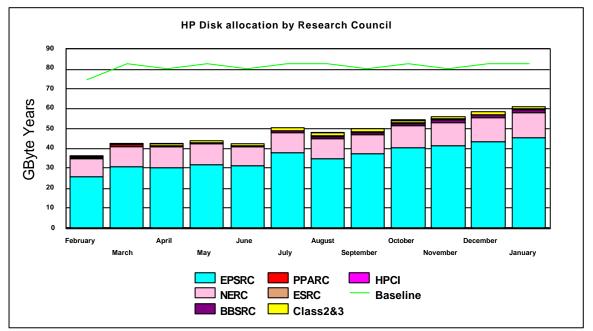

4.5 Charts of Historical Usage


In all the Usage Charts, the baseline varies dependant on the number of days in each month, within a 365-day year.

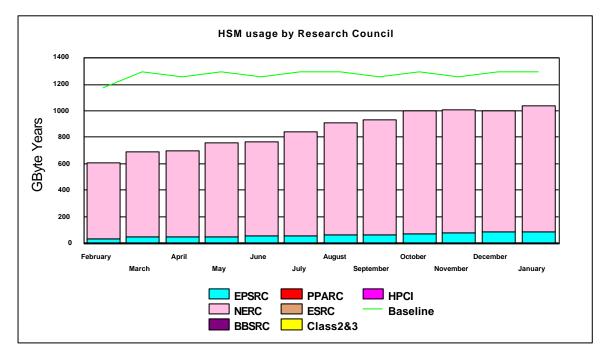
The graph below shows the GFLOP Year utilisation on Turing and Fermat by Research Council for the previous 12 months.



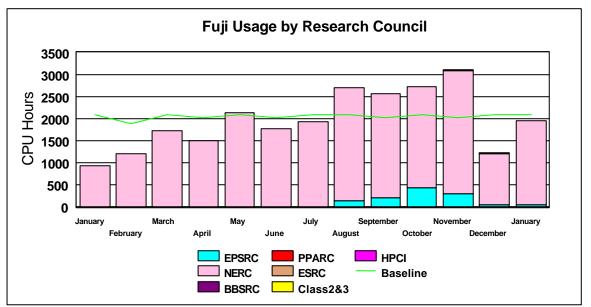
The graph below shows the historic SMP/MPP usage on the major systems commencing in January 2001.



The above graph shows the historic interactive usage of the 'Baseline' Fermat system (equivalent to 16@250Mhz CPU's)


The next series of graphs illustrates the usage of the disk and HSM resources of the system.

The preceding graph illustrates the historic allocation of the High Performance Disk on Turing.



The graph above illustrates the historic allocation of the Medium Performance Disk on Fermat.

The graph below shows the historic HSM usage by Research Council funded projects. The primary usage is for NERC.

The next chart shows the historic usage of the Fuji system.

The Fujitsu system was over baseline again this month.

EPSRC usage was from CSE004.

4.5 Guest System Usage Charts

There is at present no guest system usage to report.

5. Service Status, Issues and Plans

5.1 Status

The service continues to run almost at full capacity.

During the month, 58% of the jobs run on Turing were larger than 32 PEs in size.

The new Origin 128 (Fermat) and Compaq (Kelvin) systems are now fully available with the usage of the upgraded Fermat climbing rapidly.

5.2 Issues

Wait times continue to be of concern, however Fermat has started to provide additional resource to the users. This should start to take some of the load off Turing..

5.3 Plans

It continues to be the position of the CfS consortium to provide additional capacity to meet the capacity demands of the user community. With this in mind, an Origin 3000/128 is planned for delivery at the beginning of April.

6. Conclusion

January 2001 saw the overall CPARS rating at Green with improvements being shown in machine reliability and the resolution times of queries.

The baseline was exceeded by over 49% with the largest proportion of the workload being the larger job sizes.

Continued management attention will be given to maximise the throughput of the Service, whilst balancing as fairly as practicable the shares between Projects and jobs of the varying sizes.

Appendix 1 contains the accounts for January 2001

Appendix 2 contains the Percentage shares by Consortium for January 2001

Appendix 3 contains the Percentage shares by Research Council for January 2001

Appendix 4 contains the Training, Applications and Optimisation support figures to the end of January 2001

Appendix 5 contains a reference table of the Consortia name, the subject area and the PI name.

The summary accounts for the month of January 2001 can be found at the URL below

http://www.csar.cfs.ac.uk/admin/accounts/summary.shtml

Appendix 2

Consortia	ring in January 2001 % Machine Time	Percentage CPU time per consortia for F Consortia	ermat in January 2001. % Machine Time
		CSE002	
CSE002 CSE003	11.40 3.70	CSE002 CSE003	2.69 0.20
CSE003	0.15	CSE003	0.20
CSE021	0.10	CSE007	0.00
CSE023	0.00	CSE021	0.00
CSE025	0.00	CSE025	0.00
CSE030	2.15	CSE030	2.18
CSE006	18.82	CSE006	85.28
CSE026	3.95	CSE026	0.00
CSE004	10.47	CSE004	0.52
CSE010	0.00	CSE010	0.00
CSE011	0.00	CSE011	0.00
CSE013	9.35	CSE013	1.18
CSE014	0.00	CSE014	0.00
SE016	0.00	CSE016	0.00
SE022	0.31	CSE022	0.00
SE027	0.00	CSE027	1.04
SE029	0.00	CSE029	0.00
SE040	0.00	CSE040	0.00
SE041	0.00	CSE041	0.19
SE043	0.00	CSE043	0.00
SE043		CSE043 CSE008	
SE008 SE009	0.00	CSE008 CSE009	0.00
SE009 SE024	5.52	CSE009 CSE024	2.22
	0.00		0.00
SE033	0.00	CSE033	0.00
SE035	2.43	CSE035	0.00
SE019	0.00	CSE019	0.00
CSE020	0.00	CSE020	0.00
SE034	0.00	CSE034	0.00
CSE036	0.00	CSE036	0.00
IPCI Southampton	0.00	HPCI Southampton	0.00
IPCI Daresbury	0.14	HPCI Daresbury	1.33
IPCI Edinburgh	0.00	HPCI Edinburgh	0.00
SN001	5.58	CSN001	0.10
SN002	0.00	CSN002	0.00
ADC	0.00	BADC	0.00
SN003	13.54	CSN003	3.05
SN005	0.00	CSN005	0.00
SN006	9.88	CSN006	0.00
CSN007	0.00	CSN007	0.00
SN010	0.00	CSN010	0.00
SN011	0.00	CSN011	0.00
CSN012	0.00	CSN012	0.00
CSN012	0.02	CSN012	0.00
CSN015	0.02	CSN015	0.00
SN017	0.00	CSN017	1.87
SB001	0.00	CSB001	0.00
SB002	0.62	CSB002	0.00
SB003	0.00	CSB003	0.00
SP002	1.67	CSP002	0.00
SP003	0.00	CSP003	0.00
SS001	0.00	CSS001	0.00
SS002	0.00	CSS002	0.00
S2001	0.00	CS2001	0.00
S2002	0.00	CS2002	0.00
S2003	0.00	CS2003	0.00
S2004	0.00	CS2004	0.00
S2006	0.00	CS2006	0.00
S2007	0.00	CS2007	0.00
S2008	0.00	CS2008	0.00
S2009	0.00	CS2009	0.00
S2010	0.00	CS2010	0.00
S2010	0.00	CS2011	0.00
S2012	0.00	CS2012	0.00
S2012	0.00	CS2014	0.00
S2014	0.00	CS2014 CS2015	0.00
S2015	0.00	CS2015 CS2016	0.00
S2017	0.00	CS2017	0.00
S2018	0.00	CS2018	0.00
S2019	0.00	CS2019	0.00
S2020	0.00	CS2020	0.00
S2021	0.00	CS2021	0.00
S2022	0.00	CS2022	0.00
S2023	0.00	CS2023	0.00
S2024	0.00	CS2024	0.00
S3001	0.00	CS3001	0.00
S3002	0.02	CS3002	0.00
S3003	0.00	CS3003	0.00
S3004	0.00	CS3004	0.00
S3005	0.00	CS3005	0.00
S3007	0.01	CS3007	0.00
S3008	0.00	CS3008	0.00
S3008 S3010	0.00	CS3008 CS3010	0.00

Percentage disc allocation	by Consortia for Turing in January 2001	Percentage disc allocatio	n by Consortia for Fermat in January 2001
Consortia	%Allocation	Consortia	%Allocation
CSE002	28.44	CSE002	24.58
CSE002	7.62	CSE002	0.96
CSE007	1.11	CSE007	0.00
CSE021	0.05	CSE021	0.00
CSE023	0.00	CSE023	0.00
CSE025	0.00	CSE025	0.00
CSE030	18.05	CSE030	20.59
CSE051	0.62	CSE051	0.00
CSE006	1.11	CSE006	0.92
CSE026	0.07	CSE026	0.00
CSE004	9.46	CSE004	10.36
CSE010	0.00	CSE010	0.00
CSE011	0.88	CSE011	0.00
CSE013	1.26	CSE013	0.46
CSE014	0.00	CSE014	0.00
CSE016	0.56	CSE016	0.00
CSE022	0.08	CSE022	0.00
CSE027	0.07	CSE027	0.18
CSE029	0.00	CSE029	0.00
CSE040	0.00	CSE040	0.00
CSE041	0.07	CSE041	0.00
CSE043	0.15	CSE043	0.41
CSE008	0.00	CSE008	0.00
CSE009	4.17	CSE009	0.37
CSE024	0.49	CSE024	0.14
CSE033	0.41	CSE033	0.00
CSE035	0.96	CSE035	0.00
CSE019	0.00	CSE019	0.00
CSE020	0.00	CSE020	0.00
CSE034	0.00	CSE034	0.00
CSE036	0.03	CSE036	0.05
HPCI Southampton	0.00	HPCI Southampton	0.00
HPCI Daresbury	0.13	HPCI Daresbury	0.14
HPCI Edinburgh	0.13	HPCI Edinburgh	0.37
CSN001 CSN002	11.28 0.00	CSN001 CSN002	23.38 0.00
BADC	0.00	BADC	0.00
CSN003	3.33	CSN003	15.59
CSN005	0.00	CSN005	0.00
CSN005	5.56	CSN006	0.00
CSN008	0.00	CSN006 CSN007	0.00
CSN007	0.00	CSN007	0.00
CSN010	0.00	CSN009 CSN010	0.00
CSN010	0.39	CSN011	0.00
CSN012	0.00	CSN012	0.00
CSN013	0.20	CSN013	0.00
CSN015	0.16	CSN015	0.00
CSN017	0.02	CSN017	0.37
CSB001	0.07	CSB001	0.00
CSB002	1.80	CSB002	0.37
CSB003	0.05	CSB003	0.00
CSP002	0.83	CSP002	0.00
CSP003	0.03	CSP003	0.14
CSS001	0.21	CSS001	0.00
CSS002	0.00	CSS002	0.00
CS2001	0.00	CS2001	0.00
CS2002	0.00	CS2002	0.00
CS2003	0.00	CS2003	0.00
CS2004	0.00	CS2004	0.00
CS2006	0.00	CS2006	0.00
CS2007	0.00	CS2007	0.00
CS2008	0.00	CS2008	0.00
CS2009	0.00	CS2009	0.00
CS2010	0.00	CS2010	0.00
CS2011	0.00	CS2011 CS2012	0.00
CS2012	0.00		0.00
CS2014	0.00	CS2014	0.00
CS2015	0.00	CS2015	0.00
CS2016	0.00	CS2016 CS2017	0.00 0.00
CS2017 CS2018		CS2017 CS2018	
CS2018 CS2019	0.11 0.00	CS2018 CS2019	0.00 0.00
CS2019 CS2021	0.00	CS2019 CS2021	0.00
CS2021 CS2022	0.07	CS2021 CS2022	0.00
CS2022 CS2023	0.11	CS2022 CS2023	0.00
CS2023 CS2024	0.15	CS2023 CS2024	0.00
CS2024 CS3001	0.00	CS2024 CS3001	0.00
CS3001 CS3002	0.00	C\$3001 C\$3002	0.00
CS3002 CS3003	0.18	CS3002 CS3003	0.00
CS3003 CS3004	0.41	CS3003 CS3004	0.00
CS3004 CS3007	0.13	C\$3004 C\$3007	0.00
CS3007 CS3008	0.21	CS3007	0.00
CS3005	0.41	C\$3005	0.00
CS3000	0.13	CS3000	0.00
	0.10	00010	
1			

Percentage usage of HSM by Consortium for January 2001						
Consortium	% Usage					
CSE002	0.83					
CSE003	0.10					
CSE030	0.81					
CSE004	4.45					
CSE013	0.11					
CSE041	0.08					
CSE024	2.39					
CSE035	0.04					
CSN001	21.29					
BADC	8.79					
CSN003	55.63					
CSN015	5.30					

Issue 1.1

Appendix 3

Percentage PE usage on Turing by Reserch Council for January 2001.		Percentage CPU usa	il for January 2001		
Research Council	% Usage		Research Council	% Usage	
EPSRC	68.28		EPSRC	95.50	
HPCI	0.14		HPCI	1.33	
NERC	29.26		NERC	3.16	
BBSRC	0.62		BBSRC	0.00	
ESRC	0.00		ESRC	0.00	
PPARC	1.67		PPARC	0.00	

CfS

Percentage Disc allo	ercentage Disc allocated on Turing by Research Council for January 2001 ا		Percentage Disc allocated on Fermat by Research Council for January 200			
Research Council	% Allocated		Research Council	% Allocated		
EPSRC	74.99		EPSRC	59.28		
нрсі	0.28		HPCI	0.50		
NERC	20.74		NERC	39.34		
BBSRC	1.93		BBSRC	0.41		
ESRC	0.26		ESRC	0.00		
PPARC	1.05		PPARC	0.14		

Percentage HSM usage by Research Council for January 2001						
Research Council	% usage					
EPSRC	8.81					
HPCI	0					
NERC	91.01					
BBSRC	0					
ESRC	0					
PPARC	0					

The following tables show the training and support resource usage by the consortias in person days to the cuurent month.

	-	1	Application Support		Optimisation Support			- · ·	
Code	PI	Subject	Application Support for January 2001	Total Application Support from July 2000	Optimisation Support for January 2001	Total Optimisation Support from July 2000	Total Support Used	Training Used	
Cse002	Dr Phil Lindan	Support for the UKCP	1	10.25			142.25	-	
Cse003	Prof. Ken Taylor	HPC Consortiums 98- 2000	1	1			4	6	
Cse004	Dr Neil Sandham	UK Turbulence						2	
Cse006	Dr Patrick Briddon	Covalently Bonded Materials							
Cse007	Dr Matthew Foulkes	Quantum Many Body Theory					1	2	
Cse009	Dr Ben Slater (Catlow)	HPC in Materials Chemistry		5		3	8 8		
Cse010	Dr John Williams	Free Surface Flows					15.95		
Cse011	Dr John Williams	Open Channel Flood Plains					2.18		
Cse013	Prof Michael Leschziner	Complex Engineering Flows						3	
Cse014	Dr Cassiano de Oliverira (Goddard)	Probs in Nuclear Safety							
Cse017	Dr Kai Luo	Large Eddy Simulation and Modelling of Buoyant Plumes and Smoke Spread in Enclosures							
Cse021	Dr Julie Staunton	Magentisim						1	
Cse024	Dr Robert Allan (Tennyson)	ChemReact 98-2000						-	
Cse025	Dr Niels Rene Walet(Bishop)	Nuclear Theory Progamme						1.5	
Cse027	Dr M Imregun	Excitation Mechanisims							
Cse030	Prof M Cates	HPC for Complex Fluids	5	15		5	5 45	7	
Cse033	Dr M Imregun	Tubomachin ery core compressor							

Cse041	Dr M Imregun	Flutter and Noise Generation				
Cse043	Dr J J R Williams	Numerical Simulation of Iow over a rough bed				4
Csn001	Mrs Beverly de Cuevas (Webb)	HPCI Global Ocean Consortium			2	1
Csn003	Dr Lois Steenman- Clark (O'Neill)	JGAMP				4
Csn005	Dr Huw Davies	Constraining Earth Mantle			27	6
Csn010	Dr Jason Lander (Mobbs)	Flow over Complex terrain			-	
Csn015	Dr Roger Proctor	Atlantic Margin Metocean Project				3
Csn017	Dr Antony Payne	Stability of the Antarctic ce Sheet				2
Csb001	Dr David Houldershaw (Goodfellow)	Macromolec µlar nteractions			2	2
Csb003	Dr John Carling (Williams)	Anguilliform Swimming				-
Csp002	Dr Sandra Chapman	Nonlinear process in solar system and astrophysical plasmas				4
Csp003	Prof Andrew Lyne	Computing Resources or Precision iming of Millisecond Pulsars	1		2	4
Css001	Dr I J Turton	Human Systems Modelling				
Css002	Dr Robert Crouchley	Dropout in panel surveys				2
ukhec	Ms K Jaffri					2
Cs2001	Dr Sudhir Jain	3D Ising Spin Glass				-
Cs2002	Dr Ingrid Stairs (Lyne)	Millisecond Pulsars			0.25	-

Cs2007	Choularton	Precipitation in the Mountains					1
Cs2008	Dr Matthew Genge	Extraterrestri al Mineral Surfaces				7.91	
Cs2012	Prof Ning Qin	Monotone Integrated Large Eddy Simulation					1.5
Cs2014	Dr Vladimir Karlin	Dynamics of intrinsically unstable premixed flames					2
Cs2015	Mr Pablo Tejera- Cuesta	Nonlinear Methods in Aerodynamic s					1.5
Cs2016	Dr Jim Miles	Investigation of Scaline Properties of Hierarchical Micromagnet ic Models					-
Cs2021	Dr A R Mount	A Computation al Study of the Luminescenc e of Substituted Indoles					1
Cs2022	Dr Philippa Browning	Numerical simulation of forced magnetic reconnection					2
Cs3001	Mr John Andrew Staveley	Helical Coherent Structures				0	3
Cs3002	Dr Keir Novik	Simulations of DNA oligomers					2
Cs3004	Prof Nick Avis	Computation al Steering and Interactive Virtual Environment s					1
Cs3005	Mr Behrouz Zarei	Simulation of Queuing Networks					3
Cs3006	Mr F Li	Quantifying Room Acoustic Quality					1
Cs3007	Emma Finch	Development ofa 3D Crustal Lattice Solid Model	5	5 5	5	10	-

Cs3008	Dr B J Alsberg	Development of a 3D QSAR method based on quantum topological descriptors					-	-
Cs3009	Dr D Flower	Epitope Prediction Methods based on molecular dynamics simulation					-	-
Cs3010	Dr K Kemsley	Investigation of electromyogr aphic recordings of muscle activity during chewing, and of relationships with perceived flavour and texture, in model and real food systems					-	1
Cs3012	Prof Jim Austin	Evaluation of binary neural networks on a vector parallel processor					-	2
		Totals	12	37.25	0	- 13	269.54	72.5

Code	PI	Subject	Subject Area
Coo002	Dr Nicolas Harrison (Gillan)	Support for the LWCD	Physics
Cse002		Support for the UKCP	Physics
Cse003	Prof. Ken Taylor	HPC Consortiums 98- 2000	Physics
Cse004	Dr Neil Sandham Dr Patrick Briddon	UK Turbulence	Engineering
Cse006		Covalently Bonded Materials	Materials
Cse007	Dr Matthew Foulkes	Quantum Many Body Theory	Physics
Cse008	Dr Mark Vincent (Hillier)	Model Chemical Reactivity	Chemistry
Cse009	Dr Ben Slater (Catlow)	HPC in Materials Chemistry	Chemistry
Cse010	Dr John Williams	Free Surface Flows	Engineering
Cse011	Dr John Williams	Open Channel Flood Plains	Engineering
Cse013	Dr David Aspley (Leschziner)	Complex Engineering Flows	Engineering
Cse014	Dr Cassiano de Oliverira (Goddard)	Probs in Nuclear Safety	Engineering
Cse016	Dr Stewart Cant	Turbulent Combustion	Engineering
Cse018	Dr Stewart Cant	Turbulent Flames	Engineering
Cse019	Dr Jason Lander (Berzins)	ROPA	Information Technology
Cse020	Dr Marek Szularz	Symmetric Eigenproblem	Information Technology
Cse021	Dr Julie Staunton	Magentisim	Physics
Cse022	Mr Niall Branley (Jones)	Turbulent Flames	Engineering
Cse023	Allen	Liquid Crystalline Materials	Robin Pinning
Cse024	Dr Robert Allan (Tennyson)	ChemReact 98-2000	Chemistry
Cse025	Dr Niels Rene Walet (Bishop)	Nuclear Theory Progamme	Physics
Cse026	Dr Maureen Neal	J90 move	
Cse027	Dr M Imregun	J90 move	
Cse028	Prof. P.W. Bearman	J90 move	
Cse029	Dr David Aspley (Leschziner)	J90 move	Engineering
Cse030	Prof M Cates	HPC for Complex Fluids	Physics
Cse031	Brebbia	J90 move	, ,
Cse033	Dr M Imregun	Tubomachinery core compressor	Chemistry
Cse034	Dr Paul Durham	R&D of liner/non-linear systems	Mathematics
Csn001	Mrs Beverly de Cuevas (Webb)	HPCI Global Ocean Consortium	
Csn002	Dr Mark Vincent (Hillier)	Pollutant Sorption on Mineral Surf	1
Csn003	Dr Lois Steenman-Clark (O'Neill)	UGAMP	
Csn005	Dr Huw Davies	Constraining Earth Mantle	
Csn006	Dr John Brodholt (Price)	Density Functional Methods	
	Dr John Brodholt (Price)	Density Functional Methods	
Csn008	Hulton	Sub-Glacial Process	
Csn009	Dr Roger Proctor		
Csn009	Dr Jason Lander (Mobbs)	Flow over Complex terrain	+
Csn010	Dr Ed Dicks (Thorpe)	J90 move	+
Csb001	Dr David Houldershaw (Goodfellow)	Macromolecular Interactions	+
Csb001 Csb002	Dr Adrian Mulholland (Danson)	Stability of Enzymes at high temp	+
Csb002 Csb003	Dr John Carling (Williams)	J90 move	+
Css0003	Dr Stan Openhaw	Human Systems Modelling	+
Css001 Css002	Dr Robert Crouchley	Dropout in panel surveys	+
Hpcid	Dr Robert Allan	Diopout in parier surveys	+
Hpcie	Dr David Henty	+	+
•	Dr David Henty Dr Denis Nicole	+	+
Hpcis		2D Joing Spin Class	ł
Cs2001	Dr Sudhir Jain	3D Ising Spin Glass	
Cs2002	Dr Ingrid Stairs (Lyne)	Millisecond Pulsars	+
Cs2003	Mr Tom Coulthard	Holocene Sediment Fluxes	+
Cs2004	Dr A. Paul Watkins	Internal Combustion Engine	ł
Cs2005	Mr Sean Walsh	Arabidopsis Genome	
Cs2006	Prof. Walter Temmerman	Superconductivity & Magmetisim	
Cs2007	Choularton	Precipitation in the Mountains	
Cs2008	Dr Matthew Genge	Extraterrestrial Mineral Surfaces	
Cs3001	Mr John Andrew Staveley	Helical Coherent Structures	1