CSAR Service - Management Report

March 2001

This report documents the quality of the CSAR service during the month of March 2001.

A more comprehensive report is provided quarterly, which additionally covers wider aspects of the Service such as information on Training, Application Support and Value-Added services.

This and other such reports are made available through the Web to staff within EPSRC and the other Research Councils, to CfS staff and CSAR Service users. The reports are indexed in a similar way to that which other useful information and news are listed for selection.

1. Introduction

March has seen the T3E workload remain very high and the Origin 2000 (Fermat) with a high utilisation.

The percentage of capability jobs (>128 PE's) on Turing was 68% of the total work volume.

This document gives information on Service Quality and on actual usage of the CSAR Service during the reporting period of March 2001. The information, in particular, covers the availability and usage of the following two main CSAR Service High Performance Computing (HPC) systems:

ی Cray T3E-1200E/776 (Turing) ک SGI Origin2000/128 (Fermat)

The information is provided in both textual and graphical form, so that it is easier to see trends and variances.

2. Service Quality

This section covers overall Customer Performance Assessment Ratings (CPARS), HPC System availability and usage, Service Quality Tokens and other information concerning issues, progress and plans for the CSAR Service.

2.1 CPARS

Notes:

<u>Table 1</u> gives the measure by which the quality of the CSAR Service is judged. It identifies the metrics and performance targets, with colour coding so that different levels of achievement against targets can be readily identified. Unsatisfactory actual performance will trigger corrective action.

CSAR Service - Service Quality Report - Performance Targets

	Performance Targets					
Service Quality Measure	White	Blue	Green	Yellow	Orange	Red
HPC Services Availability						
Availability in Core Time (% of time)	> 99.9%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less
Availability out of Core Time (% of time)	> 99.8%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less
Number of Failures in month	0	1	2 to 3	4	5	> 5
Mean Time between failures in 52 week rolling period (hours)	>750	>500	>300	>200	>150	otherwise
Fujitsu Service Availability						
Availability in Core Time (% of time)	> 99.9%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less
Availability out of Core Time (% of time)	> 99.8%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less
Help Desk						
Non In-depth Queries - Max Time to resolve 50% of all queries (working days)	< 1/4	< 1/2	< 1	< 2	< 4	4 or more
Non In-depth Queries - Max Time to resolve 95% of all queries (working days)	< 1/2	< 1	< 2	< 3	< 5	5 or more
Administrative Queries - Max Time to resolve 95% of all queries (working days)	< 1/2	< 1	< 2	< 3	< 5	5 or more
Help Desk Telephone - % of calls answered within 2 minutes	>98%	> 95%	> 90%	> 85%	> 80%	80% or less
Others						
Normal Media Exchange Requests - average response time (working days)	< 1/2	< 1	< 2	< 3	< 5	5 or more
New User Registration Time (working days)	< 1/2	< 1	< 2	< 3	< 4	otherwise
Management Report Delivery Times (working days)	< 1	< 5	< 10	< 12	< 15	otherwise
System Maintenance - no. of scheduled sessions taken per system in the month	0	1	2	3	4	otherwise

Table 1

Table 2 gives actual performance information for the period of March 1st to 31st inclusive.

Overall, the CPARS Performance Achievement in March was satisfactory (see Table 3); i.e. Green measured against the CPARS performance targets.

The Fujitsu availability figures are included in Table 2, but not Table 3 as they have zero weighting in CPARS terms.

CSAR Service - Service Quality Report - Actual Performance Achievement

	2000/1											
Service Quality Measure	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	March
HPC Services Availability												
Availability in Core Time (% of time)	100%	100%	99.70%	100%	100%	100%	100%	100%	94.90%	99.70%	99.70%	100%
Availability out of Core Time (% of time)	99.5%	99.40	99.40	100%	100%	100%	100%	99.40	98.49%	99.50%	99.40	99.40
Number of Failures in month	1	1	2	0	0	0	0	2	4	1	1	1
Mean Time between failures in 52 week rolling period (hours)	437	515	461	461	626	730	1095	673	584	584	626	674
Fujitsu Service Availability												
Availability in Core Time (% of time)	100%	100%	100%	100%	98.4%	100%	100%	100%	100%	100%	100%	100%
Availability out of Core Time (% of time)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Help Desk												
Non In-depth Queries - Max Time to resolve 50% of all queries	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Non In-depth Queries - Max Time to resolve 95% of all queries	<1	<2	<	<2	<2	<2	<1	<3	⊲	45	Ф	<3
Administrative Queries - Max Time to resolve 95% of all queries	<1	<2	<0.5	<0.5	<2	<2	<0.5	<0.5	4	2	2	<3
Help Desk Telephone - % of calls answered within 2 minutes	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Others												
Normal Media Exchange Requests - average response time	0	0	0	0	0	<0.5	0	<0.5	<0.5	<0.5	<0.5	0
New User Registration Time (working days)	0	0	0	0	0	0	0	0	0	0	0	0
Management Report Delivery Times (working days)	10	10	10	10	10	10	10	10	10	10	10	10
System Maintenance - no. of sessions taken per system in the mont	1	1	2	2	2	2	1	2	1	0	2	1

Table 2

1. HPC Services Availability has been calculated using the following formulae, based on the relative NPB performance of Turing and Fermat at installation:

 $[Turing \ availability \ x \ 122 \ / \ (122 + 3.5) \] \ + \ [Fermat \ availability \ x \ 3.5 \ / \ (122 + 3.5) \ x \ 1.556 \]$

2 Mean Time between failures for Service Credits is formally calculated based on a rolling 12 month period.

<u>Table 3</u> gives Service Credit values for the month of March. These will be accounted on a quarterly basis, formally from the Go-Live Date. The values are calculated according to agreed Service Credit Ratings and Weightings.

	2000/1											
Service Quality Measure	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	March
HPC Services Availability												
Availability in Core Time (% of time)	-0.058	-0.058	-0.039	-0.058	-0.058	-0.058	-0.058	-0.058	0.195	-0.039	-0.039	-0.058
Availability out of Core Time (% of time)	-0.039	0	0	-0.047	-0.047	-0.047	-0.047	0	0	-0.039	0.000	0
Number of Failures in month	-0.008	-0.008	0	-0.009	-0.009	-0.009	-0.009	0	0	-0.008	-0.008	-0.008
Mean Time between failures in 52 week rolling period (hours)	0	-0.008	0	0	-0.008	-0.008	-0.009	-0.008	-0.008	-0.008	-0.008	-0.008
Help Desk												
Non In-depth Queries - Max Time to resolve 50% of all queries	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019
Non In-depth Queries - Max Time to resolve 95% of all queries	-0.016	0	-0.016	0	0	0	-0.016	0.016	0.016	0.031	0.031	0.016
Administrative Queries - Max Time to resolve 95% of all queries	-0.016	0	-0.019	-0.019	0	0	-0.019	-0.019	0.046	0	0	0.016
Help Desk Telephone - % of calls answered within 2 minutes	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
Others												
Normal Media Exchange Requests - average response time	0	0	0	0	0	-0.002	0	-0.002	-0.002	-0.002	-0.002	0
New User Registration Time (working days)	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019
Management Report Delivery Times (working days)	0	0	0	0	0	0	0	0	0	0	0	0
System Maintenance - no. of sessions taken per system in the mont	-0.003	-0.003	0	0	0	0	-0.003	0	-0.003	-0.004	0	-0.003

CSAR Service - Service Quality Report - Service Credits

Monthly Total & overall Service Quality Rating for each period: -0.08 -0.06 -0.06 -0.09 -0.08 -0.08 -0.10 -0.06 0.11 -0.05 -0.03 -0.04

Table 3

2.2 Service Quality Tokens

The current position at the end of March 2001 is that twelve of the 509 registered users of the CSAR Service had used Service Quality Tokens.

The graph below shows the total number of registered users on the CSAR Service and the number of users holding a neutral view of the service.

The graph below illustrates the monthly usage trend of quality tokens:

Service Quality Tokens - Monthly Trends

The current status of the Stendahl tokens, is that there are eight users with outstanding black marks against the system, due to the queue times being long on the Turing system, and four users issuing Gold stars for improved job turnaround.

No of Stars or	Consortia	Date	Reason Given
Marks		Allocated	
3 Gold Stars	CSN003	12/03/01	Service greatly improved
3 Gold Stars	CSN006	15/03/01	Now achieving good throughput
2 Gold Stars	CSN003	12/03/01	Improved turnaround times on Queues
1 Gold Star	CSN003	16/02/01	Problems resolved
3 Black Marks	CSN006	16/02/01	Excessive Queue times
3 Black Marks	CSN001	21/02/01	Excessive Queue times
3 Black Marks	CSN006	16/02/01	Excessive Queue times
4 Black Marks	CSE006	08/03/01	Excessive Queue times
4 Black Marks	CSE002	16/02/01	Excessive Queue times
5 Black Marks	CSE006	08/03/01	Excessive Queue times
5 Black Marks	CSE002	16/02/01	Excessive Queue times
5 Black Marks	CSE006	09/03/01	Excessive Queue times

SUMMARY OF SERVICE QUALITY TOKEN USAGE

2.3 Throughput Target against Baseline

The Baseline Target for throughput was fully achieved this month due to plenty of work over the period. The actual usage figure was 158% of Baseline capacity.

Job Throughput Against Baseline CSAR Service Provision

Period:	1st to 31st March 20	D1	
	Baseline Capacity for Period (T3E PE Hours)	Actual Usage in Period (T3E PE Hours)	Actual % Utilisation c/w Baseline during Period
1. Has CfS failed to deliver Baseline MPP Computing Capacity for EPSRC?	359,450	569,050	158.31%
	Baseline Capacity for Period (T3E PE Hours)	Job Time Demands in Period	Job Demand above 110% of Baseline during Period (Yes/No)?
2. Have Users submitted work demanding > 110% of the Baseline during period?	359,450	571,619	Yes
		Number of Jobs at least 4 days old at end Period	Number of Jobs at least 4 days old at end Period is not zero (Yes/No)?
3. Are there User Jobs oustanding at the end of the period over 4 days old?		12	Yes
4 Hours Hears submitted used, downeds above 00% of the Receive during pariod?		Minimum Job Time Demands as % of Baseline during Period	Minimum Job Time Demand above 90% of Baseline during Period (Yes/No)?
4. Have users submitted work demands above 30% of the baseline during period?		127.76	res
	Number of standard Job Queues (ignoring priorities)	Average % of time each queue contained jobs in the Period	Average % of time each queue contained jobs in the Period is > 97%?
b. Majority of Job Queues contained jobs from Users for more than 97% during period?	4	73.0%	I NO

3. System Availability

Service availability each reporting period is calculated as a percentage of actual availability time over theoretical maximum time, after accounting for planned breaks in service for preventative maintenance.

3.1 Cray T3E-1200E System (Turing)

The following graphs show the availability of Turing both in core time and out of core time respectively during the period of 1^{st} to 31^{st} March.

Turing availability for March:

Availability of Turing in core time during March was good.

Availability of Turing out of core time during March was good. There was an incident on the 31st which resulted in the T3E being rebooted. It was not due to a T3E problem but was a failure of the environmental cooling systems. The issue is being given the highest possible priority with additional cooling facilities being made available in the form of an additional chiller to augment the current system.

3.2 SGI Origin2000 System (Fermat)

The following graphs show the availability of Fermat both in core time and out of core time respectively.

Availability of Fermat in core time during March was good.

Fermat had to be rebooted for the same incident that brought about the Turing reboot. Availability of Fermat out of core time during March was good.

4. HPC Services Usage

Usage information is given in tabular form, in Appendices, and in graphical format. The system usage information for the period of March 1st to 31st is provided by Project/User Group, totalled by Research Council and overall. This covers:

??	CPU usage	Turing:	569,050 PE Hours Fermat (Batch):	64,833.64 Hours
??		Fermat (1	Interactive): 285.59 CPU H	lours	
??	Fujitsu CPU usage	Fuji:	1,387.81 CPU Hours		
??	User Disk allocation	Turing:	67.55 GB Years	Fermat:	28.84 GB Years
??	HSM/tape usage	1092.01 0	GB Years		

In addition, the following graphs are provided to illustrate usage per month, historically:

- MPP (T3E/Origin) Usage by month, showing usage each month of CPU (MFOP Years as perNPB), split by Research Council and by system. The Baseline and the overall Capacity are shown by overlaid horizontal lines.
- b) SMP (Origin) Usage by month, showing usage each month in CPU Hours, split by Research Council and giving the equivalent GFLOP-Years as per NPB. The Baseline Capacity is shown by an overlaid horizontal line.
- c) High Performance Disk (T3E) allocated for User Data by month, showing the allocated space each month in GBytes, split by Research Council. The Baseline Capacity (1 Terabyte) is shown by an overlaid horizontal line.
- d) Medium Performance Disk (Origin) allocated for User Data by month, showing the allocated space each month in GBytes, split by Research Council. The Baseline Capacity (1.5 Terabytes) is shown by an overlaid horizontal line.
- e) HSM/Tape Usage (T3E) by month, showing the volumes held each in GBytes, split by Research Council. The Baseline Capacity (16 Terabytes) available will be shown by an overlaid horizontal line.

4.1 Cray T3E-1200E System (Turing)

The following graph shows the usage of Turing during each day of March 2001. Note that there is some variance on a day-to-day basis as the accounts record job times, and thus CPU usage figures, at the time of job completion which could be the second actual day for large jobs. At present, there is a 12 hour limit on jobs, so that they are check-pointed, and computational time lost due to any failure is well managed.

Turing usage for March:

The above usage graph for the Turing system shows that the overall workload was variable.

The graph also indicates the workload reached 100% of maximum theoretical capacity for a large part of the month.

Fine tuning of the CfS scheduling system will continue to ensure minimal wasting of PE resource, in order to fit in a number of different sized jobs (e.g. 32, 64, 128, 256) thus facilitating maximised job throughput.

In particular, Turing will continue to start large jobs above 256 PEs, including 512 PEs, every night they are queued subject to the overall workload.

In an effort to minimise the effect of the long queues CfS have been man managing work through on a priority basis, where requested.

4.2 SGI Origin2000 System (Fermat)

The usage of the Origin system was low at the beginning of the month but grew with the new batch queuing system and release of processors for batch work. The groups most heavily using the Fermat system are CSE006 (Briddon), CSN006 (Price), CSN015 (Proctor) and HPCI Daresbury.

The graph above shows the interactive usage of the upgraded Origin 2000 (Fermat).

The above graph to a different scale shows the growing batch utilisation of the Origin 128.

4.2.1 Fujitsu VPP 300/8 System (Fuji)

Fuji utilisation was again variable over the month with the overall position resulting in usage below baseline.

4.3 Disk/HSM Usage Charts

The graphs below show current disk and HSM allocations and usage.

The preceding graph shows actual usage on average against the current allocation of disk on the Turing system.

The above graph shows the disk allocations against usage on average of the disk on Fermat.

The above graph shows the total usage of the HSM facility by Research Council.

The next two graphs give actual usage of HSM by Research Council and by Consortium.

CSE002 (Gillan), CSE004 (Sandham), CSE024 (Tennyson), CSN001 (Webb), CSN003 (O'Neill) & CSN015 (Proctor) were the major users of HSM resource.

Job statistics for Turing:

The above graph shows the number of jobs of the major sizes run in the period 1st to 31st March 2001.

The next graph shows the wait times in minutes for the major categories of jobs.

The chart above shows the average wait time trend over the last 12 months. Wait times for all jobs currently remain high due to the heavy workload on the system.

It can be seen from the above graph that enhancements to the scheduling on Turing did reduce the average wait times in November/December, however the times have again started to climb due to the volumes of work on Turing.

The largest proportion of the workload on Turing, 68%, was greater than 128 PEs in size.

Turing PE usage is shown by Research Council during the past 12 months of service in the above chart.

Origin 2000 CPU usage is shown by Research Council during the past 12 months of service in the above chart.

4.4 Class 2 & 3 Usage Charts

The next series of charts show the usage of the system by the class 2 & class 3 users. The usage is shown by project and identifies the Research Council of the individual projects.

The above chart shows the most significant PE usage of the Turing system by class 2 and class 3 users.

The above chart shows the CPU usage of the Fermat system by class 2 and class 3 users.

The above chart shows the most significant disk allocations on the Turing system for class 2 and class 3 users.

The above chart shows the most significant disk allocations on the Fermat system for class 2 and class 3 users.

There is currently no HSM usage by class 2 and class 3 users.

4.5 Charts of Historical Usage

In all the Usage Charts, the baseline varies dependant on the number of days in each month, within a 365-day year.

The graph below shows the GFLOP Year utilisation on Turing and Fermat by Research Council for the previous 12 months.

The graph below shows the historic SMP/MPP usage on the major systems commencing in March 2001.

The above graph shows the historic interactive usage of the 'Baseline' Fermat system (equivalent to 16@250Mhz CPU's)

The next series of graphs illustrates the usage of the disk and HSM resources of the system.

The preceding graph illustrates the historic allocation of the High Performance Disk on Turing.

The graph above illustrates the historic allocation of the Medium Performance Disk on Fermat.

The graph below shows the historic HSM usage by Research Council funded projects. The primary usage is for NERC.

The next chart shows the historic usage of the Fuji system.

The Fujitsu system was below baseline again this month.

4.5 Guest System Usage Charts

There is at present no guest system usage to report, however NERC continue to evaluate the Compaq.

5. Service Status, Issues and Plans

5.1 Status

The service continues to run almost at full capacity.

During the month, 68% of the jobs run on Turing were larger than 128 PEs in size.

The Origin 128 (Fermat) continues to be heavily used.

5.2 Issues

Wait times continue to be of concern, as can be seen by the Stendahl tokens currently allocated to the service. Fermat has started to provide additional resource to the users. The wait times on Turing have not noticeably decreased despite the almost full utilisation of the Origin 128.

The arrival of the Origin 3000 capacity should further reduce the queue times currently being experienced on Turing by some of the users.

5.3 Plans

The plans for the introduction of the first Origin 3000 are well advanced and running to schedule.

6. Conclusion

March 2001 saw the overall CPARS rating at Green with improvements being shown in machine reliability and the resolution times of queries.

The baseline was exceeded by over 58% with the largest proportion of the workload being the larger job sizes.

Continued management attention will be given to maximise the throughput of the Service, whilst balancing as fairly as practicable the shares between Projects and jobs of the varying sizes.

Appendix 1 contains the accounts for March 2001

Appendix 2 contains the Percentage shares by Consortium for March 2001

Appendix 3 contains the Percentage shares by Research Council for March 2001

Appendix 4 contains the Training, Applications and Optimisation support figures to the end of March 2001

Appendix 5 contains a reference table of the Consortia name, the subject area and the PI name.

The summary accounts for the month of March 2001 can be found at the URL below

http://www.csar.cfs.ac.uk/admin/accounts/summary.shtml

Appendix 2

Percentage PE time per consor	tia for Turing in Marchy 2001	Percentage CPU time per consor	rtia for Fermat in March 2001
Consortia	% Machine Time	Consortia	% Machine Time
CSE002	11.59	CSE002	0.11
CSE003	8.38	CSE003	0.31
CSE007	1.09	CSE007	0.00
CSE021	0.00	CSE021	0.00
CSE023	0.00	CSE023	0.00
CSE025	0.00	CSE025	0.00
CSE030	0.09	CSE030	5.74
CSE051	0.44	CSE051	0.00
CSE006	11.53	CSE006	82.15
CSE026	1.12	CSE026	0.00
CSE004	15.15	CSE004	0.17
285010	0.00	CRE010	0.00
286010	0.00	CREDIT	0.00
SEUTI	0.00	CSEOTI	0.00
CSE013	6.89	CSE013	0.00
CSE014	0.00	CSE014	0.00
CSE016	0.00	CSE016	0.00
CSE022	1.32	CSE022	0.00
SE027	0.00	CSE027	1.31
SE029	0.00	CSE029	0.00
SE040	0.00	CSE040	0.00
CSE041	0.00	CSE041	0.05
SE043	0.04	CSE043	0.00
SE008	0.00	CSE008	0.00
CSE009	4.65	CSE009	0.01
SE024	0.70	CSE024	0.00
SE033	0.00	CSE033	0.00
SE035	1.49	CSE035	0.00
SE010	0.00	CSE019	0.00
SE020	0.00	CSE010	0.00
SE034	0.00	CSE020	0.00
05000	0.00	005004	0.00
SEU36	0.00	CSE036	0.00
IPCI Soutnampton	0.00	HPCI Soutnampton	0.00
1PCI Daresbury	0.11	HPCI Daresbury	0.00
IPCI Edinburgh	0.00	HPCI Edinburgh	0.00
CSN001	3.35	CSN001	0.32
BADC	0.00	BADC	0.00
CSN003	16.29	CSN003	0.24
CSN005	0.00	CSN005	0.00
CSN006	10.50	CSN006	14.41
CSN007	0.00	CSN007	0.00
SN010	0.00	CSN010	0.00
SN011	0.06	CSN011	0.52
SN012	0.00	CSN012	0.00
SN013	0.00	CSN013	0.00
SN015	1.66	CSN015	459
SN017	0.00	CSN017	0.05
SB001	0.50	CSB001	0.00
SB002	0.54	CSB007	0.00
SB002	1.12	C3B002	0.00
00000	0.00	030003	0.00
SP002	1.81	CSP002	0.00
5P003	0.00	CSP003	0.00
55001	0.04	CSS001	0.00
S2018	0.00	CS2018	0.00
S2021	0.00	CS2021	0.00
S2022	0.00	CS2022	0.00
S2023	0.00	CS2023	0.16
S2026	0.11	CS2024	0.00
S2027	0.01	CS2027	0.00
S3001	0.00	CS3001	0.00
S3002	0.00	CS3002	0.00
S3004	0.00	CS3004	0.00
CS3005	0.00	CS3005	0.00
CS3007	0.00	CS3007	0.00
53008	0.00	C\$3008	0.00
	0.00		0.00
283010	0.00	C\$3010	0.00

Percentage disc allocation by Consortia for Turing in March 2001		Percentage disc allocation	n by Consortia for Fermat in March 2001
Consortia	%Allocation	Consortia	%Allocation
CSE002	25.79	CSE002	18.59
CSE003	6.90	CSE003	0.83
CSE007	1.01	CSE007	0.00
CSE021	0.04	CSE021	0.00
002021	0.04	002021	0.00
CSE023	0.00	CSE023	0.00
CSE025	0.00	CSE025	0.00
CSE030	23.26	CSE030	43.59
CSE051	0.28	CSE051	0.00
CSE006	1.01	CSE006	1.18
CSE026	0.06	CSE026	0.00
002020	0.00	002020	0.00
USE004	9.43	CSE004	8.84
CSE010	0.00	CSE010	0.00
CSE011	0.80	CSE011	0.00
CSE013	1.14	CSE013	0.35
CSE014	0.00	CSE014	0.00
25016	0.00	000014	0.00
-SEU 10	0.50	LSEUID	0.00
SE022	0.50	CSE022	0.00
SE027	0.06	CSE027	0.14
SE029	0.00	CSE029	0.00
SE040	0.00	CSE040	0.00
SE0/1	0.00	00001	0.00
05040	0.00	036041	0.00
SE043	0.13	CSE043	0.31
SE008	0.00	CSE008	0.00
SE009	3.77	CSE009	0.28
SE024	0.44	CSE024	0.10
SE022	0.27	CSE022	0.00
SE033	0.37	032033	0.00
SE035	0.87	CSE035	0.00
SE019	0.00	CSE019	0.00
SE020	0.00	CSE020	0.00
SE034	0.00	CSE034	0.00
SEUSE	0.02	CSE026	0.03
DCI Southempton	0.03	UDCI Southemater	0.03
PCI Southampton	0.00	HPCI Soutnampton	0.00
PCI Daresbury	0.12	HPCI Daresbury	0.14
PCI Edinburgh	0.12	HPCI Edinburgh	0.28
SN001	10.70	CSN001	17.68
ADC	0.00	BADC	0.00
EN1002	0.00	00000	4.40
-SINUU3	2.64	C5N003	4.40
SN005	0.00	CSN005	0.00
SN006	5.03	CSN006	2.05
SN007	0.00	CSN007	0.00
SN010	0.00	CSN010	0.00
EN011	0.00	CEN011	0.00
	0.36	C5N011	0.00
SNU12	0.00	CSN012	0.00
SN015	0.15	CSN015	0.00
SN017	0.01	CSN017	0.28
SB001	0.06	CSB001	0.00
SB002	163	CSB002	0.28
60002 60002	1.00	000002	0.20
30003	0.04	CSB003	0.00
SP002	0.75	CSP002	0.00
SP003	0.03	CSP003	0.10
SS001	0.19	CSS001	0.00
S2012	0.00	CS2012	0.00
 20010	0.00	662012	0.00
32010	0.10	652018	0.00
32021	0.13	CS2021	0.00
S2022	0.09	CS2022	0.00
S2026	0.25	CS2026	0.00
S2027	0.03	CS2027	0.00
\$2001	0.00	002021	0.00
100001	0.00	C53001	0.00
S3002	0.16	CS3002	0.00
S3004	0.12	CS3004	0.00
CS3007	0.19	CS3007	0.00
	0.37	CS3008	0.28
`S3008	0.07	000000	0.20
\$3008 \$3005	0.04	- C-7/Wik	
S3008 S3005	0.04	CS3005	0.00
2S3008 2S3005 2S3010	0.04 0.06	CS3005 CS3010	0.00

Percentage usage of HSM by Consortium for March 2001						
Consortium	% Usage					
CSE002	0.84					
CSE003	0.10					
CSE030	0.87					
CSE004	4.43					
CSE013	0.11					
CSE041	0.09					
CSE024	2.36					
CSE035	0.07					
CSN001	21.40					
BADC	8.65					
CSN003	56.18					
CSN015	4.66					

Percentage PE usage on Turing by Reserch Council for March 2001			Percentage CPU usage on Fermat by Reserch Council for March 2001				
Research Council	% Usage		Research Council	% Usago			
EPSRC	64.41		EPSRC	85.03			
HPCI	0.11		HPCI	4.19			
NERC	31.87		NERC	3.23			
BBSRC	1.65		BBSRC	0.00			
ESRC	0.04		ESRC	0.00			
PPARC	1.81		PPARC	0.00			

Percentage Disc allocated on Turing by Research Council for March2001		uncil for March2001 Perce	Percentage Disc allocated on Fermat by Research Council for March 2001			
Research Council	%-Allocated	Record	rch Council	% Allocated		
EPSRC	77.16	EPSR	C	74.45		
HPCI	0.25	HPCI		0.45		
NERC	18.93	NERC		24.41		
BBSRC	1.75	BBSR	C	0.31		
ESRC	0.24	ESRC		0.00		
PPARC	1.08	PPAR	С	0.10		

Percentage HSM usage by Research Council for March 2001					
Research Council	% usage				
EPSRC	9.68				
HPCI	0				
NERC	90.15				
BBSRC	0				
ESRC	0				
PPARC	0				

The following tables show the training and support resource usage by the consortias in person days to the current month. Optimisation support for March totalled 10.5 man days.

Code	PI	Subject	Application Support for March 2001	Total Applicatio n Support from July 2000	Optimisati on Support for March 2001	Total Optimisati on Support from July 2000	Total Suppor t Used	Training Used
Cse002	Dr Phil Lindan	Support for the UKCP		10.25			142.25	-
Cse003	Prof. Ken Taylor	HPC Consortiums 98- 2000		1	10.5	10.5	14.5	6
Cse004	Dr Neil Sandham	UK Turbulence						2
Cse006	Dr Patrick Briddon	Covalently Bonded Materials						
Cse007	Dr Matthew Foulkes	Quantum Many Body Theory					1	2
Cse008	Dr Mark Vincent (Hillier)	Model Chemical Reactivity						
Cse009	Dr Ben Slater (Catlow)	HPC in Materials Chemistry	0.5	5.5		3	8.5	
Cse010	Dr John Williams	Free Surface Flows					15.95	
Cse011	Dr John Williams	Open Channel Flood Plains					2.18	
Cse013	Prof Michael Leschzine r	Complex Engineering Flows						3
Cse014	Dr Cassiano de Oliverira (Goddard)	Probs in Nuclear Safety						
Cse016	Dr	Turbulent						

	Cant	Combustion			
Cse017	Dr Kai Luo	Large Eddy Simulation and Modelling of Buoyant Plumes and Smoke Spread in Enclosures			
Cse018	Dr Stewart Cant	Turbulent Flames			
Cse019	Dr Jason Lander (Berzins)	ROPA			
Cse020	Dr Marek Szularz	Symmetric Eigenproblem			
Cse021	Dr Julie Staunton	Magentisim			1
Cse022	Mr Niall Branley (Jones)	Turbulent Flames			
Cse023	Allen	Liquid Crystalline Materials			
Cse024	Dr Robert Allan (Tennyso n)	ChemReact 98- 2000			-
Cse025	Dr Niels Rene Walet(Bis hop)	Nuclear Theory Progamme			1.5
Cse026	Dr Maureen Neal	Molecular Dynamics			
Cse027	Dr M Imregun	Excitation Mechanisims			
Cse028	Prof. P.W. Bearman	Bridge Design			
Cse029	Dr David Aspley (Leschzin er)	Validation of Turbulence Models			

Cse030	Prof M Cates (VIPAR)	HPC for Complex Fluids	2	21	5	51	7
Cse033	Dr M Imregun	Tubomachinery core compressor					
Cse034	Dr Paul Durham	R&D of liner/non- linear systems					
Cse035	Dr Stephen Jenkins	Ab Initio Simulations					
Cse036	Prof lain Duff	R&D of linear/non-linear systems					
Cse040	Dr Ken Badcock						
Cse041	Dr M Imregun	Flutter and Noise Generation					
Cse043	Dr J J R Williams	Numerical Simulation of flow over a rough bed					4
Csn00 1	Mrs Beverly de Cuevas (Webb)	HPCI Global Ocean Consortium		1		3	1
Csn00 1 Csn00 2	Mrs Beverly de Cuevas (Webb) Dr Mark Vincent (Hillier)	HPCI Global Ocean Consortium Pollutant Sorption on Mineral Surf		1		3	1
Csn00 1 Csn00 2 Csn00 3	Mrs Beverly de Cuevas (Webb) Dr Mark Vincent (Hillier) Dr Lois Steenman- Clark (O'Neill)	HPCI Global Ocean Consortium Pollutant Sorption on Mineral Surf UGAMP		1		3	1
Csn00 1 Csn00 2 Csn00 3 Csn00 5	Mrs Beverly de Cuevas (Webb) Dr Mark Vincent (Hillier) Dr Lois Steenman- Clark (O'Neill) Dr Huw Davies	HPCI Global Ocean Consortium Pollutant Sorption on Mineral Surf UGAMP Constraining Earth Mantle		1		27	1 4 6
Csn00 1 Csn00 2 Csn00 3 Csn00 5 Csn00 6	Mrs Beverly de Cuevas (Webb) Dr Mark Vincent (Hillier) Dr Lois Steenman- Clark (O'Neill) Dr Huw Davies Dr John Brodholt (Price)	HPCI Global Ocean Consortium Pollutant Sorption on Mineral Surf UGAMP UGAMP Constraining Earth Mantle Density Functional Methods				27	1 4 6
Csn00 1 Csn00 2 Csn00 3 Csn00 6 Csn00 7	Mrs Beverly de Cuevas (Webb) Dr Mark Vincent (Hillier) Dr Lois Steenman- Clark (O'Neill) Dr Huw Davies Dr John Brodholt (Price)	HPCI Global Ocean Consortium Pollutant Sorption on Mineral Surf UGAMP UGAMP Constraining Earth Mantle Density Functional Methods Density Functional Methods				3	1 4 6

Csn00 9	Dr Roger Proctor					
Csn01 0	Dr Jason Lander (Mobbs)	Flow over Complex terrain			-	-
Csn01 1	Dr Ed Dicks (Thorpe)	Exchange of Polluted Air				
Csn01 2	Prof Tennyson	fuji user				
Csn01 3	Dr L Steenman- Clark (Voke)	Large-Eddy Simulation Extended by Extreme Value Theory for the Prediction of Dispersion, Concentration Threshold Boundaries and Field Connectivity				
Csn01 4	Prof Llewellyn- Jones	A new Data Assimilation Scheme to optimise the information on the surface- atmosphere interface from satellite observations of Top-of-the Atmosphere Brightness Temperature				
Csn01 5	Dr Roger Proctor	Atlantic Margin Metocean Project	2		2	3
Csn01 7	Dr Antony Payne	Stability of the Antarctic Ice Sheet				2
Csb00 1	Dr David Houldersha w (Goodfellow)	Macromolecular Interactions			2	2
Csb00 2	Dr Adrian Mulholland (Danson)	Stability of Enzymes at high temp				
Csb00 3	Dr John Carling (Williams)	Anguilliform Swimming				-

Csp00 2	Dr Sandra Chapman	Nonlinear process in solar system and astrophysical plasmas				4
Csp00 3	Prof Andrew Lyne	Computing Resources for Precision timing of Millisecond Pulsars	1		2	4
Csp00 4	Prof K L Bell	A Programme for Atomic Physics for Astrophysics at Queen's University, Belfast (2001 - 2005)				
Css00 1	Dr I J Turton	Human Systems Modelling				
Css00 2	Dr Robert Crouchley	Dropout in panel surveys				2
Hpcid	Dr Robert Allan					1
Hpcie	Dr David Henty					
Hpcis	Dr Denis Nicole					
Cs200 1	Dr Sudhir Jain	3D Ising Spin Glass				-
Cs200 2	Dr Ingrid Stairs (Lyne)	Millisecond Pulsars			0.25	-
Cs200 4	Dr A. Paul Watkins	Internal Combustion Engine				
Cs200 6	Prof. Walter Temmerman	Superconductivity & Magmetisim				
Cs200 7	Choularton	Precipitation in the Mountains				1
Cs200 8	Dr Matthew Genge	Extraterrestrial Mineral Surfæes			7.91	

Cs200 9	Dr Roger Proctor	Atlantic Margin Metocean Project			
Cs201 0	Dr Christopher Dempsey	Helical membrane- lytic peptides			
Cs201 1	Dr D Drikakis	Transition & Turbulence in Physiological Flows			
Cs201 2	Prof Ning Qin	Monotone Integrated Large Eddy Simulation			1.5
Cs201 4	Dr Vladimir Karlin	Dynamics of intrinsically unstable premixed flames			2
Cs201 5	Mr Pablo Tejera- Cuesta	Nonlinear Methods in Aerodynamics			1.5
Cs201 6	Dr Jim Miles	Investigation of Scaline Properties of Hierarchical Micromagnetic Models			-
Cs201 7	Mr Markus Eisenbach	Ab initio calculations of magnetic anisotropies in Fe inclusions in Cu			-
Cs201 8	Mr Maxim Chichkine	Study of defect clusters in silicon for sub-micron technologies			-
Cs201 9	Dr Guy H Grant	Theoretical studies of flavoproteins			-
Cs202 0	Prof John Barker	Predicting the applicability of Aquifer Storage Recovery (ASR) in the UK			-
Cs202 1	Dr A R Mount	A Computational Study of the Luminescence of Substituted Indoles			1
Cs202 2	Dr Philippa Browning	Numerical simulation of			2

		reconnection				
Cs202 3	Prof W Ewen Smith	The use of DFT methods for the accurate prediction of the Ramen spectrum of large molecules				-
Cs202 4	Prof J G Doyle	Modelling of late- type stellar chromospheres				-
Cs202 6	Dr R J Greenall	Molecular dynamics simIulations of AT- tract DNA				-
Cs202 7	Dr Anthony Kay	Mathematical Model of the Circulation of Lake Baikal				-
Cs202 8	Dr James F Annett	Numerical Tests of Disorder Effects in D- Wave Superconductorsor S				-
Cs300 1	Mr John Andrew Staveley	Helical Coherent Structures			0	3
Cs300 1 Cs300 2	Mr John Andrew Staveley Dr Keir Novik	Helical Coherent Structures Simulations of DNA oligomers			0	2
Cs300 1 Cs300 2 Cs300 3	Mr John Andrew Staveley Dr Keir Novik Dr Eric Chambers	Helical Coherent Structures Simulations of DNA oligomers Band III peptide fragments			0	3
Cs300 1 Cs300 2 Cs300 3 Cs300 4	Mr John Andrew Staveley Dr Keir Novik Dr Eric Chambers Prof Nick Avis	Helical Coherent Structures Simulations of DNA oligomers Band III peptide fragments Computational Steering and Interactive Virtual Environments			0	3 2 1
Cs300 1 Cs300 2 Cs300 3 Cs300 4 Cs300 5	Mr John Andrew Staveley Dr Keir Novik Dr Eric Chambers Prof Nick Avis Mr Behrouz Zarei	Helical Coherent Structures Simulations of DNA oligomers Band III peptide fragments Computational Steering and Interactive Virtual Environments Simulation of Queuing Networks			0	3 2 1 3
Cs300 1 Cs300 2 Cs300 3 Cs300 4 Cs300 5 Cs300 6	Mr John Andrew Staveley Dr Keir Novik Dr Eric Chambers Prof Nick Avis Mr Behrouz Zarei Mr F Li	Helical Coherent StructuresSimulations of DNA oligomersBand III peptide fragmentsComputational Steering and Interactive Virtual EnvironmentsSimulation of Queuing NetworksQuantifying Room Acoustic Quality			0	3 2 1 3 1 1

Cs300 8	Dr B J Alsberg	Development of a 3D QSAR method based on quantum topological descriptors			-	-
Cs300 9	Dr D Flower	Epitope Prediction Methods based on molecular dynamics simulation			-	-
Cs301 0	Dr K Kemsley	Investigation of electromyograph ic recordings of muscle activity during chewing, and of relationships with perceived flavour and texture, in model and real food systems			-	1
Cs301 2	Prof Jim Austin	Evaluation of binary neural networks on a vector parallel processor			-	2
Cs301 3	Prof Rasmita Raval	Structure and function of Chiral Bioarrays: A fundamental approach to proteomic devices			-	-

Code	PI	Subject	Subject Area
Cse002	Dr Nicolas Harrison (Gillan)	Support for the UKCP	Physics
Cse003	Prof. Ken Taylor	HPC Consortiums 98- 2000	Physics
Cse004	Dr Neil Sandham	UK Turbulence	Engineering
Cse006	Dr Patrick Briddon	Covalently Bonded Materials	Materials
Cse007	Dr Matthew Foulkes	Quantum Many Body Theory	Physics
Cse008	Dr Mark Vincent (Hillier)	Model Chemical Reactivity	Chemistry
Cse009	Dr Ben Slater (Catlow)	HPC in Materials Chemistry	Chemistry
Cse010	Dr John Williams	Free Surface Flows	Engineering
Cse011	Dr John Williams	Open Channel Flood Plains	Engineering
Cse013	Dr David Aspley (Leschziner)	Complex Engineering Flows	Engineering
Cse014	Dr Cassiano de Oliverira (Goddard)	Probs in Nuclear Safety	Engineering
Cse016	Dr Stewart Cant	Turbulent Combustion	Engineering
Cse018	Dr Stewart Cant	Turbulent Flames	Engineering
Cse019	Dr Jason Lander (Berzins)	ROPA	Information
Cse020	Dr Marek Szularz	Symmetric Eigenproblem	I echnology Information
Cse021	Dr. Julie Staunton	Magentisim	Physics
Cse022	Mr Niall Branley (Jones)	Turbulent Flames	Engineering
Cse022		Liquid Crystalling Materials	
	Allen Dr Robert Allan (Tennyson)	ChemPeact 98-2000	
C3e024	Dr Niele Rone Walet (Pieben)	Nuclear Theory Progemen	Chemistry
Cse025	Di Niels Relle Walet (Bishop)		FIIYSICS
Cse026	Dr Maureen Neal		
Cse027	Dr M Imregun		
Cse028	Prof. P.W. Bearman		_ · ·
Cse029	Dr David Aspley (Leschziner)	J90 move	Engineering
Cse030	Prot M Cates	HPC for Complex Fluids	Physics
Cse031	Brebbia	J90 move	
Cse033	Dr M Imregun	Tubomachinery core compressor	Chemistry
Cse034	Dr Paul Durham	R&D of liner/non-linear systems	Mathematics
Csn001	Mrs Beverly de Cuevas (Webb)	HPCI Global Ocean Consortium	
Csn002	Dr Mark Vincent (Hillier)	Pollutant Sorption on Mineral Surf	
Csn003	Dr Lois Steenman-Clark (O'Neill)	UGAMP	
Csn005	Dr Huw Davies	Constraining Earth Mantle	
Csn006	Dr John Brodholt (Price)	Density Functional Methods	
Csn007	Dr John Brodholt (Price)	Density Functional Methods	
Csn008	Hulton	Sub-Glacial Process	
Csn009	Dr Roger Proctor		
Csn010	Dr Jason Lander (Mobbs)	Flow over Complex terrain	
Csn011	Dr Ed Dicks (Thorpe)	J90 move	
Csb001	Dr David Houldershaw (Goodfellow)	Macromolecular Interactions	
Csb002	Dr Adrian Mulholland (Danson)	Stability of Enzymes at high temp	
Csb003	Dr John Carling (Williams)	J90 move	
Css001	Dr Stan Openhaw	Human Systems Modelling	
Css002	Dr Robert Crouchley	Dropout in panel surveys	
Hpcid	Dr Robert Allan		
Hpcie	Dr David Henty		
Hpcis	Dr Denis Nicole		
Cs2001	Dr Sudhir Jain	3D Ising Spin Glass	
Cs2002	Dr Ingrid Stairs (Lyne)	Millisecond Pulsars	
Cs2003	Mr Tom Coulthard	Holocene Sediment Fluxes	
Cs2004	Dr A. Paul Watkins	Internal Combustion Engine	
Cs2005	Mr Sean Walsh	Arabidopsis Genome	
Cs2006	Prof. Walter Temmerman	Superconductivity & Magmetisim	
Cs2007	Choularton	Precipitation in the Mountains	
Cs2008	Dr Matthew Genge	Extraterrestrial Mineral Surfaces	
Cs3001	Mr. John Andrew Staveley	Helical Coherent Structures	
030001	INI JOHN ANULEW SLAVELEY		