# **CSAR Service - Management Report**

# **May 2004**

This report documents the quality of the CSAR service during the month of May 2004.

A more comprehensive report is provided quarterly, which additionally covers wider aspects of the Service such as information on Training, Application Support and Value-Added services.

This and other such reports are made available through the Web to staff within EPSRC and the other Research Councils, to CfS staff and CSAR Service users. The reports are indexed in a similar way to that which other useful information and news are listed for selection.

# 1. Introduction

This document gives information on Service Quality and on actual usage of the CSAR Service during the reporting period of May 2004. The information, in particular, covers the availability and usage of the main CSAR Service High Performance Computing (HPC) systems:

- SGI Altix3700/256 (Newton)
- ➤ SGI Origin3000/512 (Green)
- ➤ SGI Origin2000/128 (Fermat)
- ➤ SGI Origin300/16 (Wren)

The information is provided in both textual and graphical form, so that it is easier to see trends and variances.

May has seen the workload of the three primary systems at variable levels, with the workload on the Altix system Newton continuing to increase substantially.

Reliability issues were encountered during May, primarily affecting the Altix system, and corrective action is being undertaken to resolve these issues.

The CSAR Service has been granted an 18 month extension of service contract until June 31st 2006. With this extension CfS has introduced a 256 processor Itanium-2 (Madison) based SGI Altix Newton.

# 2. Service Quality

This section covers overall Customer Performance Assessment Ratings (CPARS), HPC System availability and usage, Service Quality Tokens and other information concerning issues, progress and plans for the CSAR Service.

# 2.1 CPARS

<u>Table 1</u> gives the measure by which the quality of the CSAR Service is judged. It identifies the metrics and performance targets, with colour coding so that different levels of achievement against targets can be readily identified. Unsatisfactory actual performance will trigger corrective action.

# **CSAR Service - Service Quality Report - Performance Targets**

|                                                                    |         | Performance Targets |         |         |        |             |  |
|--------------------------------------------------------------------|---------|---------------------|---------|---------|--------|-------------|--|
| Service Quality Measure                                            | White   | Blue                | Green   | Yellow  | Orange | Red         |  |
| HPC Services Availability                                          |         |                     |         |         |        |             |  |
| Availability in Core Time (% of time)                              | > 99.9% | > 99.5%             | > 99.2% | > 98.5% | > 95%  | 95% or less |  |
| Availability out of Core Time (% of time)                          | > 99.8% | > 99.5%             | > 99.2% | > 98.5% | > 95%  | 95% or less |  |
| Number of Failures in month                                        | 0       | 1                   | 2 to 3  | 4       | 5      | > 5         |  |
| Mean Time between failures in 52 week rolling period (hours)       | >750    | >500                | >300    | >200    | >150   | otherwise   |  |
| Help Desk                                                          |         |                     |         |         |        |             |  |
| Non In-depth Queries - Max Time to resolve 50% of all queries      | < 1/4   | < 1/2               | < 1     | < 2     | < 4    | 4 or more   |  |
| Non In-depth Queries - Max Time to resolve 95% of all queries      | < 1/2   | < 1                 | < 2     | < 3     | < 5    | 5 or more   |  |
| Administrative Queries - Max Time to resolve 95% of all queries    | < 1/2   | < 1                 | < 2     | < 3     | < 5    | 5 or more   |  |
| Help Desk Telephone - % of calls answered within 2 minutes         | >98%    | > 95%               | > 90%   | > 85%   | > 80%  | 80% or less |  |
| Others                                                             |         |                     |         |         |        |             |  |
| Normal Media Exchange Requests - average response time             | < 1/2   | < 1                 | < 2     | < 3     | < 5    | 5 or more   |  |
| New User Registration Time (working days)                          | < 1/2   | < 1                 | < 2     | < 3     | < 4    | otherwise   |  |
| Management Report Delivery Times (working days)                    | < 1     | < 5                 | < 10    | < 12    | < 15   | otherwise   |  |
| System Maintenance - no. of sessions taken per system in the month | 0       | 1                   | 2       | 3       | 4      | otherwise   |  |

Table 1

<u>Table 2</u> gives actual performance information for the period of May 1<sup>st</sup> to 31<sup>st</sup> inclusive. Overall, the CPARS Performance Achievement in May was not satisfactory (see Table 3); i.e. Yellow measured against the CPARS performance targets.

# **CSAR Service - Service Quality Report - Actual Performance Achievement**

|                                                                  |        |        |        |        |        |        |        |        |        | 2003/4 |        |        |
|------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Service Quality Measure                                          | June   | July   | Aug    | Sept   | Oct    | Nov    | Dec    | Jan    | Feb    | March  | April  | May    |
| HPC Services Availability                                        |        |        |        |        |        |        |        |        |        |        |        |        |
| Availability in Core Time (% of time)                            | 99.25% | 98.83% | 98.95% | 96.62% | 98.84% | 98.95% | 98.75% | 97.49% | 98.16% | 98.51% | 89.39% | 94.21% |
| Availability out of Core Time (% of time)                        | 99.9%  | 99.57% | 100%   | 98.48% | 99.28% | 97.74% | 98.3%  | 98.88% | 97.9%  | 99.48% | 91.90% | 99.73% |
| Number of Failures in month                                      | 1      | 2      | 2      | 4      | 4      | 3      | 5      | 5      | 4      | 3      | 5      | 3      |
| Mean Time between failures in 52 week rolling period (hours)     | 548    | 487    | 461    | 417    | 365    | 337    | 283    | 265    | 243    | 276    | 238    | 218    |
| Help Desk                                                        |        |        |        |        |        |        |        |        |        |        |        |        |
| Non In-depth Queries - Max Time to resolve 50% of all queries    | < 0.25 | <0.25  | <0.25  | <0.25  | <0.25  | <0.25  | <0.25  | <0.25  | <0.25  | <0.25  | <0.25  | <0.25  |
| Non In-depth Queries - Max Time to resolve 95% of all queries    | <2     | <1     | <0.5   | <5     | <2     | <1     | <1     | <2     | <2     | <2     | <2     | <3     |
| Administrative Queries - Max Time to resolve 95% of all queries  | <0.5   | <0.5   | <1     | <1     | <1     | <1     | <1     | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   |
| Help Desk Telephone - % of calls answered within 2 minutes       | 100%   | 100%   | 100%   | 100%   | 100%   | 100%   | 100%   | 100%   | 100%   | 100%   | 100%   | 100%   |
| Others                                                           |        |        |        |        |        |        |        |        |        |        |        |        |
| Normal Media Exchange Requests - average response time           | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   |
| New User Registration Time (working days)                        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Management Report Delivery Times (working days)                  | 10     | 10     | 10     | 10     | 10     | 10     | 10     | 10     | 10     | 10     | 10     | 10     |
| System Maintenance - no. of sessions taken per system in the mon | 2      | 2      | 2      | 2      | 2      | 2      | 2      | 2      | 2      | 2      | 2      | 2      |

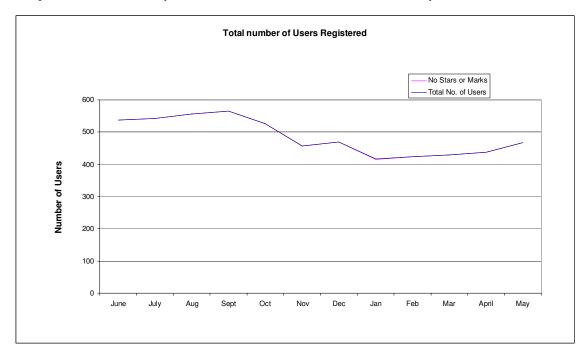
Table 2

# Notes:

- HPC Services Availability has been calculated using the following formula, based on the relative NPB performance of Fermat, Green and Newton at installation:
  - [Fermat availability x 40/ (40+233+343)] + [Green availability x 233/(40+233+343)] + [Newton availability x 343/(40+233+343)]
- 2 Mean Time between failures for Service Credits is formally calculated based on a rolling 12 month period.

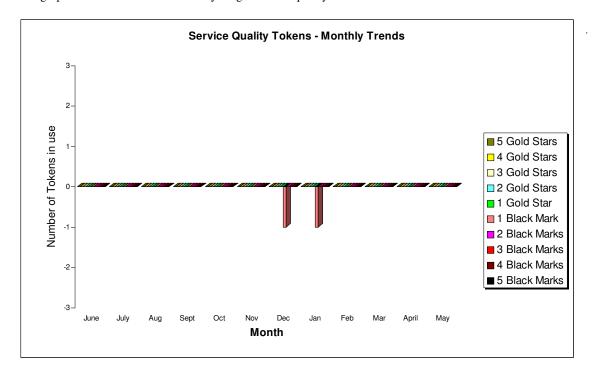
<u>Table 3</u> gives Service Credit values for the month of May. These will be accounted on a quarterly basis, formally from the Go-Live Date. The values are calculated according to agreed Service Credit Ratings and Weightings.

# **CSAR Service - Service Quality Report - Service Credits**


|                                                                  | 2003/4 |        |        |           |           |        |        |        |        |        |        |        |
|------------------------------------------------------------------|--------|--------|--------|-----------|-----------|--------|--------|--------|--------|--------|--------|--------|
| Service Quality Measure                                          | June   | July   | Aug    | Sept      | Oct       | Nov    | Dec    | Jan    | Feb    | March  | April  | May    |
| HPC Services Availability                                        |        |        |        |           |           |        |        |        |        |        |        |        |
| Availability in Core Time (% of time)                            | 0      | 0.039  | 0.039  | 0.078     | 0.039     | 0.039  | 0.039  | 0.078  | 0.078  | 0.039  | 0.195  | 0.195  |
| Availability out of Core Time (% of time)                        | -0.047 | -0.039 | -0.047 | 0.078     | -0.039    | 0.078  | 0.078  | 0      | 0.078  | 0      | 0.039  | 0      |
| Number of Failures in month                                      | -0.008 | 0      | 0      | 0.008     | 0.008     | 0      | 0.0004 | 0.0004 | 0.008  | 0      | 0.0004 | 0      |
| Mean Time between failures in 52 week rolling period (hours)     | -0.008 | 0      | 0      | 0         | 0         | 0      | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 |
| Help Desk                                                        |        |        |        |           |           |        |        |        |        |        |        |        |
| Non In-depth Queries - Max Time to resolve 50% of all queries    | -0.019 | -0.019 | -0.019 | -0.019    | -0.019    | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 |
| Non In-depth Queries - Max Time to resolve 95% of all queries    | 0      | -0.016 | -0.019 | 0.0312    | 0         | -0.016 | -0.016 | 0      | 0      | 0      | 0      | 0.016  |
| Administrative Queries - Max Time to resolve 95% of all queries  | -0.019 | -0.019 | -0.016 | -0.015514 | -0.015514 | -0.016 | -0.016 | -0.019 | -0.019 | -0.019 | 0      | -0.019 |
| Help Desk Telephone - % of calls answered within 2 minutes       | -0.004 | -0.004 | -0.004 | -0.004    | -0.004    | -0.004 | -0.004 | -0.004 | -0.004 | -0.004 | -0.004 | -0.004 |
| Others                                                           |        |        |        |           |           |        |        |        |        |        |        |        |
| Normal Media Exchange Requests - average response time           | -0.002 | -0.002 | -0.002 | -0.002    | -0.002    | -0.002 | -0.002 | -0.002 | -0.002 | -0.002 | -0.002 | -0.002 |
| New User Registration Time (working days)                        | -0.019 | -0.019 | -0.019 | -0.019    | -0.019    | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 |
| Management Report Delivery Times (working days)                  | 0      | 0      | 0      | 0         | 0         | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| System Maintenance - no. of sessions taken per system in the mon | 0      | 0      | 0      | 0         | 0         | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                                                                  |        |        |        | 1         |           |        |        |        |        |        | 1      | 1      |
| Monthly Total & overall Service Quality Rating for each period:  | -0.06  | -0.04  | -0.04  | 0.07      | -0.03     | 0.02   | 0.02   | 0.01   | 0.05   | -0.01  | 0.09   | 0.07   |

# Table 3

The Service Availability issues are receiving close management attention, to determine the root causes and the most appropriate solutions to overcome the problems at least risk to the overall service


# 2.2 Service Quality Tokens

The position at the end of May 2004 is that none of the 468 users have awarded any tokens to the service.



The graph above shows the total number of registered users on the CSAR Service and the number of users holding a neutral view of the service.

The graph below illustrates the monthly usage trend of quality tokens:



The current status of the Stendahl tokens is that there are no black marks or gold stars allocated to the service.

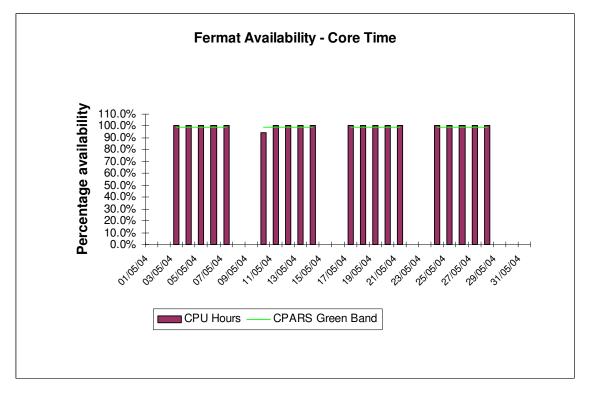
# 2.3 Throughput Target against Baseline

The baseline is shown in GFLOP-Years for consistency with the other information contained within this report.

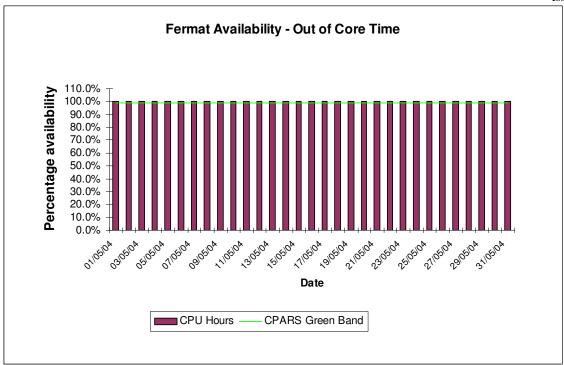
The Baseline Target for throughput was achieved this month. The actual usage figure was 222.5% of Baseline capacity.

# Job Throughput Against Baseline CSAR Service Provision

Period: 1st to 30th April 2004


|                                                                                      | Baseline<br>Capacity for<br>Period<br>(GFLOP Years)          | Actual Usage in<br>Period<br>(GFLOP Years)                              | Actual % Utilisation c/w<br>Baseline during Period                              |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Has CfS failed to deliver Baseline MPP Computing Capacity for EPSRC?                 | 15.37                                                        | 34.21                                                                   | 222.5%                                                                          |
|                                                                                      | Baseline<br>Capacity for<br>Period<br>(GFLOP Years)          | Job Time Demands<br>in Period                                           | Job Demand above<br>110% of Baseline during<br>Period (Yes/No)?                 |
| Have Users submitted work demanding > 110% of the Baseline during period?            | 15.37                                                        | 34.8                                                                    | Yes                                                                             |
|                                                                                      |                                                              | Number of Jobs at<br>least 4 days old at<br>end Period                  | Number of Jobs at least<br>4 days old at end<br>Period is not zero<br>(Yes/No)? |
| 3. Are there User Jobs oustanding at the end of the period over 4 days old?          |                                                              | 3                                                                       | Yes                                                                             |
| Have Users submitted work demands above 90% of the Baseline during period?           |                                                              | Minimum Job Time<br>Demands as % of<br>Baseline during<br>Period<br>86% | Minimum Job Time Demand above 90% of Baseline during Period (Yes/No)?           |
|                                                                                      |                                                              |                                                                         |                                                                                 |
|                                                                                      | Number of<br>standard Job<br>Queues (ignoring<br>priorities) | Average % of time<br>each queue<br>contained jobs in<br>the Period      | Average % of time each queue contained jobs in the Period is > 97%?             |
| 5. Majority of Job Queues contained jobs from Users for more than 97% during period? | 4                                                            | 85%                                                                     | No                                                                              |

# 3. System Availability


Service availability each reporting period is calculated as a percentage of actual availability time over theoretical maximum time, after accounting for planned breaks in service for preventative maintenance.

# 3.1 SGI Origin2000 System (Fermat)

The following graphs show the availability of Fermat both in core time and out of core time respectively.

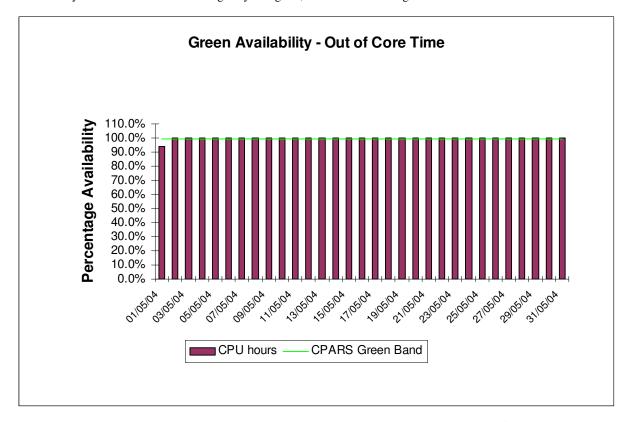


Availability of Fermat in core time during May was very good, with one brief outage on the 10<sup>th</sup>.




Availability of Fermat out of core time during May was excellent, with no outages.

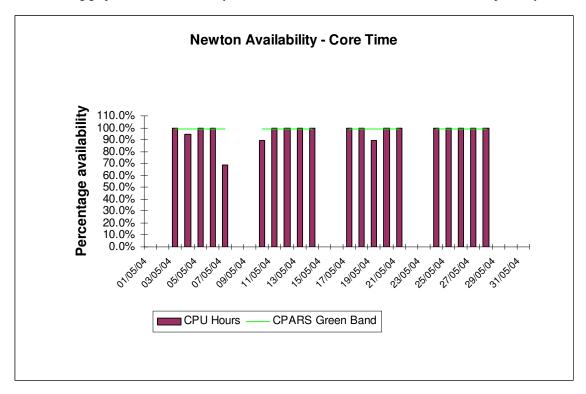
CfS


Issue 1.0

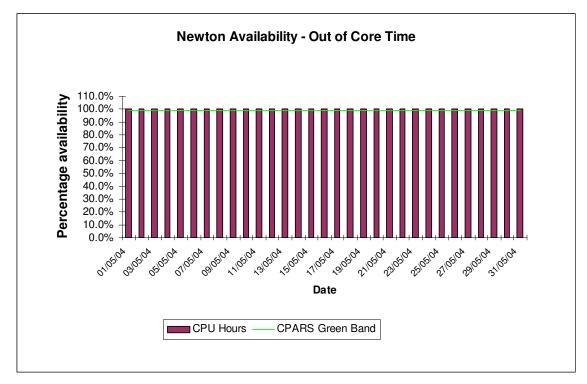
# 3.2 SGI Origin3000 System (Green)

The following graphs show the availability of Green both in core time and out of core time respectively.




Availability of Green in core time during May was good, with two short outages.




Availability of Green out of core time during May was very good, with one brief outage on the 1st.

# 3.3 SGI Altix3700 System (Newton)

The following graphs show the availability of Newton both in core time and out of core time respectively.



Availability of Newton in core time during May was not acceptable. See item 6.2 'Issues' for information pertaining to these outages.



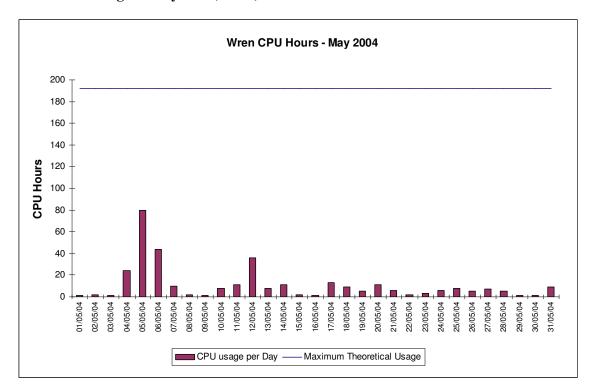
Availability of Newton out of core time during May was excellent, with no outages.

# 4. HPC Services Usage

Usage information is given in tabular form, in Appendices, and in graphical format. The system usage information for the period of May 1<sup>st</sup> to 31<sup>st</sup> is provided by Project/User Group, totalled by Research Council and overall. This covers:

• CPU usage Newton: 128,913CPU Hours Green: 247,462 CPU Hours Fermat: 41,300.3 CPU Hours Wren (Batch): 12.82 CPU Hours Wren (Interactive): 336.6 CPU Hours User Disk allocation Medium Performance: 113.77 GB Years SAN HV: 29.73 GB Years HSM/tape usage 4,377.73 GB Years

In addition, the following graphs are provided to illustrate usage per month, historically:


- a) SMP (Altix/Origin) Usage by month, showing usage each month of CPU (GFLOP-Years as per NPB), split by Research Council and by system. Overlaid horizontal lines show the overall Capacities.
- b) SMP (Origin) Usage by month, showing usage each month in CPU Hours, split by Research Council and giving the equivalent GFLOP-Years as per NPB. Overlaid horizontal lines show the Baseline and overall Capacity.
- c) Medium Performance Disk, combined Origin and SAN, allocated for User Data by month, showing the allocated space each month in GBytes, split by Research Council. The Baseline Capacity (1.5 Terabytes) is shown by an overlaid horizontal line.
- d) HSM/Tape Usage by month, showing the volumes held each in GBytes, split by Research Council. The Baseline Capacity (16 Terabytes) available will be shown by an overlaid horizontal line.

# 4.1 SGI Origin2000 System (Fermat)

The Origin2000 was reasonably utilised this month. The groups most heavily using the Fermat system are CSN001 (De Cuevas), CSN003 (Steenman-Clark) and CSN006 (Price).

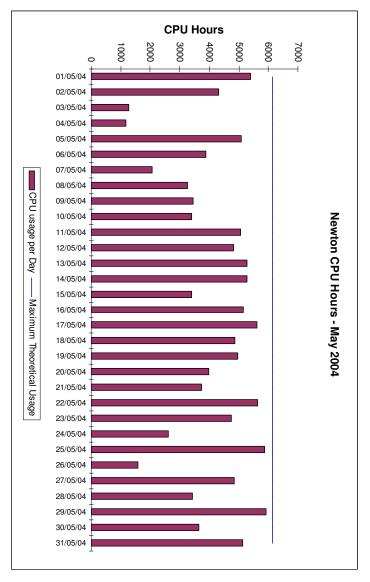



# 4.2 SGI Origin300 System (Wren)



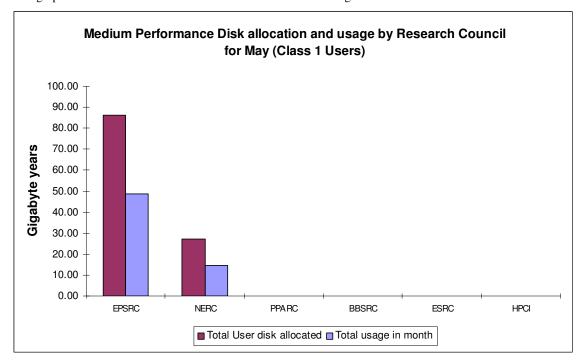
The above graph shows the utilisation of the interactive system Wren for the month of May.

# Issue 1.0


# 4.3 SGI Origin3000 System (Green)

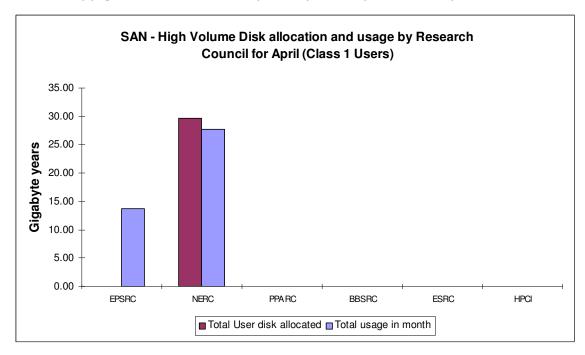


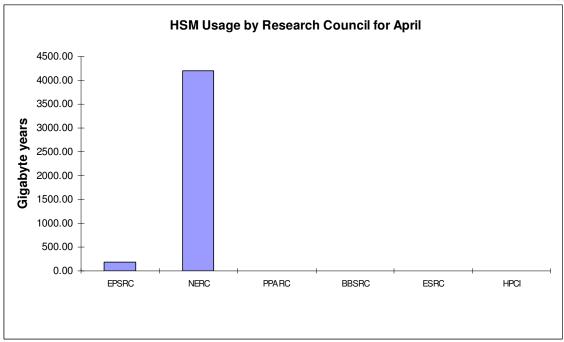
The above graph shows the utilisation of Green for the month of May, which was above Baseline.


# 4.4 SGI Altix3700 System (Newton)

The following graph shows the daily usage during May for the Altix system Newton.

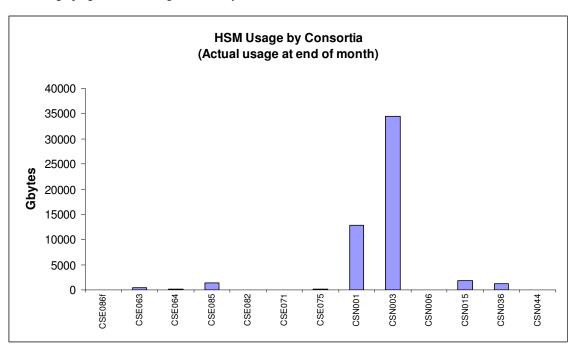



# 4.5 Disk/HSM Usage Chart


The graphs below show current disk and HSM allocations and usage.



Shown above is the disk allocation against usage on average of the Medium Performance (MP) disk.

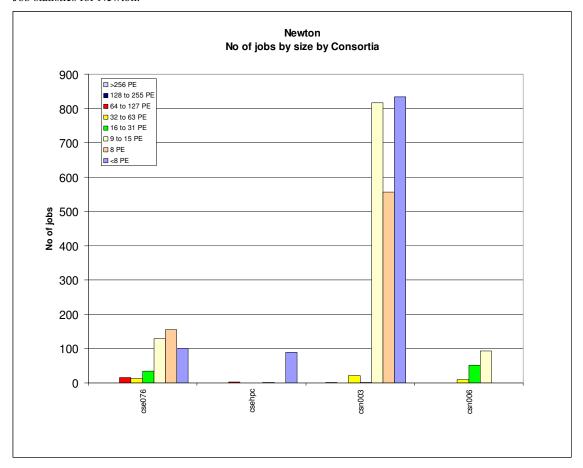

The following graph shows the disk allocation against usage on average of the SAN High Volume (HV) disk.





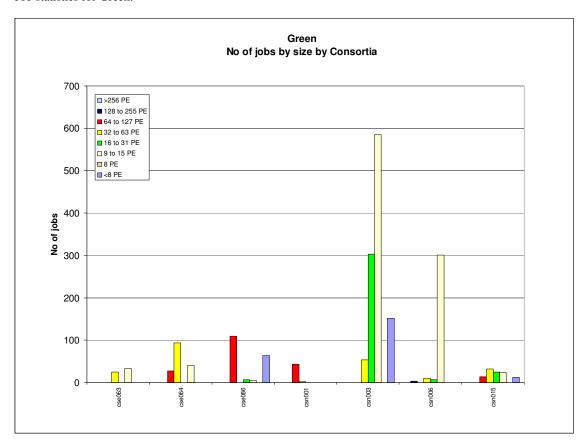
The above graph shows the total usage of the HSM facility by Research Council.

The next graph gives actual usage of HSM by Consortia.



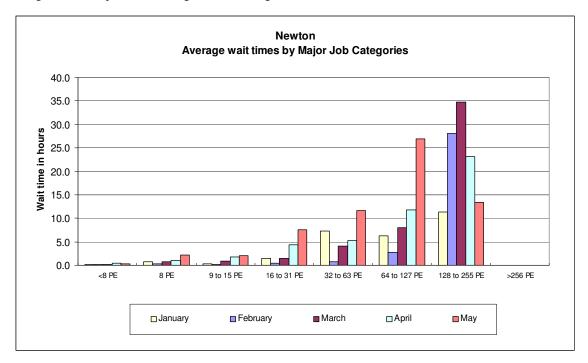

CSE085 (Sandham), CSN001 (De Cuevas), CSN003 (Steenman-Clark), CSN015 (Proctor) & CSN036 (Woolf) were the major users of HSM resource.

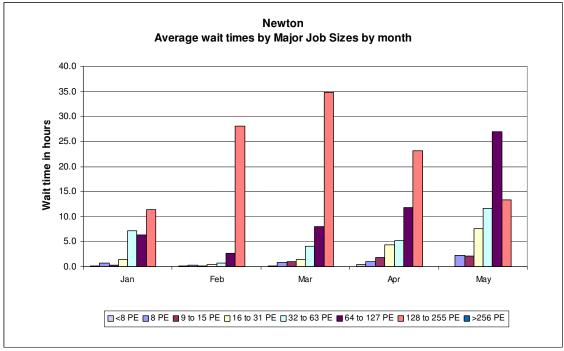
CfS


# 4.6 Processor Usage and Job Statistics Charts

Job statistics for Newton:

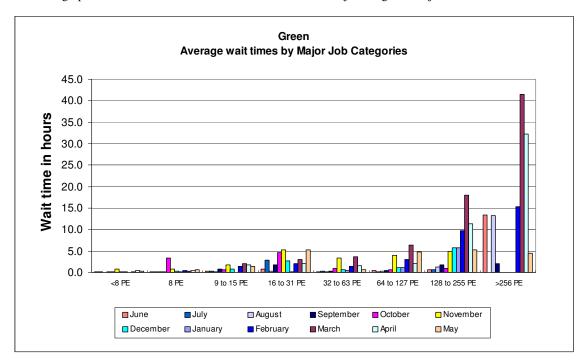


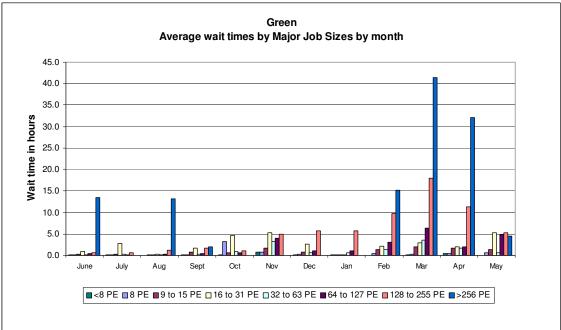

The above graph shows the number of jobs of the major sizes run in the period 1st to 31st May 2004.


Job statistics for Green:

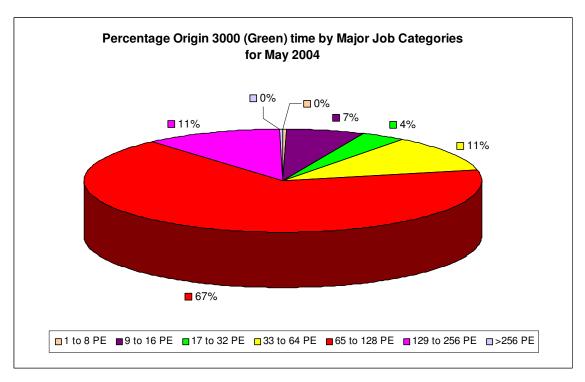


The above graph shows the number of jobs of the major sizes run in the period 1st to 31st May 2004.

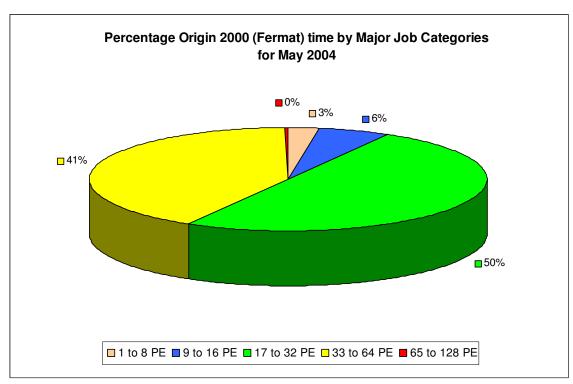

The next graph shows the wait times in hours on Newton for the major categories of jobs, larger jobs requesting tiling across multiple nodes having to wait the longest times.



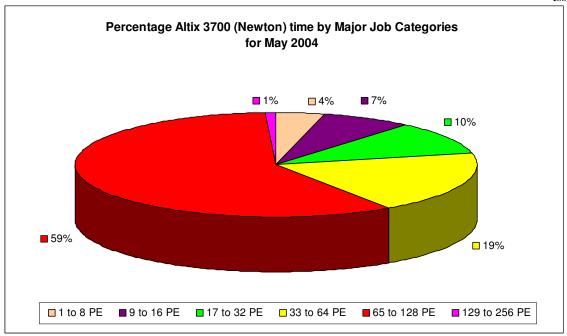




The chart above shows the average wait time trend on Newton so far this year.

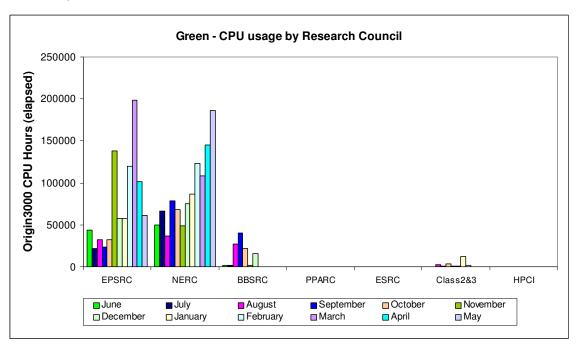
Issue 1.0



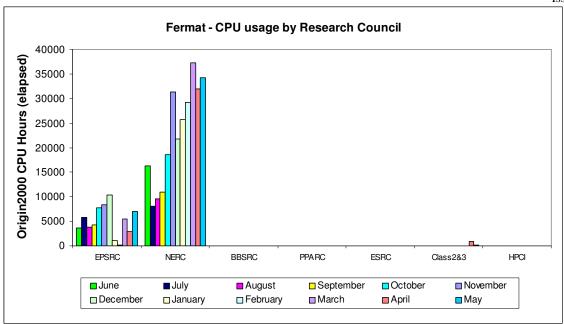




The chart above shows the average wait time trend on Green for the last 12 month period.



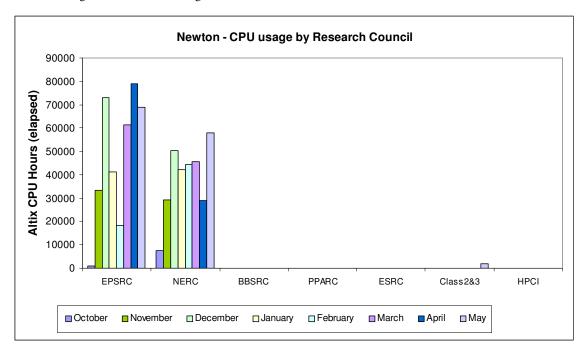

The greatest percentage of the workload on Green in May was in the 65 to 128 PE range, at 67%.




The workload on Fermat for May was greatest in the 17 to 32 PE range.

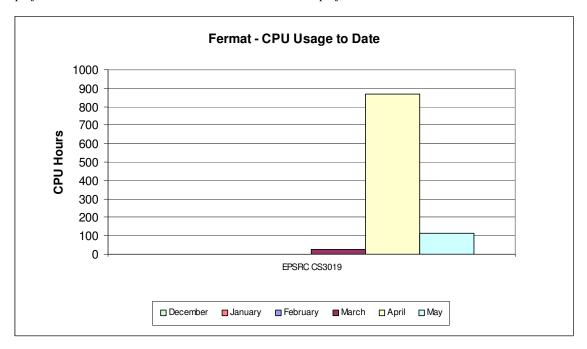


May saw a good spread of work on the Altix system Newton, with the highest concentration being in the 65 to 128 PE range.

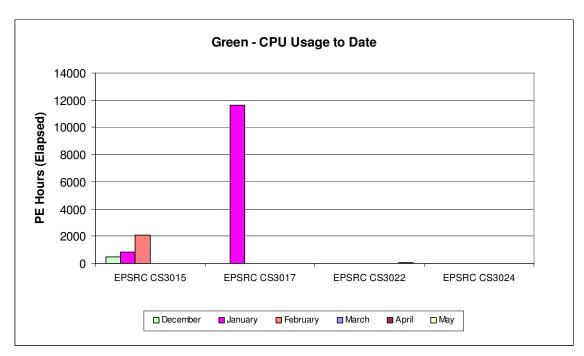



The above chart shows Green CPU usage by Research Council during the past 12 months of service.

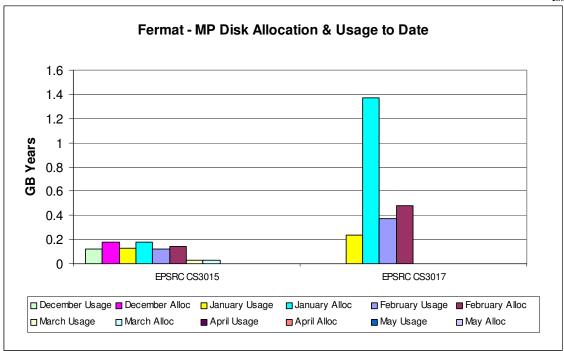



Origin 2000 CPU usage is shown by Research Council during the past 12 months of service in the above chart.

The following chart shows CPU usage to date of the Altix 3700 Newton.




# 4.7 Class 2 & 3 Usage Charts

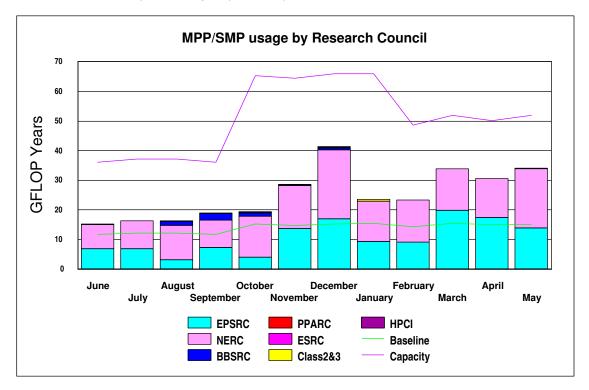

The next series of charts show the usage of the system by the class 2 & class 3 users. The usage is shown by project and identifies the Research Council of the individual projects.



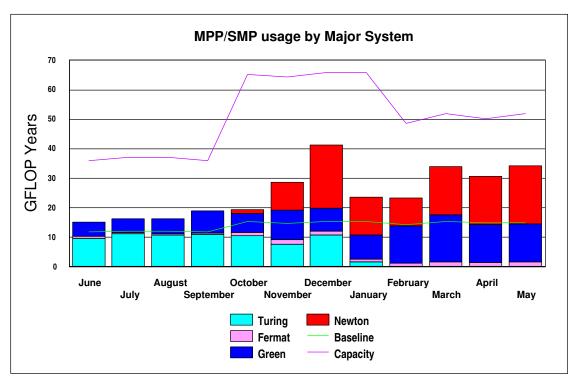
The above chart shows the CPU usage of the Fermat system by class 2 and class 3 users.

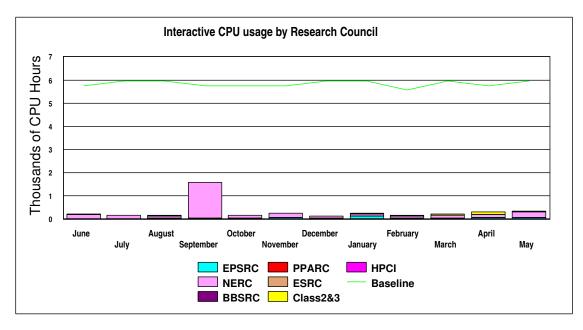


The above chart shows the CPU usage of Green by class 2 and class 3 users.



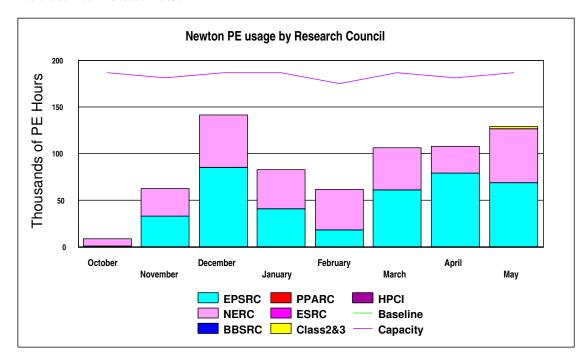

The above chart shows the most significant disk allocations on the Fermat system for class 2 and class 3 users. There is currently no HSM usage by class 2 and class 3 users.


# 4.9 Charts of Historical Usage

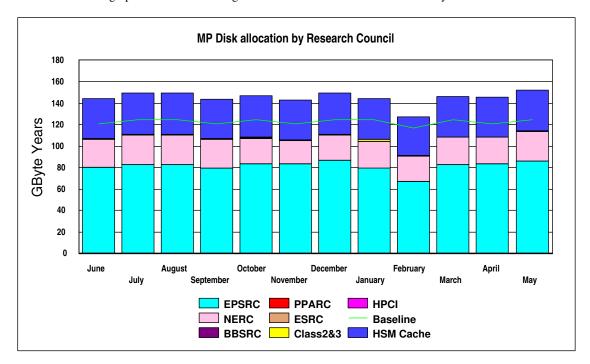

In all the Usage Charts, the baseline varies dependant on the number of days in each month, within a 365-day year.

The graph below shows the GFLOP Year utilisation by Research Council for the previous 12 months, showing the raise in baseline and capacity with the introduction of the Altix system Newton and subsequent fall following the removal of the T3E system Turing early in January.



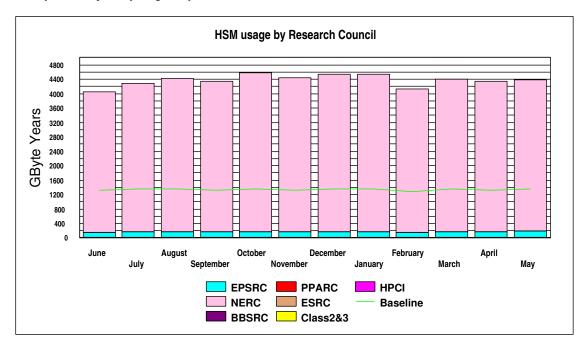

The graph below shows the historic SMP/MPP usage on the major systems.






The above graph shows the historic interactive usage of the Origin 300 system (Wren). Eight of the higher speed 500Mhz CPUs in Wren deliver the baseline capacity equivalent to that which was previously available on the Origin 3000 system (Fermat) for interactive usage.

The graph below details the historic usage by Research Council of the Altix 3700 system (Newton), introduced into the service in October 2003.




The next series of graphs illustrates the usage of the disk and HSM resources of the system.



The graph above illustrates the historic allocation of the Medium Performance Disk on Fermat and the SAN.

The graph below shows the historic HSM usage by Research Council funded projects, now above Baseline at 48 Terabytes. The primary usage is by NERC.



# 4.8 Guest System Usage Charts

There is currently no Guest System usage.

# 5. Capability Incentives

Capability incentives were historically given on the T3E system Turing for jobs of 512 PEs and above. In July 2003 it was announced that discounts for capability jobs available on all CSAR systems had been aproved to include the SGI Origin 3000 system (Green) and the new SGI Altix 3700 system (Newton).

These capability incentives were agreed with the Research Councils to encourage capability usage of the national supercomputers for greater scientific achievement, and offer the following discounts:

| System | No of Processors | Discount     |
|--------|------------------|--------------|
| newton | 192+ CPUs        | 15% discount |
| newton | 128+ CPUs        | 10% discount |
| green  | 384+ CPUs        | 15% discount |
| green  | 256+ CPUs        | 10% discount |

Discounts are given in the form of refunded Service Tokens.

Changes in usage patterns will be monitored and, subject to reviews, CfS reserve the right to change the incentives at any future date.

The following table displays the capability incentive discounts granted for May.

|                          | Service Tokens Refunded: May 2004 Usage |  |       |      |  |  |        |  |  |  |
|--------------------------|-----------------------------------------|--|-------|------|--|--|--------|--|--|--|
| System                   |                                         |  | Conso | rtia |  |  | Total  |  |  |  |
| System                   | cse076                                  |  |       |      |  |  | Total  |  |  |  |
| Green<br>256+ PEs        |                                         |  |       |      |  |  | 0      |  |  |  |
| <b>Green</b><br>384+ PEs |                                         |  |       |      |  |  | 0      |  |  |  |
| Newton<br>128+ PEs       | 124.05                                  |  |       |      |  |  | 124.05 |  |  |  |
| Newton<br>192+ PEs       |                                         |  |       |      |  |  | 0      |  |  |  |
| Total Tokens             |                                         |  |       |      |  |  | 124.05 |  |  |  |

# 6. Service Status, Issues and Plans

# 6.1 Status

The service utilisation in May exceeded baseline.

During the month there was a balanced spread of work across all major systems.

# 6.2 Issues

Reliability issues continued to be encountered during May, primarily with the Altix system Newton. Considerable effort has been put into ascertaining the root cause of the problems, and work to identify all issues is still ongoing. The majority of problems encountered have subsequently been identified as operating system bugs, mainly relating to CXFS and the SAN, and patches to rectify these bugs are currently in development.

# 6.3 Plans

Both the Propack operating system of the Altix and the Irix operating system of the Origins are to be upgraded to a newer release at the beginning of June, which is calculated to add to the reliability measures currently being undertaken as a result of the problems experienced during May.

# 7. Conclusion

May 2004 saw the overall CPARS rating at Green with the baseline being exceeded by 122%.

Continued management attention will be given to maximise the throughput of the Service, whilst balancing as fairly as practicable the shares between Projects and jobs of the varying sizes.

**Appendix 1** contains the accounts for May 2004

Appendix 2 contains the Percentage shares by Consortium for May 2004

Appendix 3 contains the Percentage shares by Research Council for May 2004

Appendix 4 contains the Training, Applications and Optimisation support figures to the end of May 2004

**Appendix 5** contains a breakdown of resource usage by Consortia to the end of May 2004.

**Appendix 6** contains a reference table of the Consortium name, the subject area and the PI name.

# Appendix 1

The summary accounts for the month of May 2004 can be found at the URL below

http://www.csar.cfs.ac.uk/admin/accounts/summary.shtml

| Percentage CPU time per consortia for Green in May 200 | 4              | Percentage CPU time per consortia | for Newton in May 2004 |
|--------------------------------------------------------|----------------|-----------------------------------|------------------------|
| Consortia                                              | % Machine Time | Consortia                         | % Machine Time         |
| CSE086                                                 | 15.42          | CSEdl1                            | 0.69                   |
| CSE053                                                 | 0.00           | CSE086                            | 14.70                  |
| CSE063                                                 | 2.04           | CSE053                            | 0.00                   |
| CSE064                                                 | 3.49           | CSE072                            | 0.00                   |
| CSE085                                                 | 1.09           | CSE085                            | 0.00                   |
| CSE066                                                 | 2.70           | CSE133                            | 1.70                   |
| CSE075                                                 | 0.00           | CSE066                            | 0.00                   |
| CSN001                                                 | 19.02          | CSE076                            | 36.30                  |
| CSN003                                                 | 29.88          | CSN001                            | 0.09                   |
| CSN006                                                 | 21.63          | CSN003                            | 29.49                  |
| CSN015                                                 | 4.68           | CSN006                            | 15.30                  |
| CS3022                                                 | 0.01           | CSEHPCX                           | 0.15                   |

| Percentage CPU time per consortia for | Fermat in May 2004 | Percentage CPU time per consortia | Percentage CPU time per consortia for Wren in May 2004 |  |  |  |  |
|---------------------------------------|--------------------|-----------------------------------|--------------------------------------------------------|--|--|--|--|
| Consortia                             | % Machine Time     | Consortia                         | % Machine Time                                         |  |  |  |  |
| CSE055                                | 16.59              | CSE086                            | 15.04                                                  |  |  |  |  |
| CSE086                                | 0.29               | CSE053                            | 0.08                                                   |  |  |  |  |
| CSE053                                | 0.00               | CSE063                            | 2.97                                                   |  |  |  |  |
| CSE063                                | 0.00               | CSE064                            | 0.62                                                   |  |  |  |  |
| CSE085                                | 0.01               | CSE085                            | 0.17                                                   |  |  |  |  |
| CSE077                                | 0.00               | CSE077                            | 0.01                                                   |  |  |  |  |
| CSE075                                | 0.00               | CSE066                            | 0.19                                                   |  |  |  |  |
| CSN001                                | 41.61              | CSE075                            | 0.26                                                   |  |  |  |  |
| CSN003                                | 22.57              | CSE076                            | 0.00                                                   |  |  |  |  |
| CSN006                                | 16.52              | CSN001                            | 19.64                                                  |  |  |  |  |
| CSN015                                | 2.14               | CSN003                            | 52.21                                                  |  |  |  |  |
| CS3019                                | 0.27               | CSN006                            | 0.34                                                   |  |  |  |  |
|                                       |                    | CSN015                            | 3.22                                                   |  |  |  |  |
|                                       |                    | CS3019                            | 3.33                                                   |  |  |  |  |

| Consortia      | %Allocation |
|----------------|-------------|
| CSE084         | 1.49        |
| CSE086         | 10.44       |
| CSE098         | 0.22        |
| CSE040         | 0.20        |
| CSE050         | 1.56        |
| CSE053         | 0.40        |
| CSE064         | 0.22        |
| CSE085         | 8.21        |
| CSE082         | 7.46        |
| CSE071         | 0.15        |
| CSE066         | 0.04        |
| CSE075         | 43.61       |
| CSE076         | 0.59        |
| HPCI Daresbury | 0.04        |
| HPCI Edinburgh | 0.07        |
| CSN001         | 11.20       |
| CSN003         | 3.36        |
| CSN006         | 4.48        |
| CSN015         | 2.61        |
| CSN052         | 2.24        |

| Percentage usage of HSM by Consortium for May 2004 |         |  |  |  |  |  |  |
|----------------------------------------------------|---------|--|--|--|--|--|--|
| Consortium                                         | % Usage |  |  |  |  |  |  |
| CSE086                                             | 0.03    |  |  |  |  |  |  |
| CSE063                                             | 0.80    |  |  |  |  |  |  |
| CSE064                                             | 0.37    |  |  |  |  |  |  |
| CSE085                                             | 2.54    |  |  |  |  |  |  |
| CSE082                                             | 0.00    |  |  |  |  |  |  |
| CSE071                                             | 0.01    |  |  |  |  |  |  |
| CSE075                                             | 0.39    |  |  |  |  |  |  |
| CSN001                                             | 24.38   |  |  |  |  |  |  |
| CSN003                                             | 65.67   |  |  |  |  |  |  |
| CSN006                                             | 0.01    |  |  |  |  |  |  |
| CSN015                                             | 3.40    |  |  |  |  |  |  |
| CSN036                                             | 2.38    |  |  |  |  |  |  |
| CSN044                                             | 0.02    |  |  |  |  |  |  |
|                                                    |         |  |  |  |  |  |  |

| Percentage CPU usa  | ge on Green by Research Council | for May 2004 | Percentage CPU usage on Newton by Research Council for May 2004 |                |  |  |  |
|---------------------|---------------------------------|--------------|-----------------------------------------------------------------|----------------|--|--|--|
| Research Council    | <u>% Usage</u>                  |              | Research Council                                                | <u>% Usage</u> |  |  |  |
| EPSRC               | 24.79                           |              | EPSRC                                                           | 55.12          |  |  |  |
| HPCI                | 0.00                            |              | HPCI                                                            | 0.00           |  |  |  |
| NERC                | 75.21                           |              | NERC                                                            | 44.88          |  |  |  |
| BBSRC               | 0.00                            |              | BBSRC                                                           | 0.00           |  |  |  |
| ESRC                | 0.00                            |              | ESRC                                                            | 0.00           |  |  |  |
| PPARC               | 0.00                            |              | PPARC                                                           | 0.00           |  |  |  |
|                     | l                               |              |                                                                 | L              |  |  |  |
| Percentage PE usage | e on Fermat by Research Council | or May 2004  | Percentage CPU usage on Wren by Research Council for May 2004   |                |  |  |  |
| Research Council    | % Usage                         |              | Research Council                                                | % Usage        |  |  |  |
| EPSRC               | 17.17                           |              | EPSRC                                                           | 24.58          |  |  |  |
| HPCI                | 0.00                            |              | HPCI                                                            | 0.00           |  |  |  |
| NERC                | 82.83                           |              | NERC                                                            | 75.42          |  |  |  |
| BBSRC               | 0.00                            |              | BBSRC                                                           | 0.00           |  |  |  |
| ESRC                | 0.00                            |              | ESRC                                                            | 0.00           |  |  |  |
| PPARC               | 0.00                            |              | PPARC                                                           | 0.00           |  |  |  |
|                     |                                 |              | 1                                                               |                |  |  |  |

| Percentage MP Disc allo | ocated by Research Council for I | May 2004 | Percentage Disc allocated as SAN HV by Research Council for May 2004 |        |  |  |
|-------------------------|----------------------------------|----------|----------------------------------------------------------------------|--------|--|--|
| Research Council        | % Allocated                      |          | EPSRC                                                                | 0.00   |  |  |
| EPSRC                   | 75.89                            |          | HPCI                                                                 | 0.00   |  |  |
| HPCI                    | 0.11                             |          | NERC                                                                 | 100.00 |  |  |
| NERC                    | 23.89                            |          | BBSRC                                                                | 0.00   |  |  |
| BBSRC                   | 0.00                             |          | ESRC                                                                 | 0.00   |  |  |
| ESRC                    | 0.00                             |          | PPARC                                                                | 0.00   |  |  |
| PPARC                   | 0.00                             |          | PPARC                                                                | 0.00   |  |  |

| Percentage HSM usage by Research Council for May 2004 |                |  |  |  |  |  |  |  |  |
|-------------------------------------------------------|----------------|--|--|--|--|--|--|--|--|
| Research Council                                      | <u>% usage</u> |  |  |  |  |  |  |  |  |
| EPSRC                                                 | 4.14           |  |  |  |  |  |  |  |  |
| HPCI                                                  | 0.00           |  |  |  |  |  |  |  |  |
| NERC                                                  | 95.86          |  |  |  |  |  |  |  |  |
| BBSRC                                                 | 0.00           |  |  |  |  |  |  |  |  |
| ESRC                                                  | 0.00           |  |  |  |  |  |  |  |  |
| PPARC                                                 | 0.00           |  |  |  |  |  |  |  |  |

The following tables show the training and support resource usage by current consortia in person days to the current month.

| Project | PI Name                 | Subject                                                                                                                                                            | Liaison<br>Officer   | Support<br>Bought | Apps<br>Support | Total<br>Apps<br>Support | Opt<br>Support | Total<br>Opt<br>Support | Total<br>Support<br>Used | Training<br>Bought | Training<br>Used |
|---------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-----------------|--------------------------|----------------|-------------------------|--------------------------|--------------------|------------------|
| csed11  | Blake, R                |                                                                                                                                                                    |                      |                   |                 |                          |                |                         |                          | 6                  | 6                |
| cse050  | Bradley, D<br>(Prof)    | Flame Instabilities:<br>their influence on<br>turbulent combustion<br>& incorporation in<br>mathematical models.                                                   |                      | 20                |                 |                          |                |                         |                          | 10                 |                  |
| cse053  | Leschziner, M<br>(Prof) | Coupling RANS Near-Wall Turbulence Models with Large Eddy Simulation Strategies                                                                                    | Mike<br>Pettipher    | 15                | 4               | 7                        |                |                         | 7                        | 8                  |                  |
| cse055  | Staunton, J (Dr)        | Ab-initio theory of magnetic anisotropy in transition metal ferromagnets                                                                                           | Andrew<br>Jones      | 5                 |                 |                          |                |                         |                          | 10                 |                  |
| cse057  | Krushelnick, K<br>(Dr)  | Relativistic Particle<br>Generation from<br>Ultra-Intense Laser<br>Plasma Interactions                                                                             | Andrew<br>Jones      | 20                |                 |                          |                |                         |                          | 10                 |                  |
| cse060  | Robb, M (Prof)          | CCP1 Renewal plus<br>falgship project on<br>Car-Parrinello in<br>Chemistry                                                                                         | Neil<br>Stringfellow | 10                |                 |                          |                |                         |                          | 10                 | 1                |
| cse063  | Sandham, N<br>(Prof)    | Computational Aerocaustics for Turbulent Plane Jets                                                                                                                | Adrian Tate          | 30                |                 |                          |                |                         |                          | 10                 |                  |
| cse064  | Leschziner, M<br>(Prof) | Improvement of predictive performance of anisotropy-resolving turbulence models in post-reattachment recovery region of separated flow using Large Eddy Simulation | Mike<br>Pettipher    | 10                |                 |                          |                |                         |                          | 8                  |                  |
| cse066  | Coveney, P V<br>(Prof)  | New clay-polymer<br>nanocomposites<br>using diversity-<br>discovery methods:<br>synthesis, processing<br>and testing                                               | Neil<br>Stringfellow | 21                |                 |                          |                |                         |                          | 6                  | 3                |
| cse071  | Iacovides (Dr)          | The Practical Computation of Three-Dimensional Time-Dependent Turbulent Flows in Rotating Cavities                                                                 | Mike<br>Pettipher    | 5                 |                 | 0.5                      |                |                         | 0.5                      | 6                  | 2                |
| cse072  | Karlin, V (Dr)          | Structure &<br>Dynamics of<br>Unstable Premixed<br>Laminar Flames                                                                                                  | Jon Gibson           | 18                |                 |                          |                |                         |                          | 9                  | 7                |
| cse074  | Luo (Dr)                | Consortium on<br>Computational<br>Combustion for<br>Engineering<br>Applications                                                                                    | Jon Gibson           |                   |                 |                          |                |                         |                          |                    |                  |
| cse075  | Coveney, PV<br>(Dr)     | The Reality Grid - a<br>tool for investigating<br>condensed matter &<br>materials                                                                                  | Neil<br>Stringfellow | 14                |                 | 5                        |                |                         | 5                        | 14                 |                  |
| cse076  | Briddon, P (Dr)         | HPC facilities for the<br>first principles<br>simulation of<br>covalently bonded<br>materials                                                                      | Adrian Tate          | 20                |                 |                          |                | 11                      | 11                       |                    |                  |

| cse077 | Kronenburg, A<br>(Dr)     | Combustion Model Development for Large-Eddy Simulation of Non- Premixed Reactive Flows.                                                              |              |      |   |    |    | 2   |    |
|--------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|---|----|----|-----|----|
| cse082 | Barakos, G (Dr)           | CFD Study of Three-<br>Dimensional<br>Dynamic Shelf                                                                                                  |              | 5    |   |    |    | 1   |    |
| cse084 | Needs, R (Dr)             | The Consortium for<br>Computational<br>Quantum Many-Body<br>Theory                                                                                   | Adrian Tate  | 19   |   |    |    |     | 10 |
| cse085 | Sandham, N<br>(Prof)      | UK Turbulence<br>Consortium                                                                                                                          | Adrian Tate  | 15   |   | 2  | 2  | 8   | 8  |
| cse086 | Taylor, K (Prof)          | Multiphoton, Electron Collisions and BEC HPC Consortium 2002- 2004                                                                                   | Kevin Roy    | 35   |   | 5  | 5  | 116 |    |
| cse089 | Wiercigroch, M<br>(Dr)    | Nonlinear Dynamics<br>& Rock Contact<br>Fracture Mechanics<br>in Modelling of<br>Vibration Enhanced<br>Drilling                                      | Keith Taylor | 15   |   |    |    | 7   |    |
| cse098 | De Souza M M<br>(Dr)      | Indium interactionsin<br>silicon for ULSI<br>technologies                                                                                            |              | 5    |   |    |    | 5   |    |
| cse106 | Augarde (Dr)              | Parametric Studies of multiple tunnels                                                                                                               |              | 25   |   |    |    | 10  |    |
| cse108 | Holden, AV<br>(Prof)      | Large-scale<br>parallelisation of<br>electro-physiological<br>& mechanical cardiac<br>virtual tissues                                                |              | 10   |   |    |    | 6   |    |
| cse110 | Leach, S A (Dr)           | Application of HE Computing to Develop Complex Stochastic Models to aid Public Health & National Operational Responses to Infectious Disease Threats |              | 30   |   |    |    | 25  |    |
| cse116 | John, N (Dr)              | An advanced<br>environment for<br>enabling visual<br>supercomputing                                                                                  |              | 16   |   |    |    | 8   |    |
| cse117 | Theodoropoulos<br>K (Dr)  | Modelling of<br>Microreactors: An<br>Integrated Multi-<br>Scale Approach                                                                             |              |      |   |    |    |     |    |
| csn001 | Webb, D J (Dr)            | OCCAM                                                                                                                                                | Zoe Chaplin  | 70.5 | 1 | 58 | 61 | 20  | 3  |
| csn003 | O'Neill, A (Prof)         | UGAMP                                                                                                                                                | Zoe Chaplin  | 4.8  |   | 4  | 1  | 34  | 30 |
| csn006 | Price, D (Dr)             | HPC for Mineral<br>Physics                                                                                                                           | Zoe Chaplin  |      |   |    |    |     |    |
| csn015 | Proctor, R (Dr)           | A Testbed for<br>Zooplankton Models<br>of the Irish Sea                                                                                              | Zoe Chaplin  | 20   | 2 |    | 2  | 10  | 3  |
| csn043 | Haines                    |                                                                                                                                                      |              | 20   |   |    |    | 36  |    |
| csn044 | Steenman-Clark,<br>L (Dr) | Earth Observation<br>Project                                                                                                                         | Zoe Chaplin  |      |   |    |    |     |    |
| csn050 | Challenor                 | The probability of rapid climate change                                                                                                              |              |      |   |    |    |     |    |
|        |                           |                                                                                                                                                      |              |      |   |    |    |     |    |

CfS

Issue 1.0

| csn052 | Mackay, R<br>(Prof)   | Quantifying the<br>scaling of physical<br>transport in<br>structured<br>heterogeneous<br>porous media. | Zoe Chaplin          |    |      |  | 5 | 5 |
|--------|-----------------------|--------------------------------------------------------------------------------------------------------|----------------------|----|------|--|---|---|
| csn059 | Watson, A J<br>(Prof) | Circulation, overflow<br>& deep connection in<br>the Nordic seas                                       |                      | 45 |      |  | 4 |   |
| csb006 | Sansom, M<br>(Prof)   | DFT calculations for<br>ion channels and<br>transport proteins                                         | Neil<br>Stringfellow |    |      |  |   |   |
| csp007 | Hibbert, A<br>(Prof)  | A Programme for<br>Atomic Physics for<br>Astrophysics at<br>Queen's University<br>Belfast (2003-2007)  | Kevin Roy            |    |      |  |   |   |
| HPCID  | Allan, R (Dr)         |                                                                                                        |                      |    |      |  | 1 | 1 |
| HPCIE  | Henty, D (Dr)         |                                                                                                        |                      |    |      |  |   |   |
| cs3019 | Bengough (Dr)         | Lattice-Boltzmann<br>simulation of water &<br>solute transport in<br>porous media.                     |                      | 2  |      |  |   |   |
| cs3022 | Clint, M              | Evaluation of Grab &<br>Go Computational<br>Models for Grid-<br>based Iterative<br>Eigensolvers        |                      |    |      |  |   |   |
| cs3023 | Bryce, Richard        | Computer simulation<br>of glycolipids as<br>micellas and bilayers                                      | Neil<br>Stringfellow |    |      |  |   |   |
| cs3024 | Fernando, T<br>(Prof) | Collosion Detection                                                                                    | Jo Leng              | 10 |      |  |   |   |
| cs3025 | Welbourne,<br>Stephen | Modelling Recovery<br>after Damage in<br>Single Word Reading                                           |                      |    |      |  |   |   |
| cs3026 | Smith, Lorna          | HPCx/CSAR<br>collaboration                                                                             |                      |    |      |  |   |   |
| cs4001 | White, P              |                                                                                                        |                      |    |      |  |   |   |
| cs4002 | Cooper, A<br>(Miss)   |                                                                                                        |                      |    |      |  |   |   |
|        |                       |                                                                                                        |                      |    | <br> |  |   |   |

CfS

Issue 1.0

Appendix 5

The following table shows resource utilisation by Consortia to the end of May 2004. cs3019 Bengough Last Trade: Thu Apr 1 12:39:18 2004 Usage: 0.4 of 7.6 Hour Newton CPU (0.1 of 1.2 G.S.T), 5.6% 199.1 of 360.1 Hour Wren CPU (9.9 of 17.8 G.S.T), 55.3% 1010.5 of 10618.7 Hour SMP CPU (39.3 of 412.6 G.S.T), 9.5% 0.0 of 3.0 GByteYear MP Disk (0.0 of 7.1 G.S.T), 0.0% 0.0 of 2.0 PersonDay Support (0.0 of 60.6 G.S.T), 0.0% Total usage for project cs3019 49.2 of 499.3 Generic Service Tokens, 9.9% cs3022 Clint Last Trade: Sat Jan 3 17:03:02 2004 Usage: 14032.4 of 14032.4 PEHour MPP PE CPU (339.3 of 339.3 G.S.T), 100.0% 0.0 of 0.0 GByteYear HP Disk (0.0 of 0.0 G.S.T) 0.0 of 459.8 Hour Wren CPU (0.0 of 22.8 G.S.T), 0.0% 0.0 of 1.2 GByteYear MP Disk SAN (0.0 of 2.9 G.S.T), 0.0% 33.6 of 3574.0 Hour Green CPU (1.8 of 186.7 G.S.T), 0.9% Total usage for project cs3022 341.0 of 551.7 Generic Service Tokens, 61.8% cs3023 Bryce Last Trade: re-enabled Usage: 2034.4 of 3145.3 Hour Newton CPU (311.4 of 481.5 G.S.T), 64.7% 17.6 of 18.5 Hour Wren CPU (0.9 of 0.9 G.S.T), 94.8% 0.0 of 1.0 GByteYear MP Disk SAN (0.0 of 2.4 G.S.T), 0.0% 0.0 of 2.0 GbyteYear HV Disk SAN /v (0.0 of 2.4 G.S.T), 0.0% Total usage for project cs3023 312.3 of 487.2 Generic Service Tokens, 64.1% cs3024 - Fernando Last Trade: Thu Apr 8 11:22:38 2004 Usage: 0.0 of 796.9 Hour Newton CPU (0.0 of 122.0 G.S.T), 0.0% 0.0 of 19.7 Hour Wren CPU (0.0 of 1.0 G.S.T), 0.1% 0.0 of 1.0 GByteYear MP Disk SAN (0.0 of 2.4 G.S.T), 0.0% 0.0 of 0.6 Hour SMP CPU (0.0 of 0.0 G.S.T), 0.0% 20.6 of 1351.1 Hour Green CPU (1.1 of 70.6 G.S.T), 1.5% 0.0 of 10.0 PersonDay Support (0.0 of 304.0 G.S.T), 0.0% Total usage for project cs3024 1.1 of 500.0 Generic Service Tokens, 0.2% cs3025 - Welbourne Last Trade: Fri Apr 2 13:10:35 2004 Usage: 0.0 of 1700.0 Hour Newton CPU (0.0 of 260.3 G.S.T), 0.0% 0.0 of 0.0 GbyteYear HV Disk SAN /v (0.0 of 0.0 G.S.T) 0.0 of 5.4 GByteYear MP Disk (0.0 of 12.8 G.S.T), 0.0% 0.0 of 7.0 PersonDay Support (0.0 of 212.1 G.S.T), 0.0% 0.0 of 1.0 Day Training (0.0 of 10.9 G.S.T), 0.0%

cs3026 - Smith (EPCC)

Total usage for project cs3025 0.0 of 496.0 Generic Service Tokens, 0.0%

Last Trade: Wed Mar 31 17:31:07 2004

Usage:

0.0 of 3200.7 Hour Newton CPU (0.0 of 490.0 G.S.T), 0.0% 0.0 of 4.2 GByteYear MP Disk SAN (0.0 of 10.0 G.S.T), 0.0%

Total usage for project cs3026 0.0 of 500.0 Generic Service Tokens, 0.0%

csb006 43/B19843 Sansom Last Trade: re-enabled

Usage:

0.0 of 0.0 PEHour MPP PE CPU (0.0 of  $0.0\ G.S.T)$ 

0.0 of 0.0 GByteYear HP Disk (0.0 of 0.0 G.S.T)

38.6 of 4356.6 Hour Newton CPU (5.9 of 667.0 G.S.T), 0.9%

0.1 of 2000.0 Hour Wren CPU (0.0 of 99.1 G.S.T), 0.0%

0.0 of 0.0 GByteYear HP Disk SAN - /d (0.0 of 0.0 G.S.T)

0.2 of 40.5 GByteYear MP Disk SAN (0.5 of 96.4 G.S.T), 0.5%

0.0 of 1.0 Hour SMP CPU (0.0 of 0.0 G.S.T), 0.2%

0.0 of 60000.0 Hour Green CPU (0.0 of 3135.1 G.S.T), 0.0%

Total usage for project csb006 6.4 of 3997.6 Generic Service Tokens, 0.2%

CSE001 - Admin users

Last Trade: Fri Oct 8 15:16:30 1999

Usage:

0.0 of 12.4 PEHour MPP PE CPU (0.0 of 0.3 G.S.T), 0.0%

0.1 of 0.1 GByteYear HP Disk (0.4 of 0.5 G.S.T), 72.9%

Total usage for project cse001 0.4 of 0.8 Generic Service Tokens, 46.8%

cse050 GR/N/38152 Bradley

Last Trade: re-enabled

Usage:

1097.8 of 1059.3 PEHour MPP PE CPU (26.5 of 25.6 G.S.T), 103.6%

0.4 of 0.1 GByteYear HP Disk (2.6 of 0.6 G.S.T), 407.9%

15806.2 of 16375.2 Hour Newton CPU (2419.8 of 2506.9 G.S.T), 96.5%

0.0 of 78.4 Hour Wren CPU (0.0 of 3.9 G.S.T), 0.0%

0.3 of 1200.0 Hour SMP CPU (0.0 of 46.6 G.S.T), 0.0%

6.8 of 18.2 GByteYear MP Disk (16.1 of 43.2 G.S.T), 37.3%

0.0 of 4.5 GByteYear HSM/Tape (0.0 of 2.8 G.S.T), 0.0%

0.0 of 20.0 PersonDay Support (0.0 of 606.1 G.S.T), 0.0%

0.0 of 10.0 Day Training (0.0 of 108.7 G.S.T), 0.0%

Total usage for project cse050 2465.1 of 3344.5 Generic Service Tokens, 73.7%

cse060 GR/R17058 Robb Last Trade: re-enabled

Usage:

113625.7 of 113625.7 PEHour MPP PE CPU (2747.3 of 2747.3 G.S.T), 100.0%

0.0 of 0.0 GBvteYear HP Disk (0.0 of 0.0 G.S.T)

0.3 of 48.8 Hour Wren CPU (0.0 of 2.4 G.S.T), 0.5%

0.0 of 2.6 GByteYear MP Disk SAN (0.0 of 6.2 G.S.T), 0.0%

14254.4 of 14307.1 Hour Green CPU (744.8 of 747.6 G.S.T), 99.6%

0.0 of 7.0 PersonDay Support (0.0 of 212.1 G.S.T), 0.0%

1.0 of 10.0 Day Training (10.9 of 108.7 G.S.T), 10.0%

Total usage for project cse060 3503.0 of 3824.3 Generic Service Tokens, 91.6%

cse063 GR/R46151 Sandham

Last Trade: Tue Dec 16 10:10:22 2003

Usage:

187813.1 of 187821.7 PEHour MPP PE CPU (4541.1 of 4541.3 G.S.T), 100.0% 21.3 of 25.0 GByteYear HP Disk (126.5 of 148.8 G.S.T), 85.0% 40.5 of 108.4 Hour Wren CPU (2.0 of 5.4 G.S.T), 37.3% 168.1 of 62.9 Hour SMP CPU (6.5 of 2.4 G.S.T), 267.4% 0.0 of 50.0 GByteYear MP Disk (0.0 of 119.0 G.S.T), 0.0% 369.8 of 525.0 GByteYear HSM/Tape (233.3 of 331.2 G.S.T), 70.4% 115359.8 of 124633.0 Hour Green CPU (6027.8 of 6512.3 G.S.T), 92.6% 0.0 of 5.0 PersonDay Support (0.0 of 151.5 G.S.T), 0.0% 0.0 of 0.0 Day Training (0.0 of 0.0 G.S.T) Total usage for project cse063 10937.3 of 11812.0 Generic Service Tokens, 92.6% cse064 GR/R43570 Leschziner Last Trade: Mon May 24 10:32:16 2004 Usage: 56736.5 of 56736.5 PEHour MPP PE CPU (1371.8 of 1371.8 G.S.T), 100.0% 0.6 of 0.5 GByteYear HP Disk (3.3 of 3.2 G.S.T), 103.2% 20.5 of 3412.3 Hour Newton CPU (3.1 of 522.4 G.S.T), 0.6% 43.2 of 78.4 Hour Wren CPU (2.1 of 3.9 G.S.T), 55.0% 0.0 of 14.5 GByteYear HP Disk SAN - /d (0.0 of 53.3 G.S.T), 0.0% 12193.7 of 16267.0 Hour SMP CPU (473.7 of 632.0 G.S.T), 75.0% 1.6 of 23.0 GByteYear MP Disk (3.9 of 54.8 G.S.T), 7.1% 88.1 of 250.4 GByteYear HSM/Tape (55.6 of 158.0 G.S.T), 35.2% 92202.8 of 139578.7 Hour Green CPU (4817.8 of 7293.3 G.S.T), 66.1% 0.0 of 10.0 PersonDay Support (0.0 of 303.0 G.S.T), 0.0% 2.0 of 8.0 Day Training (21.7 of 87.0 G.S.T), 25.0% Total usage for project cse064 6753.2 of 10482.7 Generic Service Tokens, 64.4% cse066 GR/R30907 Coveney Last Trade: Tue May 18 12:18:22 2004 Usage: 72794.8 of 72794.8 PEHour MPP PE CPU (1760.1 of 1760.1 G.S.T), 100.0% 23.3 of 23.3 GByteYear HP Disk (138.5 of 138.5 G.S.T), 100.0% 2.2 of 7170.4 Hour Newton CPU (0.3 of 1097.7 G.S.T), 0.0% 9.6 of 78.4 Hour Wren CPU (0.5 of 3.9 G.S.T), 12.2% 0.0 of 113.8 GByteYear MP Disk SAN (0.0 of 270.9 G.S.T), 0.0% 2389.2 of 2450.4 Hour SMP CPU (92.8 of 95.2 G.S.T), 97.5% 17.6 of 28.0 GByteYear MP Disk (41.9 of 66.8 G.S.T), 62.7% 33538.5 of 71168.9 Hour Green CPU (1752.5 of 3718.7 G.S.T), 47.1% 0.0 of 5.0 PersonDay Support (0.0 of 151.5 G.S.T), 0.0% 3.0 of 6.0 Day Training (32.6 of 65.2 G.S.T), 50.0% Total usage for project cse066 3819.2 of 7368.6 Generic Service Tokens, 51.8% cse071 GR/R23657 Iacovides Last Trade: Thu Apr 8 13:49:10 2004 Usage: 0.0 of 5075.6 Hour Newton CPU (0.0 of 777.0 G.S.T), 0.0% 1.7 of 223.3 Hour Wren CPU (0.1 of 11.1 G.S.T), 0.7% 1.0 of 13.6 GByteYear MP Disk SAN (2.3 of 32.5 G.S.T), 7.2% 5.7 of 22708.5 Hour SMP CPU (0.2 of 882.3 G.S.T), 0.0% 0.7 of 11.3 GByteYear HSM/Tape (0.4 of 7.1 G.S.T), 5.9% 3135.9 of 46991.9 Hour Green CPU (163.9 of 2455.4 G.S.T), 6.7% 0.5 of 5.0 PersonDay Support (15.2 of 151.5 G.S.T), 10.0% 2.0 of 6.0 Day Training (21.7 of 65.2 G.S.T), 33.3% Total usage for project cse071 203.8 of 4382.1 Generic Service Tokens, 4.7%

cse072 GR/R66692 Karlin

Last Trade: Tue Apr 27 14:30:50 2004

Usage:

41583.1 of 41583.1 PEHour MPP PE CPU (1005.4 of 1005.4 G.S.T), 100.0%

0.9 of 0.8 GByteYear HP Disk (5.3 of 4.5 G.S.T), 118.1%

131.7 of 20478.9 Hour Newton CPU (20.2 of 3135.2 G.S.T), 0.6%

0.0 of 15.7 Hour Wren CPU (0.0 of 0.8 G.S.T), 0.0%

0.0 of 4.6 GByteYear MP Disk SAN (0.0 of 10.9 G.S.T), 0.0%

0.0 of 12.0 Hour SMP CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 4.0 GByteYear MP Disk (0.0 of 9.5 G.S.T), 0.0%

0.0 of 0.0 GByteYear HSM/Tape (0.0 of 0.0 G.S.T)

0.0 of 18.0 PersonDay Support (0.0 of 545.5 G.S.T), 0.0%

7.0 of 9.0 Day Training (76.1 of 97.8 G.S.T), 77.8%

Total usage for project cse072 1107.0 of 4810.1 Generic Service Tokens, 23.0%

cse074 GR/R66197 Luo

Last Trade: Thu Dec 18 10:23:19 2003

Usage:

0.0 of 0.0 PEHour MPP PE CPU (0.0 of 0.0 G.S.T)

0.0 of 0.0 GByteYear HP Disk (0.0 of 0.0 G.S.T)

0.0 of 2660.8 Hour Newton CPU (0.0 of 407.3 G.S.T), 0.0%

0.0 of 600.0 Hour SMP CPU (0.0 of 23.3 G.S.T), 0.0%

0.0 of 9.0 GByteYear MP Disk (0.0 of 21.4 G.S.T), 0.0%

Total usage for project cse074 0.0 of 452.1 Generic Service Tokens, 0.0%

# cse075 GR/R67699 Coveney

Last Trade: re-enabled

Usage:

8401.8 of 8401.8 PEHour MPP PE CPU (203.1 of 203.1 G.S.T), 100.0%

76.3 of 76.3 GByteYear HP Disk (454.2 of 454.2 G.S.T), 100.0%

0.0 of 21088.4 Hour Newton CPU (0.0 of 3228.5 G.S.T), 0.0%

63.9 of 263.6 Hour Wren CPU (3.2 of 13.1 G.S.T), 24.2%

48.8 of 350.5 GByteYear MP Disk SAN (116.1 of 834.6 G.S.T), 13.9%

7525.1 of 31500.0 Hour SMP CPU (292.4 of 1223.8 G.S.T), 23.9%

781.2 of 1013.5 GByteYear MP Disk (1859.9 of 2413.1 G.S.T), 77.1%

406.5 of 1959.4 GByteYear HSM/Tape (256.4 of 1236.2 G.S.T), 20.7%

139681.5 of 471540.5 Hour Green CPU (7298.6 of 24639.0 G.S.T), 29.6%

0.0 of 34.0 PersonDay Support (0.0 of 1030.3 G.S.T), 0.0%

5.0 of 14.0 Day Training (54.3 of 152.2 G.S.T), 35.7%

Total usage for project cse075 10538.3 of 35428.0 Generic Service Tokens, 29.7%

cse076 GR/R66975 Briddon

Last Trade: Tue Jan 6 08:37:11 2004

Usage:

9437.9 of 4161.1 PEHour MPP PE CPU (228.2 of 100.6 G.S.T), 226.8%

1.9 of 1.3 GByteYear HP Disk (11.3 of 8.0 G.S.T), 140.6%

214980.6 of 388618.2 Hour Newton CPU (32911.9 of 59494.5 G.S.T), 55.3%

102.4 of 504.6 Hour Wren CPU (5.1 of 25.0 G.S.T), 20.3%

268169.5 of 267888.9 Hour SMP CPU (10418.8 of 10407.9 G.S.T), 100.1%

13.6 of 23.2 GByteYear MP Disk (32.3 of 55.2 G.S.T), 58.5%

254717.4 of 259907.5 Hour Green CPU (13309.5 of 13580.7 G.S.T), 98.0%

11.0 of 20.0 PersonDay Support (333.3 of 606.1 G.S.T), 55.0%

0.0 of 0.0 Day Training (0.0 of 0.0 G.S.T)

Total usage for project cse076 57250.4 of 84278.0 Generic Service Tokens, 67.9%

cse076a

Last Trade: never

Usage:

26750.2 of 43073.5 Hour Newton CPU (4095.2 of 6594.2 G.S.T), 62.1%

Total usage for subproject cse076a 4095.2 of 6594.2 Generic Service Tokens, 62.1%

cse077 GR/R69792 Kronenburg

Last Trade: Thu Apr 8 11:25:40 2004

Usage:

0.0 of 0.0 PEHour MPP PE CPU (0.0 of  $0.0\ G.S.T)$ 

0.0 of 0.0 GByteYear HP Disk (0.0 of 0.0 G.S.T)

0.0 of 47380.6 Hour Newton CPU (0.0 of 7253.6 G.S.T), 0.0%

0.2 of 30.0 Hour Wren CPU (0.0 of 1.5 G.S.T), 0.6%

0.0 of 25.0 GByteYear MP Disk SAN (0.0 of 59.5 G.S.T), 0.0%

31.1 of 33.6 Hour SMP CPU (1.2 of 1.3 G.S.T), 92.5%

0.0 of 47645.8 Hour Green CPU (0.0 of 2489.6 G.S.T), 0.0%

0.0 of 2.0 Day Training (0.0 of 21.7 G.S.T), 0.0%

Total usage for project cse077 1.2 of 9827.3 Generic Service Tokens, 0.0%

cse082 GR/R79654 Barakos

Last Trade: re-enabled

Usage:

10.5 of 15.7 Hour Wren CPU (0.5 of 0.8 G.S.T), 66.9%

9174.1 of 9264.7 Hour SMP CPU (356.4 of 359.9 G.S.T), 99.0%

105.5 of 15.5 GByteYear MP Disk (251.1 of 36.8 G.S.T), 682.0%

0.6 of 28.7 GByteYear HSM/Tape (0.4 of 18.1 G.S.T), 2.1%

1446.5 of 1379.8 Hour Green CPU (75.6 of 72.1 G.S.T), 104.8%

0.0 of 5.0 PersonDay Support (0.0 of 151.5 G.S.T), 0.0%

0.0 of 1.0 Day Training (0.0 of 10.9 G.S.T), 0.0%

Total usage for project cse082 684.1 of 650.2 Generic Service Tokens, 105.2%

cse084 GR/R47066 Needs

Last Trade: re-enabled

Usage:

312334.7 of 306225.8 PEHour MPP PE CPU (7551.9 of 7404.1 G.S.T), 102.0%

27.1 of 270.0 GByteYear HP Disk (161.3 of 1607.1 G.S.T), 10.0%

190.6 of 672.1 Hour Wren CPU (9.4 of 33.3 G.S.T), 28.4%

5516.5 of 14384.3 Hour SMP CPU (214.3 of 558.9 G.S.T), 38.4%

46.2 of 60.6 GByteYear MP Disk (109.9 of 144.3 G.S.T), 76.2%

80487.5 of 89153.1 Hour Green CPU (4205.6 of 4658.4 G.S.T), 90.3%

0.0 of 7.0 PersonDay Support (0.0 of 212.1 G.S.T), 0.0%

0.0 of 6.0 Day Training (0.0 of 65.2 G.S.T), 0.0%

Total usage for project cse084 12252.5 of 14683.6 Generic Service Tokens, 83.4%

### cse085 GR/R64957 Sandham

Last Trade: re-enabled

Usage:

1082577.4 of 1082710.0 PEHour MPP PE CPU (26175.3 of 26178.5 G.S.T), 100.0%

330.0 of 321.0 GByteYear HP Disk (1964.4 of 1910.7 G.S.T), 102.8%

47114.0 of 81139.1 Hour Newton CPU (7212.8 of 12421.8 G.S.T), 58.1%

74.5 of 78.4 Hour Wren CPU (3.7 of 3.9 G.S.T), 94.9%

6197.4 of 7979.9 Hour SMP CPU (240.8 of 310.0 G.S.T), 77.7%

 $285.1 \ of \ 750.0 \ GByteYear \ MP \ Disk \ (678.8 \ of \ 1785.7 \ G.S.T), \ 38.0\%$ 

2722.5 of 3205.1 GByteYear HSM/Tape (1717.7 of 2022.1 G.S.T), 84.9%

533701.5 of 598624.8 Hour Green CPU (27887.0 of 31279.4 G.S.T), 89.2%

2.0 of 2.0 PersonDay Support (60.6 of 60.6 G.S.T), 100.0%

8.0 of 8.0 Day Training (87.0 of 87.0 G.S.T), 100.0%

Total usage for project cse085 66028.1 of 76059.8 Generic Service Tokens, 86.8%

cse086 GR/R83118 Taylor

Last Trade: Thu May 13 09:35:22 2004

Usage:

884647.5 of 884647.5 PEHour MPP PE CPU (21389.6 of 21389.6 G.S.T), 100.0%

132.7 of 132.7 GByteYear HP Disk (789.9 of 790.0 G.S.T), 100.0%

34209.2 of 368221.5 Hour Newton CPU (5237.2 of 56371.9 G.S.T), 9.3%

840.7 of 3262.8 Hour Wren CPU (41.7 of 161.7 G.S.T), 25.8%

0.0 of 12.9 GByteYear HP Disk SAN - /d (0.0 of 47.6 G.S.T), 0.0%

0.0 of 46.6 GbyteYear HV Disk SAN /v (0.0 of 55.5 G.S.T), 0.0%

19013.7 of 31906.3 Hour SMP CPU (738.7 of 1239.6 G.S.T), 59.6%

224.3 of 497.0 GByteYear MP Disk (534.0 of 1183.3 G.S.T), 45.1%

33.8 of 3750.0 GByteYear HSM/Tape (21.3 of 2365.9 G.S.T), 0.9%

283127.9 of 427900.0 Hour Green CPU (14794.0 of 22358.7 G.S.T), 66.2%

5.0 of 16.0 PersonDay Support (151.5 of 484.8 G.S.T), 31.3%

0.0 of 11.0 Day Training (0.0 of 119.6 G.S.T), 0.0%

Total usage for project cse086 43697.9 of 106568.3 Generic Service Tokens, 41.0%

cse086a MP1

Last Trade: never

Usage

721660.7 of 750000.0 PEHour MPP PE CPU (17448.8 of 18134.0 G.S.T), 96.2%

8.5 of 10.0 GByteYear HP Disk (50.6 of 59.5 G.S.T), 85.0%

25326.8 of 30000.0 Hour Newton CPU (3877.3 of 4592.8 G.S.T), 84.4%

41.0 of 200.0 Hour Wren CPU (2.0 of 9.9 G.S.T), 20.5%

0.0 of 50.0 Hour SMP CPU (0.0 of 1.9 G.S.T), 0.0%

27.9 of 40.0 GByteYear MP Disk (66.4 of 95.2 G.S.T), 69.8%

0.0 of 1000.0 GByteYear HSM/Tape (0.0 of 630.9 G.S.T), 0.0%

25887.0 of 30000.0 Hour Green CPU (1352.7 of 1567.6 G.S.T), 86.3%

Total usage for subproject cse086a 22797.9 of 25091.9 Generic Service Tokens, 90.9%

cse086b MP2

Last Trade: never

Usage:

48449.5 of 56000.0 PEHour MPP PE CPU (1171.4 of 1354.0 G.S.T), 86.5%

37.6 of 50.0 GByteYear HP Disk (223.8 of 297.6 G.S.T), 75.2%

1565.4 of 15000.0 Hour Newton CPU (239.6 of 2296.4 G.S.T), 10.4%

282.0 of 500.0 Hour Wren CPU (14.0 of 24.8 G.S.T), 56.4%

8740.5 of 15000.0 Hour SMP CPU (339.6 of 582.8 G.S.T), 58.3%

34.1 of 40.0 GByteYear MP Disk (81.3 of 95.2 G.S.T), 85.3%

127465.6 of 150000.0 Hour Green CPU (6660.3 of 7837.8 G.S.T), 85.0%

Total usage for subproject cse086b 8730.1 of 12488.6 Generic Service Tokens, 69.9%

cse086d MP4

Last Trade: never

Usage:

0.1 of 0.1 GByteYear HP Disk (0.5 of 0.6 G.S.T), 87.4%

0.1 of 0.1 GByteYear MP Disk (0.3 of 0.2 G.S.T), 106.8%

Total usage for subproject cse086d 0.8 of 0.8 Generic Service Tokens, 92.9%

\_\_\_\_\_

cse086e MP5

Last Trade: never

Usage:

48.8 of 500.0 PEHour MPP PE CPU (1.2 of 12.1 G.S.T), 9.8%

1.8 of 2.0 GByteYear HP Disk (10.5 of 11.9 G.S.T), 88.1%

0.0 of 10000.0 Hour Newton CPU (0.0 of 1530.9 G.S.T), 0.0% 414.3 of 1500.0 Hour Wren CPU (20.5 of 74.3 G.S.T), 27.6% 0.0 of 5.0 GbyteYear HV Disk SAN /v (0.0 of 6.0 G.S.T), 0.0% 6896.6 of 10000.0 Hour SMP CPU (267.9 of 388.5 G.S.T), 69.0% 16.2 of 20.0 GByteYear MP Disk (38.5 of 47.6 G.S.T), 80.8% 125363.9 of 150000.0 Hour Green CPU (6550.5 of 7837.8 G.S.T), 83.6% Total usage for subproject cse086e 6889.1 of 9909.1 Generic Service Tokens, 69.5%

cse086f EC1 Last Trade: never

Usage:

71.1 of 5000.0 PEHour MPP PE CPU (1.7 of 120.9 G.S.T), 1.4% 3.8 of 5.0 GByteYear HP Disk (22.8 of 29.8 G.S.T), 76.6% 0.8 of 200.0 Hour Wren CPU (0.0 of 9.9 G.S.T), 0.4% 4.8 of 50.0 Hour SMP CPU (0.2 of 1.9 G.S.T), 9.6% 25.5 of 30.0 GByteYear MP Disk (60.7 of 71.4 G.S.T), 85.0% 33.8 of 40.0 GByteYear HSM/Tape (21.3 of 25.2 G.S.T), 84.5%

0.0 of 10000.0 Hour Green CPU (0.0 of 522.5 G.S.T), 0.0%

Total usage for subproject cse086f 106.8 of 781.7 Generic Service Tokens, 13.7%

cse086g EC2 Last Trade: never

Usage:

577.1 of 5000.0 PEHour MPP PE CPU (14.0 of 120.9 G.S.T), 11.5% 43.5 of 50.0 GByteYear HP Disk (258.9 of 297.6 G.S.T), 87.0% 102.1 of 200.0 Hour Wren CPU (5.1 of 9.9 G.S.T), 51.0% 810.2 of 1000.0 Hour SMP CPU (31.5 of 38.9 G.S.T), 81.0% 85.7 of 100.0 GByteYear MP Disk (204.1 of 238.1 G.S.T), 85.7% 0.0 of 50.0 GByteYear HSM/Tape (0.0 of 31.5 G.S.T), 0.0% 3024.6 of 10000.0 Hour Green CPU (158.0 of 522.5 G.S.T), 30.2% Total usage for subproject cse086g 671.6 of 1259.4 Generic Service Tokens, 53.3%

cse086h EC3 Last Trade: never

Usage:

46335.1 of 50000.0 PEHour MPP PE CPU (1120.3 of 1208.9 G.S.T), 92.7% 7.0 of 10.0 GByteYear HP Disk (41.5 of 59.5 G.S.T), 69.7% 0.0 of 200.0 Hour Wren CPU (0.0 of 9.9 G.S.T), 0.0% 219.9 of 250.0 Hour SMP CPU (8.5 of 9.7 G.S.T), 87.9% 15.0 of 20.0 GByteYear MP Disk (35.7 of 47.6 G.S.T), 75.0% 0.0 of 10000.0 Hour Green CPU (0.0 of 522.5 G.S.T), 0.0% Total usage for subproject cse086h 1206.0 of 1858.2 Generic Service Tokens, 64.9%

cse086i EC4 Last Trade: never

Usage:

0.1 of 0.1 GByteYear HP Disk (0.5 of 0.6 G.S.T), 86.8% 0.1 of 0.1 GByteYear MP Disk (0.3 of 0.2 G.S.T), 106.8%

Total usage for subproject cse086i 0.8 of 0.8 Generic Service Tokens, 92.5%

cse086j BEC1 Last Trade: never

Usage:

67505.3 of 70000.0 PEHour MPP PE CPU (1632.2 of 1692.5 G.S.T), 96.4%

1.7 of 3.0 GByteYear HP Disk (9.8 of 17.9 G.S.T), 55.1%

7317.0 of 9000.0 Hour Newton CPU (1120.2 of 1377.8 G.S.T), 81.3% 0.0 of 200.0 Hour Wren CPU (0.0 of 9.9 G.S.T), 0.0% 0.0 of 0.1 Hour SMP CPU (0.0 of 0.0 G.S.T), 0.2% 0.4 of 5.0 GByteYear MP Disk (1.0 of 11.9 G.S.T), 8.3% 0.0 of 1000.0 Hour Green CPU (0.0 of 52.3 G.S.T), 0.0% Total usage for subproject cse086j 2763.2 of 3162.3 Generic Service Tokens, 87.4% cse086k BEC2 Last Trade: never Usage: 0.1 of 0.1 GByteYear HP Disk (0.5 of 0.6 G.S.T), 86.8% 0.5 of 200.0 Hour Wren CPU (0.0 of 9.9 G.S.T), 0.2% 2341.7 of 5000.0 Hour SMP CPU (91.0 of 194.3 G.S.T), 46.8% 17.4 of 20.0 GByteYear MP Disk (41.4 of 47.6 G.S.T), 86.9% 1385.0 of 20000.0 Hour Green CPU (72.4 of 1045.0 G.S.T), 6.9% Total usage for subproject cse086k 205.3 of 1297.4 Generic Service Tokens, 15.8% cse089 GR/R85556 Wiercigroch Last Trade: re-enabled Usage: 0.0 of 0.0 PEHour MPP PE CPU (0.0 of 0.0 G.S.T), 100.0% 0.0 of 0.0 GBvteYear HP Disk (0.0 of 0.0 G.S.T) 0.0 of 1952.1 Hour Wren CPU (0.0 of 96.7 G.S.T), 0.0% 0.0 of 44.0 GByteYear HP Disk SAN - /d (0.0 of 162.4 G.S.T), 0.0% 0.0 of 0.0 Hour SMP CPU (0.0 of 0.0 G.S.T), 86.3% 0.0 of 2083.0 Hour Green CPU (0.0 of 108.8 G.S.T), 0.0% 0.0 of 15.0 PersonDay Support (0.0 of 454.6 G.S.T), 0.0% 0.0 of 7.0 Day Training (0.0 of 76.1 G.S.T), 0.0% Total usage for project cse089 0.0 of 898.6 Generic Service Tokens, 0.0% cse098 GR/S20062 De Souza Last Trade: re-enabled 0.0 of 0.0 PEHour MPP PE CPU (0.0 of 0.0 G.S.T), 100.0% 0.0 of 0.0 GByteYear HP Disk (0.0 of 0.0 G.S.T) 0.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.4% 0.1 of 3975.4 Hour SMP CPU (0.0 of 154.5 G.S.T), 0.0% 2.9 of 60.0 GByteYear MP Disk (7.0 of 142.9 G.S.T), 4.9% 0.0 of 100.0 GByteYear HSM/Tape (0.0 of 63.1 G.S.T), 0.0% 4964.9 of 162589.8 Hour Green CPU (259.4 of 8495.7 G.S.T), 3.1% 0.0 of 5.0 PersonDay Support (0.0 of 151.5 G.S.T), 0.0% 0.0 of 5.0 Day Training (0.0 of 54.3 G.S.T), 0.0% Total usage for project cse098 266.4 of 9062.4 Generic Service Tokens, 2.9% cse106 GR/S42712 Augarde Last Trade: Wed Nov 5 15:06:00 2003 Usage: 0.0 of 2500.0 Hour Wren CPU (0.0 of 123.9 G.S.T), 0.0% 0.0 of 37.4 GByteYear MP Disk SAN (0.0 of 89.2 G.S.T), 0.0% 0.0 of 50000.0 Hour Green CPU (0.0 of 2612.6 G.S.T), 0.0% 0.0 of 25.0 PersonDay Support (0.0 of 757.6 G.S.T), 0.0% 0.0 of 10.0 Day Training (0.0 of 108.7 G.S.T), 0.0% Total usage for project cse106 0.0 of 3691.9 Generic Service Tokens, 0.0%

Last Trade: Wed Nov 5 15:55:15 2003

Usage:

0.0 of 700.0 Hour Wren CPU (0.0 of 34.7 G.S.T), 0.0%

0.0 of 832.1 GByteYear MP Disk SAN (0.0 of 1981.3 G.S.T), 0.0%

0.0 of 40000.0 Hour Green CPU (0.0 of 2090.1 G.S.T), 0.0%

0.0 of 10.0 PersonDay Support (0.0 of 303.0 G.S.T), 0.0%

0.0 of 6.0 Day Training (0.0 of 65.2 G.S.T), 0.0%

Total usage for project cse108 0.0 of 4474.3 Generic Service Tokens, 0.0%

cse110 GR/S43214 Leach

Last Trade: Wed Nov 5 16:16:25 2003

Usage:

0.0 of 6000.0 Hour Wren CPU (0.0 of 297.3 G.S.T), 0.0%

0.0 of 67.6 GByteYear HP Disk SAN - /d (0.0 of 249.4 G.S.T), 0.0%

0.0 of 20.0 GByteYear MP Disk SAN (0.0 of 47.6 G.S.T), 0.0%

0.0 of 42000.0 Hour Green CPU (0.0 of 2194.6 G.S.T), 0.0%

0.0 of 30.0 PersonDay Support (0.0 of 909.1 G.S.T), 0.0%

0.0 of 25.0 Day Training (0.0 of 271.7 G.S.T), 0.0%

Total usage for project cse110 0.0 of 3969.7 Generic Service Tokens, 0.0%

cse111 GR/S46239 Avital

Last Trade: Fri Apr 16 14:41:37 2004

Usage:

0.0 of 800.1 Hour Wren CPU (0.0 of 39.6 G.S.T), 0.0%

0.0 of 272.3 GByteYear MP Disk SAN (0.0 of 648.4 G.S.T), 0.0%

0.0 of 56.3 GbyteYear HV Disk SAN /v (0.0 of 67.1 G.S.T), 0.0%

0.0 of 849.9 Hour SMP CPU (0.0 of 33.0 G.S.T), 0.0%

0.0 of 84.6 GByteYear HSM/Tape (0.0 of 53.4 G.S.T), 0.0%

0.0 of 94500.0 Hour Green CPU (0.0 of 4937.8 G.S.T), 0.0%

0.0 of 5.0 PersonDay Support (0.0 of 152.5 G.S.T), 0.0%

0.0 of 6.0 Day Training (0.0 of 65.5 G.S.T), 0.0%

Total usage for project cse111 0.0 of 5997.3 Generic Service Tokens, 0.0%

cse112 GR/S67029 Chernyshenko

Last Trade: Wed Apr 14 14:35:22 2004

Usage:

0.0 of 300.0 GByteYear MP Disk SAN (0.0 of 714.3 G.S.T), 0.0%

0.0 of 160000.0 Hour Green CPU (0.0 of 8360.3 G.S.T), 0.0%

 $0.0\ of\ 16.5\ PersonDay\ Support\ (0.0\ of\ 499.3\ G.S.T),\ 0.0\%$ 

0.0 of 5.0 Day Training (0.0 of 54.5 G.S.T), 0.0%

Total usage for project cse112 0.0 of 9628.4 Generic Service Tokens, 0.0%

cse116 GR/S46567 John

Last Trade: Thu Nov 6 10:47:31 2003

Usage:

0.0 of 558.1 Hour Wren CPU (0.0 of 27.7 G.S.T), 0.0%

0.0 of 2.0 GByteYear MP Disk SAN (0.0 of 4.8 G.S.T), 0.0%

0.0 of 2.0 GByteYear HSM/Tape (0.0 of 1.3 G.S.T), 0.0%

0.0 of 5950.0 Hour Green CPU (0.0 of 310.9 G.S.T), 0.0%

0.0 of 16.0 PersonDay Support (0.0 of 484.8 G.S.T), 0.0%

0.0 of 8.0 Day Training (0.0 of 87.0 G.S.T), 0.0%

Total usage for project cse116 0.0 of 916.4 Generic Service Tokens, 0.0%

cse117 Theodoropoulos

Last Trade: Thu Apr 1 11:47:27 2004

CfS

Issue 1.0

Usage:

0.0 of 4000.1 Hour Wren CPU (0.0 of 198.2 G.S.T), 0.0%

0.0 of 26.5 GByteYear MP Disk SAN (0.0 of 63.1 G.S.T), 0.0%

0.0 of 11499.9 Hour SMP CPU (0.0 of 446.8 G.S.T), 0.0%

0.0 of 15500.1 Hour Green CPU (0.0 of 809.9 G.S.T), 0.0%

Total usage for project cse117 0.0 of 1518.0 Generic Service Tokens, 0.0%

cse118 GR/S72023 Gavaghan

Last Trade: Wed Apr 28 14:12:37 2004

Usage:

0.0 of 150000.0 Hour Newton CPU (0.0 of 22963.9 G.S.T), 0.0%

0.0 of 40.4 Hour Wren CPU (0.0 of 2.0 G.S.T), 0.0%

0.0 of 184.2 GByteYear MP Disk SAN (0.0 of 438.5 G.S.T), 0.0%

0.0 of 22.0 PersonDay Support (0.0 of 666.7 G.S.T), 0.0%

0.0 of 11.0 Day Training (0.0 of 119.6 G.S.T), 0.0%

Total usage for project cse118 0.0 of 24190.6 Generic Service Tokens, 0.0%

cse133 GR/S13422 Catlow

Last Trade: Mon May 10 14:48:07 2004

Usage:

0.0 of 399686.4 Hour Newton CPU (0.0 of 61189.0 G.S.T), 0.0%

0.0 of 8.0 Hour Wren CPU (0.0 of 0.4 G.S.T), 0.0%

0.0 of 20.0 GByteYear MP Disk SAN (0.0 of 47.6 G.S.T), 0.0%

Total usage for project cse133 0.0 of 61237.0 Generic Service Tokens, 0.0%

csedl1 - Castep port to Altix

Last Trade: re-enabled

Usage:

20137.6 of 49578.0 Hour Newton CPU (3082.9 of 7590.0 G.S.T), 40.6%

1.1 of 500.0 Hour Wren CPU (0.1 of 24.8 G.S.T), 0.2%

4.2 of 69.2 GByteYear MP Disk SAN (10.1 of 164.8 G.S.T), 6.1%

0.0 of 125.0 GByteYear HSM/Tape (0.0 of 78.9 G.S.T), 0.0%

6.0 of 6.0 Day Training (65.2 of 65.3 G.S.T), 99.9%

Total usage for project csedl1 3158.3 of 7923.8 Generic Service Tokens, 39.9%

csedl1a Computational Cemistry

Last Trade: never

Usage:

0.0 of 5000.0 Hour Newton CPU (0.0 of 765.5 G.S.T), 0.0%

0.0 of 150.0 Hour Wren CPU (0.0 of 7.4 G.S.T), 0.0%

0.0 of 19.5 GByteYear MP Disk SAN (0.0 of 46.4 G.S.T), 0.0%

0.0 of 37.0 GByteYear HSM/Tape (0.0 of 23.3 G.S.T), 0.0%

Total usage for subproject csedl1a 0.0 of 842.7 Generic Service Tokens, 0.0%

csed11b Molecular Simulation

Last Trade: never

Usage:

0.0 of 4993.0 Hour Newton CPU (0.0 of 764.4 G.S.T), 0.0%

0.0 of 50.0 Hour Wren CPU (0.0 of 2.5 G.S.T), 0.0%

0.5 of 7.5 GByteYear MP Disk SAN (1.2 of 17.9 G.S.T), 6.8%

0.0 of 13.0 GByteYear HSM/Tape (0.0 of 8.2 G.S.T), 0.0%

Total usage for subproject csed11b 1.2 of 792.9 Generic Service Tokens, 0.2%

csedl1c Materials

Last Trade: never

Usage:

18537.5 of 29000.0 Hour Newton CPU (2838.0 of 4439.7 G.S.T), 63.9%

1.1 of 100.0 Hour Wren CPU (0.1 of 5.0 G.S.T), 1.1%

2.2 of 15.0 GByteYear MP Disk SAN (5.3 of 35.7 G.S.T), 14.9%

0.0 of 25.0 GByteYear HSM/Tape (0.0 of 15.8 G.S.T), 0.0%

Total usage for subproject csedl1c 2843.3 of 4496.1 Generic Service Tokens, 63.2%

\_\_\_\_\_

csed11d - Band Theory

Last Trade: never

Usage:

0.0 of 5000.0 Hour Newton CPU (0.0 of 765.5 G.S.T), 0.0%

0.0 of 50.0 Hour Wren CPU (0.0 of 2.5 G.S.T), 0.0%

0.0 of 7.5 GByteYear MP Disk SAN (0.0 of 17.9 G.S.T), 0.0%

0.0 of 13.0 GByteYear HSM/Tape (0.0 of 8.2 G.S.T), 0.0%

Total usage for subproject csedl1d 0.0 of 794.0 Generic Service Tokens, 0.0%

csed11e High End Computing

Last Trade: never

Usage:

0.0 of 5000.0 Hour Newton CPU (0.0 of 765.5 G.S.T), 0.0%

0.1 of 150.0 Hour Wren CPU (0.0 of 7.4 G.S.T), 0.0%

1.5 of 19.5 GByteYear MP Disk SAN (3.5 of 46.4 G.S.T), 7.6%

0.0 of 37.0 GByteYear HSM/Tape (0.0 of 23.3 G.S.T), 0.0%

Total usage for subproject csedl1e 3.5 of 842.7 Generic Service Tokens, 0.4%

csehpcx - benchmarking

Last Trade: Mon Dec 22 17:17:41 2003

Usage:

11200.6~of~11200.4~PEHour~MPP~PE~CPU~(270.8~of~270.8~G.S.T),~100.0%

16.1 of 15.6 GByteYear HP Disk (95.9 of 92.8 G.S.T), 103.3%

3575.0 of 11615.0 Hour Newton CPU (547.3 of 1778.2 G.S.T), 30.8%

1.3 of 1464.1 Hour Wren CPU (0.1 of 72.5 G.S.T), 0.1%

16.9 of 1867.0 Hour SMP CPU (0.7 of 72.5 G.S.T), 0.9%

8.5 of 61.9 GByteYear MP Disk (20.2 of 147.3 G.S.T), 13.7%

22495.1 of 46273.2 Hour Green CPU (1175.4 of 2417.9 G.S.T), 48.6%

Total usage for project csehpcx 2110.3 of 4852.0 Generic Service Tokens, 43.5%

csn001 Webb & GST/02/2846 Killworth & T/S/2001/00187 New

Last Trade: Wed Apr 7 10:08:53 2004

Usage:

403672.6 of 403672.5 PEHour MPP PE CPU (9760.3 of 9760.3 G.S.T), 100.0%

307.2 of 306.0 GByteYear HP Disk (1828.6 of 1821.4 G.S.T), 100.4%

1518.9 of 3266.0 Hour Newton CPU (232.5 of 500.0 G.S.T), 46.5%

478.6 of 723.0 Hour Wren CPU (23.7 of 35.8 G.S.T), 66.2%

227628.3 of 269662.1 Hour SMP CPU (8843.7 of 10476.8 G.S.T), 84.4%

537.6 of 1322.2 GByteYear MP Disk (1280.1 of 3148.0 G.S.T), 40.7%

31122.5 of 35179.9 GByteYear HSM/Tape (19635.7 of 22195.5 G.S.T), 88.5%

991785.8 of 1035270.8 Hour Green CPU (51822.9 of 54095.0 G.S.T), 95.8%

61.0 of 61.5 PersonDay Support (1848.5 of 1863.6 G.S.T), 99.2%

3.0 of 5.3 Day Training (32.6 of 57.5 G.S.T), 56.7%

Total usage for project csn001 95308.5 of 103954.0 Generic Service Tokens, 91.7%

csn003 UGAMP O'Neill Last Trade: re-enabled

Usage:

7500413.8 of 7426919.8 PEHour MPP PE CPU (181350.4 of 179573.4 G.S.T), 101.0% 113.5 of 113.5 GByteYear HP Disk (675.6 of 675.6 G.S.T), 100.0% 257414.2 of 478600.9 Hour Newton CPU (39408.2 of 73270.2 G.S.T), 53.8% 2966.4 of 6045.2 Hour Wren CPU (147.0 of 299.5 G.S.T), 49.1% 441.4 of 740.6 GbyteYear HV Disk SAN /v (526.1 of 882.8 G.S.T), 59.6% 170330.6 of 239545.9 Hour SMP CPU (6617.6 of 9306.7 G.S.T), 71.1% 114.1 of 373.8 GByteYear MP Disk (271.6 of 889.9 G.S.T), 30.5% 87628.6 of 116324.4 GByteYear HSM/Tape (55286.2 of 73390.8 G.S.T), 75.3%

87628.6 of 116324.4 GByteYear HSM/Tape (55286.2 of 73390.8 G.S.T), 75.3% 603083.0 of 775994.1 Hour Green CPU (31512.3 of 40547.3 G.S.T), 77.7%

4.0 of 9.3 PersonDay Support (121.2 of 280.4 G.S.T), 43.2%

30.0 of 34.0 Day Training (326.1 of 369.9 G.S.T), 88.2%

Total usage for project csn003 316242.2 of 379486.4 Generic Service Tokens, 83.3%

\_\_\_\_\_

csn006 GR9/3550 Price

Last Trade: Fri Apr 30 15:00:17 2004

Usage:

1618734.3 of 1618734.0 PEHour MPP PE CPU (39138.9 of 39138.9 G.S.T), 100.0%

191.1 of 192.2 GByteYear HP Disk (1137.6 of 1144.3 G.S.T), 99.4%

35090.4 of 159047.2 Hour Newton CPU (5372.1 of 24348.9 G.S.T), 22.1%

624.4 of 78.4 Hour Wren CPU (30.9 of 3.9 G.S.T), 796.3%

79011.2 of 340287.6 Hour SMP CPU (3069.7 of 13220.7 G.S.T), 23.2%

74.4 of 169.5 GByteYear MP Disk (177.1 of 403.6 G.S.T), 43.9%

12.5 of 20.3 GByteYear HSM/Tape (7.9 of 12.8 G.S.T), 61.7%

620360.9 of 1009032.8 Hour Green CPU (32415.1 of 52724.0 G.S.T), 61.5%

Total usage for project csn006 81349.4 of 130997.1 Generic Service Tokens, 62.1%

csn015 Proctor

Last Trade: re-enabled

Usage:

257682.2 of 257682.2 PEHour MPP PE CPU (6230.4 of 6230.4 G.S.T), 100.0%

6.8 of 6.8 GByteYear HP Disk (40.4 of 40.4 G.S.T), 100.0%

0.0 of 47454.2 Hour Newton CPU (0.0 of 7264.9 G.S.T), 0.0%

203.9 of 381.3 Hour Wren CPU (10.1 of 18.9 G.S.T), 53.5%

2428.3 of 66776.8 Hour SMP CPU (94.3 of 2594.4 G.S.T), 3.6%

81.1 of 99.3 GByteYear MP Disk (193.1 of 236.4 G.S.T), 81.7%

4405.0 of 5042.3 GByteYear HSM/Tape (2779.2 of 3181.3 G.S.T), 87.4%

 $374974.0 \ \text{of} \ 517174.7 \ \text{Hour Green CPU} \ (19593.2 \ \text{of} \ 27023.4 \ \text{G.S.T}), 72.5\%$ 

2.0 of 22.0 PersonDay Support (60.6 of 667.2 G.S.T), 9.1%

3.0 of 13.0 Day Training (32.6 of 141.3 G.S.T), 23.1%

Total usage for project csn015 29034.0 of 47398.6 Generic Service Tokens, 61.3%

csn043 NER/T/S/2001/01159 Haines

Last Trade: Mon Jan 12 10:47:00 2004

Usage:

0.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 288.0 GByte Year MP Disk SAN (0.0 of 685.7 G.S.T), 0.0%

0.0 of 25544.0 Hour SMP CPU (0.0 of 992.4 G.S.T), 0.0%

0.0 of 19200.0 Hour Green CPU (0.0 of 1003.2 G.S.T), 0.0%

0.0 of 20.0 PersonDay Support (0.0 of 606.1 G.S.T), 0.0%

0.0 of 36.0 Day Training (0.0 of 391.3 G.S.T), 0.0%

Total usage for project csn043 0.0 of 3679.2 Generic Service Tokens, 0.0%

\_\_\_\_\_

csn044 Earth Observation

Last Trade: Wed Aug 28 11:09:50 2002

Usage:

CfS

Issue 1.0

9948.9 of 13857.9 PEHour MPP PE CPU (240.6 of 335.1 G.S.T), 71.8% 0.0 of 5.0 GByteYear HP Disk (0.0 of 30.0 G.S.T), 0.0% 0.0 of 28.4 Hour Wren CPU (0.0 of 1.4 G.S.T), 0.0% 0.2 of 73.9 Hour SMP CPU (0.0 of 2.9 G.S.T), 0.3% 0.0 of 5.0 GByteYear MP Disk (0.0 of 11.9 G.S.T), 0.0% 16.9 of 53.8 GByteYear HSM/Tape (10.7 of 33.9 G.S.T), 31.4% Total usage for project csn044 251.2 of 415.2 Generic Service Tokens, 60.5% csn050 NER/T/S/2002/00450 Challenor Last Trade: Thu Jan 8 16:12:46 2004 Usage: 0.0 of 32773.8 Hour Newton CPU (0.0 of 5017.4 G.S.T), 0.0% 0.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0% 0.0 of 100.0 GByteYear MP Disk SAN (0.0 of 238.1 G.S.T), 0.0% 0.0 of 100.0 GByteYear HSM/Tape (0.0 of 63.1 G.S.T), 0.0% Total usage for project csn050 0.0 of 5319.1 Generic Service Tokens, 0.0% csn052 GST/02/2658 Mackay Last Trade: Tue Mar 2 13:33:53 2004 Usage: 3.6 of 5.9 PEHour MPP PE CPU (0.1 of 0.1 G.S.T), 61.4% 1.6 of 2.0 GByteYear HP Disk (9.8 of 11.9 G.S.T), 82.3% 5.0 of 9.0 Hour Wren CPU (0.2 of 0.4 G.S.T), 54.9% 0.0 of 1.0 GByteYear HP Disk SAN - /d (0.0 of 3.7 G.S.T), 0.0% 0.0 of 0.0 GByteYear MP Disk SAN (0.0 of 0.0 G.S.T), 0.0% 1.3 of 1.9 Hour SMP CPU (0.1 of 0.1 G.S.T), 71.0% 32.4 of 28.3 GByteYear MP Disk (77.2 of 67.4 G.S.T), 114.6% 0.0 of 3.7 GByteYear HSM/Tape (0.0 of 2.3 G.S.T), 0.0% 13966.8 of 16044.3 Hour Green CPU (729.8 of 838.3 G.S.T), 87.1% 5.0 of 5.0 Day Training (54.3 of 54.3 G.S.T), 100.0% Total usage for project csn052 871.5 of 978.7 Generic Service Tokens, 89.1% csn056 NER/T/S/2002/00441 Hoskins - Merged Last Trade: re-enabled Usage: 0.0 of 5722.8 Hour Newton CPU (0.0 of 876.1 G.S.T), 0.0% 0.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0% 0.0 of 27.0 GByteYear MP Disk SAN (0.0 of 64.3 G.S.T), 0.0% 0.0 of 56.0 GByteYear HSM/Tape (0.0 of 35.3 G.S.T), 0.0% 0.0 of 0.0 Hour Green CPU (0.0 of 0.0 G.S.T) Total usage for project csn056 0.0 of 976.2 Generic Service Tokens, 0.0% csn057 NER/T/S/2002/00442 Guilyardi - Merged Last Trade: re-enabled 0.0 of 19123.2 Hour Newton CPU (0.0 of 2927.6 G.S.T), 0.0% 0.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0% 0.0 of 14.0 GByteYear MP Disk SAN (0.0 of 33.3 G.S.T), 0.0% 0.0 of 115.0 GByteYear HSM/Tape (0.0 of 72.6 G.S.T), 0.0% 0.0 of 55000.0 Hour Green CPU (0.0 of 2873.9 G.S.T), 0.0% Total usage for project csn057 0.0 of 5907.9 Generic Service Tokens, 0.0% csn058 NER/T/S/2002/00443 Tudhope - Merged Last Trade: re-enabled

Usage:

0.0 of 7338.0 Hour Newton CPU (0.0 of 1123.4 G.S.T), 0.0%

0.0 of 9.3 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 6.0 GByteYear MP Disk SAN (0.0 of 14.3 G.S.T), 0.0%

0.0 of 105.0 GByteYear HSM/Tape (0.0 of 66.2 G.S.T), 0.0%

0.0 of 52500.0 Hour Green CPU (0.0 of 2743.2 G.S.T), 0.0%

Total usage for project csn058 0.0 of 3947.6 Generic Service Tokens, 0.0%

# csn059 NER/T/S/2002/00446 Watson

Last Trade: Mon Jan 12 16:41:49 2004

Usage:

0.0 of 9.5 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 755.0 GByteYear MP Disk SAN (0.0 of 1797.6 G.S.T), 0.0%

0.0 of 3775.0 GByteYear HSM/Tape (0.0 of 2381.7 G.S.T), 0.0%

 $0.0\ of\ 246288.7\ Hour\ Green\ CPU\ (0.0\ of\ 12869.1\ G.S.T),\ 0.0\%$ 

0.0 of 45.0 PersonDay Support (0.0 of 1363.6 G.S.T), 0.0%

0.0 of 4.0 Day Training (0.0 of 43.5 G.S.T), 0.0%

Total usage for project csn059 0.0 of 18456.0 Generic Service Tokens, 0.0%

#### csnadm

Last Trade: Mon Feb 23 14:12:27 2004

Usage

0.0 of 961.1 Hour Wren CPU (0.0 of 47.6 G.S.T), 0.0%

0.0 of 1.0 GByteYear MP Disk SAN (0.0 of 2.4 G.S.T), 0.0%

Total usage for project csnadm 0.0 of 50.0 Generic Service Tokens, 0.0%

#### csp007 PPA/G/O/2002/00004 Hibbert

Last Trade: Thu Apr 22 14:12:25 2004

Usage:

36870.0 of 36870.0 PEHour MPP PE CPU (891.5 of 891.5 G.S.T), 100.0%

0.0 of 0.0 GBvteYear HP Disk (0.0 of 0.0 G.S.T)

22.1 of 600.0 Hour Wren CPU (1.1 of 29.7 G.S.T), 3.7%

0.0 of 60.0 GByteYear HP Disk SAN - /d (0.0 of 221.4 G.S.T), 0.0%

0.0 of 17963.6 Hour SMP CPU (0.0 of 697.9 G.S.T), 0.0%

0.0 of 50.0 GByteYear MP Disk (0.0 of 119.0 G.S.T), 0.0%

Total usage for project csp007 892.6 of 1959.6 Generic Service Tokens, 45.5%

# **HPCI** Daresbury

Last Trade: Mon Oct 7 10:07:27 2002

Usage:

34683.7 of 34482.9 PEHour MPP PE CPU (838.6 of 833.8 G.S.T), 100.6%

5.1 of 3.8 GByteYear HP Disk (30.3 of 22.7 G.S.T), 133.4%

1.9 of 0.0 Hour Wren CPU (0.1 of 0.0 G.S.T), 486087.6%

4062.9 of 4120.4 Hour SMP CPU (157.8 of 160.1 G.S.T), 98.6%

2.7 of 1.7 GByteYear MP Disk (6.4 of 4.0 G.S.T), 159.0%

10817.5 of 10497.3 Hour Green CPU (565.2 of 548.5 G.S.T), 103.1%

1.0 of 1.0 Day Training (10.9 of 10.9 G.S.T), 99.7%

Total usage for project hpcid 1609.4 of 1580.0 Generic Service Tokens, 101.9%

# HPCI Edinburgh

Last Trade: Wed Jul 11 12:09:29 2001

Usage:

1759.1 of 4070.6 PEHour MPP PE CPU (42.5 of 98.4 G.S.T), 43.2%

5.1 of 4.7 GByteYear HP Disk (30.2 of 28.1 G.S.T), 107.4%

698.4 of 770.8 Hour SMP CPU (27.1 of 29.9 G.S.T), 90.6%

4.4 of 2.8 GByteYear MP Disk (10.4 of 6.7 G.S.T), 156.3%

1728.7 of 1739.8 Hour Green CPU (90.3 of 90.9 G.S.T), 99.4% Total usage for project hpcie 200.7 of 254.1 Generic Service Tokens, 79.0%

HPCI Southampton Last Trade: re-enabled

Usage:

737.9 of 5825.0 PEHour MPP PE CPU (17.8 of 140.8 G.S.T), 12.7% 31.7 of 31.6 GByteYear HP Disk (188.9 of 188.2 G.S.T), 100.4% 37.8 of 1074.0 Hour SMP CPU (1.5 of 41.7 G.S.T), 3.5% 3.1 of 3.0 GByteYear MP Disk (7.4 of 7.1 G.S.T), 104.6%

Total usage for project hpcis 215.6 of 377.9 Generic Service Tokens, 57.1%

# CfS Issue 1.0 Appendix 6

| Project | PI Name              | Subject                                                                                              | Discipline/Department  |
|---------|----------------------|------------------------------------------------------------------------------------------------------|------------------------|
|         |                      |                                                                                                      |                        |
| cse002  | Wander, A (Dr )      | Support for the UKCP                                                                                 | Physics                |
| cse003  | Dundas, D (Dr)       | HPC Consortiums 98-2000                                                                              |                        |
| cse004  | Sandham, N (Prof)    | UK Turbulence                                                                                        |                        |
| cse006  | Briddon, P (Dr)      | Covalently Bonded Materials                                                                          |                        |
| cse007  | Foulkes, M (Dr)      | Quantum Many Body Theory                                                                             |                        |
| Cse008  | Vincent, M (Dr)      | Model Chemical Reactivity                                                                            |                        |
| cse009  | Slater, Ben          | HPC Computing Applications in Materials Chemistry                                                    | Chemistry              |
| cse010  | William, J (Dr)      | Free Surface Flows                                                                                   |                        |
| cse011  | William, J (Dr)      | Open Channel Flood Plains                                                                            |                        |
| cse013  | Leschziner, M (Prof) | Large Eddy Simulation for Aerospace & Turbomachinery Dynamics                                        | Mechanical Engineering |
| cse014  | De Oliverira, C (Dr) | Problems in Nuclear Safety                                                                           |                        |
| cse016  | Cant, S (Dr)         | Turbulent Combustion                                                                                 |                        |
| cse017  | Luo, K (Dr)          | Large Eddy Simulation & Modelling of Buoyant Plumes & Smoke<br>Spread in Enclosures                  |                        |
| cse018  | Jaffri, K            |                                                                                                      |                        |
| cse019  | Lander, J (Dr)       |                                                                                                      |                        |
| cse021  | Staunton, J (Dr)     |                                                                                                      |                        |
| cse022  | Jones, WP (Prof)     |                                                                                                      |                        |
| cse023  | Allen, M (Prof)      |                                                                                                      |                        |
| cse024  | Allan, RJ (Dr)       |                                                                                                      |                        |
| cse025  | Walet, NR (Dr)       |                                                                                                      |                        |
| cse026  | Neal, M (Dr)         |                                                                                                      |                        |
| cse029  | Apsley, DD (Dr)      |                                                                                                      |                        |
| cse030  | Desplat, JC (Dr)     | High Performance Computing for complex Fluids                                                        | Physics                |
| cse033  | Breard, CC (Dr)      |                                                                                                      |                        |
| cse035  | Jenkins, S (Dr)      | Ab Initio Simulations of Catalytic Processes at Extended Metal Surfaces                              | Chemistry              |
|         |                      |                                                                                                      |                        |
| cse036  | Duff, I (Prof)       | Research & Development of Algorithms & Software for Large-Scale<br>Linear & Non-Linear Systems       | Maths                  |
| cse040  | Badcock, K (Dr)      | Prediction of Non-Linear Flutter Characteristics by Numerical Path<br>Following & Model Reduction    | Aerospace Engineeering |
| cse041  | Wu, X (Dr)           | Flutter & Noise Generation Mechanisms - Turbomachinery Fan<br>Assemblies                             | Mechanical Engineering |
| cse042  | Leschziner, M (Prof) |                                                                                                      |                        |
| cse043  | Williams, J (Dr)     | Numerical Simulation of Flow over a Rough Bed                                                        | Engineering            |
| cse050  | Bradley, D (Prof)    | Flame Instabilities: their influence on turbulent combustion & incorporation in mathematical models. | Mechanical Engineering |
| cse052  | Di Mare, F (Miss)    | Heat Transfer in Turbine Combustors                                                                  | Mechanical Engineering |
| cse053  | Leschziner, M (Prof) | Coupling RANS Near-Wall Turbulence Models with Large Eddy Simulation Strategies                      | Aerospace Engineering  |
| cse055  | Staunton, J (Dr)     | Ab-initio theory of magnetic anisotropy in transition metal ferromagnets                             | Physics                |
| cse056  | Zheng, Y (Dr)        | Aerothermalelasticity Modelling of Air Riding Seals for Large Gas Turbines                           | Mechanical Engineering |
| cse057  | Evans, R (Dr)        | Relativistic Particle Generation from Ultra-Intense Laser Plasma Interactions                        | Physics                |
| cse059  | Cross, (Prof)        |                                                                                                      |                        |

| cse060 | Robb, M (Prof)       | CCP1 Renewal plus falgship project on Car-Parrinello in Chemistry                                                                                                        | Chemistry              |
|--------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| cse061 | Imregun, M (Prof)    | Casing treatment modelling for the investigation of stall, flutter and noise mechanisms in turbomachinery compressors.                                                   | Mechanical Engineering |
| cse063 | Sandham, N (Prof)    | Computational Aerocaustics for Turbulent Plane Jets                                                                                                                      | Aerospace Engineering  |
| cse064 | Leschziner, M (Prof) | Improvement of predictive performance of anisotropy-resolving<br>turbulence models in post-reattachment recovery region of separated<br>flow using Large Eddy Simulation | Aerodynamics           |
| cse065 | Williams, J (Dr)     |                                                                                                                                                                          |                        |
| cse066 | Coveney, P V (Prof)  | New clay-polymer nanocomposites using diversity-discovery methods: synthesis, processing and testing                                                                     | ТТ                     |
| cse067 | Williams, J (Dr)     |                                                                                                                                                                          |                        |
| cse068 | Bressloff            |                                                                                                                                                                          |                        |
| cse069 | Lou (Dr)             |                                                                                                                                                                          |                        |
| cse071 | Iacovides (Dr)       | The Practical Computation of Three-Dimensional Time-Dependent<br>Turbulent Flows in Rotating Cavities                                                                    | Mechanical Engineering |
| cse072 | Karlin, V (Dr)       | Structure & Dynamics of Unstable Premixed Laminar Flames                                                                                                                 | Engineering            |
| cse073 | Alavi                |                                                                                                                                                                          |                        |
| cse074 | Luo (Dr)             | Consortium on Computational Combustion for Engineering Applications                                                                                                      | Engineering            |
| cse075 | Coveney, PV (Prof)   | The Reality Grid - a tool for investigating condensed matter & materials                                                                                                 | IT                     |
| cse076 | Briddon, P (Dr)      | HPC facilities for the first principles simulation of covalently bonded materials                                                                                        | IT                     |
| cse077 | Kronenburg, A (Dr)   | Combustion Model Development for Large-Eddy Simulation of Non-<br>Premixed Reactive Flows.                                                                               | Mechanical Engineering |
| cse078 | Staunton             |                                                                                                                                                                          |                        |
| cse080 | Gao                  |                                                                                                                                                                          |                        |
| cse081 | Hickey               |                                                                                                                                                                          |                        |
| cse082 | Barakos, G (Dr)      | CFD Study of Three-dDimensional Dynamic Shelf                                                                                                                            | Aerospace Engineering  |
| cse084 | Needs, R (Dr)        | The Consortium for Computational Quantum Many-Body Theory                                                                                                                | Physics                |
| cse085 | Sandham, N (Prof)    | UK Turbulence Consortium                                                                                                                                                 | Engineering            |
| cse086 | Taylor, K (Prof)     | Multiphoton, Electron Collisions and BEC HPC Consortium 2002-2004                                                                                                        | Physics                |
| cse087 | Williams, J (Dr)     |                                                                                                                                                                          |                        |
| cse088 | Coleman              |                                                                                                                                                                          |                        |
| cse089 | Wiercigroch, M (Dr)  | Nonlinear Dynamics & Rock Contact Fracture Mechanics in Modelling<br>of Vibration Enhanced Drilling                                                                      | Engineering            |
| cse090 | Imregun, M (Prof)    |                                                                                                                                                                          |                        |
| cse091 | Avital               |                                                                                                                                                                          |                        |
| cse092 | Allen                |                                                                                                                                                                          |                        |
| cse093 | Williams, J (Dr)     |                                                                                                                                                                          |                        |
| cse094 | John                 |                                                                                                                                                                          |                        |

| 005              | Df1                     | 11                                                                                                                                                    |                                    |
|------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| cse095           | Barford                 |                                                                                                                                                       |                                    |
| cse096           | Lo                      |                                                                                                                                                       |                                    |
| Cse097           | Hickey                  |                                                                                                                                                       |                                    |
| cse098           | De Souza, M M (Dr)      | Indium interaction in silicon for ULSI technologies                                                                                                   | Physics                            |
| cse099           | Williams, J (Prof)      |                                                                                                                                                       |                                    |
| cse100           | Gao, S (Dr)             | Dev of Novel Aerodynamic Lenses for Focusing Nanoparticle Beams                                                                                       | Engineering                        |
| cse101           | Jiang (Dr)              | Direct Numerical Simulation of Fuel-Air Mixing with Passive Flow Control of Diesel Combustion.                                                        | Mechanical Engineering             |
| cse102           | Williams, J (Prof)      | Numerical Modelling of Flow around Bridge Piers                                                                                                       | Engineering                        |
| cse103           | Neil, M P (Prof)        | Simulation and Modelling of liquid crystalmesopases linked to the design of molecular and material properties.                                        | Mathematics                        |
| cse104           | Greaves, D M (Dr)       | CFD Modelling of free surface waves driven by moving bodies using adaptively refined cut cell hierarchical grids                                      |                                    |
| cse105           | Chemyshenko, S I (Prof) | Optimal database of the direct numerical simulation of turbulent channel flow                                                                         | Aerodynamics & Flight Mechanics    |
| cse106           | Augarde (Dr)            | Parametric Studies of multiple tunnels                                                                                                                | Engineering                        |
| cse107           | Hicks, MA (Dr)          | Parallel Finite Elements for Stochastic Analysis                                                                                                      | Engineering                        |
| cse108           | Holden, AV (Prof)       | Large-scale parallelisation of electro-physiological & mechanical cardiac virtual tissues.                                                            | Biomedical Sciences                |
| cse109           | Allen, M (Prof)         | University of Warwick New HPC Project                                                                                                                 | Physics                            |
| cse110           | Leach, SA (Dr)          | Application of HE Computing to Develop Complex Stochastic Models to aid Public Health & National Operational Responses to Infectious Disease Threats. |                                    |
| cse111           | Avital, Eldad 9Dr)      | A numerical study of three dimensional wakes generated by free surface piecing circular cylinders                                                     | Engineering                        |
| cse112           | Chemyshenko, SI (Prof)  | Master-mode analysis of the genesis of organized structures in turbulent flows.                                                                       | Engineering - Aerodynamics         |
| cse113           | Wirth, T (Prof)         | Stereoselective Halocyclisations                                                                                                                      | Chemistry                          |
| cse114           | Jiang, X (Dr)           | Direct numerical simulation of fuel injection & spray combustion                                                                                      | Engineering                        |
| cse115           | De Leeuw, N (dr)        | A computational study of bio-mineralisation: nucleation and growth of bone material on biological templates                                           |                                    |
| cse116           | John, N (Dr)            | An Advanced environment for enabling visual supercomputing                                                                                            |                                    |
| cse117           | Theodoropoulos, K (Dr)  | Modelling of Microreactors: An integrated Multi-scale Approach                                                                                        |                                    |
| cse118           | Gavaghan, David (Dr)    | EPSRC e-science pilot in Integrative Biology                                                                                                          |                                    |
| csn001           | De Cuevas, B (Mrs)      | OCCAM                                                                                                                                                 | Ocean/Earth Sciences               |
| csn002           | Vincent, Mark (Dr)      |                                                                                                                                                       |                                    |
| csn003           | Steenman-Clark, L (Dr)  | UGAMP                                                                                                                                                 | Meteorology                        |
| csn005           | Huw Davies, J (Prof)    |                                                                                                                                                       |                                    |
| csn006           | Brodholt, J (Dr)        | HPC for Mineral Physics                                                                                                                               | Geological Sciences                |
| csn009           | Proctor, R (Dr)         |                                                                                                                                                       |                                    |
| csn011           | Gray, SL (Dr)           |                                                                                                                                                       |                                    |
| csn012           | Tennyson, J (Prof)      | Calculated Absorption by water vapour at near infra-red & optical wavelengths                                                                         | Physics & Astronomy                |
| csn013           | Voke, P (Prof)          | Large Eddy Simulation Extended by Extreme Value Theory for the Prediction of Dispersion, Concentration Threshold Boundaries & Field Connectivity      | Mechanical & Materials Engineering |
| csn014           | Llewellyn Jones (Prof)  | Data Assimilation scheme to optimize info on the surface-atmosphere interface from satellite observations of Top-of-the Atmosphere Brightness Temp.   | Physics & Astronomy                |
| csn015           | Proctor, R (Dr)         | A Testbed for Zooplankton Models of the Irish Sea                                                                                                     | Coastal & Marine Sciences          |
| csn017           | Payne, A (Dr)           | Stability of the Antarctic Ice Sheet                                                                                                                  | Geography                          |
| csn029           | Allen, MR (Dr)          |                                                                                                                                                       |                                    |
| csn030           | New                     |                                                                                                                                                       |                                    |
| csn031           | Richards                |                                                                                                                                                       |                                    |
| csn032           | Sutton                  |                                                                                                                                                       |                                    |
| csn033           | Saunders                |                                                                                                                                                       |                                    |
| csn035           | Robinson                | Assimilation of Altimeter Padiameter 8 in situ data into the OCCAM                                                                                    | Environmental Caianas              |
| csn036           | Liu, C (Dr)             | Assimilation of Altimeter, Radiometer & in situ data into the OCCAM model. Analysis of water properties & transports                                  | Environmental Science              |
| csn038           | Oppenheimer             | ]                                                                                                                                                     |                                    |
| csn039<br>csn040 | Beven<br>Slingo         | ]                                                                                                                                                     |                                    |
| csn040           | Lawrence                | ]                                                                                                                                                     |                                    |
| csn042           | Gray, SL (Dr)           | Transport & Mixing in Fronts                                                                                                                          |                                    |
|                  |                         |                                                                                                                                                       |                                    |

| csn044           | Steenman-Clark, L (Dr)             | Earth Observation Project                                                                                                      | Meteorology                       |
|------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| csn045           | Slingo                             |                                                                                                                                |                                   |
| csn046           | Aitken                             |                                                                                                                                |                                   |
| csn047           | Gubbins                            |                                                                                                                                |                                   |
| csn048           | Brodholt                           |                                                                                                                                |                                   |
| csn049           | Srokosz                            | Climate impact changes in Atlantic Thermohaline.                                                                               |                                   |
| csn050           | Challenor                          | The Probability of rapid climate change                                                                                        |                                   |
| csn051           | Proctor                            | Ultr-fine scale modeling of the northern North Atlantic Thermohaline.                                                          |                                   |
| csn052           | Xie, Z (Dr0                        | Quantifying the scaling of physical transport in structured heterogeneous porous media                                         | Earth Sciences                    |
| csn053           | Das, S (Dr)                        | Rupture History of large earthquakes from analysis of broad band seismograms, and its physical interpretation.                 | Earth Sciences                    |
| csn054           | Thuburn, J (Dr)                    | An Integrated Model of Atmospheric Convection                                                                                  | Meteorology                       |
| csn055           | Vocadlo, L (Dr0                    | The structure and anisotropy of Earths inner core.                                                                             | Earth Sciences                    |
| csn056           | Hoskins B (Prof)                   | Atmospheric water vapour budget & it's relevance to the thermohaline circulation                                               | Meteorology                       |
| csn057           | Guilyardi, E (Dr)                  | Role of salinity in ocean circulation and climate response to greenhouse gas forcing.                                          | Atmospheric Modelling             |
| csn058           | Tudhope, A (Dr)                    | Improving ability to predict rapid changes in the el nino southern oscillation climatic phenomenon                             | Atmospheric Modelling             |
| csn059           | Watson, AJ (Prof)                  | Circulation, overflow & deep connection in the Nordic seas.                                                                    | Environmental Sciences            |
| csb001           | Houldershaw, D (Dr)                | Use of Cray T3E for multiple long trajectories of protein unfolding                                                            | Crystallography                   |
| csb002           | Mulholland, A (Dr)                 |                                                                                                                                |                                   |
| csb003           | Carling, J (Dr)                    |                                                                                                                                |                                   |
| csb003           | Greenall                           |                                                                                                                                |                                   |
| csb005           | Haley                              | Genetic Analysis of Complex Traits                                                                                             |                                   |
| csb006           | Sansom, M (Prof)                   | DFT calculations for ion channels and transport proteins                                                                       | Biochemistry                      |
| csp002           | Chapman, S (Dr)                    | 101 for orannes and dansport proteins                                                                                          | Diceicinistry                     |
| csp002           | Ord, SM (Mr)                       |                                                                                                                                |                                   |
| csp004           | Bell, K L (Prof)                   | A Programme for Atomic Physics for Astrophysics at Queen's University Belfast (2001-2005)                                      | Astronomy                         |
| csp005           | Chapman                            |                                                                                                                                |                                   |
| csp006           | Jain, R (Dr)                       | Numerical Simulation of forced magnetic reconnection in the solar corona                                                       | Physics                           |
| csp007           | Scott, P (Dr)                      | A Programme for Atomic Physics for Astrophysics at Queens University<br>Belfast (2001-2005)                                    | Astronomy                         |
| css001           | Boyle, P (dr)                      |                                                                                                                                |                                   |
| css002           | Crouchley, R (Dr)                  |                                                                                                                                |                                   |
| HPCID            | Allan, R (Dr)                      |                                                                                                                                |                                   |
| HPCIE            | Henty, D (Dr)                      |                                                                                                                                |                                   |
| HPCIS            | Nicole, D (Dr)                     |                                                                                                                                |                                   |
| UKHEC            | Allan, R (Dr)                      | UK HEC Collaboration, Core Support for High-End Computing 1999-<br>2002                                                        |                                   |
| cs2009           | Pennington, V (Dr)                 | 2002                                                                                                                           |                                   |
| cs2009           | Mallinger, F (Dr)                  | <u>                                   </u>                                                                                     |                                   |
|                  |                                    |                                                                                                                                |                                   |
| cs2012<br>cs2014 | Qin, N (Prof)                      |                                                                                                                                |                                   |
|                  | Karlin, V (Dr)                     |                                                                                                                                |                                   |
| cs2015<br>cs2016 | Tejera Cuesta, P (Mr)              | ]                                                                                                                              |                                   |
| cs2016<br>cs2017 | Miles, JJ (Dr)                     |                                                                                                                                |                                   |
|                  | Eisenbach, M (Mr)                  |                                                                                                                                |                                   |
| cs2028           | Annett (dr)                        |                                                                                                                                |                                   |
| cs2030           | McKenna, K (Mr)                    | <u> </u>                                                                                                                       |                                   |
| cs2031           | Ess                                |                                                                                                                                |                                   |
| cs2032           | Jain, R (Dr)                       | Tradium internation 1 Tr. C. C. 177 CT. 1 1                                                                                    | Di :                              |
| cs2034<br>cs2035 | Chichkine, M (Mr)  Barakos, G (Dr) | Indium interaction in silicon for future ULSI technologies    Detached Eddy Simulation of Aerodynamics & Aerocautics of Cavity | Physics  Aerospace Engineering    |
| cs2036           | Farid, Vakili-Tahami (Mr)          | Flows MPI Evaluation                                                                                                           | Mechanical Aerospace & Manufactur |
| cs2037           | Domene, Carmen (Dr)                | Ab initio molecular dynamics of ion in membrane proteins                                                                       | Engineering                       |
| cs2038           | Excell, P (Prof)                   | Computational Bioelectromagnetic Modeling of Human Cellular Processes for Mobile Phone Safety Research                         | Informatics                       |
| cs2039           | Carlborg (Dr)                      | Genetic Analysis of Complex Traits                                                                                             | Genetics & Biometry               |
| cs2040           | Costen, F (Mrs)                    | Impulse radio propogation in a dense multipath & shadowed                                                                      | Computer Science                  |
| cs2041           | Filippone, A (Dr)                  | environment for ultra-wideband communication systems  Numerical Study of the 3D obstructed shear-driven cavity flow.           | Mechanical Aerospace & Manufactur |
| cs2042           | Smeed, DA (Dr)                     | A temporally continuous high-resolution record of global sea level                                                             | Engineering Ocean/Earth Sciences  |
| cs2043           | Theodoropoulos, K (Dr)             | during the Holocene.  Design of microchannel structures for microreactor applications                                          | Process Intewgration              |
| cs2044           | Mota-Furtado, F (Dr)               | Statistical Properties of Quantum Transport                                                                                    | Maths                             |
|                  |                                    |                                                                                                                                |                                   |

| cs3003 | Chambers, E (Dr)  |                                                                                                                                        |                         |
|--------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| cs3004 | Avis, N (Prof)    |                                                                                                                                        |                         |
| cs3005 | Zarei, B (Mr)     |                                                                                                                                        |                         |
| cs3007 | Finch, E          |                                                                                                                                        |                         |
| cs3008 | Alsberg, B (Dr)   |                                                                                                                                        |                         |
| cs3009 | Flower, D (Dr)    |                                                                                                                                        |                         |
| cs3010 | Kemsley, K (Dr)   |                                                                                                                                        |                         |
| cs3012 | Austin, J (Dr)    |                                                                                                                                        |                         |
| cs3013 | Raval, R (Prof)   |                                                                                                                                        |                         |
| cs3014 | MacLaren, J (Dr)  |                                                                                                                                        |                         |
| cs3015 | Hampshire, D (Dr) | High Performance Computational Solutions for the Ginzburg-Landau<br>Equations that describe Flux Pinning in High-Field Superconductors | Physics                 |
| cs3016 | Petchey, O (Dr)   | Randomisation test for the significance of functional diversity for eco-<br>system processes                                           | Animal & Plant Sciences |
| cs3017 | Gross, M (Mr)     | Numerical Simulation of Laser Materials Processing                                                                                     | Engineering             |
| cs3018 | Durrant, M (Dr)   | Functional modelling of oxalate-degrading enzymes & of lipoxygenase using quantum calculations.                                        | Biology                 |
| cs3019 | Bengough (Dr)     | Lattice-Boltzmann simulation of water & solute transport in porous media.                                                              | Physics                 |
| Cs3020 | Gajjar            | Flow past a circular cylunder at large Reynoldss numbers                                                                               |                         |
| cs4001 | White P           |                                                                                                                                        |                         |
| cs4002 | Cooper A (Miss)   |                                                                                                                                        |                         |
|        |                   |                                                                                                                                        |                         |
|        |                   |                                                                                                                                        |                         |