CSAR Service - Management Report

April 2005

This report documents the quality of the CSAR service during the month of April 2005.

A more comprehensive report is provided quarterly, which additionally covers wider aspects of the Service such as information on Training, Application Support and Value-Added services.

This and other such reports are made available through the Web to staff within EPSRC and the other Research Councils, to CfS staff and CSAR Service users. The reports are indexed in a similar way to that which other useful information and news are listed for selection.

1. Introduction

This document gives information on Service Quality and on actual usage of the CSAR Service during the reporting period of April 2005. The information, in particular, covers the availability and usage of the main CSAR Service High Performance Computing (HPC) systems:

- SGI Altix3700/512 (Newton)
- SGI Origin3000/512 (Green)
- ➤ SGI Origin2000/128 (Fermat)
- ➤ SGI Origin300/16 (Wren)

The information is provided in both textual and graphical form, so that it is easier to see trends and variances.

April has seen the workload of the three primary systems at variable levels, with the workload on the Altix system Newton remaining steady.

The CSAR Service has been granted an 18 month extension of service contract until June 30th 2006.

2. Service Quality

This section covers overall Customer Performance Assessment Ratings (CPARS), HPC System availability and usage, Service Quality Tokens and other information concerning issues, progress and plans for the CSAR Service.

2.1 CPARS

<u>Table 1</u> gives the measure by which the quality of the CSAR Service is judged. It identifies the metrics and performance targets, with colour coding so that different levels of achievement against targets can be readily identified. Unsatisfactory actual performance will trigger corrective action.

CSAR Service - Service Quality Report - Performance Targets

		Performance Targets					
Service Quality Measure	White	Blue	Green	Yellow	Orange	Red	
HPC Services Availability							
Availability in Core Time (% of time)	> 99.9%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less	
Availability out of Core Time (% of time)	> 99.8%	> 99.5%	> 99.2%	> 98.5%	> 95%	95% or less	
Number of Failures in month	0	1	2 to 3	4	5	> 5	
Mean Time between failures in 52 week rolling period (hours)	>750	>500	>300	>200	>150	otherwise	
Help Desk							
Non In-depth Queries - Max Time to resolve 50% of all queries	< 1/4	< 1/2	< 1	< 2	< 4	4 or more	
Non In-depth Queries - Max Time to resolve 95% of all queries	< 1/2	< 1	< 2	< 3	< 5	5 or more	
Administrative Queries - Max Time to resolve 95% of all queries	< 1/2	< 1	< 2	< 3	< 5	5 or more	
Help Desk Telephone - % of calls answered within 2 minutes	>98%	> 95%	> 90%	> 85%	> 80%	80% or less	
Others							
Normal Media Exchange Requests - average response time	< 1/2	< 1	< 2	< 3	< 5	5 or more	
New User Registration Time (working days)	< 1/2	< 1	< 2	< 3	< 4	otherwise	
Management Report Delivery Times (working days)	< 1	< 5	< 10	< 12	< 15	otherwise	
System Maintenance - no. of sessions taken per system in the month	0	1	2	3	4	otherwise	

Table 1

<u>Table 2</u> gives actual performance information for the period of April 1st to 30th inclusive. Overall, the CPARS Performance Achievement in April was acceptable (see Table 3); i.e. Green measured against the CPARS performance targets.

CSAR Service - Service Quality Report - Actual Performance Achievement

	2004/5											
Service Quality Measure	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April
HPC Services Availability												
Availability in Core Time (% of time)	94.21%	97.49%	97.97%	100%	99.52%	97.08%	98.50%	99.50%	97.37%	97.85%	97.85%	96.00%
Availability out of Core Time (% of time)	99.73%	97.85%	100%	99.2%	99.80%	98.67%	98.78%	99.2%	99.73%	99.5%	99.80%	99.90%
Number of Failures in month	3	4	2	2	2	3	4	2	3	5	4	4
Mean Time between failures in 52 week rolling period (hours)	2556	1125	931	760	645	513	422	384	340	289	255	227
Help Desk												
Non In-depth Queries - Max Time to resolve 50% of all queries	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Non In-depth Queries - Max Time to resolve 95% of all queries	<3	<2	<2	<1	<2	<3	<1	<0.5	<0.5	<2	<1	<2
Administrative Queries - Max Time to resolve 95% of all queries	<0.5	<1	<0.5	<0.5	<1	<1	<0.5	<1	<0.5	<2	<1	<1
Help Desk Telephone - % of calls answered within 2 minutes	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Others												
Normal Media Exchange Requests - average response time	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
New User Registration Time (working days)	0	0	0	0	0	0	0	0	0	0	0	0
Management Report Delivery Times (working days)	10	10	10	10	10	10	10	10	10	10	10	10
System Maintenance - no. of sessions taken per system in the mon	2	2	2	2	2	2	2	2	2	2	2	2

Table 2

Notes:

- HPC Services Availability has been calculated using the following formula, based on the relative NPB performance of Fermat, Green and Newton at installation:
 - [Fermat availability x 40/ (40+233+343)] + [Green availability x 233/(40+233+343)] + [Newton availability x 343/(40+233+343)]
- 2 Mean Time between failures for Service Credits is formally calculated based on a rolling 12 month period.

<u>Table 3</u> gives Service Credit values for the month of April. These will be accounted on a quarterly basis, formally from the Go-Live Date. The values are calculated according to agreed Service Credit Ratings and Weightings.

CSAR Service - Service Quality Report - Service Credits

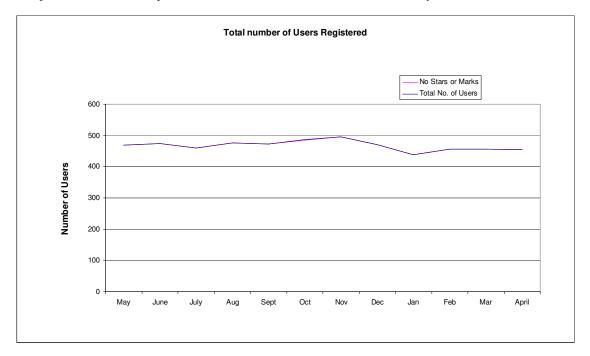

	2004/5											
Service Quality Measure	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April
HPC Services Availability												
Availability in Core Time (% of time)	0.195	0.078	0.078	-0.058	-0.039	0.078	0.039	-0.039	0.078	0.078	0.078	0.078
Availability out of Core Time (% of time)	0	0.078	-0.047	0	-0.047	0	0	0	-0.039	0	-0.047	-0.047
Number of Failures in month	0.0	0.008	0	0	0	0.008	0.008	0	0.008	0.0004	0.008	0.008
Mean Time between failures in 52 week rolling period (hours)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Help Desk												
Non In-depth Queries - Max Time to resolve 50% of all queries	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019
Non In-depth Queries - Max Time to resolve 95% of all queries	0.016	0	0	-0.016	0	0.016	-0.016	-0.019	-0.019	0	-0.016	0
Administrative Queries - Max Time to resolve 95% of all queries	-0.019	-0.016	-0.019	-0.019	-0.016	-0.016	-0.019	-0.016	-0.019	0	-0.016	-0.016
Help Desk Telephone - % of calls answered within 2 minutes	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
Others												
Normal Media Exchange Requests - average response time	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
New User Registration Time (working days)	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019
Management Report Delivery Times (working days)	0	0	0	0	0	0	0	0	0	0	0	0
System Maintenance - no. of sessions taken per system in the mont	0	0	0	0	0	0	0	0	0	0	0	0
Monthly Total & overall Service Quality Rating for each period:	0.07	0.05	-0.02	-0.07	-0.07	0.02	-0.02	-0.06	-0.02	0.02	-0.02	-0.01

Table 3

The Service Availability issues are receiving close management attention, to determine the root causes and the most appropriate solutions to overcome the problems at least risk to the overall service.


2.2 Service Quality Tokens

The position at the end of April 2005 is that none of the 454 users has awarded any marks to the service.

The graph above shows the total number of registered users on the CSAR Service and the number of users holding a neutral view of the service.

The graph below illustrates the monthly usage trend of quality tokens:

The current status of the Stendahl tokens is that there are no gold stars or black marks allocated to the service.

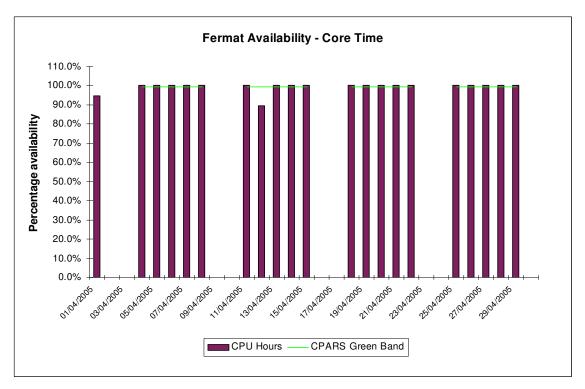
2.3 Throughput Target against Baseline

The baseline is shown in GFLOP-Years for consistency with the other information contained within this report.

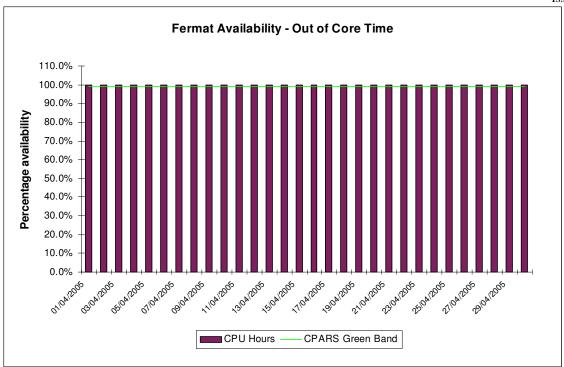
The Baseline Target for throughput was achieved this month. The actual usage figure was 249% of Baseline capacity.

Job Throughput Against Baseline CSAR Service Provision

Period: 1st to 30th April 2005

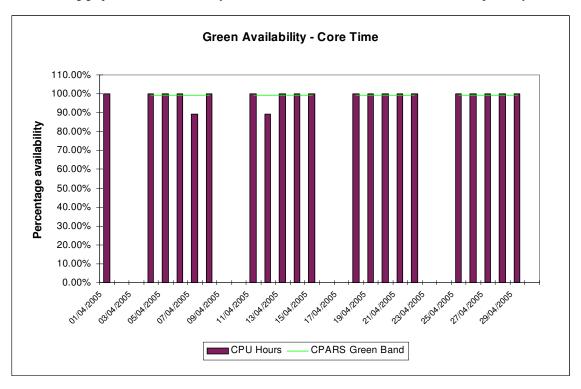

	Baseline Capacity for Period (GFLOP Years)	Actual Usage in Period (GFLOP Years)	Actual % Utilisation c/w Baseline during Period
Has CfS failed to deliver Baseline MPP Computing Capacity for EPSRC?	14.88	37.04	249.0%
	Baseline Capacity for Period (GFLOP Years)	Job Time Demands in Period	Job Demand above 110% of Baseline during Period (Yes/No)?
Have Users submitted work demanding > 110% of the Baseline during period?	14.88	39.2	Yes
		Number of Jobs at least 4 days old at end Period	Number of Jobs at least 4 days old at end Period is not zero (Yes/No)?
3. Are there User Jobs oustanding at the end of the period over 4 days old?		3	Yes
		Minimum Job Time Demands as % of Baseline during Period	Minimum Job Time Demand above 90% of Baseline during Period (Yes/No)?
Have Users submitted work demands above 90% of the Baseline during period?		86%	No
	Number of standard Job Queues (ignoring priorities)	Average % of time each queue contained jobs in the Period	Average % of time each queue contained jobs in the Period is > 97%?
5. Majority of Job Queues contained jobs from Users for more than 97% during period?	4	88%	No

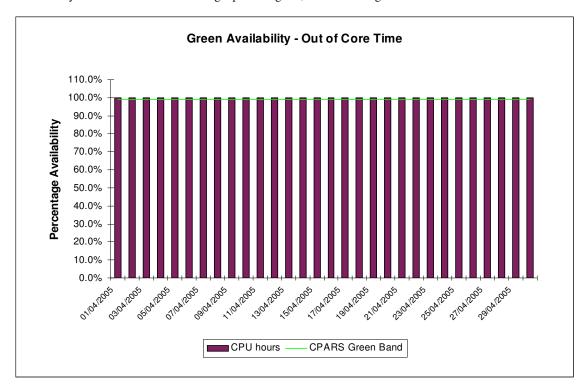
3. System Availability


Service availability each reporting period is calculated as a percentage of actual availability time over theoretical maximum time, after accounting for planned breaks in service for preventative maintenance.

3.1 SGI Origin2000 System (Fermat)

The following graphs show the availability of Fermat both in core time and out of core time respectively.

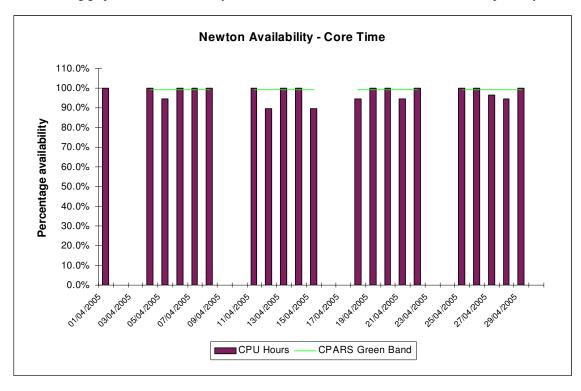

Availability of Fermat in core time during April was good, with two outages.


Availability of Fermat out of core time during April was excellent, with no outages.

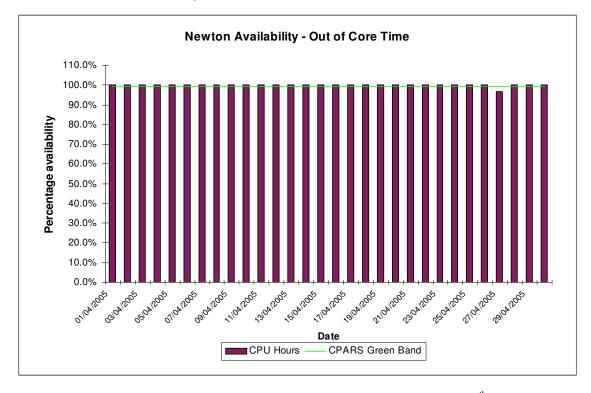
3.2 SGI Origin3000 System (Green)

The following graphs show the availability of Green both in core time and out of core time respectively.

Availability of Green in core time during April was good, with two outages.


Availability of Green out of core time during April was excellent, with no outages.

CfS


3.3 SGI Altix3700 System (Newton)

The following graphs show the availability of Newton both in core time and out of core time respectively.

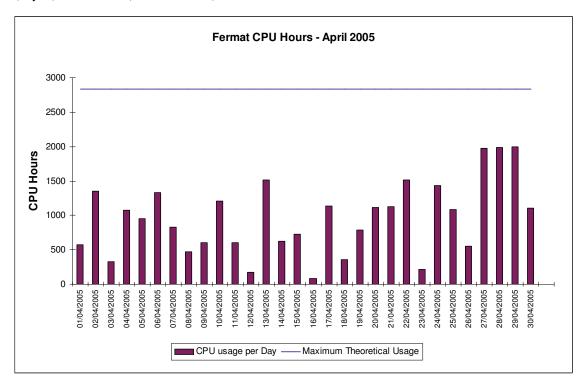
Issue 1.0

Further problems this month, mostly related to the CXFS software, have meant that availability in core time was not acceptable with seven outages. The CXFS issues were known bugs in the release of software current at the time; however, at the end of April, a new release of operating system and CXFS was installed on all systems, which should resolve these known problems.

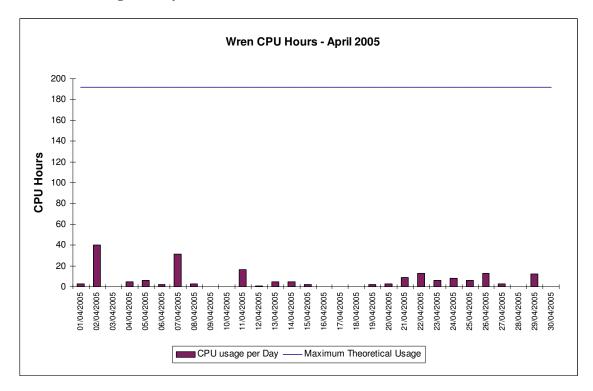
Availability of Newton out of core time was very good, with one very brief outage on the 27th.

4. HPC Services Usage

Usage information is given in tabular form, in Appendices, and in graphical format. The system usage information for the period of April 1st to 30th is provided by Project/User Group, totalled by Research Council and overall. This covers:

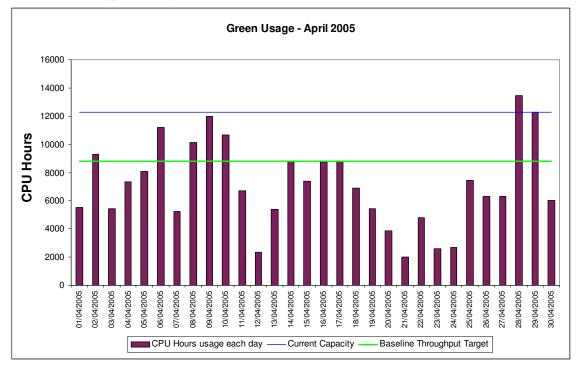

• CPU usage 162,285 CPU Hours Newton: Green: 213,186 CPU Hours 28,874.06 CPU Hours Fermat: 1.04 CPU Hours Wren (Batch): Wren (Interactive): 205.18 CPU Hours User Disk allocation 97.95 GB Years Medium Performance: SAN HV: 41.10 GB Years HSM/tape usage 4.689.91 GB Years

In addition, the following graphs are provided to illustrate usage per month, historically:


- a) SMP (Altix/Origin) Usage by month, showing usage each month of CPU (GFLOP-Years as per NPB), split by Research Council and by system. Overlaid horizontal lines show the overall Capacities.
- b) SMP (Origin) Usage by month, showing usage each month in CPU Hours, split by Research Council and giving the equivalent GFLOP-Years as per NPB. Overlaid horizontal lines show the Baseline and overall Capacity.
- c) Medium Performance Disk, combined Origin and SAN, allocated for User Data by month, showing the allocated space each month in GBytes, split by Research Council. The Baseline Capacity (1.5 Terabytes) is shown by an overlaid horizontal line.
- d) HSM/Tape Usage by month, showing the volumes held each in GBytes, split by Research Council. The Baseline Capacity (16 Terabytes) available will be shown by an overlaid horizontal line.

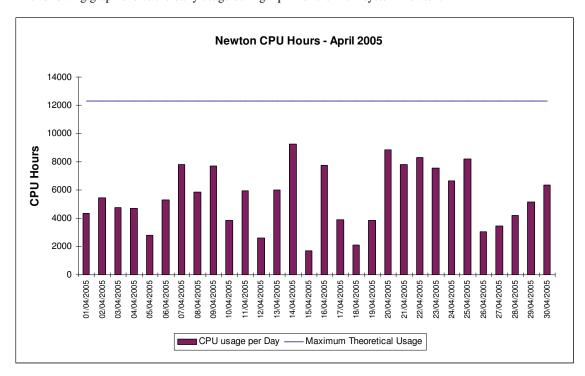
4.1 SGI Origin2000 System (Fermat)

The Origin2000 was reasonably utilised this month. The groups most heavily using the Fermat system are CSE086 (Taylor) and CSN003 (Steenman-Clark).



4.2 SGI Origin300 System (Wren)

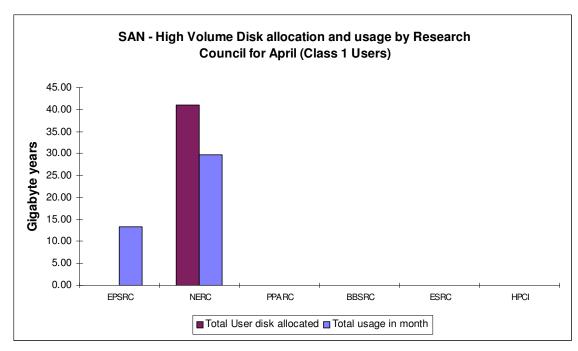
The above graph shows the utilisation of the interactive system Wren for the month of April.

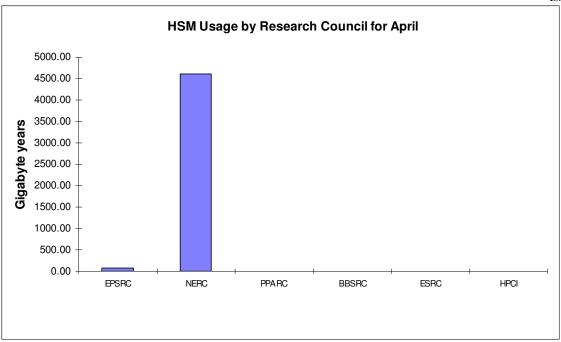

4.3 SGI Origin3000 System (Green)

The above graph shows the utilisation of Green for the month of April, which was slightly below Baseline.

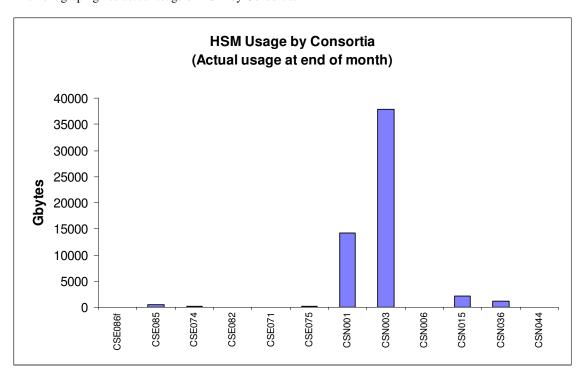
4.4 SGI Altix3700 System (Newton)

The following graph shows the daily usage during April for the Altix system Newton.


4.5 Disk/HSM Usage Chart

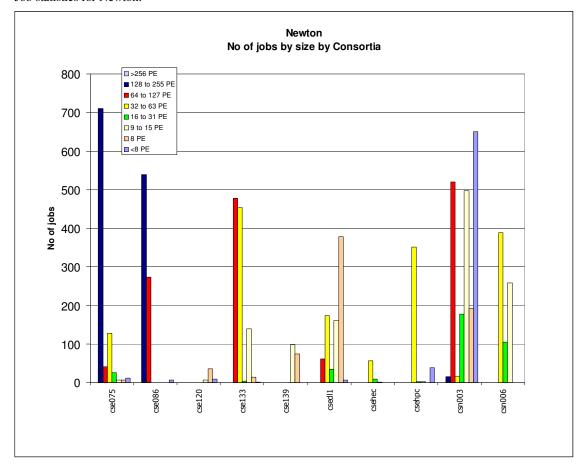

The graphs below show current disk and HSM allocations and usage.

Shown above is the disk allocation against usage on average of the Medium Performance (MP) disk.


The following graph shows the disk allocation against usage on average of the SAN High Volume (HV) disk.

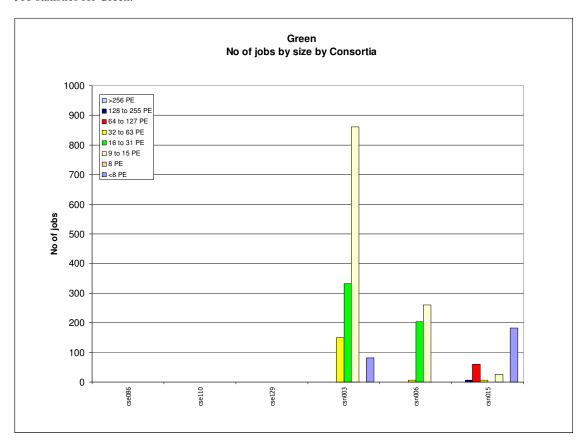
The above graph shows the total usage of the HSM facility by Research Council.

The next graph gives actual usage of HSM by Consortia.

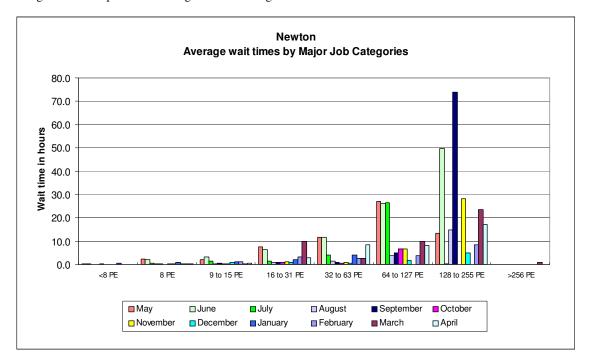


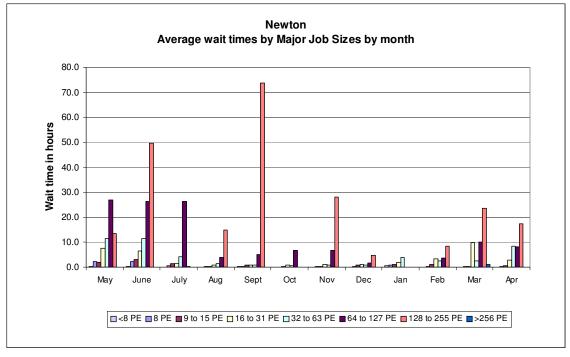
CSE085 (Sandham), CSN001 (De Cuevas), CSN003 (Steenman-Clark), CSN015 (Proctor) & CSN036 (Woolf) were the major users of HSM resource.

CfS


4.6 Processor Usage and Job Statistics Charts

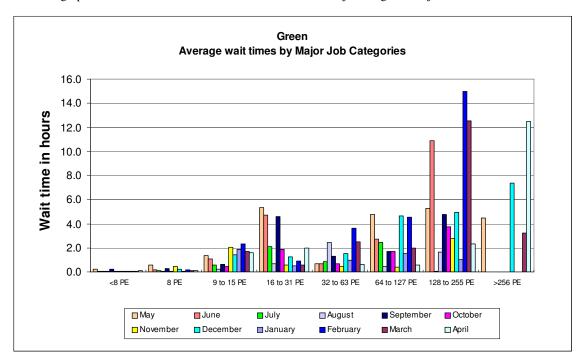
Job statistics for Newton:

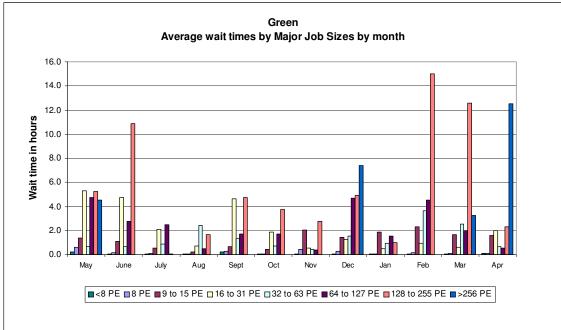

The above graph shows the number of jobs of the major sizes run in the period 1st to 30th April 2005.


Job statistics for Green:

The above graph shows the number of jobs of the major sizes run in the period 1st to 30th April 2005.

The next graph shows the wait times in hours on Newton for the major categories of jobs, larger jobs requesting tiling across multiple nodes having to wait the longest times.

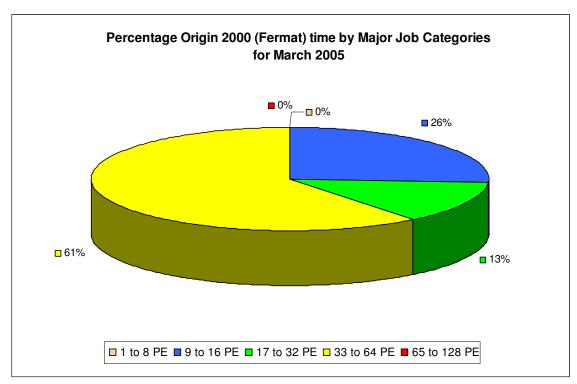


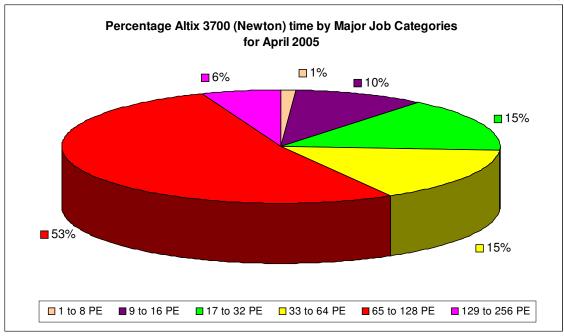


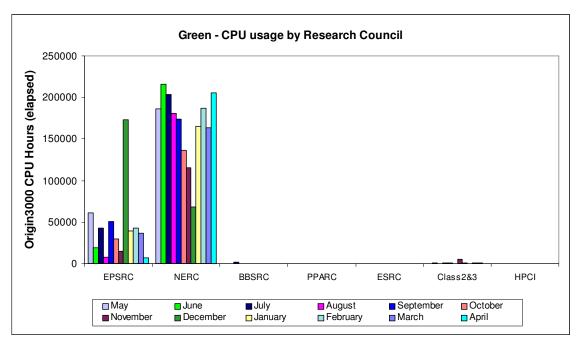
The chart above shows the average wait time trend on Newton so far this year.

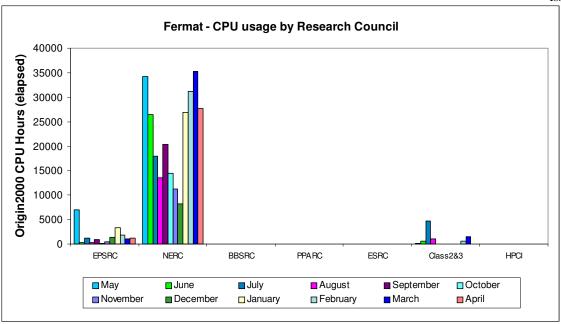
Issue 1.0

The next graph shows the wait times in hours on Green for the major categories of jobs:

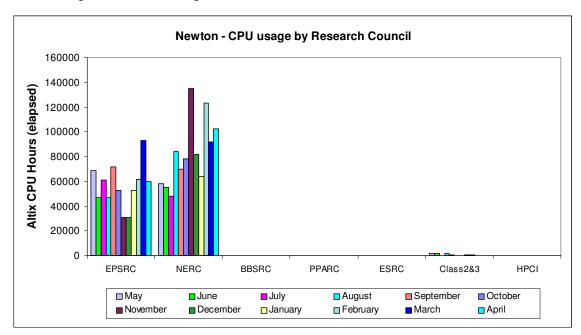



The chart above shows the average wait time trend on Green for the last 12 month period.

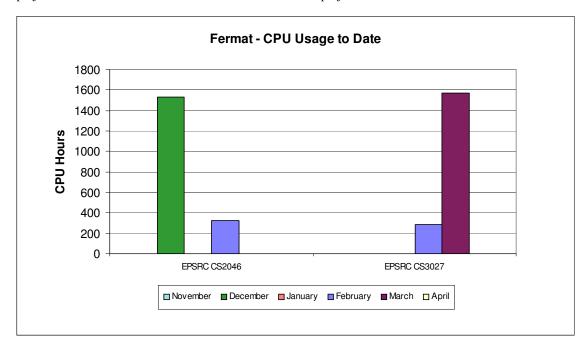

There was a good split of work across the mid- to high-end PE ranges on Green during April.


The highest percentage of workload on Fermat during April was in the 33 to 64 PE range, at 61%.

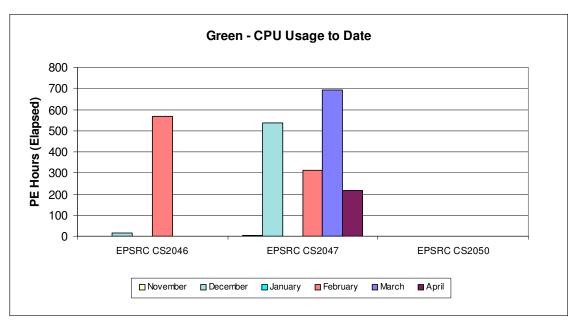
The highest concentration of work on Newton during April was in the 65 to 128 PE range, at 53%.



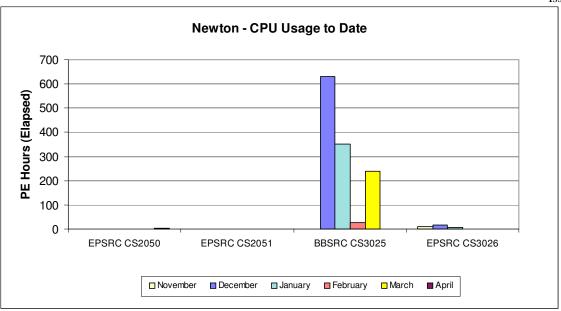
The above chart shows Green CPU usage by Research Council during the past 12 months of service.


Origin 2000 CPU usage is shown by Research Council during the past 12 months of service in the above chart.

The following chart shows CPU usage to date of the Altix 3700 Newton.

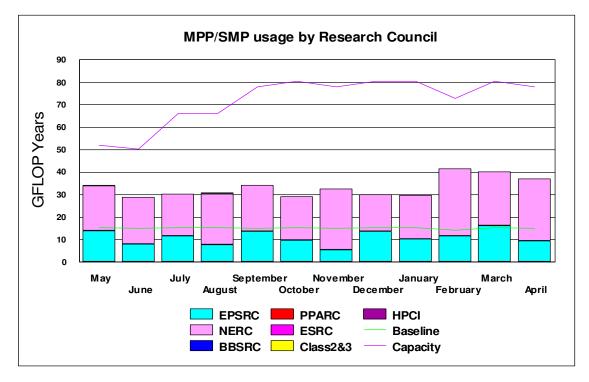


4.7 Class 2 & 3 Usage Charts

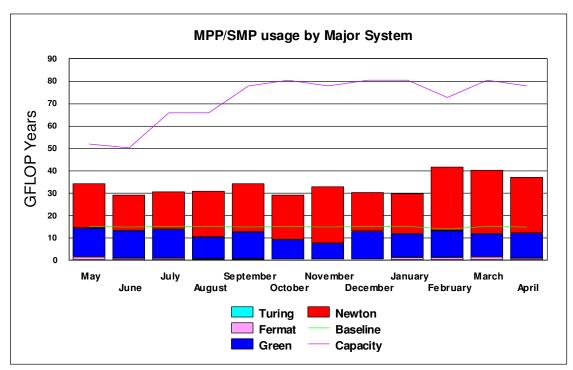

The next series of charts show the usage of the system by the class 2 & class 3 users. The usage is shown by project and identifies the Research Council of the individual projects.

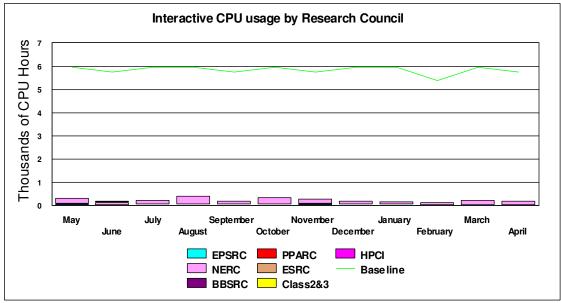
The above chart shows the CPU usage of the Fermat system by class 2 and class 3 users.

This chart details the CPU usage of Green by class 2 and class 3 users.

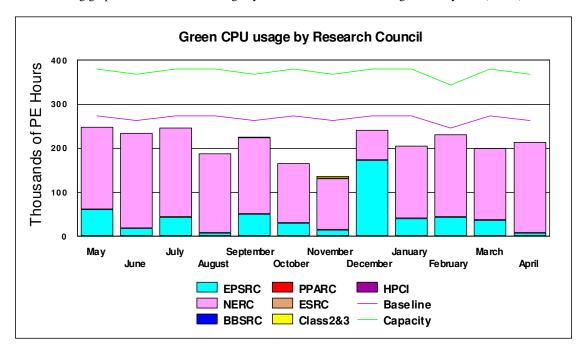

The above chart shows Newton usage by class 2 and class 3 users.

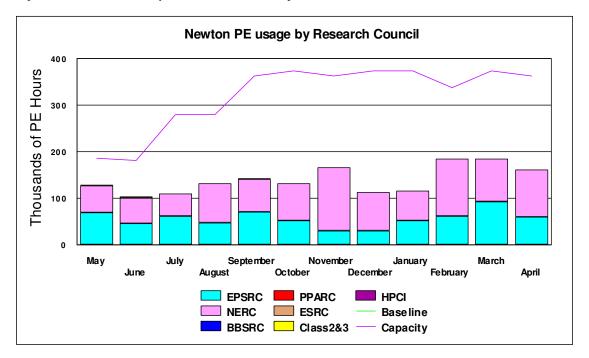
There is currently no MP disk or HSM usage by class 2 and class 3 users.


4.9 Charts of Historical Usage

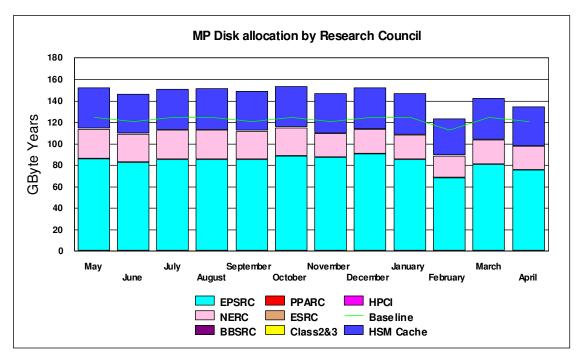

In all the Usage Charts, the baseline varies dependant upon the number of days in each month, within a 365-day year.

The graph below shows the GFLOP Year utilisation by Research Council for the previous 12 months.

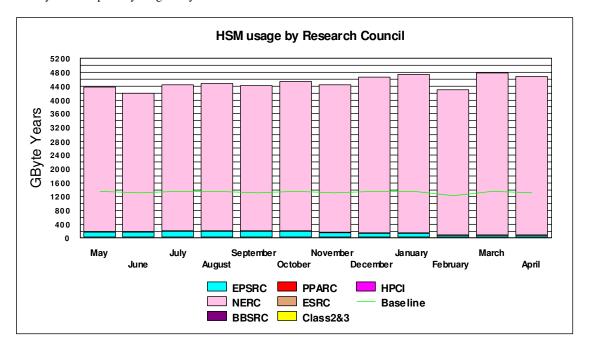

The next graph shows the historic SMP/MPP usage on the major systems. The increase in capacity reflects the expansion of the Altix system Newton by an extra 128 1.3Ghz CPU node in July, with the new node being upgraded by a further 128 1.5Ghz CPUs in September.



The above graph shows the historic interactive usage of the Origin 300 system (Wren). Eight of the higher speed 500Mhz CPUs in Wren deliver the baseline capacity equivalent to that which was previously available on the Origin 3000 system (Fermat) for interactive usage.


The following graph details the historic usage by Research council of the Origin 3000 system (Green).

The graph below displays the historic usage by Research Council of the Altix 3700 system (Newton). The increase in capacity reflects the expansion of Newton by a new 128 1.3 GHz CPU node in July, and the further expansion of the new node by 128 1.5Ghz CPUs in September.



The next series of graphs illustrates the usage of the disk and HSM resources of the system.

The graph above illustrates the historic allocation of the Medium Performance Disk on Fermat and the SAN.

The graph below shows the historic HSM usage by Research Council funded projects, now above Baseline at 48 Terabytes. The primary usage is by NERC.

4.8 Guest System Usage Charts

There is currently no Guest System usage.

5. Capability Incentives

Capability incentives were historically given on the T3E system Turing for jobs of 512 PEs and above. In April 2003 it was announced that discounts for capability jobs available on all CSAR systems had been aproved to include the SGI Origin 3000 system (Green) and the SGI Altix 3700 system (Newton).

These capability incentives were agreed with the Research Councils to encourage capability usage of the national supercomputers for greater scientific achievement, and offer the following discounts:

System	No of Processors	Discount
newton	192+ CPUs	15% discount
newton	128+ CPUs	10% discount
green	384+ CPUs	15% discount
green	256+ CPUs	10% discount

Discounts are given in the form of refunded Service Tokens.

Changes in usage patterns will be monitored and, subject to reviews, CfS reserve the right to change the incentives at any future date.

The following table displays the capability incentive discounts granted for April.

	Service Tokens Refunded: April 2005 Usage									
System			Conso	rtia			Total			
System	csn015	cse075					Total			
Green 256+ PEs	69.23						69.23			
Green 384+ PEs							0			
Newton 128+ PEs		0.03					0.03			
Newton 192+ PEs		59.25					59.25			
Total Tokens							128.51			

6. Service Status, Issues and Plans

6.1 Status

The service utilisation in April exceeded baseline.

In the final week of April, the operating systems on both the Origin and the Altix systems were upgraded, along with the associated CXFS SAN software. Problems experienced during previous months with the CXFS software had been targeted to be fixed by the vendor in this new release, and it is hoped that all previous issues have now been addressed with this upgrade.

During the month there was a balanced spread of work across all major systems.

6.2 Issues

Instability was once again experienced during April on the Altix system Newton. These were due primarily to further problems with the CXFS software, with the same issues being encountered previously. These known bugs are addressed in the above-mentioned upgrade to the operating system and associated CXFS software.

6.3 Plans

It is planned to combine the two 256 PE Newton nodes into one 512 processor physical node, expected to be carried during the second quarter this year.

This physical combination will mean that the system can additionally at a future date be converted into a 512 PE Single System Image.

More information will be given nearer the time for both sets of planned work.

.

7. Conclusion

April 2005 saw the overall CPARS rating at Green with the baseline being exceeded by 149%.

Continued management attention will be given to maximise the throughput of the Service, whilst balancing as fairly as practicable the shares between Projects and jobs of the varying sizes.

Appendix 1 contains the accounts for April 2005

Appendix 2 contains the Percentage shares by Consortium for April 2005

Appendix 3 contains the Percentage shares by Research Council for April 2005

Appendix 4 contains the Training, Applications and Optimisation support figures to the end of April 2005

Appendix 5 contains a breakdown of resource usage by Consortia to the end of April 2005.

Appendix 6 contains a reference table of the Consortium name, the subject area and the PI name.

CfS

Issue 1.0
Appendix 1

The summary accounts for the month of April 2005 can be found at the URL below

http://www.csar.cfs.ac.uk/admin/accounts/summary.shtml

Appendix 2

Percentage CPU time per consortia fo	r Green in April 2005	Percentage CPU time per consortia	for Newton in April 2005
Consortia	% Machine Time	Consortia	% Machine Time
CSE086	0.99	CSEdl1	12.50
CSE129	0.32	CSE086	7.11
CSE075	0.00	CSE072	0.20
CSE110	0.01	CSE077	0.00
CSN001	0.52	CSE139	1.24
CSN003	39.17	CSE133	10.83
CSN006	40.81	CSE075	4.26
CSN015	15.98	CSN001	0.04
CS2047	0.10	CSN003	44.15
CS2047	0.02	CSN006	19.10
CSEdI1	2.40	CSN015	0.00
CSEHPCX	0.00	CS2050	0.00
		CS2051	0.00

Percentage CPU time per cons	ortia for Fermat in April 2005	Percentage CPU time per cons	Percentage CPU time per consortia for Wren in April 2005			
Consortia	% Machine Time	Consortia	% Machine Time			
csedl1	2.10	csedl1	2.80			
CSE086	2.04	CSE086	1.01			
CSE131	0.00	CSE129	3.01			
CSN003	94.64	CSE137	0.00			
CSN006	1.21	CSE075	0.14			
CSN015	0.00	CSE131	0.10			
CS2046	0.00	CSN001	6.75			
CS3027	0.00	CSN003	72.88			
		CSN006	0.29			
		CSN015	11.96			
		CS2047	0.01			
		CS2050	0.02			
		CS3027	0.00			
		CSEHPCX	0.16			
	-					

<u>Consortia</u>	%Allocation	
CSEdl1	1.10	
CSE057	2.69	
CSE086	11.75	
CSE098	0.07	
CSE050	1.76	
CSE085	2.06	
CSE074	0.13	
CSE139	0.16	
CSE133	0.16	
CSE066	0.02	
CSE075	54.26	
CSE076	0.38	
CSE131	0.08	
HPCI Daresbury	0.04	
HPCI Edinburgh	0.08	
CSN001	8.39	
CSN003	3.78	
CSN005	41.96	
CSN006	5.03	
CSN015	2.94	
CSN052	2.52	
CS3025	0.02	
CSEHPCX	0.84	

Damasuta us visa us se	D							
Percentage usage of	f HSM by Consortium for April 2005							
Consortium	_ % Usage							
CSE086	0.03							
CSE085	0.83							
CSE074	0.43							
CSE082	0.00							
CSE071	0.01							
CSE075	0.36							
CSN001	25.18							
CSN003	67.25							
CSN006	0.01							
CSN015	3.73							
CSN036	2.15							
CSN044	0.01							

Percentage CPU usad	ge on Green by Research Council	for April 2005	Percentage CPU usage on Newton by Research Council for April 2005				
Research Council	% Usage		Research Council	% Usage			
EPSRC	3.53		EPSRC	36.71			
HPCI	0.00		HPCI	0.00			
NERC	96.47		NERC	63.29			
BBSRC	0.00		BBSRC	0.00			
ESRC	0.00		ESRC	0.00			
PPARC	0.00		PPARC	0.00			
			L		<u> </u>		
Percentage PE usage	on Fermat by Research Council	or April 2005	Percentage CPU usage	ge on Wren by Research Counci	for April 2005		
Research Council	% Usage		Research Council	% Usage			
EPSRC	4.15		EPSRC	8.10			
HPCI	0.00		HPCI	0.00			
NERC	95.85		NERC	91.89			
BBSRC	0.00		BBSRC	0.00			
ESRC	0.00		ESRC	0.00			
PPARC	0.00		PPARC	0.01			

Percentage MP Disc alle	ocated by Research Council for	pril 2005 Percenta	Percentage Disc allocated as SAN HV by Research Council for April 2005				
Research Council	% Allocated	EPSRC	0.00				
EPSRC	77.91	HPCI	0.00				
HPCI	0.12	NERC	100.00				
NERC	22.65	BBSRC	0.00				
BBSRC	0.07	ESRC	0.00				
ESRC	0.00	PPARC	0.00				
PPARC	0.00	PPARC	0.00				

Percentage HSM usage by Research Council for April 2005										
Research Council	<u>% usage</u>									
EPSRC	1.66									
HPCI	0.00									
NERC	98.34									
BBSRC	0.00									
ESRC	0.00									
PPARC	0.00									

Appendix 4

The following tables show the training and support resource usage by current consortia in person days to the current month.

Project	PI Name	Subject	Liaison Officer	Support Bought	Apps Support	Total Apps Support	Opt Support	Total Opt Support	Total Support Used	Training Bought	Training Used
csed11	Blake, R									6	6
cse064	Leschziner, M (Prof)	Improvement of predictive performance of anisotropy-resolving turbulence models in post-reattachment recovery region of separated flow using Large Eddy Simulation	Mike Pettipher	10						8	
cse066	Coveney, P V (Prof)	New clay-polymer nanocomposites using diversity- discovery methods: synthesis, processing and testing	Neil Stringfellow	21						6	3
cse071	Iacovides (Dr)	The Practical Computation of Three-Dimensional Time-Dependent Turbulent Flows in Rotating Cavities	Mike Pettipher	5		0.5		1	1.5	6	2
cse072	Karlin, V (Dr)	Structure & Dynamics of Unstable Premixed Laminar Flames	Jon Gibson	18						9	7
cse074	Luo (Dr)	Consortium on Computational Combustion for Engineering Applications	Jon Gibson								
cse075	Coveney, PV (Dr)	The Reality Grid - a tool for investigating condensed matter & materials	Kevin Roy	14		5			5	14	
cse076	Briddon, P (Dr)	HPC facilities for the first principles simulation of covalently bonded materials	Adrian Tate	20				11	11		
cse077	Kronenburg, A (Dr)	Combustion Model Development for Large-Eddy Simulation of Non- Premixed Reactive Flows.	Jon Gibson							2	
cse082	Barakos, G (Dr)	CFD Study of Three- Dimensional Dynamic Shelf	Keith Taylor	5						1	
cse084	Needs, R (Dr)	The Consortium for Computational Quantum Many-Body Theory	Adrian Tate	19							10
cse085	Sandham, N (Prof)	UK Turbulence Consortium	Adrian Tate	15				2	2	8	8
cse086	Taylor, K (Prof)	Multiphoton, Electron Collisions and BEC HPC Consortium 2002- 2005	Kevin Roy	35				5	5	116	

									15500
cse089	Wiercigroch, M (Dr)	Nonlinear Dynamics & Rock Contact Fracture Mechanics in Modelling of Vibration Enhanced Drilling	Jon Gibson	15				7	
cse098	De Souza M M (Dr)	Indium interactionsin silicon for ULSI technologies	Andrew Jones	5				5	
cse106	Augarde (Dr)	Parametric Studies of multiple tunnels		25				10	2
cse108	Holden, AV (Prof)	Large-scale parallelisation of electro-physiological & mechanical cardiac virtual tissues		10				6	3
cse110	Leach, S A (Dr)	Application of HE Computing to Develop Complex Stochastic Models to aid Public Health & National Operational Responses to Infectious Disease Threats		30				25	4
cse111	Avital, Eldad (Dr)	A numerical study of three dimensional wakes generated by free surface piecing circular cylinders							
cse112	Chemyshenko, S I (Prof)	Master-mode analysis of the genesis of organised structures in turbulent flows							
cse116	John, N (Dr)	An advanced environment for enabling visual supercomputing		16				8	
cse117	Theodoropoulos K (Dr)	Modelling of Microreactors: An Integrated Multi- Scale Approach							
cse118	Gavaghan, David (Dr)	EPSRC e-Science pilot in Integrative Biology							
cse127	Silvester, D (Prof)	Efficient Parallel		20				5	4
csn001	Webb, D J (Dr)	OCCAM	Zoe Chaplin	70.5	1	58	61	20	3
csn003	O'Neill, A (Prof)	UGAMP	Zoe Chaplin	9.25		8.25	1	34	30
csn006	Price, D (Dr)	HPC for Mineral Physics	Zoe Chaplin						
csn015	Proctor, R (Dr)	A Testbed for Zooplankton Models of the Irish Sea	Zoe Chaplin	20	2		2	10	3
csn043	Haines			20				36	
csn044	Steenman-Clark, L (Dr)	Earth Observation Project	Zoe Chaplin						
csn050	Challenor	The probability of rapid climate change							
csn052	Mackay, R (Prof)	Quantifying the scaling of physical transport in structured heterogeneous porous media.	Zoe Chaplin					5	5

CfS

Issue 1.0

csn059	Watson, A J (Prof)	Circulation, overflow & deep connection in the Nordic seas		45			4	
csb006	Sansom, M (Prof)	DFT calculations for ion channels and transport proteins	Neil Stringfellow					
csp007	Hibbert, A (Prof)	A Programme for Atomic Physics for Astrophysics at Queen's University Belfast (2003-2007)	Kevin Roy					
HPCID	Allan, R (Dr)						1	1
HPCIE	Henty, D (Dr)							
cs3019	Bengough (Dr)	Lattice-Boltzmann simulation of water & solute transport in porous media.	Neil Stringfellow	2				
cs3022	Clint, M	Evaluation of Grab & Go Computational Models for Grid- based Iterative Eigensolvers						
cs3023	Bryce, Richard	Computer simulation of glycolipids as micellas and bilayers	Neil Stringfellow					
cs3024	Fernando, T (Prof)	Collosion Detection	Jo Leng	10				
cs3025	Welbourne, Stephen	Modelling Recovery after Damage in Single Word Reading						
cs3026	Smith, Lorna	HPCx/CSAR collaboration						
cs4001	White, P							
cs4002	Cooper, A (Miss)							

CfS

Issue 1.0

Appendix 5

The following table shows resource utilisation by Consortia to the end of April 2005.

cs2047 Tucker Last Trade: Thu Apr 7 10:17:50 2005 Usage: 1.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 10.0% 0.0 of 2.1 GByteYear MP Disk SAN (0.0 of 5.0 G.S.T), 0.0% 1762.0 of 1809.5 Hour Green CPU (92.1 of 94.5 G.S.T), 97.4% Total usage for project cs2047 92.1 of 100.0 Generic Service Tokens, 92.1% cs2050 - Hayhurst Last Trade: Thu Feb 3 10:16:43 2005 Usage: 2.7 of 450.0 Hour Newton CPU (0.4 of 68.9 G.S.T), 0.6% 0.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.4% 0.0 of 1.0 GByteYear MP Disk SAN (0.0 of 2.4 G.S.T), 0.0% 50.0 of 540.3 Hour Green CPU (2.6 of 28.2 G.S.T), 9.3% Total usage for project cs2050 3.0 of 100.0 Generic Service Tokens, 3.0% cs2051 - Shevlin Last Trade: Thu Apr 14 13:52:49 2005 Usage: 0.0 of 571.5 Hour Newton CPU (0.0 of 87.5 G.S.T), 0.0% 0.0 of 10.1 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0% 0.0 of 5.0 GByteYear MP Disk SAN (0.0 of 12.0 G.S.T), 0.0% Total usage for project cs2051 0.0 of 100.0 Generic Service Tokens, 0.0% cs3026 - Smith (EPCC) Last Trade: Wed Jun 2 08:28:44 2004 Usage: 288.4 of 3200.6 Hour Newton CPU (44.1 of 490.0 G.S.T), 9.0% 0.0 of 0.3 Hour Wren CPU (0.0 of 0.0 G.S.T), 8.3% 0.0 of 4.2 GByteYear MP Disk SAN (0.0 of 10.0 G.S.T), 0.0% Total usage for project cs3026 44.1 of 500.0 Generic Service Tokens, 8.8% cs3027 - Walker Last Trade: Tue Mar 1 12:04:26 2005 Usage: 0.0 of 1303.4 Hour Newton CPU (0.0 of 199.5 G.S.T), 0.0% 1.0 of 66.8 Hour Wren CPU (0.0 of 3.3 G.S.T), 1.4% 0.0 of 29.5 GByteYear MP Disk SAN (0.0 of 70.3 G.S.T), 0.0% 1859.9 of 4768.1 Hour SMP CPU (72.3 of 185.2 G.S.T), 39.0% 0.0 of 30.0 GByteYear HSM/Tape (0.0 of 18.9 G.S.T), 0.0% 0.0 of 2.1 Day Training (0.0 of 22.4 G.S.T), 0.0% Total usage for project cs3027 72.3 of 499.7 Generic Service Tokens, 14.5% cs3028 - Li Last Trade: Tue Nov 2 09:07:16 2004 Usage: 9.3 of 52.7 Hour Wren CPU (0.5 of 2.6 G.S.T), 17.6% 0.0 of 20.0 GByteYear MP Disk SAN (0.0 of 47.6 G.S.T), 0.0% 5535.0 of 5950.1 Hour Green CPU (289.2 of 310.9 G.S.T), 93.0%

Total usage for project cs3028 289.7 of 361.1 Generic Service Tokens, 80.2%

CSE001 - Admin users

Last Trade: Fri Oct 8 15:16:30 1999

Usage:

0.0 of 12.4 PEHour MPP PE CPU (0.0 of 0.3 G.S.T), 0.0% 0.1 of 0.1 GByte Year HP Disk (0.4 of 0.5 G.S.T), 72.9%

Total usage for project cse001 0.4 of 0.8 Generic Service Tokens, 46.8%

cse071 GR/R23657 Iacovides

Last Trade: Thu Jul 15 10:25:10 2004

Usage:

14155.3 of 15314.9 Hour Newton CPU (2167.1 of 2344.6 G.S.T), 92.4%

3.9 of 223.3 Hour Wren CPU (0.2 of 11.1 G.S.T), 1.7%

2.8 of 13.6 GByteYear MP Disk SAN (6.7 of 32.5 G.S.T), 20.6%

677.9 of 22708.5 Hour SMP CPU (26.3 of 882.3 G.S.T), 3.0%

4.8 of 11.3 GByteYear HSM/Tape (3.0 of 7.1 G.S.T), 42.2%

3236.6 of 16991.9 Hour Green CPU (169.1 of 887.9 G.S.T), 19.0%

1.5 of 5.0 PersonDay Support (46.9 of 156.2 G.S.T), 30.0%

4.0 of 6.0 Day Training (43.5 of 65.2 G.S.T), 66.7%

Total usage for project cse071 2462.8 of 4386.9 Generic Service Tokens, 56.1%

cse072 GR/R66692 Karlin

Last Trade: Tue Apr 27 14:30:50 2004

Usage:

41583.1 of 41583.1 PEHour MPP PE CPU (1005.4 of 1005.4 G.S.T), 100.0%

0.9 of 0.8 GByteYear HP Disk (5.3 of 4.5 G.S.T), 118.1%

15938.7 of 20478.9 Hour Newton CPU (2440.1 of 3135.2 G.S.T), 77.8%

0.5 of 15.7 Hour Wren CPU (0.0 of 0.8 G.S.T), 3.1%

0.0 of 4.6 GByteYear MP Disk SAN (0.0 of 10.9 G.S.T), 0.0%

0.0 of 12.0 Hour SMP CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 4.0 GByteYear MP Disk (0.0 of 9.5 G.S.T), 0.0%

0.0 of 0.0 GByteYear HSM/Tape (0.0 of 0.0 G.S.T)

0.0 of 18.0 PersonDay Support (0.0 of 562.5 G.S.T), 0.0%

7.0 of 9.0 Day Training (76.1 of 97.8 G.S.T), 77.8%

Total usage for project cse072 3527.0 of 4827.1 Generic Service Tokens, 73.1%

cse074 GR/R66197 Luo

Last Trade: Mon Apr 11 09:33:56 2005

Usage

0.0 of 0.0 PEHour MPP PE CPU (0.0 of 0.0 G.S.T)

0.0 of 0.0 GByteYear HP Disk (0.0 of 0.0 G.S.T)

0.0 of 160.8 Hour Newton CPU (0.0 of 24.6 G.S.T), 0.0%

0.0 of 1.3 Hour Wren CPU (0.0 of 0.1 G.S.T), 0.1%

0.0 of 600.0 Hour SMP CPU (0.0 of 23.3 G.S.T), 0.0%

0.1 of 9.0 GByteYear MP Disk (0.3 of 21.4 G.S.T), 1.5%

20.3 of 606.5 GByteYear HSM/Tape (12.8 of 382.7 G.S.T), 3.4%

Total usage for project cse074 13.2 of 452.1 Generic Service Tokens, 2.9%

cse075 GR/R67699 Coveney

Last Trade: re-enabled

Usage:

8401.8 of 8401.8 PEHour MPP PE CPU (203.1 of 203.1 G.S.T), 100.0%

76.3 of 76.3 GByteYear HP Disk (454.2 of 454.2 G.S.T), 100.0%

26853.2 of 137582.2 Hour Newton CPU (4111.0 of 21062.8 G.S.T), 19.5%

69.7 of 169.3 Hour Wren CPU (3.5 of 8.4 G.S.T), 41.2%

146.8 of 200.5 GByteYear MP Disk SAN (349.5 of 477.4 G.S.T), 73.2% 7704.1 of 7704.1 Hour SMP CPU (299.3 of 299.3 G.S.T), 100.0% 1227.3 of 1530.5 GByteYear MP Disk (2922.2 of 3644.1 G.S.T), 80.2% 590.7 of 1959.4 GByteYear HSM/Tape (372.7 of 1236.2 G.S.T), 30.1% 145639.5 of 145639.1 Hour Green CPU (7610.0 of 7609.9 G.S.T), 100.0% 0.0 of 10.0 PersonDay Support (0.0 of 312.5 G.S.T), 0.0% 5.0 of 14.0 Day Training (54.3 of 152.2 G.S.T), 35.7% Total usage for project cse075 16379.8 of 35460.2 Generic Service Tokens, 46.2%

cse077 GR/R69792 Kronenburg

Last Trade: Thu Mar 10 16:58:06 2005

Usage:

0.0 of 0.0 PEHour MPP PE CPU (0.0 of 0.0 G.S.T)

0.0 of 0.0 GByteYear HP Disk (0.0 of 0.0 G.S.T)

63570.3 of 63798.1 Hour Newton CPU (9732.1 of 9767.0 G.S.T), 99.6%

0.4 of 30.0 Hour Wren CPU (0.0 of 1.5 G.S.T), 1.2%

0.0 of 15.0 GByteYear MP Disk SAN (0.0 of 35.7 G.S.T), 0.0%

31.1 of 33.6 Hour SMP CPU (1.2 of 1.3 G.S.T), 92.5%

0.0 of 0.0 Hour Green CPU (0.0 of 0.0 G.S.T)

0.0 of 2.0 Day Training (0.0 of 21.7 G.S.T), 0.0%

Total usage for project cse077 9733.4 of 9827.3 Generic Service Tokens, 99.0%

cse082 GR/R79654 Barakos

Last Trade: re-enabled

Usage:

10.5 of 15.7 Hour Wren CPU (0.5 of 0.8 G.S.T), 66.9%

9174.1 of 9264.7 Hour SMP CPU (356.4 of 359.9 G.S.T), 99.0%

167.4 of 15.5 GByteYear MP Disk (398.6 of 36.8 G.S.T), 1082.4%

0.8 of 28.7 GByteYear HSM/Tape (0.5 of 18.1 G.S.T), 2.8%

1446.5 of 1379.8 Hour Green CPU (75.6 of 72.1 G.S.T), 104.8%

0.0 of 5.0 PersonDay Support (0.0 of 156.3 G.S.T), 0.0%

0.0 of 1.0 Day Training (0.0 of 10.9 G.S.T), 0.0%

Total usage for project cse082 831.6 of 654.9 Generic Service Tokens, 127.0%

cse086 GR/R83118 Taylor

Last Trade: Tue Feb 8 15:02:42 2005

Usage:

884647.5 of 884647.5 PEHour MPP PE CPU (21389.6 of 21389.6 G.S.T), 100.0%

132.7 of 132.7 GByteYear HP Disk (789.9 of 790.0 G.S.T), 100.0%

 $163271.1\ of\ 316221.5\ Hour\ Newton\ CPU\ (24995.6\ of\ 48411.1\ G.S.T),\ 51.6\%$

1069.6 of 3262.8 Hour Wren CPU (53.0 of 161.7 G.S.T), 32.8%

0.0 of 12.9 GByteYear HP Disk SAN - /d (0.0 of 47.6 G.S.T), 0.0%

0.0 of 46.6 GbyteYear HV Disk SAN /v (0.0 of 55.5 G.S.T), 0.0%

28012.3 of 42000.5 Hour SMP CPU (1088.3 of 1631.8 G.S.T), 66.7%

352.3 of 497.0 GByteYear MP Disk (838.9 of 1183.3 G.S.T), 70.9%

49.1 of 3750.0 GByteYear HSM/Tape (30.9 of 2365.9 G.S.T), 1.3%

509644.0 of 574394.1 Hour Green CPU (26629.9 of 30013.3 G.S.T), 88.7%

5.0 of 16.0 PersonDay Support (156.2 of 500.0 G.S.T), 31.3%

0.0 of 11.0 Day Training (0.0 of 119.6 G.S.T), 0.0%

Total usage for project cse086 75972.5 of 106669.4 Generic Service Tokens, 71.2%

cse086a MP1

Last Trade: never

Usage:

 $721660.7 \ of \ 750000.0 \ PEHour \ MPP \ PE \ CPU \ (17448.8 \ of \ 18134.0 \ G.S.T), \ 96.2\%$

8.5 of 10.0 GByteYear HP Disk (50.6 of 59.5 G.S.T), 85.0%

Issue 1.0

154024.7 of 200000.0 Hour Newton CPU (23580.0 of 30618.5 G.S.T), 77.0% 86.4 of 210.0 Hour Wren CPU (4.3 of 10.4 G.S.T), 41.2% 0.0 of 50.0 Hour SMP CPU (0.0 of 1.9 G.S.T), 0.0% 87.4 of 100.0 GByteYear MP Disk (208.1 of 238.1 G.S.T), 87.4% 0.0 of 1000.0 GByteYear HSM/Tape (0.0 of 630.9 G.S.T), 0.0% 26162.4 of 30000.0 Hour Green CPU (1367.0 of 1567.6 G.S.T), 87.2% Total usage for subproject cse086a 42658.8 of 51261.0 Generic Service Tokens, 83.2% cse086b MP2 Last Trade: never Usage: 48449.5 of 56000.0 PEHour MPP PE CPU (1171.4 of 1354.0 G.S.T), 86.5% 37.6 of 50.0 GByteYear HP Disk (223.8 of 297.6 G.S.T), 75.2% 1929.4 of 15000.0 Hour Newton CPU (295.4 of 2296.4 G.S.T), 12.9% 338.9 of 500.0 Hour Wren CPU (16.8 of 24.8 G.S.T), 67.8% 16665.4 of 20000.0 Hour SMP CPU (647.5 of 777.0 G.S.T), 83.3% 37.8 of 60.0 GByteYear MP Disk (90.0 of 142.9 G.S.T), 63.0% 334345.3 of 350000.0 Hour Green CPU (17470.2 of 18288.2 G.S.T), 95.5% Total usage for subproject cse086b 19915.1 of 23180.9 Generic Service Tokens, 85.9% cse086d MP4 Last Trade: never Usage: 0.1 of 0.1 GByteYear HP Disk (0.5 of 0.6 G.S.T), 87.4% 0.2 of 0.1 GByteYear MP Disk (0.4 of 0.2 G.S.T), 152.2% Total usage for subproject cse086d 0.9 of 0.8 Generic Service Tokens, 105.9% cse086e MP5 Last Trade: never Usage: 48.8 of 500.0 PEHour MPP PE CPU (1.2 of 12.1 G.S.T), 9.8% 1.8 of 2.0 GByteYear HP Disk (10.5 of 11.9 G.S.T), 88.1% 0.0 of 10000.0 Hour Newton CPU (0.0 of 1530.9 G.S.T), 0.0% 468.8 of 1500.0 Hour Wren CPU (23.2 of 74.3 G.S.T), 31.3% 0.0 of 5.0 GbyteYear HV Disk SAN /v (0.0 of 6.0 G.S.T), 0.0% 7362.0 of 10000.0 Hour SMP CPU (286.0 of 388.5 G.S.T), 73.6% 34.5 of 40.0 GByteYear MP Disk (82.1 of 95.2 G.S.T), 86.2% 143883.9 of 150000.0 Hour Green CPU (7518.2 of 7837.8 G.S.T), 95.9% Total usage for subproject cse086e 7921.2 of 9956.8 Generic Service Tokens, 79.6% cse086f EC1 Last Trade: never Usage: 71.1 of 5000.0 PEHour MPP PE CPU (1.7 of 120.9 G.S.T), 1.4% 3.8 of 5.0 GByteYear HP Disk (22.8 of 29.8 G.S.T), 76.6% 0.8 of 200.0 Hour Wren CPU (0.0 of 9.9 G.S.T), 0.4% 4.8 of 50.0 Hour SMP CPU (0.2 of 1.9 G.S.T), 9.6% 36.5 of 50.0 GByteYear MP Disk (86.9 of 119.0 G.S.T), 73.0% 49.1 of 100.0 GByteYear HSM/Tape (30.9 of 63.1 G.S.T), 49.1% 0.0 of 10000.0 Hour Green CPU (0.0 of 522.5 G.S.T), 0.0% Total usage for subproject cse086f 142.6 of 867.2 Generic Service Tokens, 16.4%

cse086g EC2

Last Trade: never Usage:

577.1 of 5000.0 PEHour MPP PE CPU (14.0 of 120.9 G.S.T), 11.5%
43.5 of 50.0 GByteYear HP Disk (258.9 of 297.6 G.S.T), 87.0%
174.1 of 200.0 Hour Wren CPU (8.6 of 9.9 G.S.T), 87.1%
1418.6 of 1800.0 Hour SMP CPU (55.1 of 69.9 G.S.T), 78.8%
114.6 of 140.0 GByteYear MP Disk (272.7 of 333.3 G.S.T), 81.8%
0.0 of 50.0 GByteYear HSM/Tape (0.0 of 31.5 G.S.T), 0.0%
3865.8 of 10000.0 Hour Green CPU (202.0 of 522.5 G.S.T), 38.7%
Total usage for subproject cse086g 811.3 of 1385.8 Generic Service Tokens, 58.5%

cse086h EC3 Last Trade: never

Usage:

46335.1 of 50000.0 PEHour MPP PE CPU (1120.3 of 1208.9 G.S.T), 92.7%

7.0 of 10.0 GByteYear HP Disk (41.5 of 59.5 G.S.T), 69.7%

0.0 of 200.0 Hour Wren CPU (0.0 of 9.9 G.S.T), 0.0%

219.9 of 250.0 Hour SMP CPU (8.5 of 9.7 G.S.T), 87.9%

15.1 of 20.0 GByteYear MP Disk (35.8 of 47.6 G.S.T), 75.3%

0.0 of 0.0 Hour Green CPU (0.0 of 0.0 G.S.T)

Total usage for subproject cse086h 1206.2 of 1335.7 Generic Service Tokens, 90.3%

cse086i EC4

Last Trade: never

Usage:

0.1 of 0.1 GByteYear HP Disk (0.5 of 0.6 G.S.T), 86.8%

0.2 of 0.1 GByteYear MP Disk (0.4 of 0.2 G.S.T), 152.2%

Total usage for subproject cse086i 0.9 of 0.8 Generic Service Tokens, 105.5%

cse086j BEC1

Last Trade: never

Usage

67505.3 of 70000.0 PEHour MPP PE CPU (1632.2 of 1692.5 G.S.T), 96.4%

1.7 of 3.0 GByteYear HP Disk (9.8 of 17.9 G.S.T), 55.1%

7317.0 of 9000.0 Hour Newton CPU (1120.2 of 1377.8 G.S.T), 81.3%

0.0 of 200.0 Hour Wren CPU (0.0 of 9.9 G.S.T), 0.0%

0.0 of 0.1 Hour SMP CPU (0.0 of 0.0 G.S.T), 0.2%

0.6 of 5.0 GByteYear MP Disk (1.4 of 11.9 G.S.T), 11.9%

0.0 of 1000.0 Hour Green CPU (0.0 of 52.3 G.S.T), 0.0%

Total usage for subproject cse086j 2763.6 of 3162.3 Generic Service Tokens, 87.4%

cse086k BEC2

Last Trade: never

Usage:

0.1 of 0.1 GByteYear HP Disk (0.5 of 0.6 G.S.T), 86.8%

0.6 of 200.0 Hour Wren CPU (0.0 of 9.9 G.S.T), 0.3%

2341.7 of 4000.0 Hour SMP CPU (91.0 of 155.4 G.S.T), 58.5%

23.8 of 35.0 GByteYear MP Disk (56.6 of 83.3 G.S.T), 68.0%

1385.0 of 10000.0 Hour Green CPU (72.4 of 522.5 G.S.T), 13.8%

Total usage for subproject cse086k 220.5 of 771.8 Generic Service Tokens, 28.6%

cse089 GR/R85556 Wiercigroch

Last Trade: re-enabled

Usage:

0.0 of 0.0 PEHour MPP PE CPU (0.0 of 0.0 G.S.T), 100.0%

0.0 of 0.0 GByteYear HP Disk (0.0 of 0.0 G.S.T)

1.1 of 1952.1 Hour Wren CPU (0.1 of 96.7 G.S.T), 0.1%

0.0 of 44.0 GByteYear HP Disk SAN - /d (0.0 of 162.4 G.S.T), 0.0% 0.0 of 0.0 Hour SMP CPU (0.0 of 0.0 G.S.T), 101.9% 0.0 of 2083.0 Hour Green CPU (0.0 of 108.8 G.S.T), 0.0% 0.0 of 15.0 PersonDay Support (0.0 of 468.8 G.S.T), 0.0% 0.0 of 7.0 Day Training (0.0 of 76.1 G.S.T), 0.0% Total usage for project cse089 0.1 of 912.8 Generic Service Tokens, 0.0% cse106 GR/S42712 Augarde Last Trade: Wed Nov 5 15:06:00 2003 Usage: 0.2 of 2500.0 Hour Wren CPU (0.0 of 123.9 G.S.T), 0.0% 0.0 of 37.4 GByteYear MP Disk SAN (0.0 of 89.2 G.S.T), 0.0% 0.0 of 50000.0 Hour Green CPU (0.0 of 2612.6 G.S.T), 0.0% 0.0 of 25.0 PersonDay Support (0.0 of 781.2 G.S.T), 0.0% 3.0 of 10.0 Day Training (32.6 of 108.7 G.S.T), 30.0% Total usage for project cse106 32.6 of 3715.6 Generic Service Tokens, 0.9% cse108 GR/S43498 Holden Last Trade: Wed Nov 5 15:55:15 2003 Usage: 0.3 of 700.0 Hour Wren CPU (0.0 of 34.7 G.S.T), 0.0% 0.0 of 832.1 GByteYear MP Disk SAN (0.0 of 1981.3 G.S.T), 0.0% 0.0 of 40000.0 Hour Green CPU (0.0 of 2090.1 G.S.T), 0.0% 0.0 of 10.0 PersonDay Support (0.0 of 312.5 G.S.T), 0.0% 3.0 of 6.0 Day Training (32.6 of 65.2 G.S.T), 50.0% Total usage for project cse108 32.6 of 4483.8 Generic Service Tokens, 0.7% cse110 GR/S43214 Leach Last Trade: Wed Nov 5 16:16:25 2003 Usage: 1.0 of 6000.0 Hour Wren CPU (0.1 of 297.3 G.S.T), 0.0% 0.0 of 67.6 GByteYear HP Disk SAN - /d (0.0 of 249.4 G.S.T), 0.0% 0.0 of 20.0 GByteYear MP Disk SAN (0.1 of 47.6 G.S.T), 0.1% 57.5 of 42000.0 Hour Green CPU (3.0 of 2194.6 G.S.T), 0.1% 0.0 of 30.0 PersonDay Support (0.0 of 937.5 G.S.T), 0.0% 5.0 of 25.0 Day Training (54.3 of 271.7 G.S.T), 20.0% Total usage for project cse110 57.5 of 3998.1 Generic Service Tokens, 1.4% cse111 GR/S46239 Avital Last Trade: Fri Apr 16 14:41:37 2004 Usage: 0.0 of 800.1 Hour Wren CPU (0.0 of 39.6 G.S.T), 0.0% 0.0 of 272.3 GByteYear MP Disk SAN (0.0 of 648.4 G.S.T), 0.0% 0.0 of 56.3 GbyteYear HV Disk SAN /v (0.0 of 67.1 G.S.T), 0.0% 0.0 of 849.9 Hour SMP CPU (0.0 of 33.0 G.S.T), 0.0% 0.0 of 84.6 GByteYear HSM/Tape (0.0 of 53.4 G.S.T), 0.0% 0.0 of 94500.0 Hour Green CPU (0.0 of 4937.8 G.S.T), 0.0% 0.0 of 5.0 PersonDay Support (0.0 of 157.3 G.S.T), 0.0% 0.0 of 6.0 Day Training (0.0 of 65.5 G.S.T), 0.0% Total usage for project cse111 0.0 of 6002.1 Generic Service Tokens, 0.0% cse112 GR/S67029 Chernyshenko

Last Trade: Wed Apr 14 14:35:22 2004

Usage:

0.0 of 300.0 GByteYear MP Disk SAN (0.0 of 714.3 G.S.T), 0.0%

0.0 of 160000.0 Hour Green CPU (0.0 of 8360.3 G.S.T), 0.0% 0.0 of 16.5 PersonDay Support (0.0 of 514.9 G.S.T), 0.0% 0.0 of 5.0 Day Training (0.0 of 54.5 G.S.T), 0.0% Total usage for project cse112 0.0 of 9644.0 Generic Service Tokens, 0.0% cse116 GR/S46567 John Last Trade: Thu Nov 6 10:47:31 2003 Usage: 0.0 of 558.1 Hour Wren CPU (0.0 of 27.7 G.S.T), 0.0% 0.0 of 2.0 GByteYear MP Disk SAN (0.0 of 4.8 G.S.T), 0.0% 0.0 of 2.0 GByteYear HSM/Tape (0.0 of 1.3 G.S.T), 0.0% 0.0 of 5950.0 Hour Green CPU (0.0 of 310.9 G.S.T), 0.0% 0.0 of 16.0 PersonDay Support (0.0 of 500.0 G.S.T), 0.0% 0.0 of 8.0 Day Training (0.0 of 87.0 G.S.T), 0.0% Total usage for project cse116 0.0 of 931.5 Generic Service Tokens, 0.0% cse117 GR/S79398/1 Theodoropoulos Last Trade: Thu Apr 1 11:47:27 2004 0.0 of 4000.1 Hour Wren CPU (0.0 of 198.2 G.S.T), 0.0% 0.0 of 26.5 GByteYear MP Disk SAN (0.0 of 63.1 G.S.T), 0.0% 0.0 of 11499.9 Hour SMP CPU (0.0 of 446.8 G.S.T), 0.0% 0.0 of 15500.1 Hour Green CPU (0.0 of 809.9 G.S.T), 0.0% Total usage for project cse117 0.0 of 1518.0 Generic Service Tokens, 0.0% cse118 GR/S72023 Gavaghan Last Trade: Wed Apr 28 14:12:37 2004 Usage: 0.0 of 150000.0 Hour Newton CPU (0.0 of 22963.9 G.S.T), 0.0% 0.0 of 40.4 Hour Wren CPU (0.0 of 2.0 G.S.T), 0.0% 0.0 of 184.2 GBvteYear MP Disk SAN (0.0 of 438.5 G.S.T), 0.0% 0.0 of 22.0 PersonDay Support (0.0 of 687.5 G.S.T), 0.0% 0.0 of 11.0 Day Training (0.0 of 119.6 G.S.T), 0.0% Total usage for project cse118 0.0 of 24211.4 Generic Service Tokens, 0.0% cse120 Harding Last Trade: Thu Nov 11 09:23:00 2004 Usage: 5212.6 of 553999.0 Hour Newton CPU (798.0 of 84813.1 G.S.T), 0.9% 0.1 of 3.1 Hour Wren CPU (0.0 of 0.2 G.S.T), 2.2% 2.5 of 100.0 GByteYear MP Disk SAN (6.0 of 238.0 G.S.T), 2.5% 0.0 of 10.0 Day Training (0.0 of 108.8 G.S.T), 0.0% Total usage for project cse120 804.0 of 85160.0 Generic Service Tokens, 0.9% cse121 GR/S80080 Shluger Last Trade: Tue Jul 6 15:32:01 2004 Usage: 0.0 of 280118.3 Hour Newton CPU (0.0 of 42884.0 G.S.T), 0.0% 0.0 of 20.2 Hour Wren CPU (0.0 of 1.0 G.S.T), 0.0% 0.0 of 10.1 GByteYear MP Disk SAN (0.0 of 24.0 G.S.T), 0.0% 0.0 of 40.1 PersonDay Support (0.0 of 1253.0 G.S.T), 0.0% 0.0 of 10.1 Day Training (0.0 of 110.0 G.S.T), 0.0% Total usage for project cse121 0.0 of 44272.0 Generic Service Tokens, 0.0%

Issue 1.0 cse126 GR/T18608/01 Ziebart Last Trade: Thu Sep 30 09:40:08 2004 Usage:

0.0 of 10000.0 Hour Newton CPU (0.0 of 1530.9 G.S.T), 0.0%

0.0 of 400.0 Hour Wren CPU (0.0 of 19.8 G.S.T), 0.0%

0.0 of 20.0 GByteYear MP Disk SAN (0.0 of 47.6 G.S.T), 0.0%

0.0 of 15999.9 Hour Green CPU (0.0 of 836.0 G.S.T), 0.0%

0.0 of 60.0 PersonDay Support (0.0 of 1875.0 G.S.T), 0.0%

0.0 of 15.0 Day Training (0.0 of 163.1 G.S.T), 0.0%

Total usage for project cse126 0.0 of 4472.4 Generic Service Tokens, 0.0%

cse127 - EP/C00528 Silvester

Last Trade: Thu Sep 30 10:21:57 2004

Usage:

0.0 of 4000.0 Hour Newton CPU (0.0 of 612.4 G.S.T), 0.0%

0.1 of 400.0 Hour Wren CPU (0.0 of 19.8 G.S.T), 0.0%

0.0 of 62.0 GByteYear MP Disk SAN (0.0 of 147.6 G.S.T), 0.0%

0.0 of 20000.0 Hour Green CPU (0.0 of 1045.0 G.S.T), 0.0%

0.0 of 20.0 PersonDay Support (0.0 of 625.0 G.S.T), 0.0%

5.0 of 5.0 Day Training (54.3 of 54.3 G.S.T), 100.0%

Total usage for project cse127 54.4 of 2504.2 Generic Service Tokens, 2.2%

cse129 - GR/T18615 Pitts

Last Trade: Fri Oct 1 11:40:41 2004

0.0 of 27000.0 Hour Newton CPU (0.0 of 4133.5 G.S.T), 0.0%

6.3 of 600.1 Hour Wren CPU (0.3 of 29.7 G.S.T), 1.0%

0.0 of 196.9 GByteYear MP Disk SAN (0.0 of 468.8 G.S.T), 0.0%

0.0 of 25.0 GbyteYear HV Disk SAN /v (0.0 of 29.8 G.S.T), 0.0%

0.0 of 0.0 GByteYear MP Disk (0.0 of 0.0 G.S.T)

16.0 of 37500.0 Hour Green CPU (0.8 of 1959.5 G.S.T), 0.0%

0.0 of 54.0 PersonDay Support (0.0 of 1687.5 G.S.T), 0.0%

0.0 of 20.0 Day Training (0.0 of 217.4 G.S.T), 0.0%

Total usage for project cse129 1.1 of 8526.2 Generic Service Tokens, 0.0%

cse131 - GR/T18455 Bull

Last Trade: Thu Feb 24 12:56:12 2005

Usage:

0.0 of 12000.0 Hour Newton CPU (0.0 of 1837.1 G.S.T), 0.0%

0.3 of 399.0 Hour Wren CPU (0.0 of 19.8 G.S.T), 0.1%

0.1 of 200.3 GByteYear MP Disk SAN (0.2 of 477.0 G.S.T), 0.0%

0.0 of 389.5 GbyteYear HV Disk SAN /v (0.0 of 464.2 G.S.T), 0.0%

0.3 of 1.3 Hour SMP CPU (0.0 of 0.0 G.S.T), 24.3%

0.0 of 2000.0 GByteYear HSM/Tape (0.0 of 1261.8 G.S.T), 0.0%

0.0 of 30008.4 Hour Green CPU (0.0 of 1568.0 G.S.T), 0.0%

0.0 of 10.0 PersonDay Support (0.0 of 313.0 G.S.T), 0.0%

0.0 of 10.0 Day Training (0.0 of 109.0 G.S.T), 0.0%

Total usage for project cse131 0.2 of 6050.0 Generic Service Tokens, 0.0%

cse132 GR/T04465 Clarke

Last Trade: Mon Mar 7 14:44:16 2005

Usage:

0.0 of 3000.0 Hour Newton CPU (0.0 of 459.3 G.S.T), 0.0%

0.0 of 140.1 Hour Wren CPU (0.0 of 6.9 G.S.T), 0.0%

0.0 of 100.1 GByteYear MP Disk SAN (0.0 of 238.3 G.S.T), 0.0%

0.0 of 110.0 GByteYear HSM/Tape (0.0 of 69.4 G.S.T), 0.0%

0.0 of 97000.0 Hour Green CPU (0.0 of 5068.4 G.S.T), 0.0% 0.0 of 1.9 PersonDay Support (0.0 of 60.6 G.S.T), 0.0% Total usage for project cse132 0.0 of 5903.0 Generic Service Tokens, 0.0% cse133 GR/S13422 Catlow Last Trade: Mon May 10 14:48:07 2004 52401.4 of 399686.4 Hour Newton CPU (8022.3 of 61189.0 G.S.T), 13.1% 0.1 of 8.0 Hour Wren CPU (0.0 of 0.4 G.S.T), 0.8% 0.5 of 20.0 GByte Year MP Disk SAN (1.3 of 47.6 G.S.T), 2.6% Total usage for project cse133 8023.5 of 61237.0 Generic Service Tokens, 13.1% cse135 GR/T18622 Ingram Last Trade: Fri Apr 1 16:11:24 2005 Usage: 0.0 of 399994.5 Hour Newton CPU (0.0 of 61236.2 G.S.T), 0.0% 0.0 of 10.1 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0% 0.0 of 20.1 GByteYear HP Disk SAN - /d (0.0 of 74.0 G.S.T), 0.0% 0.0 of 60.0 PersonDay Support (0.0 of 1875.0 G.S.T), 0.0% 0.0 of 5.0 Day Training (0.0 of 54.4 G.S.T), 0.0% Total usage for project cse135 0.0 of 63240.0 Generic Service Tokens, 0.0% cse137 - GR/T28126 Leschziner Last Trade: re-enabled Usage: 2.8 of 948.6 Hour Wren CPU (0.1 of 47.0 G.S.T), 0.3% 0.0 of 200.3 GByteYear MP Disk SAN (0.0 of 477.0 G.S.T), 0.0% 0.0 of 625.1 GbyteYear HV Disk SAN /v (0.0 of 745.0 G.S.T), 0.0% 0.0 of 1049.3 GByteYear HSM/Tape (0.0 of 662.0 G.S.T), 0.0% 5660.8 of 266298.2 Hour Green CPU (295.8 of 13914.6 G.S.T), 2.1% 0.0 of 47.0 PersonDay Support (0.0 of 1468.7 G.S.T), 0.0% 0.0 of 22.0 Day Training (0.0 of 239.1 G.S.T), 0.0% Total usage for project cse137 295.9 of 17553.5 Generic Service Tokens, 1.7% cse139 GR/S71552 McDougall Last Trade: Tue Aug 3 10:44:04 2004 Usage: 6856.1 of 89000.0 Hour Newton CPU (1049.6 of 13625.2 G.S.T), 7.7% 0.1 of 500.0 Hour Wren CPU (0.0 of 24.8 G.S.T), 0.0% 0.8 of 157.0 GByteYear MP Disk SAN (1.9 of 373.8 G.S.T), 0.5% 0.0 of 105.0 GByteYear HSM/Tape (0.0 of 66.2 G.S.T), 0.0% 0.0 of 15000.0 Hour Green CPU (0.0 of 783.8 G.S.T), 0.0% 0.0 of 34.0 PersonDay Support (0.0 of 1062.5 G.S.T), 0.0% 0.0 of 16.0 Day Training (0.0 of 173.9 G.S.T), 0.0% Total usage for project cse139 1051.5 of 16110.2 Generic Service Tokens, 6.5% cse152 - Coveney Last Trade: Fri Apr 1 15:23:26 2005 Usage: 0.0 of 6496.1 Hour Newton CPU (0.0 of 994.5 G.S.T), 0.0%

0.0 of 10.1 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 19.9 GByteYear MP Disk SAN (0.0 of 47.5 G.S.T), 0.0%

0.0 of 2.0 PersonDay Support (0.0 of 62.5 G.S.T), 0.0%

Total usage for project cse152 0.0 of 1105.0 Generic Service Tokens, 0.0%

cse154 - Essex

Last Trade: Fri Apr 1 15:20:13 2005

Usage:

0.0 of 3399.9 Hour Newton CPU (0.0 of 520.5 G.S.T), 0.0%

0.0 of 10.1 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 54.6 GByteYear MP Disk SAN (0.0 of 130.0 G.S.T), 0.0%

Total usage for project cse154 0.0 of 651.0 Generic Service Tokens, 0.0%

csedl1 - Castep port to Altix

Last Trade: Thu Apr 21 11:46:06 2005

Usage:

95591.1 of 168304.9 Hour Newton CPU (14634.3 of 25766.2 G.S.T), 56.8%

56.4 of 500.0 Hour Wren CPU (2.8 of 24.8 G.S.T), 11.3%

16.3 of 69.2 GByteYear MP Disk SAN (38.9 of 164.8 G.S.T), 23.6%

607.3 of 1971.6 Hour SMP CPU (23.6 of 76.6 G.S.T), 30.8%

0.0 of 125.0 GByteYear HSM/Tape (0.0 of 78.9 G.S.T), 0.0%

6362.1 of 14648.4 Hour Green CPU (332.4 of 765.4 G.S.T), 43.4%

6.0 of 6.0 Day Training (65.2 of 65.3 G.S.T), 99.9%

Total usage for project csedl1 15097.2 of 26942.0 Generic Service Tokens, 56.0%

csedl1a Computational Cemistry

Last Trade: never

Usage:

3912.6 of 18374.4 Hour Newton CPU (599.0 of 2813.0 G.S.T), 21.3%

0.0 of 150.0 Hour Wren CPU (0.0 of 7.4 G.S.T), 0.0%

2.0 of 19.5 GByteYear MP Disk SAN (4.8 of 46.4 G.S.T), 10.3%

0.0 of 37.0 GByteYear HSM/Tape (0.0 of 23.3 G.S.T), 0.0%

Total usage for subproject csedl1a 603.8 of 2890.2 Generic Service Tokens, 20.9%

csedl1b Molecular Simulation

Last Trade: never

Usage:

1.8 of 15635.8 Hour Newton CPU (0.3 of 2393.7 G.S.T), 0.0%

0.0 of 50.0 Hour Wren CPU (0.0 of 2.5 G.S.T), 0.0%

1.0 of 5.0 GByteYear MP Disk SAN (2.4 of 11.9 G.S.T), 20.2%

0.0 of 13.0 GByteYear HSM/Tape (0.0 of 8.2 G.S.T), 0.0%

Total usage for subproject csedl1b 2.7 of 2416.3 Generic Service Tokens, 0.1%

csedl1c Materials

Last Trade: never

Usage:

38355.8 of 53989.9 Hour Newton CPU (5872.0 of 8265.4 G.S.T), 71.0%

6.2 of 100.0 Hour Wren CPU (0.3 of 5.0 G.S.T), 6.2%

5.6 of 15.0 GByteYear MP Disk SAN (13.3 of 35.7 G.S.T), 37.1%

0.0 of 25.0 GByteYear HSM/Tape (0.0 of 15.8 G.S.T), 0.0%

Total usage for subproject csedl1c 5885.6 of 8321.9 Generic Service Tokens, 70.7%

csed11d - Band Theory

Last Trade: never

Usage:

36457.1 of 45007.1 Hour Newton CPU (5581.3 of 6890.3 G.S.T), 81.0%

0.0 of 50.0 Hour Wren CPU (0.0 of 2.5 G.S.T), 0.1%

0.8 of 7.5 GByteYear MP Disk SAN (2.0 of 17.9 G.S.T), 11.1%

0.0 of 13.0 GByteYear HSM/Tape (0.0 of 8.2 G.S.T), 0.0%

Total usage for subproject csed11d 5583.3 of 6918.8 Generic Service Tokens, 80.7% csed11e High End Computing Last Trade: never Usage: 14796.6 of 27980.6 Hour Newton CPU (2265.2 of 4283.6 G.S.T), 52.9% 50.2 of 100.0 Hour Wren CPU (2.5 of 5.0 G.S.T), 50.2% 6.9 of 15.0 GByteYear MP Disk SAN (16.4 of 35.7 G.S.T), 46.0% 607.3 of 1500.0 Hour SMP CPU (23.6 of 58.3 G.S.T), 40.5% 0.0 of 37.0 GByteYear HSM/Tape (0.0 of 23.3 G.S.T), 0.0% 6362.1 of 8436.7 Hour Green CPU (332.4 of 440.8 G.S.T), 75.4% Total usage for subproject csedl1e 2640.2 of 4846.7 Generic Service Tokens, 54.5% csedl1g - Engineering Last Trade: never Usage: 0.0 of 5749.8 Hour Newton CPU (0.0 of 880.3 G.S.T), 0.0% 0.0 of 49.0 Hour Wren CPU (0.0 of 2.4 G.S.T), 0.0% 0.0 of 7.2 GByteYear MP Disk SAN (0.0 of 17.1 G.S.T), 0.0% 0.0 of 4000.0 Hour Green CPU (0.0 of 209.0 G.S.T), 0.0% Total usage for subproject csedl1g 0.0 of 1108.8 Generic Service Tokens, 0.0% csehec - (NAG) Last Trade: Mon Oct 11 11:49:24 2004 Usage: 427.0 of 18995.1 Hour Newton CPU (65.4 of 2908.0 G.S.T), 2.2% 0.1 of 989.0 Hour Wren CPU (0.0 of 49.0 G.S.T), 0.0% 0.0 of 22.7 GByteYear MP Disk SAN (0.0 of 54.0 G.S.T), 0.0% Total usage for project csehec 65.4 of 3011.0 Generic Service Tokens, 2.2% csehpcx - benchmarking Last Trade: Mon Mar 21 10:41:34 2005 Usage: 11200.6 of 11200.4 PEHour MPP PE CPU (270.8 of 270.8 G.S.T), 100.0% 16.1 of 15.6 GByteYear HP Disk (95.9 of 92.8 G.S.T), 103.3% 11871.8 of 15405.7 Hour Newton CPU (1817.5 of 2358.5 G.S.T), 77.1% 30.5 of 477.7 Hour Wren CPU (1.5 of 23.7 G.S.T), 6.4% 1760.7 of 1356.9 Hour SMP CPU (68.4 of 52.7 G.S.T), 129.8% 15.8 of 61.9 GByteYear MP Disk (37.7 of 147.3 G.S.T), 25.6% 37568.8 of 36481.7 Hour Green CPU (1963.0 of 1906.2 G.S.T), 103.0% Total usage for project csehpcx 4254.8 of 4852.0 Generic Service Tokens, 87.7% csn001 Webb & GST/02/2846 Killworth & T/S/2001/00187 New Last Trade: Tue Apr 26 15:05:23 2005 Usage: 403672.6 of 403672.5 PEHour MPP PE CPU (9760.3 of 9760.3 G.S.T), 100.0% 307.2 of 306.0 GByteYear HP Disk (1828.6 of 1821.4 G.S.T), 100.4% 1585.2 of 36127.7 Hour Newton CPU (242.7 of 5530.9 G.S.T), 4.4% 1360.2 of 3815.0 Hour Wren CPU (67.4 of 189.0 G.S.T), 35.7% 246622.0 of 246862.1 Hour SMP CPU (9581.6 of 9591.0 G.S.T), 99.9% 649.5 of 1653.6 GByteYear MP Disk (1546.5 of 3937.1 G.S.T), 39.3% 43572.8 of 48951.9 GByteYear HSM/Tape (27490.8 of 30884.5 G.S.T), 89.0% 1162374.3 of 1209696.2 Hour Green CPU (60736.5 of 63209.1 G.S.T), 96.1% 61.0 of 61.5 PersonDay Support (1906.2 of 1921.9 G.S.T), 99.2% 3.0 of 5.3 Day Training (32.6 of 57.5 G.S.T), 56.7%

Total usage for project csn001 113193.2 of 126902.6 Generic Service Tokens, 89.2% csn003 UGAMP O'Neill Last Trade: Tue Apr 26 11:44:35 2005 Usage: 7500413.8 of 7500414.8 PEHour MPP PE CPU (181350.4 of 181350.4 G.S.T), 100.0% 113.5 of 113.5 GBvteYear HP Disk (675.6 of 675.6 G.S.T), 100.0% 1017282.3 of 1202184.9 Hour Newton CPU (155738.3 of 184045.5 G.S.T), 84.6% 4262.2 of 25229.2 Hour Wren CPU (211.2 of 1250.0 G.S.T), 16.9% 832.8 of 846.5 GbyteYear HV Disk SAN /v (992.6 of 1008.9 G.S.T), 98.4% 375966.3 of 515011.5 Hour SMP CPU (14606.9 of 20009.0 G.S.T), 73.0% 155.3 of 373.8 GByteYear MP Disk (369.7 of 889.9 G.S.T), 41.5% 120377.8 of 144087.3 GByteYear HSM/Tape (75948.2 of 90906.8 G.S.T), 83.5% 1305694.1 of 1862892.5 Hour Green CPU (68225.2 of 97340.0 G.S.T), 70.1% 16.0 of 20.8 PersonDay Support (500.0 of 650.9 G.S.T), 76.8% 32.0 of 34.0 Day Training (347.8 of 369.9 G.S.T), 94.0% Total usage for project csn003 498965.7 of 578496.8 Generic Service Tokens, 86.3% csn006 GR9/3550 Price Last Trade: re-enabled Usage: 1618734.3 of 1618734.0 PEHour MPP PE CPU (39138.9 of 39138.9 G.S.T), 100.0% 191.1 of 192.2 GByteYear HP Disk (1137.6 of 1144.3 G.S.T), 99.4% 220107.6 of 285124.2 Hour Newton CPU (33696.8 of 43650.4 G.S.T), 77.2% 642.6 of 2096.8 Hour Wren CPU (31.8 of 103.9 G.S.T), 30.6% 87314.1 of 87287.6 Hour SMP CPU (3392.3 of 3391.3 G.S.T), 100.0% 129.3 of 169.5 GByteYear MP Disk (307.8 of 403.6 G.S.T), 76.3% 17.8 of 20.3 GByteYear HSM/Tape (11.2 of 12.8 G.S.T), 87.8% 1129428.3 of 1222916.6 Hour Green CPU (59015.0 of 63899.9 G.S.T), 92.4% Total usage for project csn006 136731.5 of 151745.0 Generic Service Tokens, 90.1% csn015 Proctor Last Trade: re-enabled Usage: 257682.2 of 257682.2 PEHour MPP PE CPU (6230.4 of 6230.4 G.S.T), 100.0% 6.8 of 6.8 GByteYear HP Disk (40.4 of 40.4 G.S.T), 100.0% 0.0 of 204.2 Hour Newton CPU (0.0 of 31.3 G.S.T), 0.0% 483.4 of 20565.3 Hour Wren CPU (24.0 of 1018.9 G.S.T), 2.4% 2709.5 of 6776.8 Hour SMP CPU (105.3 of 263.3 G.S.T), 40.0% 113.1 of 599.3 GByteYear MP Disk (269.4 of 1426.8 G.S.T), 18.9% 6179.4 of 8180.3 GByteYear HSM/Tape (3898.6 of 5161.1 G.S.T), 75.5% 809605.5 of 956784.0 Hour Green CPU (42303.6 of 49993.9 G.S.T), 84.6% 19.0 of 22.0 PersonDay Support (593.8 of 688.0 G.S.T), 86.3% 3.0 of 6.0 Day Training (32.6 of 65.2 G.S.T), 50.0% Total usage for project csn015 53498.0 of 64919.4 Generic Service Tokens, 82.4% csn043 NER/T/S/2001/01159 Haines Last Trade: Mon Jan 12 10:47:00 2004 Usage: 0.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0% 0.0 of 288.0 GByteYear MP Disk SAN (0.0 of 685.7 G.S.T), 0.0% 0.0 of 25544.0 Hour SMP CPU (0.0 of 992.4 G.S.T), 0.0% 0.0 of 19200.0 Hour Green CPU (0.0 of 1003.2 G.S.T), 0.0%

0.0 of 20.0 PersonDay Support (0.0 of 625.0 G.S.T), 0.0% 0.0 of 36.0 Day Training (0.0 of 391.3 G.S.T), 0.0%

Total usage for project csn043 0.0 of 3698.2 Generic Service Tokens, 0.0%

csn044 Earth Observation

Last Trade: Wed Aug 28 11:09:50 2002

Usage:

9948.9 of 13857.9 PEHour MPP PE CPU (240.6 of 335.1 G.S.T), 71.8%

0.0 of 5.0 GByteYear HP Disk (0.0 of 30.0 G.S.T), 0.0%

0.0 of 28.4 Hour Wren CPU (0.0 of 1.4 G.S.T), 0.0%

0.2 of 73.9 Hour SMP CPU (0.0 of 2.9 G.S.T), 0.3%

0.0 of 5.0 GByteYear MP Disk (0.0 of 11.9 G.S.T), 0.0%

24.4 of 53.8 GByteYear HSM/Tape (15.4 of 33.9 G.S.T), 45.4%

Total usage for project csn044 256.0 of 415.2 Generic Service Tokens, 61.7%

.....

csn050 NER/T/S/2002/00450 Challenor

Last Trade: Thu Jan 8 16:12:46 2004

Usage:

0.0 of 32773.8 Hour Newton CPU (0.0 of 5017.4 G.S.T), 0.0%

0.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 100.0 GByteYear MP Disk SAN (0.0 of 238.1 G.S.T), 0.0%

0.0 of 100.0 GByteYear HSM/Tape (0.0 of 63.1 G.S.T), 0.0%

Total usage for project csn050 0.0 of 5319.1 Generic Service Tokens, 0.0%

csn056 NER/T/S/2002/00441 Hoskins - Merged

Last Trade: re-enabled

Usage:

0.0 of 5722.8 Hour Newton CPU (0.0 of 876.1 G.S.T), 0.0%

0.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 27.0 GByteYear MP Disk SAN (0.0 of 64.3 G.S.T), 0.0%

0.0 of 56.0 GByteYear HSM/Tape (0.0 of 35.3 G.S.T), 0.0%

0.0 of 0.0 Hour Green CPU (0.0 of 0.0 G.S.T)

Total usage for project csn056 0.0 of 976.2 Generic Service Tokens, 0.0%

csn057 NER/T/S/2002/00442 Guilyardi - Merged

Last Trade: re-enabled

Usage:

0.0 of 19123.2 Hour Newton CPU (0.0 of 2927.6 G.S.T), 0.0%

0.0 of 10.0 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 14.0 GByteYear MP Disk SAN (0.0 of 33.3 G.S.T), 0.0%

0.0 of 115.0 GByteYear HSM/Tape (0.0 of 72.6 G.S.T), 0.0%

0.0 of 55000.0 Hour Green CPU (0.0 of 2873.9 G.S.T), 0.0%

Total usage for project csn057 0.0 of 5907.9 Generic Service Tokens, 0.0%

csn058 NER/T/S/2002/00443 Tudhope - Merged

Last Trade: re-enabled

Usage:

0.0 of 7338.0 Hour Newton CPU (0.0 of 1123.4 G.S.T), 0.0%

0.0 of 9.3 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 6.0 GByteYear MP Disk SAN (0.0 of 14.3 G.S.T), 0.0%

0.0 of 105.0 GByteYear HSM/Tape (0.0 of 66.2 G.S.T), 0.0%

0.0 of 52500.0 Hour Green CPU (0.0 of 2743.2 G.S.T), 0.0%

Total usage for project csn058 0.0 of 3947.6 Generic Service Tokens, 0.0%

csn059 NER/T/S/2002/00446 Watson Last Trade: Mon Jan 12 16:41:49 2004

Usage:

0.0 of 9.5 Hour Wren CPU (0.0 of 0.5 G.S.T), 0.0%

0.0 of 755.0 GByteYear MP Disk SAN (0.0 of 1797.6 G.S.T), 0.0%

0.0 of 3775.0 GByteYear HSM/Tape (0.0 of 2381.7 G.S.T), 0.0%

0.0 of 246288.7 Hour Green CPU (0.0 of 12869.1 G.S.T), 0.0%

0.0 of 45.0 PersonDay Support (0.0 of 1406.2 G.S.T), 0.0%

0.0 of 4.0 Day Training (0.0 of 43.5 G.S.T), 0.0%

Total usage for project csn059 0.0 of 18498.6 Generic Service Tokens, 0.0%

csnadm

Last Trade: Mon Feb 23 14:12:27 2004

Usage:

0.0 of 961.1 Hour Wren CPU (0.0 of 47.6 G.S.T), 0.0%

0.0 of 1.0 GByteYear MP Disk SAN (0.0 of 2.4 G.S.T), 0.0%

Total usage for project csnadm 0.0 of 50.0 Generic Service Tokens, 0.0%

csp007 PPA/G/O/2002/00004 Hibbert

Last Trade: Thu Apr 22 14:12:25 2004

Usage:

36870.0 of 36870.0 PEHour MPP PE CPU (891.5 of 891.5 G.S.T), 100.0%

0.0 of 0.0 GByteYear HP Disk (0.0 of 0.0 G.S.T)

22.6 of 600.0 Hour Wren CPU (1.1 of 29.7 G.S.T), 3.8%

0.0 of 60.0 GByteYear HP Disk SAN - /d (0.0 of 221.4 G.S.T), 0.0%

0.0 of 17963.6 Hour SMP CPU (0.0 of 697.9 G.S.T), 0.0%

0.0 of 50.0 GByteYear MP Disk (0.0 of 119.0 G.S.T), 0.0%

Total usage for project csp007 892.6 of 1959.6 Generic Service Tokens, 45.6%

HPCI Daresbury

Last Trade: Mon Oct 7 10:07:27 2002

Usage:

34683.7 of 34482.9 PEHour MPP PE CPU (838.6 of 833.8 G.S.T), 100.6%

5.1 of 3.8 GByteYear HP Disk (30.3 of 22.7 G.S.T), 133.4%

1.9 of 0.0 Hour Wren CPU (0.1 of 0.0 G.S.T), 496085.3%

4062.9 of 4120.4 Hour SMP CPU (157.8 of 160.1 G.S.T), 98.6%

3.1 of 1.7 GByteYear MP Disk (7.5 of 4.0 G.S.T), 186.2%

10817.5 of 10497.3 Hour Green CPU (565.2 of 548.5 G.S.T), 103.1%

1.0 of 1.0 Day Training (10.9 of 10.9 G.S.T), 99.7%

Total usage for project hpcid 1610.5 of 1580.0 Generic Service Tokens, 101.9%

.....

HPCI Edinburgh

Last Trade: Wed Jul 11 12:09:29 2001

Usage:

1759.1 of 4070.6 PEHour MPP PE CPU (42.5 of 98.4 G.S.T), 43.2%

5.1 of 4.7 GByteYear HP Disk (30.2 of 28.1 G.S.T), 107.4%

698.4 of 770.8 Hour SMP CPU (27.1 of 29.9 G.S.T), 90.6%

5.3 of 2.8 GByteYear MP Disk (12.6 of 6.7 G.S.T), 188.9%

1728.7 of 1739.8 Hour Green CPU (90.3 of 90.9 G.S.T), 99.4%

Total usage for project hpcie 202.8 of 254.1 Generic Service Tokens, 79.8%

HPCI Southampton

Last Trade: re-enabled

Usage:

737.9 of 5825.0 PEHour MPP PE CPU (17.8 of 140.8 G.S.T), 12.7%

31.7 of 31.6 GByteYear HP Disk (188.9 of 188.2 G.S.T), 100.4%

37.8 of 1074.0 Hour SMP CPU (1.5 of 41.7 G.S.T), 3.5%

3.1 of 3.0 GByteYear MP Disk (7.4 of 7.1 G.S.T), 104.6%

Total usage for project hpcis 215.6 of 377.9 Generic Service Tokens, 57.1%

Project	PI Name	Subject	Discipline/Department
cse002	Wander, A (Dr)	Support for the UKCP	Physics
cse003	Dundas, D (Dr)	HPC Consortiums 98-2000	
cse004	Sandham, N (Prof)	UK Turbulence	
cse006	Briddon, P (Dr)	Covalently Bonded Materials	
cse007	Foulkes, M (Dr)	Quantum Many Body Theory	
Cse008	Vincent, M (Dr)	Model Chemical Reactivity	
cse009	Slater, Ben	HPC Computing Applications in Materials Chemistry	Chemistry
cse010	William, J (Dr)	Free Surface Flows	
cse011	William, J (Dr)	Open Channel Flood Plains	
cse013	Leschziner, M (Prof)	Large Eddy Simulation for Aerospace & Turbomachinery Dynamics	Mechanical Engineering
cse014	De Oliverira, C (Dr)	Problems in Nuclear Safety	
cse016	Cant, S (Dr)	Turbulent Combustion	
cse017	Luo, K (Dr)	Large Eddy Simulation & Modelling of Buoyant Plumes & Smoke Spread in Enclosures	
cse018	Jaffri, K		
cse019	Lander, J (Dr)		
cse021	Staunton, J (Dr)		
cse022	Jones, WP (Prof)		
cse023	Allen, M (Prof)		
cse024	Allan, RJ (Dr)		
cse025	Walet, NR (Dr)		
cse026	Neal, M (Dr)		
cse029	Apsley, DD (Dr)		
cse030	Desplat, JC (Dr)	High Performance Computing for complex Fluids	Physics
cse033	Breard, CC (Dr)		<u> </u>
cse035	Jenkins, S (Dr)	Ab Initio Simulations of Catalytic Processes at Extended Metal Surfaces	Chemistry
cse036	Duff, I (Prof)	Research & Development of Algorithms & Software for Large-Scale Linear & Non-Linear Systems	Maths
cse040	Badcock, K (Dr)	Prediction of Non-Linear Flutter Characteristics by Numerical Path Following & Model Reduction	Aerospace Engineeering
cse041	Wu, X (Dr)	Flutter & Noise Generation Mechanisms - Turbomachinery Fan Assemblies	Mechanical Engineering
cse042	Leschziner, M (Prof)		
cse043	Williams, J (Dr)	Numerical Simulation of Flow over a Rough Bed	Engineering
cse050	Bradley, D (Prof)	Flame Instabilities: their influence on turbulent combustion & incorporation in mathematical models.	Mechanical Engineering
cse052	Di Mare, F (Miss)	Heat Transfer in Turbine Combustors	Mechanical Engineering
cse053	Leschziner, M (Prof)	Coupling RANS Near-Wall Turbulence Models with Large Eddy Simulation Strategies	Aerospace Engineering
cse055	Staunton, J (Dr)	Ab-initio theory of magnetic anisotropy in transition metal ferromagnets	Physics
cse056	Zheng, Y (Dr)	Aerothermalelasticity Modelling of Air Riding Seals for Large Gas Turbines	Mechanical Engineering
cse057	Evans, R (Dr)	Relativistic Particle Generation from Ultra-Intense Laser Plasma Interactions	Physics
cse059	Cross, (Prof)		

cse060	Robb, M (Prof)	CCP1 Renewal plus falgship project on Car-Parrinello in Chemistry	Chemistry
cse061	Imregun, M (Prof)	Casing treatment modelling for the investigation of stall, flutter and noise mechanisms in turbomachinery compressors.	Mechanical Engineering
cse063	Sandham, N (Prof)	Computational Aerocaustics for Turbulent Plane Jets	Aerospace Engineering
cse064	Leschziner, M (Prof)	Improvement of predictive performance of anisotropy-resolving turbulence models in post-reattachment recovery region of separated flow using Large Eddy Simulation	Aerodynamics
cse065	Williams, J (Dr)		
cse066	Coveney, P V (Prof)	New clay-polymer nanocomposites using diversity-discovery methods: synthesis, processing and testing	П
cse067	Williams, J (Dr)		
cse068	Bressloff		
cse069	Lou (Dr)		
cse071	Iacovides (Dr)	The Practical Computation of Three-Dimensional Time-Dependent Turbulent Flows in Rotating Cavities	Mechanical Engineering
cse072	Karlin, V (Dr)	Structure & Dynamics of Unstable Premixed Laminar Flames	Engineering
cse073	Alavi		
cse074	Luo (Dr)	Consortium on Computational Combustion for Engineering Applications	Engineering
cse075	Coveney, PV (Prof)	The Reality Grid - a tool for investigating condensed matter & materials	IT
cse076	Briddon, P (Dr)	HPC facilities for the first principles simulation of covalently bonded materials	IT
cse077	Kronenburg, A (Dr)	Combustion Model Development for Large-Eddy Simulation of Non- Premixed Reactive Flows.	Mechanical Engineering
cse078	Staunton		
cse080	Gao		
cse081	Hickey		
cse082	Barakos, G (Dr)	CFD Study of Three-dDimensional Dynamic Shelf	Aerospace Engineering
cse084	Needs, R (Dr)	The Consortium for Computational Quantum Many-Body Theory	Physics
cse085	Sandham, N (Prof)	UK Turbulence Consortium	Engineering
cse086	Taylor, K (Prof)	Multiphoton, Electron Collisions and BEC HPC Consortium 2002-2005	Physics
cse087	Williams, J (Dr)		
cse088	Coleman		
cse089	Wiercigroch, M (Dr)	Nonlinear Dynamics & Rock Contact Fracture Mechanics in Modelling of Vibration Enhanced Drilling	Engineering
cse090	Imregun, M (Prof)		
cse091	Avital		
cse092	Allen		
	W.W. 1/D.)		
cse093	Williams, J (Dr)		

cse095	Barford		
C3C073	Baroid		
cse096	Lo		
Cse097	Hickey		
cse098	De Souza, M M (Dr)	Indium interaction in silicon for ULSI technologies	Physics
cse099	Williams, J (Prof)		
cse100	Gao, S (Dr)	Dev of Novel Aerodynamic Lenses for Focusing Nanoparticle Beams	Engineering
cse101	Jiang (Dr)	Direct Numerical Simulation of Fuel-Air Mixing with Passive Flow Control of Diesel Combustion.	Mechanical Engineering
cse102	Williams, J (Prof)	Numerical Modelling of Flow around Bridge Piers	Engineering
cse103	Neil, M P (Prof)	Simulation and Modelling of liquid crystalmesopases linked to the design of molecular and material properties.	Mathematics
cse104	Greaves, D M (Dr)	CFD Modelling of free surface waves driven by moving bodies using adaptively refined cut cell hierarchical grids	
cse105	Chemyshenko, S I (Prof)	Optimal database of the direct numerical simulation of turbulent channel flow	Aerodynamics & Flight Mechanics
cse106	Augarde (Dr)	Parametric Studies of multiple tunnels	Engineering
cse107	Hicks, MA (Dr)	Parallel Finite Elements for Stochastic Analysis	Engineering
cse108	Holden, AV (Prof)	Large-scale parallelisation of electro-physiological & mechanical cardiac virtual tissues.	Biomedical Sciences
cse109	Allen, M (Prof)	University of Warwick New HPC Project	Physics
cse110	Leach, SA (Dr)	Application of HE Computing to Develop Complex Stochastic Models to aid Public Health & National Operational Responses to Infectious Disease Threats.	
cse111	Avital, Eldad 9Dr)	A numerical study of three dimensional wakes generated by free surface piecing circular cylinders	Engineering
cse112	Chemyshenko, SI (Prof)	Master-mode analysis of the genesis of organized structures in turbulent flows.	Engineering - Aerodynamics
cse113	Wirth, T (Prof)	Stereoselective Halocyclisations	Chemistry
cse114	Jiang, X (Dr)	Direct numerical simulation of fuel injection & spray combustion	Engineering
cse115	De Leeuw, N (dr)	A computational study of bio-mineralisation: nucleation and growth of bone material on biological templates	
cse116	John, N (Dr)	An Advanced environment for enabling visual supercomputing	
cse117	Theodoropoulos, K (Dr)	Modelling of Microreactors: An integrated Multi-scale Approach	
cse118	Gavaghan, David (Dr)	EPSRC e-science pilot in Integrative Biology	
csn001	De Cuevas, B (Mrs)	OCCAM	Ocean/Earth Sciences
csn002	Vincent, Mark (Dr)		
csn003	Steenman-Clark, L (Dr)	UGAMP	Meteorology
csn005	Huw Davies, J (Prof)		
csn006	Brodholt, J (Dr)	HPC for Mineral Physics	Geological Sciences
csn009	Proctor, R (Dr)		
csn011	Gray, SL (Dr)		
csn012	Tennyson, J (Prof)	Calculated Absorption by water vapour at near infra-red & optical	Physics & Astronomy
csn013	Voke, P (Prof)	wavelengths Large Eddy Simulation Extended by Extreme Value Theory for the Prediction of Dispersion, Concentration Threshold Boundaries & Field	Mechanical & Materials Engineering
csn014	Llewellyn Jones (Prof)	Connectivity Data Assimilation scheme to optimize info on the surface-atmosphere interface from satellite observations of Top-of-the Atmosphere Brightness Temp.	Physics & Astronomy
csn015	Proctor, R (Dr)	A Testbed for Zooplankton Models of the Irish Sea	Coastal & Marine Sciences
csn017	Payne, A (Dr)	Stability of the Antarctic Ice Sheet	Geography
csn029	Allen, MR (Dr)		
csn030	New		
csn031	Richards		
csn032	Sutton		
csn033	Saunders		
csn036	Liu, C (Dr)	Assimilation of Altimeter, Radiometer & in situ data into the OCCAM	Environmental Science
csn038	Oppenheimer	model. Analysis of water properties & transports	
csn039	Beven		-
csn040	Slingo		
csn041	Lawrence		
csn042	Gray, SL (Dr)	Transport & Mixing in Fronts	
csn043	Haines		

csn044	Steenman-Clark, L (Dr)	Earth Observation Project	Meteorology
csn045	Slingo		
csn046	Aitken		
csn047	Gubbins		
csn048	Brodholt		
csn049	Srokosz	Climate impact changes in Atlantic Thermohaline.	
csn050	Challenor	The Probability of rapid climate change	
csn051	Proctor	Ultr-fine scale modeling of the northern North Atlantic Thermohaline.	
csn052	Xie, Z (Dr0	Quantifying the scaling of physical transport in structured heterogeneous porous media	Earth Sciences
csn053	Das, S (Dr)	Rupture History of large earthquakes from analysis of broad band seismograms, and its physical interpretation.	Earth Sciences
csn054	Thuburn, J (Dr)	An Integrated Model of Atmospheric Convection	Meteorology
csn055	Vocadlo, L (Dr0	The structure and anisotropy of Earths inner core.	Earth Sciences
csn056	Hoskins B (Prof)	Atmospheric water vapour budget & it's relevance to the thermohaline circulation	Meteorology
csn057	Guilyardi, E (Dr)	Role of salinity in ocean circulation and climate response to greenhouse gas forcing.	Atmospheric Modelling
csn058	Tudhope, A (Dr)	Improving ability to predict rapid changes in the el nino southern oscillation climatic phenomenon	Atmospheric Modelling
csn059	Watson, AJ (Prof)	Circulation, overflow & deep connection in the Nordic seas.	Environmental Sciences
csb001	Houldershaw, D (Dr)	Use of Cray T3E for multiple long trajectories of protein unfolding	Crystallography
csb002	Mulholland, A (Dr)	, garage	. ,
csb002	Carling, J (Dr)		-
csb003	Greenall		
csb004	Haley	Genetic Analysis of Complex Traits	
csb005	Sansom, M (Prof)	DFT calculations for ion channels and transport proteins	Biochemistry
csp002	Chapman, S (Dr)	2.1. Calculations for four channels and transport proteins	Diocheniistry
csp002	Ord, SM (Mr)]	
csp003	Bell, K L (Prof)	A Programme for Atomic Physics for Astrophysics at Queen's University Belfast (2001-2005)	Astronomy
csp005	Chapman	Cinversity Benast (2001-2003)	
csp005	Jain, R (Dr)	Numerical Simulation of forced magnetic reconnection in the solar	Physics
csp007	Scott, P (Dr)	A Programme for Atomic Physics for Astrophysics at Queens University Belfast (2001-2005)	Astronomy
css001	Boyle, P (dr)		
css002	Crouchley, R (Dr)		
HPCID	Allan, R (Dr)		
HPCIE	Henty, D (Dr)		
HPCIS	Nicole, D (Dr)		
UKHEC	Allan, R (Dr)	UK HEC Collaboration, Core Support for High-End Computing 1999-	
cs2009	Pennington, V (Dr)	2002	
cs2009	Mallinger, F (Dr)	J !	
cs2012 cs2014	Qin, N (Prof)]	
	Karlin, V (Dr)]	
cs2015	Tejera Cuesta, P (Mr)	<u> </u>	<u></u>
cs2016 cs2017	Miles, JJ (Dr)	<u> </u>	
cs2017	Eisenbach, M (Mr)]	
	Annett (dr)]	
cs2030	McKenna, K (Mr)	<u> </u>	
cs2031	Ess	1	
cs2032	Jain, R (Dr)	Tradium internation 1 Tr. C. C. 177 CT. 1	Di :
cs2034 cs2035	Chichkine, M (Mr) Barakos, G (Dr)	Indium interaction in silicon for future ULSI technologies Detached Eddy Simulation of Aerodynamics & Aerocautics of Cavity	Physics Aerospace Engineering
cs2036	Farid, Vakili-Tahami (Mr)	Flows MPI Evaluation	Mechanical Aerospace & Manufactur
cs2037	Domene, Carmen (Dr)	Ab initio molecular dynamics of ion in membrane proteins	Engineering
cs2038	Excell, P (Prof)	Computational Bioelectromagnetic Modeling of Human Cellular Processes for Mobile Phone Safety Research	Informatics
cs2039	Carlborg (Dr)	Genetic Analysis of Complex Traits	Genetics & Biometry
cs2040	Costen, F (Mrs)	Impulse radio propogation in a dense multipath & shadowed environment for ultra-wideband communication systems	Computer Science
cs2041	Filippone, A (Dr)	Numerical Study of the 3D obstructed shear-driven cavity flow.	Mechanical Aerospace & Manufactur Engineering
cs2042	Smeed, DA (Dr)	A temporally continuous high-resolution record of global sea level during the Holocene.	Ocean/Earth Sciences
cs2043	Theodoropoulos, K (Dr)	Design of microchannel structures for microreactor applications	Process Intewgration
cs2044	Mota-Furtado, F (Dr)	Statistical Properties of Quantum Transport	Maths

cs3003	Chambers, E (Dr)		
cs3004	Avis, N (Prof)		
cs3005	Zarei, B (Mr)		
cs3007	Finch, E		
cs3008	Alsberg, B (Dr)		
cs3009	Flower, D (Dr)		
cs3010	Kemsley, K (Dr)		
cs3012	Austin, J (Dr)		
cs3013	Raval, R (Prof)		
cs3014	MacLaren, J (Dr)		
cs3015	Hampshire, D (Dr)	High Performance Computational Solutions for the Ginzburg-Landau Equations that describe Flux Pinning in High-Field Superconductors	Physics
cs3016	Petchey, O (Dr)	Randomisation test for the significance of functional diversity for eco- system processes	Animal & Plant Sciences
cs3017	Gross, M (Mr)	Numerical Simulation of Laser Materials Processing	Engineering
cs3018	Durrant, M (Dr)	Functional modelling of oxalate-degrading enzymes & of lipoxygenase using quantum calculations.	Biology
cs3019	Bengough (Dr)	Lattice-Boltzmann simulation of water & solute transport in porous media.	Physics
Cs3020	Gajjar	Flow past a circular cylunder at large Reynoldss numbers	
cs4001	White P		
cs4002	Cooper A (Miss)		