
Intel® Math Kernel
Library

Reference Manual

Copyright © 1994-2003 Intel Corporation
All Rights Reserved
Issued in U.S.A.
Document Number: 630813-6004

World Wide Web: http://developer.intel.com

http://developer.intel.com/software/products/perflib/index.htm

Intel® Math Kernel Library
Reference Manual
Revision History

Revision Revision History Date

-001 Original Issue. 11/94

-002 Added functions crotg, zrotg. Documented versions of functions ?her2k, ?symm, ?syrk,
and ?syr2k not previously described. Pagination revised.

5/95

-003 Changed the title; former title: “Intel BLAS Library for the Pentium® Processor Reference
Manual.” Added functions ?rotm,?rotmg and updated Appendix C.

1/96

-004 Documents Intel Math Kernel library release 2.0 with the parallelism capability.
Information on parallelism has been added in Chapter 1 and in section “BLAS Level 3
Routines” in Chapter 2.

11/96

-005 Two-dimensional FFTs have been added. C interface has been added to both one- and
two-dimensional FFTs.

8/97

-006 Documents Intel Math Kernel Library release 2.1. Sparse BLAS section has been added
in Chapter 2.

1/98

-007 Documents Intel Math Kernel Library release 3.0. Descriptions of LAPACK routines
(Chapters 4 and 5) and CBLAS interface (Appendix C) have been added.
Quick Reference has been excluded from the manual; MKL 3.0 Quick Reference is now
available in HTML format.

1/99

-008 Documents Intel Math Kernel Library release 3.2. Description of FFT routines have been
revised. In Chapters 4 and 5 NAG names for LAPACK routines have been excluded.

6/99

-009 New LAPACK routines for eigenvalue problems have been added inchapter 5. 11/99

-010 Documents Intel Math Kernel Library release 4.0. Chapter 6 describing the VML
functions has been added.

06/00

-011 Documents Intel Math Kernel Library release 5.1. LAPACK section has been extended
to include the full list of computational and driver routines .

04/01

-6001 Documents Intel Math Kernel Library release 6.0 beta. New DFT interface (chapter 8)
and Vector Statistical Library functions (chapter 7) have been added.

07/02

-6002 Documents Intel Math Kernel Library 6.0 beta update. DFT functions description
(chapter 8) has been updated. CBLAS interface description was extended.

12/02

-6003 Documents Intel Math Kernel Library 6.0 gold. DFT functions have been updated.
Auxiliary LAPACK routines’ descriptions were added to the manual.

03/03

-6004 Documents Intel Math Kernel Library release 6.1. 07/03

Legal Information

This manual as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this manual is furnished for informational use only, is
subject to change without notice, and should not be construed as a commitment by Intel Corporation.

Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this docu-
ment or any software that may be provided in association with this document. Except as permitted by such license,
no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means
without the express written consent of Intel Corporation.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE
OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or
life sustaining applications. intel may make changes to specifications and product descriptions at any time, without
notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available upon request.

Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2,
Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX
logo, Pentium, Pentium II Xeon, Pentium III Xeon, and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 1994-2003, Intel Corporation. All Rights Reserved.

Chapters 4 and 5 include derivative work portions that have been copyrighted:
© 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.

v

Contents
Chapter 1 Overview

About This Software .. 1-1
Technical Support ... 1-2
BLAS Routines.. 1-2
Sparse BLAS Routines ... 1-3
Fast Fourier Transforms .. 1-3
LAPACK Routines ... 1-3
VML Functions .. 1-3
VSL Functions... 1-4
DFT Functions .. 1-4
Performance Enhancements .. 1-4
Parallelism... 1-5
Platforms Supported ... 1-5

About This Manual... 1-6
Audience for This Manual ... 1-6
Manual Organization... 1-6
Notational Conventions ... 1-8

Routine Name Shorthand .. 1-8
Font Conventions ... 1-8

Related Publications ... 1-9
Chapter 2 BLAS and Sparse BLAS Routines

Routine Naming Conventions ... 2-2
Matrix Storage Schemes ... 2-3
BLAS Level 1 Routines and Functions 2-4

vi

Intel® Math Kernel Library Reference Manual

?asum .. 2-5
?axpy ... 2-6
?copy .. 2-7
?dot .. 2-8
?dotc ... 2-9
?dotu .. 2-10
?nrm2 ... 2-11
?rot ... 2-12
?rotg .. 2-14
?rotm .. 2-15
?rotmg ... 2-17
?scal .. 2-18
?swap ... 2-20
i?amax ... 2-21
i?amin .. 2-22

BLAS Level 2 Routines .. 2-23
?gbmv ... 2-24
?gemv ... 2-27
?ger ... 2-30
?gerc ... 2-31
?geru ... 2-33
?hbmv ... 2-35
?hemv ... 2-38
?her .. 2-40
?her2 ... 2-42
?hpmv ... 2-44
?hpr .. 2-47
?hpr2 ... 2-49
?sbmv .. 2-51
?spmv ... 2-54
?spr .. 2-56
?spr2 ... 2-58

Contents

vii

?symv ... 2-60
?syr .. 2-62
?syr2 ... 2-64
?tbmv .. 2-66
?tbsv ... 2-69
?tpmv ... 2-72
?tpsv ... 2-75
?trmv ... 2-77
?trsv .. 2-79

BLAS Level 3 Routines ... 2-82
Symmetric Multiprocessing Version of Intel® MKL......... 2-82

?gemm ... 2-83
?hemm .. 2-86
?herk .. 2-89
?her2k ... 2-92
?symm .. 2-96
?syrk .. 2-100
?syr2k .. 2-103
?trmm .. 2-107
?trsm ... 2-110

Sparse BLAS Routines and Functions 2-114
Vector Arguments in Sparse BLAS 2-114
Naming Conventions in Sparse BLAS 2-115
Routines and Data Types in Sparse BLAS 2-115
BLAS Routines That Can Work With Sparse Vectors . 2-116

?axpyi .. 2-116
?doti .. 2-118
?dotci .. 2-119
?dotui .. 2-120
?gthr ... 2-121
?gthrz ... 2-122
?roti .. 2-123

viii

Intel® Math Kernel Library Reference Manual

?sctr ... 2-124
Chapter 3 Fast Fourier Transforms

One-dimensional FFTs .. 3-1
Data Storage Types .. 3-2
Data Structure Requirements ... 3-3
Complex-to-Complex One-dimensional FFTs................... 3-3

cfft1d/zfft1d ... 3-4
cfft1dc/zfft1dc .. 3-5

Real-to-Complex One-dimensional FFTs.......................... 3-7
scfft1d/dzfft1d .. 3-8
scfft1dc/dzfft1dc ... 3-10

Complex-to-Real One-dimensional FFTs........................ 3-12
csfft1d/zdfft1d .. 3-13
csfft1dc/zdfft1dc .. 3-15

Two-dimensional FFTs... 3-17
Complex-to-Complex Two-dimensional FFTs 3-18

cfft2d/zfft2d ... 3-19
cfft2dc/zfft2dc .. 3-20

Real-to-Complex Two-dimensional FFTs 3-21
scfft2d/dzfft2d .. 3-22
scfft2dc/dzfft2dc .. 3-24

Complex-to-Real Two-dimensional FFTs 3-27
csfft2d/zdfft2d .. 3-28
csfft2dc/zdfft2dc .. 3-29

Chapter 4 LAPACK Routines: Linear Equations
Routine Naming Conventions ... 4-2
Matrix Storage Schemes ... 4-3
Mathematical Notation ... 4-3
Error Analysis .. 4-4
Computational Routines .. 4-5

Routines for Matrix Factorization 4-7
?getrf ... 4-7

Contents

ix

?gbtrf ... 4-10
?gttrf ... 4-12
?potrf .. 4-14
?pptrf .. 4-16
?pbtrf .. 4-18
?pttrf ... 4-20
?sytrf ... 4-22
?hetrf ... 4-25
?sptrf .. 4-28
?hptrf ... 4-31

Routines for Solving Systems of Linear Equations 4-33
?getrs .. 4-34
?gbtrs .. 4-36
?gttrs ... 4-38
?potrs ... 4-41
?pptrs ... 4-43
?pbtrs ... 4-45
?pttrs ... 4-47
?sytrs ... 4-49
?hetrs .. 4-51
?sptrs ... 4-53
?hptrs .. 4-55
?trtrs ... 4-57
?tptrs .. 4-59
?tbtrs .. 4-61

Routines for Estimating the Condition Number 4-63
?gecon ... 4-63
?gbcon ... 4-65
?gtcon ... 4-67
?pocon ... 4-70
?ppcon .. 4-72
?pbcon .. 4-74

x

Intel® Math Kernel Library Reference Manual

?ptcon .. 4-76
?sycon .. 4-78
?hecon .. 4-80
?spcon .. 4-82
?hpcon ... 4-84
?trcon ... 4-86
?tpcon .. 4-88
?tbcon .. 4-90

Refining the Solution and Estimating Its Error 4-92
?gerfs .. 4-92
?gbrfs .. 4-95
?gtrfs ... 4-98
?porfs ... 4-101
?pprfs .. 4-104
?pbrfs ... 4-107
?ptrfs .. 4-110
?syrfs ... 4-113
?herfs ... 4-116
?sprfs .. 4-119
?hprfs .. 4-122
?trrfs .. 4-124
?tprfs ... 4-127
?tbrfs ... 4-130

Routines for Matrix Inversion .. 4-133
?getri ... 4-133
?potri .. 4-135
?pptri ... 4-137
?sytri .. 4-139
?hetri ... 4-141
?sptri ... 4-143
?hptri ... 4-145
?trtri ... 4-147

Contents

xi

?tptri .. 4-148
Routines for Matrix Equilibration 4-150

?geequ... 4-150
?gbequ... 4-153
?poequ... 4-155
?ppequ... 4-157
?pbequ... 4-159

Driver Routines ... 4-161
?gesv ... 4-162
?gesvx ... 4-163
?gbsv ... 4-170
?gbsvx ... 4-172
?gtsv .. 4-179
?gtsvx .. 4-181
?posv ... 4-186
?posvx ... 4-188
?ppsv ... 4-193
?ppsvx ... 4-195
?pbsv ... 4-200
?pbsvx ... 4-202
?ptsv .. 4-207
?ptsvx .. 4-209
?sysv.. 4-212
?sysvx.. 4-215
?hesvx ... 4-220
?hesv ... 4-224
?spsv ... 4-227
?spsvx.. 4-230
?hpsvx ... 4-235
?hpsv ... 4-239

xii

Intel® Math Kernel Library Reference Manual

Chapter 5 LAPACK Routines:
Least Squares and Eigenvalue Problems

Routine Naming Conventions ... 5-4
Matrix Storage Schemes ... 5-5
Mathematical Notation ... 5-5
Computational Routines .. 5-6

Orthogonal Factorizations .. 5-6
?geqrf ... 5-8
?geqpf .. 5-11
?geqp3 ... 5-14
?orgqr ... 5-17
?ormqr ... 5-19
?ungqr .. 5-21
?unmqr .. 5-23
?gelqf ... 5-25
?orglq ... 5-28
?ormlq ... 5-30
?unglq .. 5-32
?unmlq .. 5-34
?geqlf .. 5-36
?orgql ... 5-38
?ungql .. 5-40
?ormql ... 5-42
?unmql .. 5-45
?gerqf .. 5-48
?orgrq ... 5-50
?ungrq .. 5-52
?ormrq ... 5-54
?unmrq .. 5-57
?tzrzf ... 5-60
?ormrz ... 5-62
?unmrz .. 5-65

Contents

xiii

?ggqrf ... 5-68
?ggrqf ... 5-71

Singular Value Decomposition 5-74
?gebrd ... 5-76
?gbbrd ... 5-79
?orgbr ... 5-82
?ormbr .. 5-85
?ungbr ... 5-88
?unmbr .. 5-91
?bdsqr ... 5-94
?bdsdc .. 5-98

Symmetric Eigenvalue Problems 5-101
?sytrd ... 5-105
?orgtr .. 5-107
?ormtr ... 5-109
?hetrd .. 5-111
?ungtr .. 5-113
?unmtr ... 5-115
?sptrd .. 5-117
?opgtr .. 5-119
?opmtr ... 5-120
?hptrd .. 5-122
?upgtr .. 5-124
?upmtr ... 5-125
?sbtrd .. 5-128
?hbtrd .. 5-130
?sterf ... 5-132
?steqr ... 5-134
?stedc .. 5-137
?stegr ... 5-141
?pteqr ... 5-146
?stebz .. 5-149
?stein ... 5-152

xiv

Intel® Math Kernel Library Reference Manual

?disna ... 5-154
Generalized Symmetric-Definite Eigenvalue Problems. 5-157

?sygst ... 5-158
?hegst .. 5-160
?spgst ... 5-162
?hpgst .. 5-164
?sbgst .. 5-166
?hbgst ... 5-169
?pbstf .. 5-172

Nonsymmetric Eigenvalue Problems 5-174
?gehrd ... 5-178
?orghr .. 5-180
?ormhr ... 5-182
?unghr ... 5-185
?unmhr ... 5-187
?gebal .. 5-190
?gebak .. 5-193
?hseqr ... 5-195
?hsein .. 5-199
?trevc ... 5-205
?trsna .. 5-210
?trexc ... 5-215
?trsen .. 5-217
?trsyl ... 5-222

Generalized Nonsymmetric Eigenvalue Problems 5-225
?gghrd ... 5-226
?ggbal ... 5-230
?ggbak .. 5-233
?hgeqz .. 5-235
?tgevc .. 5-242
?tgexc .. 5-247
?tgsen ... 5-250

Contents

xv

?tgsyl .. 5-256
?tgsna ... 5-261

Generalized Singular Value Decomposition 5-266
?ggsvp .. 5-267
?tgsja .. 5-271

Driver Routines .. 5-278
Linear Least Squares (LLS) Problems 5-278

?gels ... 5-279
?gelsy ... 5-282
?gelss ... 5-286
?gelsd ... 5-289

Generalized LLS Problems... 5-293
?gglse ... 5-293
?ggglm .. 5-296

Symmetric Eigenproblems.. 5-298
?syev ... 5-299
?heev .. 5-301
?syevd ... 5-303
?heevd .. 5-306
?syevx ... 5-309
?heevx .. 5-313
?syevr ... 5-317
?heevr ... 5-322
?spev .. 5-327
?hpev .. 5-329
?spevd .. 5-331
?hpevd ... 5-334
?spevx .. 5-338
?hpevx .. 5-342
?sbev .. 5-346
?hbev .. 5-348
?sbevd .. 5-350

xvi

Intel® Math Kernel Library Reference Manual

?hbevd ... 5-353
?sbevx ... 5-357
?hbevx ... 5-361
?stev .. 5-365
?stevd ... 5-367
?stevx .. 5-370
?stevr ... 5-374

Nonsymmetric Eigenproblems 5-379
?gees ... 5-379
?geesx ... 5-384
?geev ... 5-390
?geevx ... 5-394

Singular Value Decomposition 5-400
?gesvd ... 5-400
?gesdd .. 5-405
?ggsvd ... 5-409

Generalized Symmetric Definite Eigenproblems........... 5-415
?sygv ... 5-416
?hegv .. 5-419
?sygvd ... 5-422
?hegvd .. 5-425
?sygvx ... 5-429
?hegvx ... 5-434
?spgv ... 5-439
?hpgv .. 5-442
?spgvd ... 5-445
?hpgvd .. 5-448
?spgvx ... 5-452
?hpgvx ... 5-456
?sbgv ... 5-460
?hbgv .. 5-463
?sbgvd ... 5-466

Contents

xvii

?hbgvd .. 5-469
?sbgvx .. 5-473
?hbgvx .. 5-477

Generalized Nonsymmetric Eigenproblems 5-482
?gges .. 5-482
?ggesx .. 5-489
?ggev .. 5-497
?ggevx .. 5-502

References.. 5-509
Chapter 6 LAPACK Auxiliary Routines

?lacgv .. 6-1
?lacrm.. 6-2
?lacrt.. 6-3
?laesy .. 6-4
?rot... 6-6
?spmv .. 6-7
?spr.. 6-9
?symv .. 6-11
?syr .. 6-13
i?max1 ... 6-15
ilaenv ... 6-16
lsame ... 6-18
lsamen ... 6-19
?sum1.. 6-20
?gbtf2... 6-21
?gebd2... 6-23
?gehd2... 6-26
?gelq2 .. 6-29
?geql2 .. 6-31
?geqr2.. 6-33
?gerq2.. 6-35
?gesc2 ... 6-37

xviii

Intel® Math Kernel Library Reference Manual

?getc2 .. 6-39
?getf2 ... 6-40
?gtts2 .. 6-42
?labad .. 6-43
?labrd ... 6-45
?lacon... 6-48
?lacpy ... 6-50
?ladiv .. 6-51
?lae2 .. 6-52
?laebz... 6-54
?laed0 .. 6-60
?laed1 .. 6-64
?laed2 .. 6-67
?laed3 .. 6-70
?laed4 .. 6-73
?laed5 .. 6-74
?laed6 .. 6-75
?laed7 .. 6-78
?laed8 .. 6-83
?laed9 .. 6-87
?laeda .. 6-89
?laein.. 6-92
?laev2... 6-95
?laexc ... 6-98
?lag2 .. 6-100
?lags2... 6-103
?lagtf .. 6-105
?lagtm .. 6-108
?lagts.. 6-110
?lagv2... 6-113
?lahqr ... 6-115
?lahrd ... 6-118
?laic1.. 6-121

Contents

xix

?laln2 ... 6-124
?lals0 ... 6-127
?lalsa ... 6-132
?lalsd ... 6-136
?lamch ... 6-139
?lamc1 ... 6-140
?lamc2 ... 6-141
?lamc3 ... 6-142
?lamc4 ... 6-143
?lamc5 ... 6-144
?lamrg.. 6-145
?langb .. 6-146
?lange .. 6-148
?langt ... 6-149
?lanhs .. 6-151
?lansb .. 6-152
?lanhb .. 6-154
?lansp .. 6-156
?lanhp .. 6-158
?lanst/?lanht .. 6-159
?lansy .. 6-161
?lanhe .. 6-163
?lantb ... 6-164
?lantp ... 6-167
?lantr.. 6-169
?lanv2 .. 6-171
?lapll .. 6-172
?lapmt .. 6-174
?lapy2 .. 6-175
?lapy3 .. 6-176
?laqgb .. 6-176
?laqge .. 6-179

xx

Intel® Math Kernel Library Reference Manual

?laqp2 .. 6-181
?laqps... 6-183
?laqsb... 6-185
?laqsp... 6-187
?laqsy... 6-189
?laqtr .. 6-191
?lar1v ... 6-194
?lar2v ... 6-196
?larf .. 6-198
?larfb .. 6-200
?larfg .. 6-202
?larft ... 6-204
?larfx .. 6-207
?largv ... 6-208
?larnv ... 6-210
?larrb .. 6-212
?larre .. 6-214
?larrf ... 6-216
?larrv .. 6-218
?lartg .. 6-221
?lartv .. 6-223
?laruv ... 6-224
?larz ... 6-225
?larzb ... 6-227
?larzt .. 6-230
?las2... 6-233
?lascl .. 6-234
?lasd0... 6-236
?lasd1... 6-238
?lasd2... 6-241
?lasd3... 6-246
?lasd4... 6-249

Contents

xxi

?LASD5 ... 6-251
?LASD6 ... 6-252
?lasd7 .. 6-257
?lasd8 .. 6-262
?lasd9 .. 6-264
?lasda .. 6-267
?lasdq .. 6-271
?lasdt ... 6-274
?laset ... 6-275
?lasq1 .. 6-277
?lasq2 .. 6-278
?lasq3 .. 6-280
?lasq4 .. 6-281
?lasq5 .. 6-283
?lasq6 .. 6-284
?lasr ... 6-286
?lasrt.. 6-288
?lassq .. 6-289
?lasv2 .. 6-291
?laswp.. 6-292
?lasy2 .. 6-294
?lasyf ... 6-296
?lahef ... 6-299
?latbs ... 6-301
?latdf .. 6-304
?latps ... 6-307
?latrd.. 6-309
?latrs .. 6-313
?latrz .. 6-317
?lauu2 .. 6-320
?lauum... 6-321
?org2l/?ung2l ... 6-323

xxii

Intel® Math Kernel Library Reference Manual

?org2r/?ung2r... 6-324
?orgl2/?ungl2 ... 6-326
?orgr2/?ungr2... 6-328
?orm2l/?unm2l ... 6-330
?orm2r/?unm2r... 6-332
?orml2/?unml2 ... 6-335
?ormr2/?unmr2... 6-337
?ormr3/?unmr3... 6-340
?pbtf2 ... 6-343
?potf2 ... 6-345
?ptts2 ... 6-346
?rscl.. 6-348
?sygs2/?hegs2 ... 6-349
?sytd2/?hetd2... 6-351
?sytf2.. 6-354
?hetf2 ... 6-356
?tgex2... 6-358
?tgsy2... 6-361
?trti2 ... 6-366
xerbla.. 6-367

Chapter 7 Vector Mathematical Functions
Data Types and Accuracy Modes ... 7-2
Function Naming Conventions .. 7-2

Functions Interface ... 7-3
Vector Indexing Methods .. 7-6
Error Diagnostics .. 7-6
VML Mathematical Functions ... 7-8

Inv ... 7-10
Div .. 7-11
Sqrt ... 7-12
InvSqrt .. 7-13
Cbrt .. 7-15

Contents

xxiii

InvCbrt ... 7-16
Pow .. 7-17
Powx .. 7-18
Exp ... 7-20
Ln ... 7-21
Log10 ... 7-22
Cos .. 7-23
Sin .. 7-24
SinCos ... 7-25
Tan ... 7-27
Acos ... 7-28
Asin .. 7-29
Atan ... 7-30
Atan2 ... 7-31
Cosh .. 7-32
Sinh .. 7-34
Tanh ... 7-35
Acosh ... 7-36
Asinh .. 7-37
Atanh ... 7-39
Erf .. 7-40

VML Pack/Unpack Functions .. 7-42
Pack ... 7-42
Unpack ... 7-44

VML Service Functions ... 7-47
SetMode ... 7-47
GetMode ... 7-50
SetErrStatus ... 7-51
GetErrStatus ... 7-53
ClearErrStatus .. 7-54
SetErrorCallBack .. 7-55
GetErrorCallBack .. 7-57

xxiv

Intel® Math Kernel Library Reference Manual

ClearErrorCallBack .. 7-58
Chapter 8 Vector Generators of Statistical Distributions

Conventions... 8-2
Mathematical Notation .. 8-3
Naming Conventions... 8-4

Basic Pseudorandom Generators.. 8-6
Random Streams .. 8-6
Data Types .. 8-7

Service Subroutines .. 8-7
NewStream .. 8-9
NewStreamEx ... 8-10
DeleteStream .. 8-11
CopyStream .. 8-12
LeapfrogStream .. 8-13
SkipAheadStream ... 8-16
GetStreamStateBrng ... 8-19

Pseudorandom Generators ... 8-20
Continuous Distributions ... 8-21

Uniform .. 8-21
Gaussian ... 8-23
Exponential ... 8-26
Laplace .. 8-28
Weibull ... 8-31
Cauchy .. 8-33
Rayleigh .. 8-36
Lognormal ... 8-38
Gumbel .. 8-41

Discrete Distributions .. 8-43
Uniform .. 8-44
UniformBits .. 8-46
Bernoulli .. 8-48
Geometric .. 8-50

Contents

xxv

Binomial .. 8-52
Hypergeometric .. 8-54
Poisson ... 8-56
NegBinomial ... 8-57

Advanced Service Subroutines ... 8-59
Data types .. 8-60

RegisterBrng ... 8-62
GetBrngProperties .. 8-63

Formats for User-Designed Generators.............................. 8-64
iBRng ... 8-67
sBRng.. 8-68
dBRng.. 8-69

Chapter 9 Advanced DFT Functions
Computing DFT... 9-2
DFT Interface .. 9-9
Status Checking Functions ... 9-10

ErrorClass ... 9-11
ErrorMessage ... 9-13

Descriptor Manipulation .. 9-15
CreateDescriptor ... 9-15
CommitDescriptor ... 9-17
CopyDescriptor ... 9-18
FreeDescriptor .. 9-20

DFT Computation.. 9-21
ComputeForward .. 9-21
ComputeBackward ... 9-23

Descriptor Configuration ... 9-26
SetValue ... 9-31
GetValue .. 9-33

Configuration Settings .. 9-35
Precision of transform.. 9-35
Forward domain of transform..................................... 9-36

xxvi

Intel® Math Kernel Library Reference Manual

Transform dimension and lengths 9-36
Number of transforms .. 9-37
Sign and scale.. 9-37
Placement of result .. 9-38
Packed formats .. 9-38
Storage schemes ... 9-39
Input and output distances ... 9-48
Strides .. 9-49
Initialization Effort... 9-52

Ordering .. 9-52
Workspace .. 9-54
Transposition... 9-54

Appendix A Routine and Function Arguments
Vector Arguments in BLAS .. A-1
Vector Arguments in VML ... A-3
Matrix Arguments .. A-4

Appendix B Code Examples
Appendix C CBLAS Interface to the BLAS

CBLAS Arguments ... 1
Enumerated Types .. 2

Level 1 CBLAS ... 3
Level 2 CBLAS ... 6
Level 3 CBLAS ... 14
Sparse CBLAS ... 18

Glossary
Index

1-1

Overview 1
The Intel® Math Kernel Library (Intel® MKL) provides Fortran routines
and functions that perform a wide variety of operations on vectors and
matrices. The library also includes fast Fourier transform functions and new
discrete Fourier transform functions, as well as vector mathematical and
vector statistical functions with Fortran and C interfaces. The Intel MKL
enhances performance of the programs that use it because the library has
been optimized for Intel® processors.
This chapter introduces the Intel Math Kernel Library and provides
information about the organization of this manual.

About This Software
The Intel Math Kernel Library includes the following groups of routines:

• Basic Linear Algebra Subprograms (BLAS):
−vector operations
−matrix-vector operations
−matrix-matrix operations

• Sparse BLAS (basic vector operations on sparse vectors)
• Fast Fourier transform routines (with Fortran and C interfaces)
• LAPACK routines for solving systems of linear equations
• LAPACK routines for solving least-squares problems, eigenvalue and

singular value problems, and Sylvester’s equations
• Auxiliary LAPACK routines
• Vector Mathematical Library (VML) functions for computing core

mathematical functions on vector arguments (with Fortran and C
interfaces)

• Vector Statistical Library (VSL) functions for generating vectors of
pseudorandom numbers with different types of statistical distributions

• Advanced Discrete Fourier Transform Functions (DFT).

1-2

1 Intel® Math Kernel Library Reference Manual

For specific issues on using the library, please refer to the MKL Release
Notes.

Technical Support

Intel MKL provides a product web site that offers timely and
comprehensive product information, including product features, white
papers, and technical articles. For the latest information, check:
http://developer.intel.com/software/products/

Intel also provides a support web site that contains a rich repository of self
help information, including getting started tips, known product issues,
product errata, license information, user forums, and more (visit
http://support.intel.com/support/).

Registering your product entitles you to one year of technical support and
product updates through Intel® Premier Support. Intel Premier Support is
an interactive issue management and communication web site providing
these services:

• Submit issues and review their status.
• Download product updates anytime of the day.

To register your product, contact Intel, or seek product support, please visit:
http://www.intel.com/software/products/support

BLAS Routines

BLAS routines and functions are divided into the following groups
according to the operations they perform:

• BLAS Level 1 Routines and Functions perform operations of both
addition and reduction on vectors of data. Typical operations include
scaling and dot products.

• BLAS Level 2 Routines perform matrix-vector operations, such as
matrix-vector multiplication, rank-1 and rank-2 matrix updates, and
solution of triangular systems.

• BLAS Level 3 Routines perform matrix-matrix operations, such as
matrix-matrix multiplication, rank-k update, and solution of triangular
systems.

http://developer.intel.com/software/products/perflib/index.htm
http://support.intel.com/support/performancetools/libraries/mkl
http://developer.intel.com/software/products/support

Overview 1

1-3

Sparse BLAS Routines

Sparse BLAS Routines and Functions operate on sparse vectors (that is,
vectors in which most of the elements are zeros). These routines perform
vector operations similar to BLAS Level 1 routines. Sparse BLAS routines
take advantage of vectors’ sparsity: they allow you to store only non-zero
elements of vectors.

Fast Fourier Transforms

Fast Fourier Transforms (FFTs) are used in digital signal processing and
image processing and in partial differential equation (PDE) solvers.
Combined with the BLAS routines, the FFTs contribute to the portability of
the programs and provide a simplified interface between your program and
the available library. To obtain more functionality and ease of use, consider
also using the new DFT functions described in Chapter 9.

LAPACK Routines

The Intel Math Kernel Library covers the full set of the LAPACK
computational and driver routines. These routines can be divided into the
following groups according to the operations they perform:

• Routines for solving systems of linear equations, factoring and
inverting matrices, and estimating condition numbers (see Chapter 4).

• Routines for solving least-squares problems, eigenvalue and singular
value problems, and Sylvester’s equations (see Chapter 5).

• Auxiliary routines used to perform certain subtasks or common
low-level computation (see Chapter 6).

VML Functions

VML functions (see Chapter 7) include a set of highly optimized
implementations of certain computationally expensive core mathematical
functions (power, trigonometric, exponential, hyperbolic etc.) that operate
on real vector arguments.

1-4

1 Intel® Math Kernel Library Reference Manual

VSL Functions

Vector Statistical Library (VSL) functions (see Chapter 8) include a set of
pseudorandom number generator subroutines implementing basic
continuous and discrete distributions. To provide best performance, VSL
subroutines use calls to highly optimized Basic Random Number
Generators and the library of vector mathematical functions, VML.

DFT Functions

The newly developed Discrete Fourier Transform functions (see Chapter 9)
provide uniformity of DFT computation and combine functionality with
ease of use. Both Fortran and C interface specification are given. Users are
encouraged to migrate to the new interface in their application programs.

Performance Enhancements

The Intel Math Kernel Library has been optimized by exploiting both
processor and system features and capabilities. Special care has been given
to those routines that most profit from cache-management techniques.
These especially include matrix-matrix operation routines such as
dgemm().

In addition, code optimization techniques have been applied to minimize
dependencies of scheduling integer and floating-point units on the results
within the processor.

The major optimization techniques used throughout the library include:

• Loop unrolling to minimize loop management costs.
• Blocking of data to improve data reuse opportunities.
• Copying to reduce chances of data eviction from cache.
• Data prefetching to help hide memory latency.
• Multiple simultaneous operations (for example, dot products in dgemm)

to eliminate stalls due to arithmetic unit pipelines.
• Use of hardware features such as the SIMD arithmetic units, where

appropriate.

These are techniques from which the arithmetic code benefits the most.

Overview 1

1-5

Parallelism

In addition to the performance enhancements discussed above, the Intel
MKL offers performance gains through parallelism provided by the
symmetric multiprocessing performance (SMP) feature. You can obtain
improvements from SMP in the following ways:

• One way is based on user-managed threads in the program and further
distribution of the operations over the threads based on data
decomposition, domain decomposition, control decomposition, or
some other parallelizing technique. Each thread can use any of the Intel
MKL functions because the library has been designed to be thread-safe.

• Another method is to use the FFT and BLAS level 3 routines. They
have been parallelized and require no alterations of your application to
gain the performance enhancements of multiprocessing. Performance
using multiple processors on the level 3 BLAS shows excellent scaling.
Since the threads are called and managed within the library, the
application does not need to be recompiled thread-safe (see also BLAS
Level 3 Routines in Chapter 2).

• Yet another method is to use tuned LAPACK routines. Currently these
include the single- and double precision flavors of routines for QR
factorization of general matrices, triangular factorization of general and
symmetric positive-definite matrices, solving systems of equations
with such matrices, as well as solving symmetric eigenvalue problems.

For instructions on setting the number of available processors for the BLAS
level 3 and LAPACK routines, see the Release Notes.

Platforms Supported

The Intel Math Kernel Library includes Fortran routines and functions
optimized for Intel® processor-based computers running operating systems
that support multiprocessing. In addition to the Fortran interface, the Intel
MKL includes a C-language interface for the fast Fourier transform
functions, new discrete Fourier transform API, as well as for the Vector
Mathematical Library and Vector Statistical Library functions.

1-6

1 Intel® Math Kernel Library Reference Manual

About This Manual
This manual describes the routines of the Intel Math Kernel Library. Each
reference section describes a routine group consisting of routines used with
four basic data types: single-precision real, double-precision real,
single-precision complex, and double-precision complex.

Each routine group is introduced by its name, a short description of its
purpose, and the calling sequence for each type of data with which each
routine of the group is used. The following sections are also included:

Discussion Describes the operation performed by routines of
the group based on one or more equations. The
data types of the arguments are defined in general
terms for the group.

Input Parameters Defines the data type for each parameter on entry,
for example:

a REAL for saxpy
DOUBLE PRECISION for daxpy

Output Parameters Lists resultant parameters on exit.

Audience for This Manual

The manual addresses programmers proficient in computational linear
algebra and assumes a working knowledge of linear algebra and Fourier
transform principles and vocabulary.

Manual Organization

The manual contains the following chapters and appendixes:

Chapter 1 Overview. Introduces the Intel Math Kernel Library
software, provides information on manual organization,
and explains notational conventions.

Chapter 2 BLAS and Sparse BLAS Routines. Provides
descriptions of BLAS and Sparse BLAS functions and
routines.

Overview 1

1-7

Chapter 3 Fast Fourier Transforms. Provides descriptions of fast
Fourier transforms (FFT).

Chapter 4 LAPACK Routines: Linear Equations. Provides
descriptions of LAPACK routines for solving systems of
linear equations and performing a number of related
computational tasks: triangular factorization, matrix
inversion, estimating the condition number of matrices.

Chapter 5 LAPACK Routines: Least Squares and Eigenvalue
Problems. Provides descriptions of LAPACK routines
for solving least-squares problems, standard and
generalized eigenvalue problems, singular value
problems, and Sylvester’s equations.

Chapter 6 LAPACK Auxiliary Routines. Describes auxiliary
LAPACK routines that perform certain subtasks or
common low-level computation.

Chapter 7 Vector Mathematical Functions. Provides descriptions
of VML functions for computing elementary
mathematical functions on vector arguments.

Chapter 8 Vector Generators of Statistical Distributions. Provides
descriptions of VSL functions for generating vectors of
pseudorandom numbers.

Chapter 9 Advanced DFT Functions. Describes new functions for
computing the Discrete Fourier Transform.

Appendix A Routine and Function Arguments. Describes the major
arguments of the BLAS routines and VML functions:
vector and matrix arguments.

Appendix B Code Examples. Provides code examples of calling
BLAS functions and routines.

Appendix C CBLAS Interface to the BLAS. Provides the C interface
to the BLAS.

The manual also includes a Glossary and an Index.

1-8

1 Intel® Math Kernel Library Reference Manual

Notational Conventions

This manual uses the following notational conventions:

• Routine name shorthand (?ungqr instead of cungqr/zungqr).
• Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, character codes are represented by a question mark “?” in
names of routine groups. The question mark is used to indicate any or all
possible varieties of a function; for example:

?swap Refers to all four data types of the vector-vector
?swap routine: sswap, dswap, cswap, and zswap.

Font Conventions

The following font conventions are used:

UPPERCASE COURIER Data type used in the discussion of input
and output parameters for Fortran
interface. For example, CHARACTER*1.

lowercase courier Code examples:
a(k+i,j) = matrix(i,j)

and data types for C interface, for
example, const float*

lowercase courier mixed Function names for C interface,
with UpperCase courier for example, vmlSetMode

lowercase courier italic Variables in arguments and parameters
discussion. For example, incx.

* Used as a multiplication symbol in code
examples and equations and where
required by the Fortran syntax.

Overview 1

1-9

Related Publications

For more information about the BLAS, Sparse BLAS, LAPACK, VML,
VSL, and DFT routines, refer to the following publications:

• BLAS Level 1
C. Lawson, R. Hanson, D. Kincaid, and F. Krough. Basic Linear
Algebra Subprograms for Fortran Usage, ACM Transactions on
Mathematical Software, Vol.5, No.3 (September 1979) 308-325.

• BLAS Level 2
J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended
Set of Fortran Basic Linear Algebra Subprograms, ACM Transactions
on Mathematical Software, Vol.14, No.1 (March 1988) 1-32.

• BLAS Level 3
J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A Set of Level 3
Basic Linear Algebra Subprograms, ACM Transactions on
Mathematical Software (December 1989).

• Sparse BLAS
D. Dodson, R. Grimes, and J. Lewis. Sparse Extensions to the
FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on
Mathematical Software, Vol.17, No.2 (June 1991).
D. Dodson, R. Grimes, and J. Lewis. Algorithm 692: Model
Implementation and Test Package for the Sparse Basic Linear Algebra
Subprograms, ACM Transactions on Mathematical Software, Vol.17,
No.2 (June 1991).

• LAPACK
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Donagarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users' Guide, Third Edition,
Society for Industrial and Applied Mathematics (SIAM), 1999.
G. Golub and C. Van Loan. Matrix Computations, Johns Hopkins
University Press, 1989.

• VML
J.M.Muller. Elementary functions: algorithms and implementation,
Birkhauser Boston, 1997.
IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std
754-1985.

1-10

1 Intel® Math Kernel Library Reference Manual

• VSL

[Bratley87] Bratley P., Fox B.L., and Schrage L.E. A Guide to
Simulation. 2nd edition. Springer-Verlag, New York,
1987.

[Coddington94] Coddington, P. D. Analysis of Random Number
Generators Using Monte Carlo Simulation. Int. J. Mod.
Phys. C–5, 547, 1994.

[Gentle98] Gentle, James E. Random Number Generation and
Monte Carlo Methods, Springer-Verlag New York, Inc.,
1998.

[L’Ecuyer94] L’Ecuyer, Pierre. Uniform Random Number Generation.
Annals of Operations Research, 53, 77–120, 1994.

[L’Ecuyer99] L’Ecuyer, Pierre. Tables of Linear Congruential
Generators of Different Sizes and Good Lattice
Structure. Mathematics of Computation, 68, 225,
249-260, 1999.

[L’Ecuyer99a] L’Ecuyer, Pierre. Good Parameter Sets for Combined
Multiple Recursive Random Number Generators.
Operations Research, 47, 1, 159-164, 1999.

[L’Ecuyer01] L’Ecuyer, Pierre. Software for Uniform Random Number
Generation: Distinguishing the Good and the Bad.
Proceedings of the 2001 Winter Simulation Conference,
IEEE Press, 95–105, Dec. 2001.

[Kirkpatrick81] Kirkpatrick, S., and Stoll, E. A Very Fast Shift-Register
Sequence Random Number Generatory. Journal of
Computational Physics, V. 40. 517–526, 1981.

[Knuth81] Knuth, Donald E. The Art of Computer Programming,
Volume 2, Seminumerical Algorithms. 2nd edition,
Addison-Wesley Publishing Company, Reading,
Massachusetts, 1981.

[NAG] NAG Numerical Libraries.
http://www.nag.co.uk/numeric/numerical_libraries.asp

http://www.nag.co.uk/numeric/numerical_libraries.asp

Overview 1

1-11

• DFT
[1] E. Oran Brigham, The Fast Fourier Transform and Its Applications,
Prentice Hall, New Jersey, 1988.
[2] Athanasios Papoulis, The Fourier Integral and its Applications, 2nd
edition, McGraw-Hill, New York, 1984.
[3] Ping Tak Peter Tang, DFTI, a New API for DFT: Motivation,
Design, and Rationale, July 2002.
[4] Charles Van Loan, Computational Frameworks for the Fast Fourier
Transform, SIAM, Philadelphia, 1992

For a reference implementation of BLAS, sparse BLAS, and LAPACK
packages (without platform-specific optimizations) visit www.netlib.org.

http://www.netlib.org/

2-1

BLAS and Sparse BLAS
Routines 2

This chapter contains descriptions of the BLAS and Sparse BLAS routines
of the Intel® Math Kernel Library. The routine descriptions are arranged in
four sections according to the BLAS level of operation:

• BLAS Level 1 Routines and Functions (vector-vector operations)
• BLAS Level 2 Routines (matrix-vector operations)
• BLAS Level 3 Routines (matrix-matrix operations)
• Sparse BLAS Routines and Functions.

Each section presents the routine and function group descriptions in
alphabetical order by routine or function group name; for example, the
?asum group, the ?axpy group. The question mark in the group name
corresponds to different character codes indicating the data type (s, d, c,
and z or their combination); see Routine Naming Conventions on the next
page.

When BLAS routines encounter an error, they call the error reporting
routine XERBLA. To be able to view error reports, you must include XERBLA
in your code. A copy of the source code for XERBLA is included in the
library.

In BLAS Level 1 groups i?amax and i?amin, an “i” is placed before the
character code and corresponds to the index of an element in the vector.
These groups are placed in the end of the BLAS Level 1 section.

2-2

2 Intel® Math Kernel Library Reference Manual

Routine Naming Conventions
BLAS routine names have the following structure:

<character code> <name> <mod> ()

The <character code> is a character that indicates the data type:

s real, single precision c complex, single precision
d real, double precision z complex, double precision

Some routines and functions can have combined character codes, such as
sc or dz. For example, the function scasum uses a complex input array and
returns a real value.

The <name> field, in BLAS level 1, indicates the operation type. For
example, the BLAS level 1 routines ?dot, ?rot, ?swap compute a vector
dot product, vector rotation, and vector swap, respectively.

In BLAS level 2 and 3, <name> reflects the matrix argument type:

ge general matrix
gb general band matrix
sy symmetric matrix
sp symmetric matrix (packed storage)
sb symmetric band matrix
he Hermitian matrix
hp Hermitian matrix (packed storage)
hb Hermitian band matrix
tr triangular matrix
tp triangular matrix (packed storage)
tb triangular band matrix.

The <mod> field, if present, provides additional details of the operation.
BLAS level 1 names can have the following characters in the <mod> field:

c conjugated vector
u unconjugated vector
g Givens rotation.

BLAS level 2 names can have the following characters in the <mod> field:
mv matrix-vector product
sv solving a system of linear equations with matrix-vector operations
r rank-1 update of a matrix
r2 rank-2 update of a matrix.

BLAS and Sparse BLAS Routines2

2-3

BLAS level 3 names can have the following characters in the <mod> field:
mm matrix-matrix product
sm solving a system of linear equations with matrix-matrix operations
rk rank-k update of a matrix
r2k rank-2k update of a matrix.

The examples below illustrate how to interpret BLAS routine names:

<d> <dot> ddot: double-precision real vector-vector dot product

<c> <dot> <c> cdotc: complex vector-vector dot product, conjugated

<sc> <asum> scasum: sum of magnitudes of vector elements, single
precision real output and single precision complex input

<c> <dot> <u> cdotu: vector-vector dot product, unconjugated,
complex

<s> <ge> <mv> sgemv: matrix-vector product, general matrix, single
precision

<z> <tr> <mm> ztrmm: matrix-matrix product, triangular matrix,
double-precision complex.

Sparse BLAS naming conventions are similar to those of BLAS level 1.
For more information, see Naming conventions in Sparse BLAS.

Matrix Storage Schemes
Matrix arguments of BLAS routines can use the following storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the
matrix element aij stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or
triangular matrices more compactly: the upper or lower triangle of the
matrix is packed by columns in a one-dimensional array.

• Band storage: a band matrix is stored compactly in a two-dimensional
array: columns of the matrix are stored in the corresponding columns
of the array, and diagonals of the matrix are stored in rows of the array.

For more information on matrix storage schemes, see Matrix Arguments in
Appendix A.

2-4

2 Intel® Math Kernel Library Reference Manual

BLAS Level 1 Routines and Functions
BLAS Level 1 includes routines and functions, which perform vector-vector
operations. Table 2-1 lists the BLAS Level 1 routine and function groups
and the data types associated with them.

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types

Routine or
Function
Group Data Types Description

?asum s, d, sc, dz Sum of vector magnitudes (functions)

?axpy s, d, c, z Scalar-vector product (routines)

?copy s, d, c, z Copy vector (routines)

?dot s, d Dot product (functions)

?sdot sd, d Dot product with extended precision
(functions)

?dotc c, z Dot product conjugated (functions)

?dotu c, z Dot product unconjugated (functions)

?nrm2 s, d, sc, dz Vector 2-norm (Euclidean norm) a normal
or null vector (functions)

?rot s, d, cs, zd Plane rotation of points (routines)

?rotg s, d, c, z Givens rotation of points (routines)

?rotm s, d Modified plane rotation of points

?rotmg s, d Givens modified plane rotation of points

?scal s, d, c, z, cs, zd Vector scaling (routines)

?swap s, d, c, z Vector-vector swap (routines)

i?amax s, d, c, z Vector maximum value, absolute largest
element of a vector where i is an index to
this value in the vector array (functions)

i?amin s, d, c, z Vector minimum value, absolute smallest
element of a vector where i is an index to
this value in the vector array (functions)

BLAS and Sparse BLAS Routines2

2-5

?asum
Computes the sum of magnitudes of the
vector elements.

res = sasum (n, x, incx)

res = scasum (n, x, incx)

res = dasum (n, x, incx)

res = dzasum (n, x, incx)

Discussion

Given a vector x, ?asum functions compute the sum of the magnitudes of its
elements or, for complex vectors, the sum of magnitudes of the elements’
real parts plus magnitudes of their imaginary parts:

res=| Rex(1)| +| Imx(1)| +| Rex(2)| +| Imx(2)| +...+| Rex(n)| +| Imx(n)|
where x is a vector of order n.

Input Parameters

n INTEGER. Specifies the order of vector x.

x REAL for sasum
DOUBLE PRECISION for dasum
COMPLEX for scasum
DOUBLE COMPLEX for dzasum

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

res REAL for sasum
DOUBLE PRECISION for dasum
REAL for scasum
DOUBLE PRECISION for dzasum

Contains the sum of magnitudes of all elements’ real
parts plus magnitudes of their imaginary parts.

2-6

2 Intel® Math Kernel Library Reference Manual

?axpy
Computes a vector-scalar product and
adds the result to a vector.

call saxpy (n, a, x, incx, y, incy)

call daxpy (n, a, x, incx, y, incy)

call caxpy (n, a, x, incx, y, incy)

call zaxpy (n, a, x, incx, y, incy)

Discussion

The ?axpy routines perform a vector-vector operation defined as

y := a*x + y

where:

a is a scalar

x and y are vectors of order n.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

a REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Specifies the scalar a.

x REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

BLAS and Sparse BLAS Routines2

2-7

y REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

y Contains the updated vector y.

?copy
Copies vector to another vector.

call scopy (n, x, incx, y, incy)

call dcopy (n, x, incx, y, incy)

call ccopy (n, x, incx, y, incy)

call zcopy (n, x, incx, y, incy)

Discussion

The ?copy routines perform a vector-vector operation defined as

y = x

where x and y are vectors.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for scopy
DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

2-8

2 Intel® Math Kernel Library Reference Manual

y REAL for scopy
DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

y Contains a copy of the vector x if n is positive.
Otherwise, parameters are unaltered.

?dot
Computes a vector-vector dot product.

res = sdot (n, x, incx, y, incy)

res = ddot (n, x, incx, y, incy)

Discussion

The ?dot functions perform a vector-vector reduction operation defined as

where x and y are vectors.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for sdot
DOUBLE PRECISION for ddot

Array, DIMENSION at least (1+(n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

res x∗ y()∑=

BLAS and Sparse BLAS Routines2

2-9

y REAL for sdot
DOUBLE PRECISION for ddot

Array, DIMENSION at least (1+(n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

res REAL for sdot
DOUBLE PRECISION for ddot

Contains the result of the dot product of x and y, if n is
positive. Otherwise, res contains 0.

?sdot
Computes a vector-vector dot product
with extended precision.

res = sdsdot (n, sb, sx, incx, sy, incy)

res = dsdot (n, sx, incx, sy, incy)

Discussion

The ?sdot functions compute the inner product of two vectors with
extended precision. Both functions use extended precision accumulation of
the intermediate results, but the function sdsdot outputs the final result in
single precision, whereas the function dsdot outputs the double precision
result. The function sdsdot also adds scalar value sb to the inner product.

Input Parameters

n INTEGER. Specifies the number of elements in the input
vectors sx and sy.

sb REAL. Single precision scalar to be added to inner
product (for the function sdsdot only).

2-10

2 Intel® Math Kernel Library Reference Manual

sx, sy REAL.
Arrays, DIMENSION at least (1+(n-1)*abs(incx))
and (1+(n-1)*abs(incy)), respectively. Contain the
input single precision vectors.

incx INTEGER. Specifies the increment for the elements
of sx.

incy INTEGER. Specifies the increment for the elements
of sy.

Output Parameters

res REAL for sdsdot
DOUBLE PRECISION for dsdot

Contains the result of the dot product of sx and sy (with
sb added for sdsdot), if n is positive. Otherwise, res
contains sb for sdsdot and 0 for dsdot.

?dotc
Computes a dot product of a conjugated
vector with another vector.

res = cdotc (n, x, incx, y, incy)

res = zdotc (n, x, incx, y, incy)

Discussion

The ?dotc functions perform a vector-vector operation defined as

where x and y are n-element vectors.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

res conjg x()∗ y()∑=

BLAS and Sparse BLAS Routines2

2-11

x COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

res COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Contains the result of the dot product of the conjugated
x and unconjugated y, if n is positive. Otherwise, res
contains 0.

?dotu
Computes a vector-vector dot product.

res = cdotu (n, x, incx, y, incy)

res = zdotu (n, x, incx, y, incy)

Discussion

The ?dotu functions perform a vector-vector reduction operation defined
as

where x and y are n-element complex vectors.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

res x∗ y()∑=

2-12

2 Intel® Math Kernel Library Reference Manual

x COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

res COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Contains the result of the dot product of x and y, if n is
positive. Otherwise, res contains 0.

?nrm2
Computes the Euclidean norm of a
vector.

res = snrm2 (n, x, incx)

res = dnrm2 (n, x, incx)

res = scnrm2 (n, x, incx)

res = dznrm2 (n, x, incx)

Discussion

The ?nrm2 functions perform a vector reduction operation defined as

res = ||x||

where:

x is a vector

res is a value containing the Euclidean norm of the elements of x.

BLAS and Sparse BLAS Routines2

2-13

Input Parameters

n INTEGER. Specifies the order of vector x.

x REAL for snrm2
DOUBLE PRECISION for dnrm2
COMPLEX for scnrm2
DOUBLE COMPLEX for dznrm2

Array, DIMENSION at least (1 + (n-1)*abs (incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

res REAL for snrm2
DOUBLE PRECISION for dnrm2
REAL for scnrm2
DOUBLE PRECISION for dznrm2

Contains the Euclidean norm of the vector x.

?rot
Performs rotation of points in the plane.

call srot (n, x, incx, y, incy, c, s)

call drot (n, x, incx, y, incy, c, s)

call csrot (n, x, incx, y, incy, c, s)

call zdrot (n, x, incx, y, incy, c, s)

Discussion

Given two complex vectors x and y, each vector element of these vectors is
replaced as follows:

x(i) = c*x(i) + s*y(i)

y(i) = c*y(i) - s*x(i)

2-14

2 Intel® Math Kernel Library Reference Manual

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

c REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot

A scalar.

s REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot

A scalar.

Output Parameters

x Each element is replaced by c*x + s*y.

y Each element is replaced by c*y - s*x.

BLAS and Sparse BLAS Routines2

2-15

?rotg
Computes the parameters for a Givens
rotation.

call srotg (a, b, c, s)

call drotg (a, b, c, s)

call crotg (a, b, c, s)

call zrotg (a, b, c, s)

Discussion

Given the cartesian coordinates (a, b) of a point p, these routines return
the parameters a, b, c, and s associated with the Givens rotation that zeros
the y-coordinate of the point.

Input Parameters

a REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Provides the x-coordinate of the point p.

b REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Provides the y-coordinate of the point p.

Output Parameters

a Contains the parameter r associated with the Givens
rotation.

b Contains the parameter z associated with the Givens
rotation.

2-16

2 Intel® Math Kernel Library Reference Manual

c REAL for srotg
DOUBLE PRECISION for drotg
REAL for crotg
DOUBLE PRECISION for zrotg

Contains the parameter c associated with the Givens
rotation.

s REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Contains the parameter s associated with the Givens
rotation.

?rotm
Performs rotation of points in the
modified plane.

call srotm (n, x, incx, y, incy, param)

call drotm (n, x, incx, y, incy, param)

Discussion

Given two complex vectors x and y, each vector element of these vectors is
replaced as follows:

x(i) = H*x(i) + H*y(i)

y(i) = H*y(i) - H*x(i)

where:

H is a modified Givens transformation matrix whose values are stored in the
param(2) through param(5) array. See discussion on the param
argument.

BLAS and Sparse BLAS Routines2

2-17

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

param REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION 5.

The elements of the param array are:

param(1) contains a switch, flag.
param(2-5) contain h11, h21, h12, and h22,
respectively, the components of the array H.

Depending on the values of flag, the components of H
are set as follows:

flag = -1.: H =

flag = 0.: H =

flag = 1.: H =

flag = -2.: H =

In the above cases, the matrix entries of 1., -1., and 0.
are assumed based on the last three values of flag and
are not actually loaded into the param vector.

h11 h12

h21 h22

1. h12

h21 1.

h11 1.

1.– h22

1. 0.

0. 1.

2-18

2 Intel® Math Kernel Library Reference Manual

Output Parameters

x Each element is replaced by h11*x + h12*y.

y Each element is replaced by h21*x + h22*y.

H Givens transformation matrix updated.

?rotmg
Computes the modified parameters for a
Givens rotation.

call srotmg (d1, d2, x1, y1, param)

call drotmg (d1, d2, x1, y1, param)

Discussion

Given cartesian coordinates (x1, y1) of an input vector, these routines
compute the components of a modified Givens transformation matrix H that
zeros the y-component of the resulting vector:

Input Parameters

d1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the scaling factor for the x-coordinate of the
input vector (sqrt(d1)x1).

d2 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the scaling factor for the y-coordinate of the
input vector (sqrt(d2)y1).

x

0
H x1

y1
=

BLAS and Sparse BLAS Routines2

2-19

x1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the x-coordinate of the input vector.

y1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the y-coordinate of the input vector.

Output Parameters

param REAL for srotmg
DOUBLE PRECISION for drotmg
Array, DIMENSION 5.

The elementsof the param array are:

param(1) contains a switch, flag.
param(2-5) contain h11, h21, h12, and h22,
respectively, the components of the array H.

Depending on the values of flag, the components of H
are set as follows:

flag = -1.: H =

flag = 0.: H =

flag = 1.: H =

flag = -2.: H =

In the above cases, the matrix entries of 1., -1., and 0. are
assumed based on the last three values of flag and are
not actually loaded into the param vector.

h11 h12

h21 h22

1. h12

h21 1.

h11 1.

1.– h22

1. 0.

0. 1.

2-20

2 Intel® Math Kernel Library Reference Manual

?scal
Computes a vector by a scalar product.

call sscal (n, a, x, incx)

call dscal (n, a, x, incx)

call cscal (n, a, x, incx)

call zscal (n, a, x, incx)

call csscal (n, a, x, incx)

call zdscal (n, a, x, incx)

Discussion

The ?scal routines perform a vector-vector operation defined as

x = a*x

where:

a is a scalar, x is an n-element vector.

Input Parameters

n INTEGER. Specifies the order of vector x.

a REAL for sscal and csscal

DOUBLE PRECISION for dscal and zdscal

COMPLEX for cscal
DOUBLE COMPLEX for zscal

Specifies the scalar a.

x REAL for sscal
DOUBLE PRECISION for dscal
COMPLEX for cscal and csscal

DOUBLE COMPLEX for zscal and csscal

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

BLAS and Sparse BLAS Routines2

2-21

Output Parameters

x Overwritten by the updated vector x.

?swap
Swaps a vector with another vector.

call sswap (n, x, incx, y, incy)

call dswap (n, x, incx, y, incy)

call cswap (n, x, incx, y, incy)

call zswap (n, x, incx, y, incy)

Discussion

Given the two complex vectors x and y, the ?swap routines return vectors y
and x swapped, each replacing the other.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

2-22

2 Intel® Math Kernel Library Reference Manual

Output Parameters

x Contains the resultant vector x.

y Contains the resultant vector y.

i?amax
Finds the element of a vector that has
the largest absolute value.

index = isamax (n, x, incx)

index = idamax (n, x, incx)

index = icamax (n, x, incx)

index = izamax (n, x, incx)

Discussion

Given a vector x, the i?amax functions return the position of the vector
element x(i) that has the largest absolute value or, for complex flavors, the
position of the element with the largest sum | Re x(i)| + | Im x(i)| .

If n is not positive, 0 is returned.

If more than one vector element is found with the same largest absolute
value, the index of the first one encountered is returned.

Input Parameters

n INTEGER. Specifies the order of the vector x.

x REAL for isamax
DOUBLE PRECISION for idamax
COMPLEX for icamax
DOUBLE COMPLEX for izamax

Array, DIMENSION at least (1+(n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

BLAS and Sparse BLAS Routines2

2-23

Output Parameters

index INTEGER. Contains the position of vector element x
that has the largest absolute value.

i?amin
Finds the element of a vector that has
the smallest absolute value.

index = isamin (n, x, incx)

index = idamin (n, x, incx)

index = icamin (n, x, incx)

index = izamin (n, x, incx)

Discussion

Given a vector x, the i?amin functions return the position of the vector
element x(i) that has the smallest absolute value or, for complex flavors,
the position of the element with the smallest sum | Rex(i)| + | Imx(i)| .

If n is not positive, 0 is returned.

If more than one vector element is found with the same smallest absolute
value, the index of the first one encountered is returned.

Input Parameters

n INTEGER. On entry, n specifies the order of the vector
x.

x REAL for isamin
DOUBLE PRECISION for idamin
COMPLEX for icamin
DOUBLE COMPLEX for izamin

Array, DIMENSION at least (1+(n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

2-24

2 Intel® Math Kernel Library Reference Manual

Output Parameters

index INTEGER. Contains the position of vector element x
that has the smallest absolute value.

BLAS Routines 2

2-25

BLAS Level 2 Routines
This section describes BLAS Level 2 routines, which perform matrix-vector
operations. Table 2-2 lists the BLAS Level 2 routine groups and the data
types associated with them.

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types

Routine
Groups

Data
Types Description

?gbmv s, d, c, z Matrix-vector product using a general band
matrix

?gemv s, d, c, z Matrix-vector product using a general matrix

?ger s, d Rank-1 update of a general matrix

?gerc c, z Rank-1 update of a conjugated general matrix

?geru c, z Rank-1 update of a general matrix,
unconjugated

?hbmv c, z Matrix-vector product using a Hermitian band
matrix

?hemv c, z Matrix-vector product using a Hermitian matrix

?her c, z Rank-1 update of a Hermitian matrix

?her2 c, z Rank-2 update of a Hermitian matrix

?hpmv c, z Matrix-vector product using a Hermitian packed
matrix

?hpr c, z Rank-1 update of a Hermitian packed matrix

?hpr2 c, z Rank-2 update of a Hermitian packed matrix

?sbmv s, d Matrix-vector product using symmetric band
matrix

?spmv s, d Matrix-vector product using a symmetric packed
matrix

?spr s, d Rank-1 update of a symmetric packed matrix

?spr2 s, d Rank-2 update of a symmetric packed matrix

?symv s, d Matrix-vector product using a symmetric matrix

?syr s, d Rank-1 update of a symmetric matrix

?syr2 s, d Rank-2 update of a symmetric matrix

continued *

2-26

2 Intel® Math Kernel Library Reference Manual

?gbmv
Computes a matrix-vector product using
a general band matrix

call sgbmv (trans, m, n, kl, ku, alpha, a, lda, x, inxc,
beta, y, incy)

call dgbmv (trans, m, n, kl, ku, alpha, a, lda, x, incx,
beta, y, incy)

call cgbmv (trans, m, n, kl, ku, alpha, a, lda, x, incx,
beta, y, incy)

call zgbmv (trans, m, n, kl, ku, alpha, a, lda, x, incx,
beta, y, incy)

Discussion

The ?gbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y

or

y := alpha*a'*x + beta*y,

or

y := alpha*conjg(a')*x + beta*y,

?tbmv s, d, c, z Matrix-vector product using a triangular band
matrix

?tbsv s, d, c, z Linear solution of a triangular band matrix

?tpmv s, d, c, z Matrix-vector product using a triangular packed
matrix

?tpsv s, d, c, z Linear solution of a triangular packed matrix

?trmv s, d, c, z Matrix-vector product using a triangular matrix

?trsv s, d, c, z Linear solution of a triangular matrix

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types (continued)

Routine
Groups

Data
Types Description

BLAS Routines 2

2-27

where:

alpha and beta are scalars

x and y are vectors

a is an m by n band matrix, with kl sub-diagonals and ku super-diagonals.

Input Parameters

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

m INTEGER. Specifies the number of rows of the matrix a.
The value of m must be at least zero.

n INTEGER. Specifies the number of columns of the
matrix a. The value of n must be at least zero.

kl INTEGER. Specifies the number of sub-diagonals of the
matrix a. The value of kl must satisfy 0 ≤kl.

ku INTEGER. Specifies the number of super-diagonals of
the matrix a. The value of ku must satisfy 0 ≤ku.

alpha REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Specifies the scalar alpha.

a REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

trans value Operation to be Performed

N or n y:= alpha*a*x + beta*y

T or t y:= alpha*a'*x + beta*y

C or c y:= alpha*conjg(a')*x +beta*y

2-28

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (lda, n). Before entry, the leading
(kl + ku + 1) by n part of the array a must contain the
matrix of coefficients. This matrix must be supplied
column-by-column, with the leading diagonal of the
matrix in row (ku + 1) of the array, the first
super-diagonal starting at position 2 in row ku, the first
sub-diagonal starting at position 1 in row (ku + 2), and
so on. Elements in the array a that do not correspond to
elements in the band matrix (such as the top left ku by
ku triangle) are not referenced.

The following program segment transfers a band matrix
from conventional full matrix storage to band storage:
do 20, j = 1, n
k = ku + 1 - j
do 10, i = max(1, j-ku), min(m, j+kl)
a(k+i, j) = matrix(i,j)

10 continue
20 continue

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least (kl + ku + 1).

x REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx))
when trans = 'N' or 'n' and at least
(1 + (m - 1)*abs(incx)) otherwise. Before entry, the
incremented array x must contain the vector x.

incx INTEGER. Specifies the increment for the elements of x.
incx must not be zero.

beta REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

BLAS Routines 2

2-29

Specifies the scalar beta. When beta is supplied as
zero, then y need not be set on input.

y REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Array, DIMENSION at least (1 + (m - 1)*abs(incy))
when trans = 'N' or 'n' and at least
(1 + (n - 1)*abs(incy)) otherwise. Before entry, the
incremented array y must contain the vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?gemv
Computes a matrix-vector product using
a general matrix

call sgemv (trans, m, n, alpha, a, lda, x, incx, beta,
y, incy)

call dgemv (trans, m, n, alpha, a, lda, x, incx, beta,
y, incy)

call cgemv (trans, m, n, alpha, a, lda, x, incx, beta,
y, incy)

call zgemv (trans, m, n, alpha, a, lda, x, incx, beta,
y, incy)

Discussion

The ?gemv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

2-30

2 Intel® Math Kernel Library Reference Manual

or

y := alpha*a'*x + beta*y,

or

y := alpha*conjg(a')*x + beta*y,

where:

alpha and beta are scalars

x and y are vectors

a is an m by n matrix.

Input Parameters

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

m INTEGER. Specifies the number of rows of the matrix a.
m must be at least zero.

n INTEGER. Specifies the number of columns of the
matrix a. The value of n must be at least zero.

alpha REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Specifies the scalar alpha.

a REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

trans value Operation to be Performed

N or n y:= alpha*a*x + beta*y

T or t y:= alpha*a'*x + beta*y

C or c y:= alpha*conjg(a')*x +beta*y

BLAS Routines 2

2-31

Array, DIMENSION (lda, n). Before entry, the leading
m by n part of the array a must contain the matrix of
coefficients.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1, m).

x REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Array, DIMENSION at least (1+(n-1)*abs(incx))
when trans = 'N' or 'n' and at least
(1+(m - 1)*abs(incx)) otherwise. Before entry, the
incremented array x must contain the vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

beta REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Specifies the scalar beta. When beta is supplied as
zero, then y need not be set on input.

y REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Array, DIMENSION at least (1 + (m - 1)*abs(incy))
when trans = 'N' or 'n' and at least
(1 + (n - 1)*abs(incy)) otherwise. Before entry
with beta non-zero, the incremented array y must
contain the vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

2-32

2 Intel® Math Kernel Library Reference Manual

Output Parameters

y Overwritten by the updated vector y.

?ger
Performs a rank-1 update of a general
matrix.

call sger (m, n, alpha, x, incx, y, incy, a, lda)

call dger (m, n, alpha, x, incx, y, incy, a, lda)

Discussion

The ?ger routines perform a matrix-vector operation defined as

a := alpha*x*y' + a,

where:

alpha is a scalar

x is an m-element vector

y is an n-element vector

a is an m by n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a.
The value of m must be at least zero.

n INTEGER. Specifies the number of columns of the
matrix a. The value of n must be at least zero.

alpha REAL for sger
DOUBLE PRECISION for dger

Specifies the scalar alpha.

x REAL for sger
DOUBLE PRECISION for dger

BLAS Routines 2

2-33

Array, DIMENSION at least (1 + (m - 1)*abs(incx)).
Before entry, the incremented array x must contain the
m-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

y REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

a REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION (lda, n). Before entry, the leading
m by n part of the array a must contain the matrix of
coefficients.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1, m).

Output Parameters

a Overwritten by the updated matrix.

?gerc
Performs a rank-1 update (conjugated)
of a general matrix.

call cgerc (m, n, alpha, x, incx, y, incy, a, lda)

call zgerc (m, n, alpha, x, incx, y, incy, a, lda)

2-34

2 Intel® Math Kernel Library Reference Manual

Discussion

The ?gerc routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + a,

where:

alpha is a scalar

x is an m-element vector

y is an n-element vector

a is an m by n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a.
The value of m must be at least zero.

n INTEGER. Specifies the number of columns of the
matrix a. The value of n must be at least zero.

alpha SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc

Specifies the scalar alpha.

x SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc

Array, DIMENSION at least (1 + (m - 1)*abs(incx)).
Before entry, the incremented array x must contain the
m-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

y COMPLEX for cgerc
DOUBLE COMPLEX for zgerc

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

BLAS Routines 2

2-35

a COMPLEX for cgerc
DOUBLE COMPLEX for zgerc

Array, DIMENSION (lda, n). Before entry, the leading
m by n part of the array a must contain the matrix of
coefficients.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1, m).

Output Parameters

a Overwritten by the updated matrix.

?geru
Performs a rank-1 update
(unconjugated) of a general matrix.

call cgeru (m, n, alpha, x, incx, y, incy, a, lda)

call zgeru (m, n, alpha, x, incx, y, incy, a, lda)

Discussion

The ?geru routines perform a matrix-vector operation defined as

a:= alpha*x*y' + a,

where:

alpha is a scalar

x is an m-element vector

y is an n-element vector

a is an m by n matrix.

2-36

2 Intel® Math Kernel Library Reference Manual

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a.
The value of m must be at least zero.

n INTEGER. Specifies the number of columns of the
matrix a. The value of n must be at least zero.

alpha COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Specifies the scalar alpha.

x COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION at least (1 + (m - 1)*abs(incx)).
Before entry, the incremented array x must contain the
m-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

y COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

a COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION (lda, n). Before entry, the leading
m by n part of the array a must contain the matrix of
coefficients.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1, m).

Output Parameters

a Overwritten by the updated matrix.

BLAS Routines 2

2-37

?hbmv
Computes a matrix-vector product using
a Hermitian band matrix.

call chbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y,
incy)

call zhbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y,
incy)

Discussion

The ?hbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n Hermitian band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the band matrix a is being supplied, as
follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

k INTEGER. Specifies the number of super-diagonals of
the matrix a. The value of k must satisfy 0 ≤k.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is being
supplied.

L or l The lower triangular part of matrix a is being
supplied.

2-38

2 Intel® Math Kernel Library Reference Manual

alpha COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Specifies the scalar alpha.

a COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the
array a must contain the upper triangular band part of
the Hermitian matrix. The matrix must be supplied
column-by-column, with the leading diagonal of the
matrix in row (k + 1) of the array, the first
super-diagonal starting at position 2 in row k, and so on.
The top left k by k triangle of the array a is not
referenced.

The following program segment transfers the upper
triangular part of a Hermitian band matrix from
conventional full matrix storage to band storage:
do 20, j = 1, n
m = k + 1 - j
do 10, i = max(1, j - k), j
a(m + i, j) = matrix(i, j)

10 continue
20 continue

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower
triangular band part of the Hermitian matrix, supplied
column-by-column, with the leading diagonal of the
matrix in row 1 of the array, the first sub-diagonal
starting at position 1 in row 2, and so on. The bottom
right k by k triangle of the array a is not referenced.

The following program segment transfers the lower
triangular part of a Hermitian band matrix from
conventional full matrix storage to band storage:
do 20, j = 1, n
m = 1 - j
do 10, i = j, min(n, j + k)

BLAS Routines 2

2-39

a(m + i, j) = matrix(i, j)
10 continue
20 continue

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least (k + 1).

x COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

beta COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Specifies the scalar beta.

y COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y Overwritten by the updated vector y.

2-40

2 Intel® Math Kernel Library Reference Manual

?hemv
Computes a matrix-vector product using
a Hermitian matrix.

call chemv (uplo, n, alpha, a, lda, x, incx, beta, y,
incy)

call zhemv (uplo, n, alpha, a, lda, x, incx, beta, y,
incy)

Discussion

The ?hemv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as
follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS Routines 2

2-41

alpha COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Specifies the scalar alpha.

a COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array a must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part of a is not referenced. Before entry with
uplo = 'L' or 'l', the leading n by n lower triangular
part of the array a must contain the lower triangular part
of the Hermitian matrix and the strictly upper triangular
part of a is not referenced.

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1, n).

x COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

beta COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Specifies the scalar beta. When beta is supplied as
zero then y need not be set on input.

2-42

2 Intel® Math Kernel Library Reference Manual

y COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?her
Performs a rank-1 update of a
Hermitian matrix.

call cher (uplo, n, alpha, x, incx, a, lda)

call zher (uplo, n, alpha, x, incx, a, lda)

Discussion

The ?her routines perform a matrix-vector operation defined as

a := alpha*x*conjg(x') + a,

where:

alpha is a real scalar

x is an n-element vector

a is an n by n Hermitian matrix.

BLAS Routines 2

2-43

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as
follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha REAL for cher
DOUBLE PRECISION for zher

Specifies the scalar alpha.

x COMPLEX for cher
DOUBLE COMPLEX for zher

Array, dimension at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

a COMPLEX for cher
DOUBLE COMPLEX for zher

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array a must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n
lower triangular part of the array a must contain the
lower triangular part of the Hermitian matrix and the
strictly upper triangular part of a is not referenced.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

2-44

2 Intel® Math Kernel Library Reference Manual

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1, n).

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the
array a is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the
array a is overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to
zero.

?her2
Performs a rank-2 update of a
Hermitian matrix.

call cher2 (uplo, n, alpha, x, incx, y, incy, a, lda)

call zher2 (uplo, n, alpha, x, incx, y, incy, a, lda)

Discussion

The ?her2 routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,

where:

alpha is a scalar

x and y are n-element vectors

a is an n by n Hermitian matrix.

BLAS Routines 2

2-45

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as
follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha COMPLEX for cher2
DOUBLE COMPLEX for zher2

Specifies the scalar alpha.

x COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

y COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

a COMPLEX for cher2
DOUBLE COMPLEX for zher2

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

2-46

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array a must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n
lower triangular part of the array a must contain the
lower triangular part of the Hermitian matrix and the
strictly upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1, n).

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the
array a is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the
array a is overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to
zero.

?hpmv
Computes a matrix-vector product using
a Hermitian packed matrix.

call chpmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

call zhpmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

BLAS Routines 2

2-47

Discussion

The ?hpmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix a is supplied in the packed
array ap, as follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Specifies the scalar alpha.

ap COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Array, DIMENSION at least ((n*(n + 1))/2). Before
entry with uplo = 'U' or 'u', the array ap must
contain the upper triangular part of the Hermitian matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1, 1), ap(2) and ap(3) contain a(1, 2)

and a(2, 2) respectively, and so on. Before entry with
uplo = 'L' or 'l', the array ap must contain the lower
triangular part of the Hermitian matrix packed

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

2-48

2 Intel® Math Kernel Library Reference Manual

sequentially, column-by-column, so that ap(1) contains
a(1, 1), ap(2) and ap(3) contain a(2, 1) and a(3,
1) respectively, and so on.

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

x COMPLEX for chpmv
DOUBLE PRECISION COMPLEX for zhpmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

beta COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Specifies the scalar beta. When beta is supplied as
zero then y need not be set on input.

y COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y Overwritten by the updated vector y

BLAS Routines 2

2-49

?hpr
Performs a rank-1 update of a
Hermitian packed matrix.

call chpr (uplo, n, alpha, x, incx, ap)

call zhpr (uplo, n, alpha, x, incx, ap)

Discussion

The?hpr routines perform a matrix-vector operation defined as

a := alpha*x*conjg(x') + a,

where:

alpha is a real scalar

x is an n-element vector

a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix a is supplied in the packed
array ap, as follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha REAL for chpr
DOUBLE PRECISION for zhpr

Specifies the scalar alpha.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

2-50

2 Intel® Math Kernel Library Reference Manual

x COMPLEX for chpr
DOUBLE COMPLEX for zhpr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
incx must not be zero.

ap COMPLEX for chpr
DOUBLE COMPLEX for zhpr

Array, DIMENSION at least ((n*(n + 1))/2). Before
entry with uplo = 'U' or 'u', the array ap must
contain the upper triangular part of the Hermitian matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1, 1), ap(2) and ap(3) contain a(1, 2)

and a(2, 2) respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the Hermitian matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1, 1), ap(2) and ap(3) contain a(2, 1)

and a(3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper
triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower
triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to
zero.

BLAS Routines 2

2-51

?hpr2
Performs a rank-2 update of a
Hermitian packed matrix.

call chpr2 (uplo, n, alpha, x, incx, y, incy, ap)

call zhpr2 (uplo, n, alpha, x, incx, y, incy, ap)

Discussion

The?hpr2 routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,

where:

alpha is a scalar

x and y are n-element vectors

a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix a is supplied in the packed
array ap, as follows

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Specifies the scalar alpha.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

2-52

2 Intel® Math Kernel Library Reference Manual

x COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, dimension at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

y COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

ap COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, DIMENSION at least ((n*(n + 1))/2). Before
entry with uplo = 'U' or 'u', the array ap must
contain the upper triangular part of the Hermitian matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1, 1), ap(2) and ap(3) contain a(1, 2)

and a(2, 2) respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the Hermitian matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1, 1), ap(2) and ap(3) contain a(2, 1)

and a(3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

BLAS Routines 2

2-53

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper
triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower
triangular part of the updated matrix.

The imaginary parts of the diagonal elements need are
set to zero.

?sbmv
Computes a matrix-vector product using
a symmetric band matrix.

call ssbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y,
incy)

call dsbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y,
incy)

Discussion

The ?sbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n symmetric band matrix, with k super-diagonals.

2-54

2 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the band matrix a is being supplied, as
follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

k INTEGER. Specifies the number of super-diagonals of
the matrix a. The value of k must satisfy 0 ≤k.

alpha REAL for ssbmv
DOUBLE PRECISION for dsbmv

Specifies the scalar alpha.

a REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the
array a must contain the upper triangular band part of
the symmetric matrix, supplied column-by-column, with
the leading diagonal of the matrix in row (k + 1) of the
array, the first super-diagonal starting at position 2 in
row k, and so on. The top left k by k triangle of the array
a is not referenced.

The following program segment transfers the upper
triangular part of a symmetric band matrix from
conventional full matrix storage to band storage:
do 20, j = 1, n
m = k + 1 - j
do 10, i = max(1, j - k), j
a(m + i, j) = matrix(i, j)
10 continue

20 continue

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied.

L or l The lower triangular part of matrix a is supplied.

BLAS Routines 2

2-55

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower
triangular band part of the symmetric matrix, supplied
column-by-column, with the leading diagonal of the
matrix in row 1 of the array, the first sub-diagonal
starting at position 1 in row 2, and so on. The bottom
right k by k triangle of the array a is not referenced.

The following program segment transfers the lower
triangular part of a symmetric band matrix from
conventional full matrix storage to band storage:
do 20, j = 1, n
m = 1 - j
do 10, i = j, min(n, j + k)
a(m + i, j) = matrix(i, j)

10 continue
20 continue

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least (k + 1).

x REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

beta REAL for ssbmv
DOUBLE PRECISION for dsbmv

Specifies the scalar beta.

y REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
vector y.

2-56

2 Intel® Math Kernel Library Reference Manual

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?spmv
Computes a matrix-vector product using
a symmetric packed matrix.

call sspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

call dspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

Discussion

The ?spmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix a is supplied in the packed
array ap, as follows:

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

BLAS Routines 2

2-57

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha REAL for sspmv
DOUBLE PRECISION for dspmv

Specifies the scalar alpha.

ap REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least ((n*(n + 1))/2). Before
entry with uplo = 'U' or 'u', the array ap must
contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that
ap(1) contains a(1, 1), ap(2) and ap(3) contain
a(1, 2) and a(2, 2) respectively, and so on. Before
entry with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1, 1), ap(2) and ap(3) contain a(2, 1)

and a(3, 1) respectively, and so on.

x REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

beta REAL for sspmv
DOUBLE PRECISION for dspmv

Specifies the scalar beta. When beta is supplied as
zero, then y need not be set on input.

y REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

2-58

2 Intel® Math Kernel Library Reference Manual

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?spr
Performs a rank-1 update of a
symmetric packed matrix.

call sspr(uplo, n, alpha, x, incx, ap)

call dspr(uplo, n, alpha, x, incx, ap)

Discussion

The ?spr routines perform a matrix-vector operation defined as

a:= alpha*x*x' + a,

where:

alpha is a real scalar

x is an n-element vector

a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix a is supplied in the packed
array ap, as follows:

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

BLAS Routines 2

2-59

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha REAL for sspr
DOUBLE PRECISION for dspr

Specifies the scalar alpha.

x REAL for sspr
DOUBLE PRECISION for dspr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

ap REAL for sspr
DOUBLE PRECISION for dspr

Array, DIMENSION at least ((n*(n + 1))/2). Before
entry with uplo = 'U' or 'u', the array ap must
contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that
ap(1) contains a(1,1), ap(2) and ap(3) contain
a(1, 2) and a(2,2) respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so that ap(1)

contains a(1,1), ap(2)and ap(3)contain a(2,1) and
a(3,1) respectively, and so on.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper
triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower
triangular part of the updated matrix.

2-60

2 Intel® Math Kernel Library Reference Manual

?spr2
Performs a rank-2 update of a
symmetric packed matrix.

call sspr2(uplo, n, alpha, x, incx, y, incy, ap)

call dspr2(uplo, n, alpha, x, incx, y, incy, ap)

Discussion

The ?spr2 routines perform a matrix-vector operation defined as

a:= alpha*x*y' + alpha*y*x' + a,

where:

alpha is a scalar

x and y are n-element vectors

a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix a is supplied in the packed
array ap, as follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha REAL for sspr2
DOUBLE PRECISION for dspr2

Specifies the scalar alpha.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

BLAS Routines 2

2-61

x REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

y REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

ap REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least ((n*(n + 1))/2). Before
entry with uplo = 'U' or 'u', the array ap must
contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that
ap(1) contains a(1,1), ap(2) and ap(3) contain
a(1,2) and a(2,2) respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1,1), ap(2) and ap(3) contain a(2,1)

and a(3,1) respectively, and so on.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper
triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower
triangular part of the updated matrix.

2-62

2 Intel® Math Kernel Library Reference Manual

?symv
Computes a matrix-vector product for a
symmetric matrix.

call ssymv (uplo, n, alpha, a, lda, x, incx, beta, y,

incy)

call dsymv (uplo, n, alpha, a, lda, x, incx, beta, y,

incy)

Discussion

The ?symv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars

x and y are n-element vectors

a is an n by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as
follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS Routines 2

2-63

alpha REAL for ssymv
DOUBLE PRECISION for dsymv

Specifies the scalar alpha.

a REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array a must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of a is not referenced. Before entry with
uplo = 'L' or 'l', the leading n by n lower triangular
part of the array a must contain the lower triangular part
of the symmetric matrix and the strictly upper triangular
part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1,n).

x REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

beta REAL for ssymv
DOUBLE PRECISION for dsymv

Specifies the scalar beta. When beta is supplied as
zero, then y need not be set on input.

y REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

2-64

2 Intel® Math Kernel Library Reference Manual

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?syr
Performs a rank-1 update of a
symmetric matrix.

call ssyr(uplo, n, alpha, x, incx, a, lda)

call dsyr(uplo, n, alpha, x, incx, a, lda)

Discussion

The ?syr routines perform a matrix-vector operation defined as

a := alpha*x*x' + a,

where:

alpha is a real scalar

x is an n-element vector

a is an n by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as
follows:

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS Routines 2

2-65

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha REAL for ssyr
DOUBLE PRECISION for dsyr

Specifies the scalar alpha.

x REAL for ssyr
DOUBLE PRECISION for dsyr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

a REAL for ssyr
DOUBLE PRECISION for dsyr

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array a must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n
lower triangular part of the array a must contain the
lower triangular part of the symmetric matrix and the
strictly upper triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1,n).

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the
array a is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the
array a is overwritten by the lower triangular part of the
updated matrix.

2-66

2 Intel® Math Kernel Library Reference Manual

?syr2
Performs a rank-2 update of symmetric
matrix.

call ssyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

call dsyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

Discussion

The ?syr2 routines perform a matrix-vector operation defined as

a := alpha*x*y' + alpha*y*x' + a,

where:

alpha is a scalar

x and y are n-element vectors

a is an n by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as
follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha REAL for ssyr2
DOUBLE PRECISION for dsyr2

Specifies the scalar alpha.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS Routines 2

2-67

x REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

y REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

a REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array a must contain the upper triangular
part of the symmetric matrix and the strictly lower
triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n
lower triangular part of the array a must contain the
lower triangular part of the symmetric matrix and the
strictly upper triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1,n).

2-68

2 Intel® Math Kernel Library Reference Manual

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the
array a is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the
array a is overwritten by the lower triangular part of the
updated matrix.

?tbmv
Computes a matrix-vector product using
a triangular band matrix.

call stbmv (uplo, trans, diag, n, k, a, lda, x, incx)

call dtbmv (uplo, trans, diag, n, k, a, lda, x, incx)

call ctbmv (uplo, trans, diag, n, k, a, lda, x, incx)

call ztbmv (uplo, trans, diag, n, k, a, lda, x, incx)

Discussion

The ?tbmv routines perform one of the matrix-vector operations defined as

x := a*x, or x := a'*x, or x := conjg(a')*x,

where:

x is an n-element vector

a is an n by n unit, or non-unit, upper or lower triangular band matrix, with
(k + 1) diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper
or lower triangular matrix, as follows:

BLAS Routines 2

2-69

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or not a is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

k INTEGER. On entry with uplo = 'U' or 'u', k specifies
the number of super-diagonals of the matrix a. On entry
with uplo = 'L' or 'l', k specifies the number of
sub-diagonals of the matrix a. The value of k must
satisfy 0 ≤k.

a REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for ztbmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the
array a must contain the upper triangular band part of
the matrix of coefficients, supplied column-by-column,
with the leading diagonal of the matrix in row (k + 1)

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation to be Performed

N or n x := a*x

T or t x := a'*x

C or c x := conjg(a')*x

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

2-70

2 Intel® Math Kernel Library Reference Manual

of the array, the first super-diagonal starting at position 2
in row k, and so on. The top left k by k triangle of the
array a is not referenced. The following program
segment transfers an upper triangular band matrix from
conventional full matrix storage to band storage:
do 20, j = 1, n
m = k + 1 - j
do 10, i = max(1, j - k), j
a(m + i, j) = matrix(i, j)
10 continue

20 continue

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower
triangular band part of the matrix of coefficients,
supplied column-by-column, with the leading diagonal
of the matrix in row1 of the array, the first sub-diagonal
starting at position 1 in row 2, and so on. The bottom
right k by k triangle of the array a is not referenced. The
following program segment transfers a lower triangular
band matrix from conventional full matrix storage to
band storage:

do 20, j = 1, n

m = 1 - j

do 10, i = j, min(n, j + k)

a(m + i, j) = matrix (i, j)

10 continue

20 continue

Note that when diag = 'U' or 'u', the elements of the
array a corresponding to the diagonal elements of the
matrix are not referenced, but are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least (k + 1).

BLAS Routines 2

2-71

x REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for ztbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

Output Parameters

x Overwritten with the transformed vector x.

?tbsv
Solves a system of linear equations
whose coefficients are in a triangular
band matrix.

call stbsv (uplo, trans, diag, n, k, a, lda, x, incx)

call dtbsv (uplo, trans, diag, n, k, a, lda, x, incx)

call ctbsv (uplo, trans, diag, n, k, a, lda, x, incx)

call ztbsv (uplo, trans, diag, n, k, a, lda, x, incx)

Discussion

The ?tbsv routines solve one of the following systems of equations:

a*x = b, or a'*x = b, or conjg(a')*x = b,

where:

b and x are n-element vectors

a is an n by n unit, or non-unit, upper or lower triangular band matrix, with
(k + 1) diagonals.

2-72

2 Intel® Math Kernel Library Reference Manual

The routine does not test for singularity or near-singularity. Such tests must
be performed before calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper
or lower triangular matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or not a is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

k INTEGER. On entry with uplo = 'U' or 'u', k
specifies the number of super-diagonals of the matrix a.
On entry with uplo = 'L' or 'l', k specifies the
number of sub-diagonals of the matrix a. The value of k
must satisfy 0 ≤k.

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation to be Performed

N or n a*x = b

T or t a'*x = b

C or c conjg(a')*x = b

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS Routines 2

2-73

a REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the
array a must contain the upper triangular band part of
the matrix of coefficients, supplied column-by-column,
with the leading diagonal of the matrix in row (k + 1)

of the array, the first super-diagonal starting at position 2
in row k, and so on. The top left k by k triangle of the
array a is not referenced.

The following program segment transfers an upper
triangular band matrix from conventional full matrix
storage to band storage:
do 20, j = 1, n
m = k + 1 - j
do 10, i = max(1, j - k), j
a(m + i, j) = matrix (i, j)

10 continue
20 continue

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower
triangular band part of the matrix of coefficients,
supplied column-by-column, with the leading diagonal
of the matrix in row 1 of the array, the first sub-diagonal
starting at position 1 in row 2, and so on. The bottom
right k by k triangle of the array a is not referenced.

The following program segment transfers a lower
triangular band matrix from conventional full matrix
storage to band storage:
do 20, j = 1, n
m = 1 - j
do 10, i = j, min(n, j + k)
a(m + i, j) = matrix (i, j)

10 continue
20 continue

2-74

2 Intel® Math Kernel Library Reference Manual

When diag = 'U' or 'u', the elements of the array a

corresponding to the diagonal elements of the matrix are
not referenced, but are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least (k + 1).

x REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element right-hand side vector b.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

Output Parameters

x Overwritten with the solution vector x.

?tpmv
Computes a matrix-vector product using
a triangular packed matrix.

call stpmv (uplo, trans, diag, n, ap, x, incx)

call dtpmv (uplo, trans, diag, n, ap, x, incx)

call ctpmv (uplo, trans, diag, n, ap, x, incx)

call ztpmv (uplo, trans, diag, n, ap, x, incx)

Discussion

The ?tpmv routines perform one of the matrix-vector operations defined as

x := a*x, or x := a'*x, or x := conjg(a')*x,

BLAS Routines 2

2-75

where:

x is an n-element vector

a is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in
packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an
upper or lower triangular matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or not a is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

ap REAL for stpmv
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n x := a*x

T or t x := a'*x

C or c x := conjg(a')*x

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

2-76

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least ((n*(n + 1))/2). Before
entry with uplo = 'U' or 'u', the array ap must
contain the upper triangular matrix packed sequentially,
column-by-column, so that ap(1) contains a(1,1),
ap(2) and ap(3) contain a(1,2) and a(2,2)

respectively, and so on. Before entry with uplo = 'L' or
'l', the array ap must contain the lower triangular
matrix packed sequentially, column-by-column, so that
ap(1) contains a(1,1), ap(2) and ap(3) contain
a(2,1) and a(3,1) respectively, and so on. When
diag = 'U' or 'u', the diagonal elements of a are not
referenced, but are assumed to be unity.

x REAL for stpmv
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

Output Parameters

x Overwritten with the transformed vector x.

BLAS Routines 2

2-77

?tpsv
Solves a system of linear equations
whose coefficients are in a triangular
packed matrix.

call stpsv (uplo, trans, diag, n, ap, x, incx)

call dtpsv (uplo, trans, diag, n, ap, x, incx)

call ctpsv (uplo, trans, diag, n, ap, x, incx)

call ztpsv (uplo, trans, diag, n, ap, x, incx)

Discussion

The ?tpsv routines solve one of the following systems of equations

a*x = b, or a'*x = b, or conjg(a')*x = b,

where:

b and x are n-element vectors

a is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in
packed form.

This routine does not test for singularity or near-singularity. Such tests must
be performed before calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an
upper or lower triangular matrix, as follows:

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

2-78

2 Intel® Math Kernel Library Reference Manual

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or not a is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

ap REAL for stpsv
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for ztpsv

Array, DIMENSION at least ((n*(n + 1))/2). Before
entry with uplo = 'U' or 'u', the array ap must
contain the upper triangular matrix packed sequentially,
column-by-column, so that ap(1) contains a(1, 1),
ap(2) and ap(3) contain a(1, 2) and a(2, 2)

respectively, and so on. Before entry with uplo = 'L' or
'l', the array ap must contain the lower triangular
matrix packed sequentially, column-by-column, so that
ap(1) contains a(1, 1), ap(2) and ap(3) contain
a(2, 1) and a(3, 1) respectively, and so on. When
diag = 'U' or 'u', the diagonal elements of a are not
referenced, but are assumed to be unity.

trans value Operation To Be Performed

N or n a*x = b

T or t a'*x = b

C or c conjg(a')*x = b

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS Routines 2

2-79

x REAL for stpsv
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for ztpsv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element right-hand side vector b.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

Output Parameters

x Overwritten with the solution vector x.

?trmv
Computes a matrix-vector product using
a triangular matrix.

call strmv (uplo, trans, diag, n, a, lda, x, incx)

call dtrmv (uplo, trans, diag, n, a, lda, x, incx)

call ctrmv (uplo, trans, diag, n, a, lda, x, incx)

call ztrmv (uplo, trans, diag, n, a, lda, x, incx)

Discussion

The ?trmv routines perform one of the following matrix-vector operations
defined as

x := a*x or x := a'*x or x := conjg(a')*x,

where:

x is an n-element vector

a is an n by n unit, or non-unit, upper or lower triangular matrix.

2-80

2 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an
upper or lower triangular matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or not a is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

a REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv

Array, DIMENSION (lda,n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array a must contain the upper triangular
matrix and the strictly lower triangular part of a is not
referenced. Before entry with uplo = 'L' or 'l', the
leading n by n lower triangular part of the array a must

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n x := a*x

T or t x := a'*x

C or c x := conjg(a')*x

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS Routines 2

2-81

contain the lower triangular matrix and the strictly upper
triangular part of a is not referenced. When
diag = 'U' or 'u', the diagonal elements of a are not
referenced either, but are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1, n).

x REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

Output Parameters

x Overwritten with the transformed vector x.

?trsv
Solves a system of linear equations
whose coefficients are in a triangular
matrix.

call strsv (uplo, trans, diag, n, a, lda, x, incx)

call dtrsv (uplo, trans, diag, n, a, lda, x, incx)

call ctrsv (uplo, trans, diag, n, a, lda, x, incx)

call ztrsv (uplo, trans, diag, n, a, lda, x, incx)

2-82

2 Intel® Math Kernel Library Reference Manual

Discussion

The?trsv routines solve one of the systems of equations:

a*x = b or a'*x = b, or conjg(a')*x = b,

where:

b and x are n-element vectors

a is an n by n unit, or non-unit, upper or lower triangular matrix.

The routine does not test for singularity or near-singularity. Such tests must
be performed before calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper
or lower triangular matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or not a is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n a*x = b

T or t a'*x = b

C or c conjg(a')*x = b

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS Routines 2

2-83

a REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv

Array, DIMENSION (lda,n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array a must contain the upper triangular
matrix and the strictly lower triangular part of a is not
referenced. Before entry with uplo = 'L' or 'l', the
leading n by n lower triangular part of the array a must
contain the lower triangular matrix and the strictly upper
triangular part of a is not referenced. When diag = 'U'
or 'u', the diagonal elements of a are not referenced
either, but are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1, n).

x REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element right-hand side vector b.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

Output Parameters

x Overwritten with the solution vector x.

2-84

2 Intel® Math Kernel Library Reference Manual

BLAS Level 3 Routines
BLAS Level 3 routines perform matrix-matrix operations. Table 2-3 lists
the BLAS Level 3 routine groups and the data types associated with them.

Symmetric Multiprocessing Version of Intel® MKL

Many applications spend considerable time for executing BLAS level 3
routines. This time can be scaled by the number of processors available on
the system through using the symmetric multiprocessing (SMP) feature
built into the Intel MKL Library. The performance enhancements based on
the parallel use of the processors are available without any programming
effort on your part.

To enhance performance, the library uses the following methods:

• The operation of BLAS level 3 matrix-matrix functions permits to
restructure the code in a way which increases the localization of data
reference, enhances cache memory use, and reduces the dependency on
the memory bus.

Table 2-3 BLAS Level 3 Routine Groups and Their Data Types

Routine
Group

Data
Types Description

?gemm s, d, c, z Matrix-matrix product of general matrices

?hemm c, z Matrix-matrix product of Hermitian matrices

?herk c, z Rank-k update of Hermitian matrices

?her2k c, z Rank-2k update of Hermitian matrices

?symm s, d, c, z Matrix-matrix product of symmetric matrices

?syrk s, d, c, z Rank-k update of symmetric matrices

?syr2k s, d, c, z Rank-2k update of symmetric matrices

?trmm s, d, c, z Matrix-matrix product of triangular matrices

?trsm s, d, c, z Linear matrix-matrix solution for triangular
matrices

BLAS Routines 2

2-85

• Once the code has been effectively blocked as described above, one of
the matrices is distributed across the processors to be multiplied by the
second matrix. Such distribution ensures effective cache management
which reduces the dependency on the memory bus performance and
brings good scaling results.

?gemm
Computes a scalar-matrix-matrix
product and adds the result to a
scalar-matrix product.

call sgemm (transa, transb, m, n, k, alpha, a, lda,
b, ldb, beta, c, ldc)

call dgemm (transa, transb, m, n, k, alpha, a, lda,
b, ldb, beta, c, ldc)

call cgemm (transa, transb, m, n, k, alpha, a, lda,
b, ldb, beta, c, ldc)

call zgemm (transa, transb, m, n, k, alpha, a, lda,
b, ldb, beta, c, ldc)

Discussion

The ?gemm routines perform a matrix-matrix operation with general
matrices. The operation is defined as

c := alpha*op(a)*op(b) + beta*c,

where:

op(x) is one of op(x) = x or op(x) = x' or op(x) = conjg(x'),

alpha and beta are scalars

a, b and c are matrices:

op(a) is an m by k matrix

op(b) is a k by n matrix

c is an m by n matrix.

2-86

2 Intel® Math Kernel Library Reference Manual

Input Parameters

transa CHARACTER*1. Specifies the form of op(a) to be used
in the matrix multiplication as follows:

transb CHARACTER*1. Specifies the form of op(b) to be used
in the matrix multiplication as follows:

m INTEGER. Specifies the number of rows of the matrix
op(a) and of the matrix c. The value of m must be at
least zero.

n INTEGER. Specifies the number of columns of the
matrix op(b) and the number of columns of the matrix
c. The value of n must be at least zero.

k INTEGER. Specifies the number of columns of the
matrix op(a) and the number of rows of the matrix
op(b). The value of k must be at least zero.

alpha REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Specifies the scalar alpha.

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')

transb value Form of op(b)

N or n op(b) = b

T or t op(b) = b'

C or c op(b) = conjg(b')

BLAS Routines 2

2-87

a REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Array, DIMENSION (lda, ka), where ka is k when
transa = 'N' or 'n', and is m otherwise. Before entry
with transa = 'N' or 'n', the leading m by k part of
the array a must contain the matrix a, otherwise the
leading k by m part of the array a must contain the
matrix a.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. When transa = 'N' or
'n', then lda must be at least max(1, m), otherwise
lda must be at least max(1, k).

b REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Array, DIMENSION (ldb, kb), where kb is n when
transb = 'N' or 'n', and is k otherwise. Before entry
with transb = 'N' or 'n', the leading k by n part of
the array b must contain the matrix b, otherwise the
leading n by k part of the array b must contain the
matrix b.

ldb INTEGER. Specifies the first dimension of b as declared
in the calling (sub)program. When transb = 'N' or
'n', then ldb must be at least max(1, k), otherwise
ldb must be at least max(1, n).

beta REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Specifies the scalar beta. When beta is supplied as
zero, then c need not be set on input.

2-88

2 Intel® Math Kernel Library Reference Manual

c REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Array, DIMENSION (ldc, n). Before entry, the leading
m by n part of the array c must contain the matrix c,
except when beta is zero, in which case c need not be
set on entry.

ldc INTEGER. Specifies the first dimension of c as declared
in the calling (sub)program. The value of ldc must be at
least max(1, m).

Output Parameters

c Overwritten by the m by n matrix
(alpha*op(a)*op(b) + beta*c).

?hemm
Computes a scalar-matrix-matrix
product (either one of the matrices is
Hermitian) and adds the result to
scalar-matrix product.

call chemm (side, uplo, m, n, alpha, a, lda, b,
ldb, beta, c, ldc)

call zhemm (side, uplo, m, n, alpha, a, lda, b,
ldb, beta, c, ldc)

Discussion

The ?hemm routines perform a matrix-matrix operation using Hermitian
matrices. The operation is defined as

c := alpha*a*b + beta*c

or

BLAS Routines 2

2-89

c := alpha*b*a + beta*c,

where:

alpha and beta are scalars

a is an Hermitian matrix

b and c are m by n matrices.

Input Parameters

side CHARACTER*1. Specifies whether the Hermitian matrix
a appears on the left or right in the operation as follows:

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the Hermitian matrix a is to be
referenced as follows:

m INTEGER. Specifies the number of rows of the matrix c.
The value of m must be at least zero.

n INTEGER. Specifies the number of columns of the
matrix c. The value of n must be at least zero.

alpha COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Specifies the scalar alpha.

side value Operation To Be Performed

L or l c := alpha*a*b + beta*c

R or r c := alpha*b*a + beta*c

uplo value Part of Matrix a To Be Referenced

U or u Only the upper triangular part of the Hermitian
matrix is to be referenced.

L or l Only the lower triangular part of the Hermitian
matrix is to be referenced.

2-90

2 Intel® Math Kernel Library Reference Manual

a COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (lda,ka), where ka is m when
side = 'L' or 'l' and is n otherwise. Before entry
with side = 'L' or 'l', the m by m part of the array a

must contain the Hermitian matrix, such that when
uplo = 'U' or 'u', the leading m by m upper triangular
part of the array a must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part of a is not referenced, and when uplo = 'L' or
'l', the leading m by m lower triangular part of the array
a must contain the lower triangular part of the Hermitian
matrix, and the strictly upper triangular part of a is not
referenced. Before entry with side = 'R' or 'r', the n
by n part of the array a must contain the Hermitian
matrix, such that when uplo = 'U' or 'u', the leading
n by n upper triangular part of the array a must contain
the upper triangular part of the Hermitian matrix and the
strictly lower triangular part of a is not referenced, and
when uplo = 'L' or 'l', the leading n by n lower
triangular part of the array a must contain the lower
triangular part of the Hermitian matrix, and the strictly
upper triangular part of a is not referenced. The
imaginary parts of the diagonal elements need not be set,
they are assumed to be zero.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub) program. When side = 'L' or 'l'
then lda must be at least max(1, m), otherwise lda
must be at least max(1,n).

b COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (ldb,n). Before entry, the leading
m by n part of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared
in the calling (sub)program. The value of ldb must be at
least max(1, m).

BLAS Routines 2

2-91

beta COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Specifies the scalar beta. When beta is supplied as
zero, then c need not be set on input.

c COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (c, n). Before entry, the leading m

by n part of the array c must contain the matrix c,
except when beta is zero, in which case c need not be
set on entry.

ldc INTEGER. Specifies the first dimension of c as declared
in the calling (sub)program. The value of ldc must be at
least max(1,m).

Output Parameters

c Overwritten by the m by n updated matrix.

?herk
Performs a rank-n update of a
Hermitian matrix.

call cherk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

call zherk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

Discussion

The ?herk routines perform a matrix-matrix operation using Hermitian
matrices. The operation is defined as

c := alpha*a*conjg(a') + beta*c,

or
c := alpha*conjg(a')*a + beta*c,

2-92

2 Intel® Math Kernel Library Reference Manual

where:

alpha and beta are real scalars

c is an n by n Hermitian matrix

a is an n by k matrix in the first case and a k by n matrix in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array c is to be referenced as
follows:

trans CHARACTER*1. Specifies the operation to be performed
as follows:

n INTEGER. Specifies the order of the matrix c. The value
of n must be at least zero.

k INTEGER. With trans = 'N' or 'n', k specifies the
number of columns of the matrix a, and with
trans = 'C' or 'c', k specifies the number of rows of
the matrix a. The value of k must be at least zero.

alpha REAL for cherk
DOUBLE PRECISION for zherk

Specifies the scalar alpha.

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of C is to be
referenced.

L or l Only the lower triangular part of C is to be
referenced.

trans value Operation to be Performed

N or n c:= alpha*a*conjg(a')+beta*c

C or c c:= alpha*conjg(a')*a+beta*c

BLAS Routines 2

2-93

a COMPLEX for cherk
DOUBLE COMPLEX for zherk

Array, DIMENSION (lda, ka), where ka is k when
trans = 'N' or 'n', and is n otherwise. Before entry
with trans = 'N' or 'n', the leading n by k part of the
array a must contain the matrix a, otherwise the leading
k by n part of the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. When trans = 'N' or 'n',
then lda must be at least max(1, n), otherwise lda
must be at least max(1, k).

beta REAL for cherk
DOUBLE PRECISION for zherk

Specifies the scalar beta.

c COMPLEX for cherk
DOUBLE COMPLEX for zherk

Array, DIMENSION (ldc,n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array c must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part of c is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n
lower triangular part of the array c must contain the
lower triangular part of the Hermitian matrix and the
strictly upper triangular part of c is not referenced.

The imaginary parts of the diagonal elements need not
be set, they are assumed to be zero.

ldc INTEGER. Specifies the first dimension of c as declared
in the calling (sub)program. The value of ldc must be at
least max(1, n).

2-94

2 Intel® Math Kernel Library Reference Manual

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the
array c is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the
array c is overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to
zero.

?her2k
Performs a rank-2k update of a
Hermitian matrix.

call cher2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

call zher2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

Discussion

The ?her2k routines perform a rank-2k matrix-matrix operation using
Hermitian matrices. The operation is defined as

c := alpha*a*conjg(b') + conjg(alpha)*b*conjg(a') + beta*c,

or
c := alpha*conjg(b')*a + conjg(alpha)*conjg(a')*b + beta*c,

where:

alpha is a scalar and beta is a real scalar

c is an n by n Hermitian matrix

a and b are n by k matrices in the first case and k by n matrices in the
second case.

BLAS Routines 2

2-95

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array c is to be referenced as
follows:

trans CHARACTER*1. Specifies the operation to be performed
as follows:

n INTEGER. Specifies the order of the matrix c. The value
of n must be at least zero.

k INTEGER. With trans = 'N' or 'n', k specifies the
number of columns of the matrix a, and with
trans = 'C' or 'c', k specifies the number of rows of
the matrix a. The value of k must be at least zero.

alpha COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Specifies the scalar alpha.

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of C is to be
referenced.

L or l Only the lower triangular part of C is to be
referenced.

trans value Operation to be Performed

N or n c:=alpha*a*conjg(b')
+alpha*b*conjg(a') +beta*c

C or c c:=alpha*conjg(a')*b
+alpha*conjg(b')*a+beta*c

2-96

2 Intel® Math Kernel Library Reference Manual

a COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (lda, ka), where ka is k when
trans = 'N' or 'n', and is n otherwise. Before entry
with trans = 'N' or 'n', the leading n by k part of the
array a must contain the matrix a, otherwise the leading
k by n part of the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. When trans = 'N' or 'n',
then lda must be at least max(1, n), otherwise lda
must be at least max(1, k).

beta REAL for cher2k
DOUBLE PRECISION for zher2k

Specifies the scalar beta.

b COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (ldb, kb), where kb is k when
trans = 'N' or 'n', and is n otherwise. Before entry
with trans = 'N' or 'n', the leading n by k part of the
array b must contain the matrix b, otherwise the leading
k by n part of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared
in the calling (sub)program. When trans = 'N' or 'n',
then ldb must be at least max(1, n), otherwise ldb
must be at least max(1, k).

c COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (ldc,n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array c must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part of c is not referenced.

BLAS Routines 2

2-97

Before entry with uplo = 'L' or 'l', the leading n by n
lower triangular part of the array c must contain the
lower triangular part of the Hermitian matrix and the
strictly upper triangular part of c is not referenced.

The imaginary parts of the diagonal elements need not
be set, they are assumed to be zero.

ldc INTEGER. Specifies the first dimension of c as declared
in the calling (sub)program. The value of ldc must be at
least max(1, n).

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the
array c is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the
array c is overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to
zero.

2-98

2 Intel® Math Kernel Library Reference Manual

?symm
Performs a scalar-matrix-matrix
product (one matrix operand is
symmetric) and adds the result to a
scalar-matrix product.

call ssymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)

call dsymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)

call csymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)

call zsymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)

Discussion

The ?symm routines perform a matrix-matrix operation using symmetric
matrices. The operation is defined as

c := alpha*a*b + beta*c,

or

c := alpha*b*a + beta*c,

where:

alpha and beta are scalars

a is a symmetric matrix

b and c are m by n matrices.

BLAS Routines 2

2-99

Input Parameters

side CHARACTER*1. Specifies whether the symmetric matrix
a appears on the left or right in the operation as follows:

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the symmetric matrix a is to be
referenced as follows:

m INTEGER. Specifies the number of rows of the matrix c.
The value of m must be at least zero.

n INTEGER. Specifies the number of columns of the
matrix c. The value of n must be at least zero.

alpha REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Specifies the scalar alpha.

a REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (lda, ka), where ka is m when
side = 'L' or 'l' and is n otherwise. Before entry
with side = 'L' or 'l', the m by m part of the array a

must contain the symmetric matrix, such that when

side value Operation to be Performed

L or l c := alpha*a*b + beta*c

R or r c := alpha*b*a + beta*c

uplo value Part of Array a To Be Referenced

U or u Only the upper triangular part of the symmetric
matrix is to be referenced.

L or l Only the lower triangular part of the symmetric
matrix is to be referenced.

2-100

2 Intel® Math Kernel Library Reference Manual

uplo = 'U' or 'u', the leading m by m upper triangular
part of the array a must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of a is not referenced, and when uplo = 'L' or
'l', the leading m by m lower triangular part of the array
a must contain the lower triangular part of the
symmetric matrix and the strictly upper triangular part
of a is not referenced.

Before entry with side = 'R' or 'r', the n by n part of
the array a must contain the symmetric matrix, such that
when uplo = 'U' or 'u', the leading n by n upper
triangular part of the array a must contain the upper
triangular part of the symmetric matrix and the strictly
lower triangular part of a is not referenced, and when
uplo = 'L' or 'l', the leading n by n lower triangular
part of the array a must contain the lower triangular part
of the symmetric matrix and the strictly upper triangular
part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. When side = 'L' or 'l'
then lda must be at least max(1, m), otherwise lda
must be at least max(1, n).

b REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (ldb,n). Before entry, the leading
m by n part of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared
in the calling (sub)program. The value of ldb must be at
least max(1, m).

BLAS Routines 2

2-101

beta REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Specifies the scalar beta. When beta is supplied as
zero, then c need not be set on input.

c REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (ldc,n). Before entry, the leading
m by n part of the array c must contain the matrix c,
except when beta is zero, in which case c need not be set
on entry.

ldc INTEGER. Specifies the first dimension of c as declared
in the calling (sub)program. The value of ldc must be at
least max(1, m).

Output Parameters

c Overwritten by the m by n updated matrix.

2-102

2 Intel® Math Kernel Library Reference Manual

?syrk
Performs a rank-n update of a
symmetric matrix.

call ssyrk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

call dsyrk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

call csyrk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

call zsyrk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

Discussion

The ?syrk routines perform a matrix-matrix operation using symmetric
matrices. The operation is defined as

c := alpha*a*a' + beta*c,

or

c := alpha*a'*a + beta*c,

where:

alpha and beta are scalars

c is an n by n symmetric matrix

a is an n by k matrix in the first case and a k by n matrix in the second case.

BLAS Routines 2

2-103

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array c is to be referenced as
follows:

trans CHARACTER*1. Specifies the operation to be performed
as follows:

n INTEGER. Specifies the order of the matrix c. The value
of n must be at least zero.

k INTEGER. On entry with trans = 'N' or 'n', k
specifies the number of columns of the matrix a, and on
entry with trans = 'T' or 't' or 'C' or 'c', k
specifies the number of rows of the matrix a. The value
of k must be at least zero.

alpha REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Specifies the scalar alpha.

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of c is to be
referenced.

L or l Only the lower triangular part of c is to be
referenced.

trans value Operation to be Performed

N or n c:= alpha*a*a' + beta*c

T or t c:= alpha*a'*a + beta*c

C or c c:= alpha*a'*a + beta*c

2-104

2 Intel® Math Kernel Library Reference Manual

a REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Array, DIMENSION (lda,ka), where ka is k when
trans = 'N' or 'n', and is n otherwise. Before entry
with trans = 'N' or 'n', the leading n by k part of the
array a must contain the matrix a, otherwise the leading
k by n part of the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. When trans = 'N' or 'n',
then lda must be at least max(1,n), otherwise lda
must be at least max(1, k).

beta REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Specifies the scalar beta.

c REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Array, DIMENSION (ldc,n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array c must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of c is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n
lower triangular part of the array c must contain the
lower triangular part of the symmetric matrix and the
strictly upper triangular part of c is not referenced.

ldc INTEGER. Specifies the first dimension of c as declared
in the calling (sub)program. The value of ldc must be at
least max(1, n).

BLAS Routines 2

2-105

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the
array c is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the
array c is overwritten by the lower triangular part of the
updated matrix.

?syr2k
Performs a rank-2k update of a
symmetric matrix.

call ssyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

call dsyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

call csyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

call zsyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

Discussion

The ?syr2k routines perform a rank-2k matrix-matrix operation using
symmetric matrices. The operation is defined as

c := alpha*a*b' + alpha*b*a' + beta*c,

or

c := alpha*a'*b + alpha*b'*a + beta*c,

where:

alpha and beta are scalars

c is an n by n symmetric matrix

2-106

2 Intel® Math Kernel Library Reference Manual

a and b are n by k matrices in the first case and k by n matrices in the
second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array c is to be referenced as
follows:

trans CHARACTER*1. Specifies the operation to be performed
as follows:

n INTEGER. Specifies the order of the matrix c. The value
of n must be at least zero.

k INTEGER. On entry with trans = 'N' or 'n', k
specifies the number of columns of the matrices a and b,
and on entry with trans = 'T' or 't' or 'C' or 'c', k
specifies the number of rows of the matrices a and b.
The value of k must be at least zero.

alpha REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Specifies the scalar alpha.

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of c is to be
referenced.

L or l Only the lower triangular part of c is to be
referenced.

trans value Operation to be Performed

N or n c:= alpha*a*b'+alpha*b*a'+beta*c

T or t c:= alpha*a'*b+alpha*b'*a+beta*c

C or c c:= alpha*a'*b+alpha*b'*a+beta*c

BLAS Routines 2

2-107

a REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (lda,ka), where ka is k when
trans = 'N' or 'n', and is n otherwise. Before entry
with trans = 'N' or 'n', the leading n by k part of the
array a must contain the matrix a, otherwise the leading
k by n part of the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. When trans = 'N' or 'n',
then lda must be at least max(1,n), otherwise lda
must be at least max(1, k).

b REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (ldb, kb) where kb is k when
trans = 'N' or 'n' and is 'n' otherwise. Before entry
with trans = 'N' or 'n', the leading n by k part of the
array b must contain the matrix b, otherwise the leading
k by n part of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. When trans = 'N' or 'n',
then ldb must be at least max(1,n), otherwise ldb
must be at least max(1, k).

beta REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Specifies the scalar beta.

2-108

2 Intel® Math Kernel Library Reference Manual

c REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (ldc,n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular
part of the array c must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of c is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n
lower triangular part of the array c must contain the
lower triangular part of the symmetric matrix and the
strictly upper triangular part of c is not referenced.

ldc INTEGER. Specifies the first dimension of c as declared
in the calling (sub)program. The value of ldc must be at
least max(1, n).

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the
array c is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the
array c is overwritten by the lower triangular part of the
updated matrix.

BLAS Routines 2

2-109

?trmm
Computes a scalar-matrix-matrix
product (one matrix operand is
triangular).

call strmm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call dtrmm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call ctrmm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call ztrmm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

Discussion

The ?trmm routines perform a matrix-matrix operation using triangular
matrices. The operation is defined as

b := alpha*op(a)*b

or

b := alpha*b*op(a)

where:

alpha is a scalar

b is an m by n matrix

a is a unit, or non-unit, upper or lower triangular matrix

op(a) is one of op(a) = a or op(a) = a' or op(a) = conjg(a').

2-110

2 Intel® Math Kernel Library Reference Manual

Input Parameters

side CHARACTER*1. Specifies whether op(a) multiplies b
from the left or right in the operation as follows:

uplo CHARACTER*1. Specifies whether the matrix a is an
upper or lower triangular matrix as follows:

transa CHARACTER*1. Specifies the form of op(a) to be used
in the matrix multiplication as follows:

diag CHARACTER*1. Specifies whether or not a is unit
triangular as follows:

m INTEGER. Specifies the number of rows of b. The value
of m must be at least zero.

n INTEGER. Specifies the number of columns of b. The
value of n must be at least zero.

side value Operation To Be Performed

L or l b := alpha*op(a)*b

R or r b := alpha*b*op(a)

uplo value Matrix a

U or u Matrix a is an upper triangular matrix.

L or l Matrix a is a lower triangular matrix.

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS Routines 2

2-111

alpha REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm

Specifies the scalar alpha. When alpha is zero, then a

is not referenced and b need not be set before entry.

a REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm

Array, DIMENSION (lda,k), where k is m when
side = 'L' or 'l' and is n when side = 'R' or 'r'.
Before entry with uplo = 'U' or 'u', the leading
k by k upper triangular part of the array a must contain
the upper triangular matrix and the strictly lower
triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading k by k
lower triangular part of the array a must contain the
lower triangular matrix and the strictly upper triangular
part of a is not referenced. When diag = 'U' or 'u',
the diagonal elements of a are not referenced either, but
are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. When side = 'L' or 'l',
then lda must be at least max(1, m), when side = 'R'
or 'r', then lda must be at least max(1, n).

b REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm

Array, DIMENSION (ldb,n). Before entry, the leading
m by n part of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared
in the calling (sub)program. The value of ldb must be at
least max(1, m).

2-112

2 Intel® Math Kernel Library Reference Manual

Output Parameters

b Overwritten by the transformed matrix.

?trsm
Solves a matrix equation (one matrix
operand is triangular).

call strsm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call dtrsm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call ctrsm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call ztrsm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

Discussion

The ?trsm routines solve one of the following matrix equations:

op(a)*x = alpha*b,

or

x*op(a) = alpha*b,

where:

alpha is a scalar

x and b are m by n matrices

a is a unit, or non-unit, upper or lower triangular matrix

op(a) is one of op(a) = a or op(a) = a' or
op(a) = conjg(a').

The matrix x is overwritten on b.

BLAS Routines 2

2-113

Input Parameters

side CHARACTER*1. Specifies whether op(a) appears on the
left or right of x for the operation to be performed as
follows:

uplo CHARACTER*1. Specifies whether the matrix a is an
upper or lower triangular matrix as follows:

transa CHARACTER*1. Specifies the form of op(a) to be used
in the matrix multiplication as follows:

diag CHARACTER*1. Specifies whether or not a is unit
triangular as follows:

m INTEGER. Specifies the number of rows of b. The value
of m must be at least zero.

n INTEGER. Specifies the number of columns of b. The
value of n must be at least zero.

side value Operation To Be Performed

L or l op(a)*x = alpha*b

R or r x*op(a) = alpha*b

uplo value Matrix a

U or u Matrix a is an upper triangular matrix.

L or l Matrix a is a lower triangular matrix.

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

2-114

2 Intel® Math Kernel Library Reference Manual

alpha REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm

Specifies the scalar alpha. When alpha is zero, then a

is not referenced and b need not be set before entry.

a REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm

Array, DIMENSION (lda, k), where k is m when
side = 'L' or 'l' and is n when side = 'R' or 'r'.
Before entry with uplo = 'U' or 'u', the leading k by k
upper triangular part of the array a must contain the
upper triangular matrix and the strictly lower triangular
part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading k by k
lower triangular part of the array a must contain the
lower triangular matrix and the strictly upper triangular
part of a is not referenced. When diag = 'U' or 'u',
the diagonal elements of a are not referenced either, but
are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. When side = 'L' or 'l',
then lda must be at least max(1, m), when side = 'R'
or 'r', then lda must be at least max(1, n).

b REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm

Array, DIMENSION (ldb,n). Before entry, the leading
m by n part of the array b must contain the right-hand
side matrix b.

BLAS Routines 2

2-115

ldb INTEGER. Specifies the first dimension of b as declared
in the calling (sub)program. The value of ldb must be at
least max(1, m).

Output Parameters

b Overwritten by the solution matrix x.

2-116

2 Intel® Math Kernel Library Reference Manual

Sparse BLAS Routines and Functions
This section describes Sparse BLAS, an extension of BLAS Level 1
included in Intel® Math Kernel Library beginning with Intel MKL release
2.1. Sparse BLAS is a group of routines and functions that perform a
number of common vector operations on sparse vectors stored in
compressed form.

Sparse vectors are those in which the majority of elements are zeros. Sparse
BLAS routines and functions are specially implemented to take advantage
of vector sparsity. This allows you to achieve large savings in computer time
and memory. If nz is the number of non-zero vector elements, the computer
time taken by Sparse BLAS operations will be O(nz).

Vector Arguments in Sparse BLAS

Compressed sparse vectors. Let a be a vector stored in an array, and
assume that the only non-zero elements of a are the following:

a(k1), a(k2), a(k3) . . . a(knz),

where nz is the total number of non-zero elements in a.

In Sparse BLAS, this vector can be represented in compressed form by two
FORTRAN arrays, x (values) and indx (indices). Each array has nz
elements:

x(1)=a(k1), x(2)=a(k2), . . . x(nz)=a(knz),

indx(1)=k1, indx(2)=k2, . . . indx(nz)=knz.

Thus, a sparse vector is fully determined by the triple (nz, x, indx). If you
pass a negative or zero value of nz to Sparse BLAS, the subroutines do not
modify any arrays or variables.

Full-storage vectors. Sparse BLAS routines can also use a vector
argument fully stored in a single FORTRAN array (a full-storage vector). If
y is a full-storage vector, its elements must be stored contiguously: the first
element in y(1), the second in y(2), and so on. This corresponds to an
increment incy = 1 in BLAS Level 1. No increment value for full-storage
vectors is passed as an argument to Sparse BLAS routines or functions.

BLAS Routines 2

2-117

Naming Conventions in Sparse BLAS

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes
that determine the data type involved: s and d for single- and double-
precision real; c and z for single- and double-precision complex.

If a Sparse BLAS routine is an extension of a “dense” one, the subprogram
name is formed by appending the suffix i (standing for indexed) to the
name of the corresponding “dense” subprogram. For example, the Sparse
BLAS routine saxpyi corresponds to the BLAS routine saxpy, and the
Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

Routines and Data Types in Sparse BLAS

Routines and data types supported in the Intel MKL implementation of
Sparse BLAS are listed in Table 2-4.

Table 2-4 Sparse BLAS Routines and Their Data Types

Routine/
Function

Data
Types Description

?axpyi s, d, c, z Scalar-vector product plus vector (routines)

?doti s, d Dot product (functions)

?dotci c, z Complex dot product conjugated (functions)

?dotui c, z Complex dot product unconjugated (functions)

?gthr s, d, c, z Gathering a full-storage sparse vector into
compressed form: nz, x, indx (routines)

?gthrz s, d, c, z Gathering a full-storage sparse vector into
compressed form and assigning zeros to
gathered elements in the full-storage vector
(routines)

?roti s, d Givens rotation (routines)

?sctr s, d, c, z Scattering a vector from compressed form to
full-storage form (routines)

2-118

2 Intel® Math Kernel Library Reference Manual

BLAS Routines That Can Work With Sparse Vectors

The following BLAS Level 1 routines will give correct results when you
pass to them a compressed-form array x (with the increment incx = 1):

?asum sum of absolute values of vector elements
?copy copying a vector
?nrm2 Euclidean norm of a vector
?scal scaling a vector
i?amax index of the element with the largest absolute value or,

for complex flavors, the largest sum | Rex(i)| + | Imx(i)| .
i?amin index of the element with the smallest absolute value or,

for complex flavors, the smallest sum | Rex(i)| + | Imx(i)| .
The result i returned by i?amax and i?amin should be interpreted as index
in the compressed-form array, so that the largest (smallest) value is x(i);
the corresponding index in full-storage array is indx(i).

You can also call ?rotg to compute the parameters of Givens rotation and
then pass these parameters to the Sparse BLAS routines ?roti.

?axpyi
Adds a scalar multiple of compressed
sparse vector to a full-storage vector.

call saxpyi (nz, a, x, indx, y)

call daxpyi (nz, a, x, indx, y)

call caxpyi (nz, a, x, indx, y)

call zaxpyi (nz, a, x, indx, y)

Discussion

The ?axpyi routines perform a vector-vector operation defined as

y := a*x + y

where:

a is a scalar

BLAS Routines 2

2-119

(nz, x, indx) is a sparse vector stored in compressed form

y is a vector in full storage form.

The ?axpyi routines reference or modify only the elements of y whose
indices are listed in the array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx .

a REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi

Specifies the scalar a.

x REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.

Array, DIMENSION at least nz.

y REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi

Array, DIMENSION at least maxi (indx(i)).

Output Parameters

y Contains the updated vector y.

2-120

2 Intel® Math Kernel Library Reference Manual

?doti
Computes the dot product of a
compressed sparse real vector by a
full-storage real vector.

res = sdoti (nz, x, indx, y)
res = ddoti (nz, x, indx, y)

Discussion

The ?doti functions return the dot product of x and y defined as

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz))

where the triple (nz, x, indx) defines a sparse real vector stored in
compressed form, and y is a real vector in full storage form. The functions
reference only the elements of y whose indices are listed in the array indx.
The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx .

x REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

res REAL for sdoti
DOUBLE PRECISION for ddoti

Contains the dot product of x and y, if nz is positive.
Otherwise, res contains 0.

BLAS Routines 2

2-121

?dotci
Computes the conjugated dot product of
a compressed sparse complex vector
with a full-storage complex vector.

res = cdotci (nz, x, indx, y)

res = zdotci (nz, x, indx, y)

Discussion

The ?dotci functions return the dot product of x and y defined as

conjg(x(1))*y(indx(1)) + ... + conjg(x(nz))*y(indx(nz))

where the triple (nz, x, indx) defines a sparse complex vector stored in
compressed form, and y is a real vector in full storage form. The functions
reference only the elements of y whose indices are listed in the array indx.
The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx .

x COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

res COMPLEX for cdotci
DOUBLE COMPLEX for zdotci

Contains the conjugated dot product of x and y,
if nz is positive. Otherwise, res contains 0.

2-122

2 Intel® Math Kernel Library Reference Manual

?dotui
Computes the dot product of a
compressed sparse complex vector by a
full-storage complex vector.

res = cdotui (nz, x, indx, y)

res = zdotui (nz, x, indx, y)

Discussion

The ?dotui functions return the dot product of x and y defined as

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz))

where the triple (nz, x, indx) defines a sparse complex vector stored in
compressed form, and y is a real vector in full storage form. The functions
reference only the elements of y whose indices are listed in the array indx.
The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx .

x COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

res COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Contains the dot product of x and y, if nz is positive.
Otherwise, res contains 0.

BLAS Routines 2

2-123

?gthr
Gathers a full-storage sparse vector’s
elements into compressed form.

call sgthr (nz, y, x, indx)

call dgthr (nz, y, x, indx)

call cgthr (nz, y, x, indx)

call zgthr (nz, y, x, indx)

Discussion

The ?gthr routines gather the specified elements of a full-storage sparse
vector y into compressed form (nz, x, indx). The routines reference only
the elements of y whose indices are listed in the array indx:

x(i) = y(indx(i)), for i=1,2,...nz.

Input Parameters

nz INTEGER. The number of elements of y to be gathered.

indx INTEGER. Specifies indices of elements to be gathered.
Array, DIMENSION at least nz.

y REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

x REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least nz.

Contains the vector converted to the compressed form.

2-124

2 Intel® Math Kernel Library Reference Manual

?gthrz
Gathers a sparse vector’s elements into
compressed form, replacing them by zeros.

call sgthrz (nz, y, x, indx)
call dgthrz (nz, y, x, indx)
call cgthrz (nz, y, x, indx)
call zgthrz (nz, y, x, indx)

Discussion

The ?gthrz routines gather the elements with indices specified by the
array indx from a full-storage vector y into compressed form
(nz, x, indx) and overwrite the gathered elements of y by zeros.
Other elements of y are not referenced or modified (see also ?gthr).

Input Parameters

nz INTEGER. The number of elements of y to be gathered.

indx INTEGER. Specifies indices of elements to be gathered.
Array, DIMENSION at least nz.

y REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

x REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least nz.
Contains the vector converted to the compressed form.

y The updated vector y.

BLAS Routines 2

2-125

?roti
Applies Givens rotation to sparse vectors
one of which is in compressed form.

call sroti (nz, x, indx, y, c, s)
call droti (nz, x, indx, y, c, s)

Discussion

The ?roti routines apply the Givens rotation to elements of two real
vectors, x (in compressed form nz, x, indx) and y (in full storage form):

x(i) = c*x(i) + s*y(indx(i))
y(indx(i)) = c*y(indx(i)) - s*x(i)

The routines reference only the elements of y whose indices are listed in
the array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx.

x REAL for sroti
DOUBLE PRECISION for droti
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y REAL for sroti
DOUBLE PRECISION for droti
Array, DIMENSION at least maxi (indx(i)).

c A scalar: REAL for sroti
DOUBLE PRECISION for droti.

s A scalar: REAL for sroti
DOUBLE PRECISION for droti.

Output Parameters

x and y The updated arrays.

2-126

2 Intel® Math Kernel Library Reference Manual

?sctr
Converts compressed sparse vectors into
full storage form.

call ssctr (nz, x, indx, y)

call dsctr (nz, x, indx, y)

call csctr (nz, x, indx, y)

call zsctr (nz, x, indx, y)

Discussion

The ?sctr routines scatter the elements of the compressed sparse vector
(nz, x, indx) to a full-storage vector y. The routines modify only the
elements of y whose indices are listed in the array indx:
y(indx(i)) = x(i), for i=1,2,...nz.

Input Parameters

nz INTEGER. The number of elements of x to be scattered.

indx INTEGER. Specifies indices of elements to be scattered.
Array, DIMENSION at least nz.

x REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least nz.
Contains the vector to be converted to full-storage form.

Output Parameters

y REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least maxi (indx(i)).
Contains the vector y with updated elements.

3-1

Fast Fourier Transforms 3
This chapter describes the fast Fourier transform (FFT) routines
implemented in Intel® MKL. The FFT routines included consist of two
classes: one-dimensional and two-dimensional. Both one-dimensional and
two-dimensional routines have been optimized to effectively use cache
memory. All routines work with transforms of a power of 2 length.

For a more general set of Discrete Fourier Transform functions in
Intel MKL, refer to Advanced DFT Functions in this manual.

Although Intel MKL still supports the FFT interface described later in this
chapter, users are encouraged to migrate to the new DFT functions in their
application programs. Unlike the FFT routines, the DFT routines support
transforms of up to 7D, and transform lengths of other than powers of 2
mixed radix.

This chapter contains these major sections:

• One-dimensional FFTs
• Two-dimensional FFTs

Each of the major sections contains the description of three groups of the
FFTs.

One-dimensional FFTs
The one-dimensional FFTs include the following groups:

• Complex-to-Complex Transforms
• Real-to-Complex Transforms
• Complex-to-Real Transforms.

3-2

3 Intel® Math Kernel Library Reference Manual

All one-dimensional FFTs are in-place. The transform length must be a
power of 2. The complex-to-complex transform routines perform both
forward and inverse transforms of a complex vector. The real-to-complex
transform routines perform forward transforms of a real vector. The
complex-to-real transform routines perform inverse transforms of a
complex conjugate-symmetric vector, which is packed in a real array.

Data Storage Types

Each FFT group contains two sets of FFTs having the similar functionality:
one set is used for the Fortran-interface and the other for the C-interface.
The former set stores the complex data as a Fortran complex data type,
while the latter stores the complex data as float arrays of real and imaginary
parts separately. These sets are distinguished by naming the FFTs within
each set. The names of the FFTs used for the C-interface have the letter “c”
added to the end of the FFTs’ Fortran names. For example, the names of the
cfft1d/zfft1d FFTs for the corresponding C-interface routines are
cfft1dc/zfft1dc. All names of the C-type data items are lower case.

Table 3-1 lists the one-dimensional FFT routine groups and the data types
associated with them.

Table 3-1 One-dimensional FFTs: Names and Data Types

Group

Stored as
Fortran
Complex
Data

Stored as C
Real Data

Data
Types Description

Complex-
to-
Complex

cfft1d/
zfft1d

cfftldc/
zfftldc

c, z Transform complex data to complex
data.

Real-to-
Complex

scfft1d/
dzfft1d

scfft1dc/
dzfft1dc

sc, dz Transform forward real-to-complex data.
Complement csfft1d/zdfft1d and
csfft1dc/zdfft1dc FFTs.

Complex-
to-Real

csfft1d/
zdfft1d

csfft1dc/
zdfft1dc

cs, zd Transform inverse complex-to-real data.
Complement scfft1d/dzfft1d and
scfft1dc/dzfft1dc FFTs.

Fast Fourier Transforms 3

3-3

Data Structure Requirements

For C-interface, storage of the complex-to-complex transform routines data
requires separate float arrays for the real and imaginary parts. The
real-to-complex and complex-to-real pairs require a single float
input/output array.

The C-interface requires scalar values to be passed by value.

All transforms require additional memory to store the transform
coefficients. When performing multiple FFTs of the same dimension, the

table of coefficients should be created only once and then used on all the
FFTs afterwards. Using the same table rather than creating it repeatedly for
each FFT produces an obvious performance gain.

Complex-to-Complex One-dimensional FFTs

Each of the complex-to-complex routines computes a forward or inverse
FFT of a complex vector.
The forward FFT is computed according to the mathematical equation

The inverse FFT is computed according to the mathematical equation

where , i being the imaginary unit.

The operation performed by the complex-to-complex routines is determined
by the value of the isign parameter used by each of these routines.
If isign = -1, perform the forward FFT where input and output are in
normal order.
If isign = +1, perform the inverse FFT where input and output are in
normal order.
If isign = -2, perform the forward FFT where input is in normal order and
output is in bit-reversed order.
If isign = +2, perform the inverse FFT where input is in bit-reversed order

zj rk*w
j*k–

0 j n 1–≤ ≤,
k 0=

n 1–
∑=

rj
1
n
- zk*w

j*k 0 j n 1–≤ ≤,
k 0=

n 1–
∑=

w
2πi
n
-----exp=

3-4

3 Intel® Math Kernel Library Reference Manual

and output is in normal order.
If isign = 0, initialize FFT coefficients for both the forward and inverse
FFTs.

The above equations apply to all FFTs with all data types indicated
in Table 3-1.

To compute a forward or inverse FFT of a given length, first initialize the
coefficients by calling the function with isign = 0. Thereafter, any number
of transforms of the same length can be computed by calling the function
with isign = +1, -1, +2, -2.

cfft1d/zfft1d
Fortran-interface routines. Compute the forward
or inverse FFT of a complex vector (in-place)

call cfft1d (r, n, isign, wsave)
call zfft1d (r, n, isign, wsave)

Discussion

The operation performed by the cfft1d/zfft1d routines is determined by
the value of isign. See the equations of the operations for
the Complex-to-Complex One-dimensional FFTs above.

Input Parameters

r COMPLEX for cfft1d
DOUBLE COMPLEX for zfft1d
Array, DIMENSION at least (n). Contains the complex
vector on which the transform is to be performed. Not
referenced if isign = 0.

n INTEGER. Transform length; n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be
performed:
if isign = 0, initialize the coefficients wsave;

Fast Fourier Transforms 3

3-5

if isign = -1, perform the forward FFT where input
and output are in normal order;
if isign = +1, perform the inverse FFT where input and
output are in normal order;
if isign = -2, perform the forward FFT where input is
in normal order and output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is
in bit-reversed order and output is in normal order.

wsave COMPLEX for cfft1d
DOUBLE COMPLEX for zfft1d
Array, DIMENSION at least ((3*n)/2). If isign = 0,
then wsave is an output parameter. Otherwise, wsave
contains the FFT coefficients initialized on a previous
call with isign = 0.

Output Parameters

r Contains the complex result of the transform depending
on isign. Does not change if isign = 0.

wsave If isign = 0, wsave contains the initialized FFT
coefficients. Otherwise, wsave does not change.

cfft1dc/zfft1dc
C-interface routines. Compute the forward or
inverse FFT of a complex vector (in-place).

void cfft1dc (float* r, float* i, int n, int isign, float* wsave)
void zfft1dc (double* r, double* i, int n, int isign, double* wsave)

Discussion

The operation performed by the cfft1dc/zfft1dc routines is determined
by the value of isign. See the equations of the operations for
the Complex-to-Complex One-dimensional FFTs.

3-6

3 Intel® Math Kernel Library Reference Manual

Input Parameters

r float* for cfft1dc
double* for zfft1dc
Pointer to an array of size at least (n). Contains the real
parts of complex vector to be transformed. Not
referenced if isign = 0.

i float* for cfft1dc
double* for zfft1dc

Pointer to an array of size at least (n). Contains the
imaginary parts of complex vector to be transformed.

Not referenced if isign = 0.

n int. Transform length; n must be a power of 2.

isign int. Flag indicating the type of operation to be
performed:
if isign = 0, initialize the coefficients wsave;
if isign = -1, perform the forward FFT where input
and output are in normal order;
if isign = +1, perform the inverse FFT where input and
output are in normal order;
if isign = -2, perform the forward FFT where input is
in normal order and output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is
in bit-reversed order and output is in normal order.

wsave float* for cfft1dc
double* for zfft1dc
Pointer to an array of size at least (3*n). If isign = 0,
then wsave is an output parameter. Otherwise, wsave
contains the FFT coefficients initialized on a previous
call with isign = 0.

Output Parameters

r Contains the real part of the transform depending on
isign. Does not change if isign = 0.

Fast Fourier Transforms 3

3-7

i Contains the imaginary part of the transform depending on
isign.. Does not change if isign = 0.

wsave If isign = 0, wsave contains the initialized FFT
coefficients. Otherwise, wsave does not change.

Real-to-Complex One-dimensional FFTs

Each of the real-to-complex routines computes forward FFT of a real input
vector according to the mathematical equation

for tk = cmplx(rk,0), where rk is the real input vector, .
The mathematical result zj, , is the complex conjugate-symmetric
vector, where z(n/2+i) = conjg(z(n/2-i)), , and
moreover z(0) and z(n/2) are real values.

This complex conjugate-symmetric (CCS) vector can be stored in the complex
array of size (n/2+1) or in the real array of size (n+2). The data storage of
the CCS format is defined later for Fortran-interface and C-interface routines
separately.

Table 3-2 shows a comparison of the effects of performing the cfft1d/
zfft1d complex-to-complex FFT on a vector of length n=8 in which all the
imaginary elements are zeros, with the real-to-complex scfft1d/zdfft1d

FFT applied to the same vector. The advantage of the latter approach is that
only half of the input data storage is required and there is no need to zero the
imaginary part. The last two columns are stored in the real array of size (n+2)
containing the complex conjugate-symmetric vector in CCS format.

zj tk*w
j*k–

0 j n 1–≤ ≤,
k 0=

n 1–
∑=

0 k n 1–≤ ≤
0 j n 1–≤ ≤

1 i n 2⁄ 1–≤ ≤

3-8

3 Intel® Math Kernel Library Reference Manual

To compute a forward FFT of a given length, first initialize the coefficients by
calling the routine you are going to use with isign = 0. Thereafter, any
number of real-to-complex and complex-to-real transforms of the same length
can be computed by calling that routine with the isign value other than 0.

scfft1d/dzfft1d
Fortran-interface routines. Compute
forward FFT of a real vector and represent
the complex conjugate-symmetric result in
CCS format (in-place).

call scfft1d (r, n, isign, wsave)

call dzfft1d (r, n, isign, wsave)

Table 3-2 Comparison of the Storage Effects of Complex-to-Complex and
Real-to-Complex FFTs

Input Vectors Output Vectors

cfft1d scfft1d cfft1d scfft1d

Complex Data Real Data Complex Data Real Data

Real Imaginary Real Imaginary (Real) (Imaginary)

0.841471 0.000000 0.841471 1.543091 0.000000 1.543091 0.000000

0.909297 0.000000 0.909297 3.875664 0.910042 3.875664 0.910042

0.141120 0.000000 0.141120 -0.915560 -0.397326 -0.915560 -0.397326

-0.756802 0.000000 -0.756802 -0.274874 -0.121691 -0.274874 -0.121691

-0.958924 0.000000 -0.958924 -0.181784 0.000000 -0.181784 0.000000

-0.279415 0.000000 -0.279415 -0.274874 0.121691

0.656987 0.000000 0.656987 -0.915560 0.397326

0.989358 0.000000 0.989358 3.875664 -0.910042

Fast Fourier Transforms 3

3-9

Discussion

The operation performed by the scfft1d/dzfft1d routines is determined
by the value of isign. See the equations of the operations for
Real-to-Complex One-dimensional FFTs above. These routines are
complementary to the complex-to-real transform routines
csfft1d/zdfft1d.

Input Parameters

r REAL for scfft1d
DOUBLE PRECISION for dzfft1d

Array, DIMENSION at least (n+2). First n elements
contain the input vector to be transformed. The elements
r(n+1) and r(n+2) are used on output. The array r is
not referenced if isign = 0.

n INTEGER. Transform length; n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be
performed:
if isign is 0, initialize the coefficients wsave;
if isign is not 0, perform the forward FFT.

wsave REAL for scfft1d
DOUBLE PRECISION for dzfft1d

Array, DIMENSION at least (2*n+4). If isign = 0,
then wsave contains output data. Otherwise, wsave
contains coefficients required to perform the FFT that
has been initialized on a previous call to this routine or
the complementary complex-to-real FFT routine.

Output Parameters

r If isign = 0, r does not change. If isign is not 0, the
output real-valued array r(1:n+2) contains the
complex conjugate-symmetric vector z(1:n) packed in
CCS format for Fortran interface.
The table below shows the relationship between them.

3-10

3 Intel® Math Kernel Library Reference Manual

The full complex vector z(1:n) is defined by
z(i) = cmplx(r(2*i-1), r(2*i)),
1 ≤ i ≤ n/2+1,

z(n/2+i) = conjg(z(n/2+2-i)),
2 ≤ i ≤ n/2.

Then, z(1:n) is the forward FFT of a real input vector
r(1:n).

wsave If isign = 0, wsave contains the coefficients required
by the called routine. Otherwise wsave does not change.

scfft1dc/dzfft1dc
C-interface routines. Compute forward
FFT of a real vector and represent the
complex conjugate-
symmetric result in CCS format
(in-place).

void scfft1dc (float* r, int n, int isign, float* wsave);

void dzfft1dc (double* r, int n, int isign, double* wsave);

Discussion

The operation performed by the scfft1dc/dzfft1dc routines is
determined by the value of isign. See the equations of the operations for
the Real-to-Complex One-dimensional FFTs above.
These routines are complementary to the complex-to-real transform
routines csfft1dc/zdfft1dc.

r(1) r(2) r(3) r(4) ... r(n-1) r(n) r(n+1) r(n+2)

z(1) 0 REz(2) IMz(2) ... REz(n/2) IMz(n/2) z(n/2+1) 0

Fast Fourier Transforms 3

3-11

Input Parameters

r float* for scfft1dc
double* for dzfft1dc

Pointer to an array of size at least (n+2). First n
elements contain the input vector to be transformed. The
array r is not referenced if isign = 0.

n int. Transform length; n must be a power of 2.

isign int. Flag indicating the type of operation to be
performed:

if isign is 0, initialize the coefficients wsave;

if isign is not 0, perform the forward FFT.

wsave float* for scfft1dc
double* for dzfft1dc

Pointer to an array of size at least (2*n+4).
If isign = 0, then wsave contains output data.
Otherwise, wsave contains coefficients required to
perform the FFT that has been initialized on a previous
call to this routine or the complementary
complex-to-real FFT routine.

Output Parameters

r If isign = 0, r does not change. If isign is not 0, the
output real-valued array r(0:n+1) contains the
complex conjugate-symmetric vector z(0:n-1)
packed in CCS format for C-interface.
The table below shows the relationship between them.

The full complex vector z(0:n-1) is defined by

z(i) = cmplx(r(i),r(n/2+1+i)), 0 ≤i ≤n/2,

r(0) r(1) r(2) ... r(n/2) r(n/2+1) r(n/2+2) ... r(n) r(n+1)

z(0) REz(1) REz(2) ... z(n/2) 0 IMz(1) ... IMz(n/2-1) 0

3-12

3 Intel® Math Kernel Library Reference Manual

z(n/2+i) = conjg(z(n/2-i)), 1 ≤i ≤n/2-1.
Then, z(0:n-1) is the forward FFT of the real input
vector of length n.

wsave If isign = 0, wsave contains the coefficients required
by the called routine. Otherwise wsave does not change.

Complex-to-Real One-dimensional FFTs

Each of the complex-to-real routines computes a one-dimensional inverse
FFT according to the mathematical equation

The mathematical input is the complex conjugate-symmetric vector zj,
, , where z(n/2+i) = conjg(z(n/2-i)), ,

and moreover z(0) and z(n/2) are real values.

The mathematical result is tj = cmplx(rj,0), where rj is a real vector,
.

Input to the complex-to-real transform routines is a real array of size (n+2),
which contains the complex conjugate-symmetric vector z(0:n-1) in CCS
format (see Real-to-Complex One-dimensional FFTs above).

Output of the complex-to-real routines is a real vector of size n.

Table 3-3 is identical to Table 3-2, except for reversing the input and output
vectors. In the complex-to-real routines the last two columns are stored in
the input real array of size (n+2) containing the complex
conjugate-symmetric vector in CCS format.

To compute an inverse FFT of a given length, first initialize the coefficients
by calling the routine you are going to use with isign = 0. Thereafter, any
number of real-to-complex and complex-to-real transforms of the same
length can be computed by calling the appropriate routine with the isign
value other than 0.

tj
1
n
- zk*w

j*k 0 j n 1–≤ ≤,
k 0=

n 1–
∑=

0 j n 1–≤ ≤ 1 i n 2⁄ 1–≤ ≤

0 j n 1–≤ ≤

Fast Fourier Transforms 3

3-13

csfft1d/zdfft1d
Fortran-interface routines.
Compute inverse FFT of a
complex conjugate-symmetric
vector packed in CCS format
(in-place).

call csfft1d (r, n, isign, wsave)

call zdfft1d (r, n, isign, wsave)

Discussion

The operation performed by the csfft1d/zdfft1d routines is determined
by the value of isign. See the equations of the operations for
the Complex-to-Real One-dimensional FFTs above.

Table 3-3 Comparison of the Storage Effects of Complex-to-Real and
Complex-to-Complex FFTs

Output Vectors Input Vectors

cfft1d csfft1d cfft1d csfft1d

Complex Data Real Data Complex Data Real Data

Real Imaginary Real Imaginary (Real) (Imaginary)

0.841471 0.000000 0.841471 1.543091 0.000000 1.543091 0.000000

0.909297 0.000000 0.909297 3.875664 0.910042 3.875664 0.910042

0.141120 0.000000 0.141120 -0.915560 -0.397326 -0.915560 -0.397326

-0.756802 0.000000 -0.756802 -0.274874 -0.121691 -0.274874 -0.121691

-0.958924 0.000000 -0.958924 -0.181784 0.000000 -0.181784 0.000000

-0.279415 0.000000 -0.279415 -0.274874 0.121691

0.656987 0.000000 0.656987 -0.915560 0.397326

0.989358 0.000000 0.989358 3.875664 -0.910042

3-14

3 Intel® Math Kernel Library Reference Manual

These routines are complementary to the real-to-complex transform
routines scfft1d/dzfft1d.

Input Parameters

r REAL for csfft1d

DOUBLE PRECISION for zdfft1d

Array, DIMENSION at least (n+2).
Not referenced if isign = 0.

If isign is not 0, then r(1:n+2) contains the complex
conjugate-symmetric vector packed in CCS format for
Fortran-interface.
The table below shows the relationship between them
.

The full complex vector z(1:n) is defined by
z(i) = cmplx(r(2*i-1), r(2*i)),
1 ≤ i ≤ n/2+1,

z(n/2+i) = conjg(z(n/2+2-i)),
2 ≤ i ≤ n/2.

After the transform, r(1:n) contains the inverse FFT of
the complex conjugate-symmetric vector z(1:n).

n INTEGER. Transform length; n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be
performed:
if isign is 0, initialize the coefficients wsave;
if isign is not 0, perform the inverse FFT.

wsave REAL for csfft1d
DOUBLE PRECISION for zdfft1d
Array, DIMENSION at least (2*n+4). If isign = 0,
then wsave contains output data. Otherwise, wsave

r(1) r(2) r(3) r(4) ... r(n-1) r(n) r(n+1) r(n+2)

z(1) 0 REz(2) IMz(2) ... REz(n/2) IMz(n/2) z(n/2+1) 0

Fast Fourier Transforms 3

3-15

contains coefficients required to perform the FFT that
has been initialized on a previous call to this routine or
the complementary real-to-complex FFT routine.

Output Parameters

r If isign is not 0, then r(1:n) is the real result of the
inverse FFT of the complex conjugate-symmetric vector
z(1:n). Does not change if isign = 0.

wsave If isign = 0, wsave contains the coefficients required
by the called routine. Otherwise wsave does not change.

csfft1dc/zdfft1dc
C-interface routines.Compute
inverse FFT of a complex

conjugate-symmetric vector
packed in CCS format (in-place).

void csfft1dc (float* r, int n, int isign, float* wsave)

void zdfft1dc (double* r, int n, int isign, double* wsave)

Discussion

The operation performed by the csfft1dc/zdfft1dc routines is
determined by the value of isign. See the equations of the operations for
the Complex-to-Real One-dimensional FFTs above.

These routines are complementary to the real-to-complex transform
routines scfft1dc/dzfft1dc.

Input Parameters

r float* for csfft1dc
double* for zdfft1dc

3-16

3 Intel® Math Kernel Library Reference Manual

Pointer to an array of size at least (n+2). Not referenced
if isign = 0.

If isign is not 0, then r(0:n+1) contains the complex
conjugate-symmetric vector packed in CCS format for
C-interface.
The table below shows the relationship between them.

The full complex vector z(0:n-1) is defined by
z(i) = cmplx(r(i),r(n/2+1+i)), 0 ≤i ≤n/2,

z(n/2+i) = conjg(z(n/2-i)), 1 ≤i ≤n/2-1 .
After the transform, r(0:n-1) is the inverse FFT of
the complex conjugate-symmetric vector z(0:n-1).

n int. Transform length; n must be a power of 2.

isign int. Flag indicating the type of operation to be
performed:
if isign = 0, initialize the coefficients wsave;
if isign is not 0, perform the inverse FFT.

wsave float* for csfft1dc
double* for zdfft1dc
Pointer to an array of size at least (2*n+4).
If isign = 0, then wsave contains output data.
Otherwise, wsave contains coefficients required to
perform the FFT that has been initialized on a previous
call to this routine or the complementary
real-to-complex FFT routine.

Output Parameters

r If isign is not 0, then r(0:n-1) is the real result of the
inverse FFT of the complex conjugate-symmetric vector
z(0:n-1). Does not change if isign = 0.

wsave If isign = 0, wsave contains the coefficients required
by the called routine. Otherwise wsave does not change.

r(0) r(1) r(2) ... r(n/2) r(n/2+1) r(n/2+2) ... r(n) r(n+1)

z(0) REz(1) REz(2) ... z(n/2) 0 IMz(1) ... IMz(n/2-1) 0

Fast Fourier Transforms 3

3-17

Two-dimensional FFTs
The two-dimensional FFTs are functionally the same as one-dimensional
FFTs. They contain the following groups:

• Complex-to-Complex Transforms
• Real-to-Complex Transforms
• Complex-to-Real Transforms.

All two-dimensional FFTs are in-place. Transform lengths must be a power
of 2. The complex-to-complex transform routines perform both forward and
inverse transforms of a complex matrix. The real-to-complex transform
routines perform forward transforms of a real matrix. The complex-to-real
transform routines perform inverse transforms of a complex
conjugate-symmetric matrix, which is packed in a real array.

The naming conventions are also the same as those for one-dimensional
FFTs, with “2d” replacing “1d” in all cases. Table 3-4 lists the
two-dimensional FFT routine groups and the data types associated with
them.

The C-interface requires scalar values to be passed by value. The major
difference between the one-dimensional and two-dimensional FFTs is that
your application does not need to provide storage for transform coefficients.

Table 3-4 Two-dimensional FFTs: Names and Data Types

Group

Stored as
FORTRAN
Complex
Data

Stored as C
Real Data

Data
Types Description

Complex-
to-
Complex

cfft2d/
zfft2d

cfft2dc/
zfft2dc

c, z Transform complex data to complex
data.

Real-to-
Complex

scfft2d/
dzfft2d

scfft2dc/
dzfft2dc

sc, dz Transform forward real-to-complex data.
Complement csfft2d/zdfft2d and
csfft2dc/zdfft2dc FFTs.

Complex-
to-Real

csfft2d/
zdfft2d

csfft2dc/
zdfft2dc

cs, zd Transform inverse complex-to-real data.
Complement scfft2d/dzfft2d and
scfft2dc/dzfft2dc FFTs.

3-18

3 Intel® Math Kernel Library Reference Manual

The data storage types and data structure requirements are the same as for
one-dimensional FFTs. For more information, see the Data Storage Types
and Data Structure Requirements sections at the beginning of this chapter.

Complex-to-Complex Two-dimensional FFTs

Each of the complex-to-complex routines computes a forward or inverse
FFT of a complex matrix in-place.

The forward FFT is computed according to the mathematical equation

The inverse FFT is computed according to the mathematical equation

where , , i being the imaginary unit.

The operation performed by the complex-to-complex routines is
determined by the value of the isign parameter.

If isign = -1, perform the forward FFT where input and output are in
normal order.
If isign = +1, perform the inverse FFT where input and output are in
normal order.
If isign = -2, perform the forward FFT where input is in normal order and
output is in bit-reversed order.
If isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

The above equations apply to all FFTs with all data types indicated in
Table 3-4.

zi j, rk l, *wm
i– *k

*wn
j– *l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–
∑

k 0=

m 1–
∑=

ri j,
1

m*n
------ zk l, *wm

i*k*wn
j*l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–
∑

k 0=

m 1–
∑=

wm
2πi
m
-----exp= wn

2πi
n
-----exp=

Fast Fourier Transforms 3

3-19

cfft2d/zfft2d
Fortran-interface routines. Compute the
forward or inverse FFT of a complex
matrix (in-place).

call cfft2d (r, m, n, isign)

call zfft2d (r, m, n, isign)

Discussion

The operation performed by the cfft2d/zfft2d routines is determined by
the value of isign. See the equations of the operations
for Complex-to-Complex Two-dimensional FFTs.

Input Parameters

r COMPLEX for cfft2d
DOUBLE COMPLEX for zfft2d
Array, DIMENSION at least (m,n), with its leading
dimension equal to m. This array contains the complex
matrix to be transformed.

m INTEGER. Column transform length (number of rows);
m must be a power of 2.

n INTEGER. Row transform length (number of columns);
n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be
performed:
if isign = -1, perform the forward FFT where input
and output are in normal order;
if isign = +1, perform the inverse FFT where input and
output are in normal order;
if isign = -2, perform the forward FFT where input is
in normal order and output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is
in bit-reversed order and output is in normal order.

3-20

3 Intel® Math Kernel Library Reference Manual

Output Parameters

r Contains the complex result of the transform depending
on isign.

cfft2dc/zfft2dc
C-interface routines. Compute the
forward or inverse FFT of a complex
matrix (in-place).

void cfft2dc (float* r, float* i, int m, int n, int isign)

void zfft2dc (double* r, double* i, int m, int n, int isign)

Discussion

The operation performed by the cfft2dc/zfft2dc routines is determined
by the value of isign. See the equations of the operations for the
Complex-to-Complex Two-dimensional FFTs above.

Input Parameters

r float* for cfft2dc
double* for zfft2dc

Pointer to a two-dimensional array of size at least
(m,n), with its leading dimension equal to n. The array
contains the real parts of a complex matrix to be
transformed.

i float* for cfft2dc
double* for zfft2dc

Pointer to a two-dimensional array of size at least
(m,n), with its leading dimension equal to n. The array
contains the imaginary parts of a complex matrix to be
transformed.

m int. Column transform length (number of rows); m must
be a power of 2.

Fast Fourier Transforms 3

3-21

n int. Row transform length (number of columns); n must be a power of 2.

isign int. Flag indicating the type of operation to be performed:

if isign = -1, perform the forward FFT where input and output are in
normal order;
if isign = +1, perform the inverse FFT where input and output are in
normal order;
if isign = -2, perform the forward FFT where input is in normal order and
output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

Output Parameters

r Contains the real parts of the complex result depending on isign.

i Contains the imaginary parts of the complex depending on isign.

Real-to-Complex Two-dimensional FFTs

Each of the real-to-complex routines computes the forward FFT of a real matrix according to
the mathematical equation

tk,l = cmplx(rk,l,0), where rk,l is a real input matrix, 0 ≤k ≤m-1, 0 ≤l ≤n-1.
The mathematical result zi,j, 0 ≤i ≤m-1, 0 ≤j ≤n-1, is the complex matrix of size (m,n).
Each column is the complex conjugate-symmetric vector as follows:

for 0 ≤j ≤n-1,

z(m/2+i,j) = conjg(z(m/2-i,j)), 1 ≤i ≤m/2-1.
Moreover, z(0,j) and z(m/2,j) are real values for j=0 and j=n/2.

This mathematical result can be stored in the complex two-dimensional array of size
(m/2+1,n/2+1) or in the real two-dimensional array of size (m+2,n+2). The data storage of
CCS format is defined later for Fortran-interface and C-interface routines separately.

zi j, tk l, *wm
i– *k*wn

j– *l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,
l 0=

n 1–
∑

k 0=

m 1–
∑=

3-22

3 Intel® Math Kernel Library Reference Manual

scfft2d/dzfft2d
Fortran-interface routines. Compute
forward FFT of a real matrix and
represent the complex
conjugate-symmetric result in CCS
format (in-place).

call scfft2d (r, m, n)

call dzfft2d (r, m, n)

Discussion

See the equations of the operations for the Real-to-Complex
Two-dimensional FFTs above.

These routines are complementary to the complex-to-real transform
routines csfft2d/zdfft2d.

Input Parameters

r REAL for scfft2d
DOUBLE PRECISION for dzfft2d
Array, DIMENSION at least (m+2,n+2), with its leading
dimension equal to (m+2). The first m rows and n

columns of this array contain the real matrix to be
transformed. Table 3-5 presents the input data layout.

m INTEGER. Column transform length (number of rows); m
must be a power of 2.

n INTEGER. Row transform length (number of columns);
n must be a power of 2.

Fast Fourier Transforms 3

3-23

* n/u - not used

Output Parameters

r The output real array r(1:m+2,1:n+2) contains the complex conjugate-symmetric
matrix z(1:m,1:n) packed in CCS format for Fortran-interface as follows:

• Rows 1 and m+1 contain in n+2 locations the complex conjugate-symmetric vectors
z(1,j) and z(m/2+1,j) packed in CCS format (seeReal-to-Complex
One-dimensional FFTs above).
The full complex vector z(1,j) is defined by:
z(1,j) = cmplx(r(1,2*j-1),r(1,2*j)), 1 ≤j ≤n/2+1,
z(1,n/2+1+j) = conjg(z(1,n/2+1-j)), 1 ≤j ≤n/2-1 .
The full complex vector z(m/2+1,j) is defined by:
z(m/2+1,j) = cmplx(r(m+1,2*j-1),r(m+1,2*j)),
1 ≤j ≤n/2+1,
z(m/2+1,n/2+1+j) = conjg(z(m/2+1,n/2+1-j)),
1 ≤j ≤n/2-1;

• Rows from 3 to m contain in n locations complex vectors represented as
z(i+1,j) = cmplx(r(2*i+1,j),r(2*i+2,j)),
1 ≤i ≤m/2-1, 1 ≤j ≤n .

Table 3-5 Fortran-interface Real Data Storage for the Real-to-Complex
and Complex-to-Real Two-dimensional FFTs

r(1,1) r(1,2) ... r(1,n-1) r(1,n) n/u n/u

r(2,1) r(2,2) ... r(2,n-1) r(2,n) n/u n/u

r(3,1) r(3,2) ... r(3,n-1) r(3,n) n/u n/u

r(4,1) r(4,2) ... r(4,n-1) r(4,n) n/u n/u

...

r(m-1,1) r(m-1,2) ... r(m-1,n-1) r(m-1,n) n/u n/u

r(m,1) r(m,2) ... r(m,n-1) r(m,n) n/u n/u

n/u n/u ... n/u n/u n/u n/u

n/u n/u ... n/u n/u n/u n/u

3-24

3 Intel® Math Kernel Library Reference Manual

• The rest matrix elements can be obtained from
z(m/2+1+i,j) = conjg(z(m/2+1-i,j)),
1 ≤i ≤m/2-1, 1 ≤j ≤n .

The storage of the complex conjugate-symmetric matrix z for
Fortran-interface is shown in Table 3-6.

* n/u - not used

scfft2dc/dzfft2dc
C-interface routine. Compute forward
FFT of a real matrix and represent the
complex conjugate-symmetric result in
CCS format (in-place).

void scfft2dc (float* r, int m, int n)

void dzfft2dc (double* r, int m, int n)

Table 3-6 Fortran-interface Data Storage of CCS Format for the
Real-to-Complex and Complex-to-Real Two-Dimensional FFTs

z(1,1) 0 REz(1,2) IMz(1,2) ... REz(1,n/2) IMz(1,n/2) z(1,
n/2+1)

0

0 0 0 0 ... 0 0 0 0

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n) n/u n/u

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n) n/u n/u

... n/u n/u

REz(m/2,1) REz(m/2,2) REz(m/2,3) REz(m/2,4) ... REz(m/2,
n-1)

REz(m/2,
n)

n/u n/u

IMz(m/2,1) IMz(m/2,2) IMz(m/2,3) IMz(m/2,4) ... IMz(m/2,
n-1)

IMz(m/2,
n)

n/u n/u

z(m/2+1,1) 0 REz(m/2+1,2) IMz(m/2+1,2) ... REz(m/2+1,
n/2)

IMz(m/2+1,
n/2)

z(m/2+1,
n/2+1)

0

0 0 0 0 ... 0 0 n/u n/u

Fast Fourier Transforms 3

3-25

Discussion

See the equations of the operations for the Real-to-Complex
Two-dimensional FFTs above.

These routines are complementary to the complex-to-real transform
routines csfft2dc/zdfft2dc.

Input Parameters

r float* for scfft2dc
double* for dzfft2dc

Pointer to an array of size at least (m+2,n+2), with its
leading dimension equal to (n+2). The first m rows and
n columns of this array contain the real matrix to be
transformed.

Table 3-7 presents the input data layout.

m int. Column transform length;
m must be a power of 2.

n int. Row transform length;
n must be a power of 2.

Table 3-7 C-interface Real Data Storage for a Real-to-Complex
and Complex-to-Real Two-dimensional FFTs

r(0,0) r(0,1) ... r(0,n-2) r(0,n-1) n/u n/u

r(1,0) r(1,1) ... r(1,n-2) r(1,n-1) n/u n/u

r(2,0) r(2,1) ... r(2,n-2) r(2,n-1) n/u n/u

r(3,0) r(3,1) ... r(3,n-2) r(3,n-1) n/u n/u

...

r(m-2,0) r(m-2,1) ... r(m-2,n-2) r(m-2,n-1) n/u n/u

r(m-1,0) r(m-1,1) ... r(m-1,n-2) r(m-1,n-1) n/u n/u

n/u n/u ... n/u n/u n/u n/u

n/u n/u ... n/u n/u n/u n/u

3-26

3 Intel® Math Kernel Library Reference Manual

Output Parameters

r The output real array r(0:m+1,0:n+1) contains the complex
conjugate-symmetric matrix z(0:m-1,0:n-1) packed in CCS
format for C-interface as follows:

• Columns 0 and n/2 contain in m+2 locations the complex
conjugate-symmetric vectors z(i,0) and z(i,n/2) in CCS
format (seeReal-to-Complex One-dimensional FFTs above).
The full complex vector z(i,0) is defined by:
z(i,0) = cmplx(r(i,0),r(m/2+i+1,0)), 0 ≤i ≤m/2,
z(m/2+i,0) = conjg(z(m/2-i,0)), 1 ≤i ≤m/2-1 .

The full complex vector z(i,n/2) is defined by:
z(i,n/2) = cmplx(r(i,n/2),r(m/2+i+1,n/2)), 0 ≤i ≤m/2,
z(m/2+i,n/2) = conjg(z(m/2-i,n/2)), 1 ≤i ≤m/2-1 .

• Columns from 1 to n/2-1 contain real parts, and columns from
n/2+2 to n contain imaginary parts of complex vectors. These
values for each vector are stored in m locations represented as
follows
z(i,j) = cmplx(r(i,j),r(i,n/2+1+j)),
0 ≤i ≤m-1, 1 ≤j ≤n/2-1 .

• The rest matrix elements can be obtained from
z(i,n/2+j) = conjg(z(i,n/2-j)),
0 ≤i ≤m-1, 1 ≤j ≤n/2-1 .

The storage of the complex conjugate-symmetric matrix z for C-interface is
shown in Table 3-8.

Fast Fourier Transforms 3

3-27

Complex-to-Real Two-dimensional FFTs

Each of the complex-to-real routines computes a two-dimensional inverse
FFT according to the mathematical equation:

The mathematical input zi,j, , is a complex
matrix of size (m,n). Each column is the complex conjugate-symmetric
vector as follows:

Table 3-8 C-interface Data Storage of CCS Format for the Real-to-Complex
and Complex-to-Real Two-dimensional FFT

z(0,0) REz(0,1) ... REz(0,
n/2-1)

z(0,n/2) 0 IMz(0,1) ... IMz(0,
n/2-1)

0

REz(1,0) REz(1,1) ... REz(1,
n/2-1)

REz(1,n/2) 0 IMz(1,1) ... IMz(1,
n/2-1)

0

... 0 0

REz(m/2-1,
0)

REz(m/2-1,
1)

... REz(m/2-1,
n/2-1)

REz(m/2-1,
n/2)

0 IMz(m/2-1,
1)

... IMz(m/2-1,
n/2-1)

0

z(m/2,0) REz(m/2,1) ... REz(m/2,
n/2-1)

z(m/2,n/2) 0 IMz(m/2,1) ... IMz(m/2,
n/2-1)

0

0 REz(m/2+1,
1)

... REz(m/2+1,
n/2-1)

0 0 IMz(m/2+1,
1)

... IMz(m/2+1,
n/2-1)

0

IMz(1,0) REz(m/2+2,
1)

... REz(m/2+2,
n/2-1)

IMz(1,n/2) 0 IMz(m/2+2,
1)

... IMz(m/2+2,
n/2-1)

0

... 0 0

IMz(m/2-2,
0)

REz(m-1,1) ... REz(m-1,
n/2-1)

IMz(m/2-2,
n/2)

0 IMz(m-1,1) ... IMz(m-1,
n/2-1)

0

IMz(m/2-1,
0)

n/u ... n/u IMz(m/2-1,
n/2)

n/u n/u ... n/u n/u

0 n/u ... n/u 0 n/u n/u ... n/u n/u

ti j,
1

m*n
------ zk l, *wm

i*k*wn
j*l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–
∑

k 0=

m 1–
∑=

0 i m 1 0 j n 1–≤ ≤,–≤ ≤

3-28

3 Intel® Math Kernel Library Reference Manual

for 0 ≤j ≤n-1,
z(m/2+i,j) = conjg(z(m/2-i,j)), 1 ≤i ≤m/2-1.
Moreover, z(0,j) and z(m/2,j) are real values for j=0 and j=n/2.

This mathematical input can be stored in the complex two-dimensional
array of size (m/2+1,n/2+1) or in the real two-dimensional array of size
(m+2,n+2). For the details of data storage of CCS format
see Real-to-Complex One-dimensional FFTs above.

The mathematical result of the transform is tk,l = cmplx(rk,l,0),
where rk,l is the real matrix, .

csfft2d/zdfft2d
Fortran-interface routine.
Compute inverse FFT of a complex
conjugate-symmetric matrix packed in CCS
format (in-place).

call csfft2d (r, m, n)
call zdfft2d (r, m, n)

Discussion

See the equations of the operations for the Complex-to-Real
Two-dimensional FFTs above. These routines are complementary to the
real-to-complex transform routines scfft2d/dzfft2d.

Input Parameters

r SINGLE PRECISION REAL*4 for csfft2d
DOUBLE PRECISION REAL*8 for zdfft2d

Array, DIMENSION at least (m+2,n+2), with its leading
dimension equal to (m+2). This array contains the
complex conjugate-symmetric matrix in CCS format to
be transformed. The input data layout is given in Table
3-6.

0 k m 1 0 l n 1–≤ ≤,–≤ ≤

Fast Fourier Transforms 3

3-29

m INTEGER. Column transform length (number of rows); m
must be a power of 2.

n INTEGER. Row transform length (number of columns);
n must be a power of 2.

Output Parameters

r Contains the real result returned by the transform. For
the output data layout, see Table 3-5.

csfft2dc/zdfft2dc
C-interface routines.
Compute inverse FFT of a complex
conjugate-symmetric matrix packed in
CCS format (in-place).

void csfft2dc (float* r, int m, int n);

void zdfft2dc (double* r, int m, int n);

Discussion

See the equations of the operations for the Complex-to-Real
Two-dimensional FFTs above. These routines are complementary to the
real-to-complex transform routines scfft2dc/dzfft2dc.

Input Parameters

r float* for csfft2dc
double* for zdfft2dc

Pointer to an array of size at least (m+2,n+2), with its
leading dimension equal to (n+2). This array contains
the complex conjugate-symmetric matrix in CCS format
to be transformed. The input data layout is given in
Table 3-8.

m int. Column transform length; m must be a power of 2.

3-30

3 Intel® Math Kernel Library Reference Manual

n int. Row transform length; n must be a power of 2.

Output Parameters

r Contains the real result returned by the transform. The
output data layout is the same as that for the input data
of scfft2dc/dzfft2dc. See Table 3-7 for the details.

4-1

LAPACK Routines:
Linear Equations 4

This chapter describes the Intel® Math Kernel Library implementation of
routines from the LAPACK package that are used for solving systems of
linear equations and performing a number of related computational tasks.
The library includes LAPACK routines for both real and complex data.

Routines are supported for systems of equations with the following types of
matrices:

• general
• banded
• symmetric or Hermitian positive-definite (both full and packed storage)
• symmetric or Hermitian positive-definite banded
• symmetric or Hermitian indefinite (both full and packed storage)
• symmetric or Hermitian indefinite banded
• triangular (both full and packed storage)
• triangular banded
• tridiagonal.

For each of the above matrix types, the library includes routines for
performing the following computations: factoring the matrix (except for
triangular matrices); equilibrating the matrix; solving a system of linear
equations; estimating the condition number of a matrix; refining the
solution of linear equations and computing its error bounds; inverting the
matrix.
To solve a particular problem, you can either call two or more
computational routines or call a corresponding driver routine that combines
several tasks in one call, such as ?gesv for factoring and solving. Thus, to
solve a system of linear equations with a general matrix, you can first call
?getrf (LU factorization) and then ?getrs (computing the solution).
Then, you might wish to call ?gerfs to refine the solution and get the error
bounds. Alternatively, you can just use the driver routine ?gesvx which
performs all these tasks in one call.

4-2

4 Intel® Math Kernel Library Reference Manual

Routine Naming Conventions
For each routine introduced in this chapter, you can use the LAPACK name.

LAPACK names are listed in Tables 4-1 and 4-2, and have the structure
xyyzzz or xyyzz, which is described below.

The initial letter x indicates the data type:
s real, single precision c complex, single precision
d real, double precision z complex, double precision

The second and third letters yy indicate the matrix type and storage scheme:
ge general
gb general band
gt general tridiagonal
po symmetric or Hermitian positive-definite
pp symmetric or Hermitian positive-definite (packed storage)
pb symmetric or Hermitian positive-definite band
pt symmetric or Hermitian positive-definite tridiagonal
sy symmetric indefinite
sp symmetric indefinite (packed storage)
he Hermitian indefinite
hp Hermitian indefinite (packed storage)
tr triangular
tp triangular (packed storage)
tb triangular band

For computational routines, the last three letters zzz indicate the
computation performed:
trf form a triangular matrix factorization
trs solve the linear system with a factored matrix
con estimate the matrix condition number
rfs refine the solution and compute error bounds
tri compute the inverse matrix using the factorization
equ equilibrate a matrix.

For example, the routine sgetrf performs the triangular factorization of
general real matrices in single precision; the corresponding routine for
complex matrices is cgetrf.

For driver routines, the names can end either with -sv (meaning a simple
driver), or with -svx (meaning an expert driver).

LAPACK Routines: Linear Equations4

4-3

Matrix Storage Schemes
LAPACK routines use the following matrix storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the
matrix element aij stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or
triangular matrices more compactly: the upper or lower triangle of the
matrix is packed by columns in a one-dimensional array.

• Band storage: an m by n band matrix with kl sub-diagonals and ku
super-diagonals is stored compactly in a two-dimensional array ab
with kl+ku+1 rows and n columns. Columns of the matrix are stored
in the corresponding columns of the array, and diagonals of the matrix
are stored in rows of the array.

In Chapters 4 and 5, arrays that hold matrices in packed storage have names
ending in p; arrays with matrices in band storage have names ending in b.

For more information on matrix storage schemes, see Matrix Arguments in
Appendix A.

Mathematical Notation
Descriptions of LAPACK routines use the following notation:

Ax = b A system of linear equations with an n by n matrix
A = {aij}, a right-hand side vector b = {bi}, and an
unknown vector x = {xi}.

AX = B A set of systems with a common matrix A and
multiple right-hand sides. The columns of B are
individual right-hand sides, and the columns of X are
the corresponding solutions.

| x| the vector with elements | xi| (absolute values of xi).

| A| the matrix with elements | aij| (absolute values of aij).

| | x| | ∞ = maxi | xi| The infinity-norm of the vector x.

| | A| | ∞ = maxi Σj | aij| The infinity-norm of the matrix A.

| | A| | 1 = maxj Σi | aij| Theone-normofthematrixA.| | A| | 1=| | AT| | ∞ =| | AH| | ∞

κ(A) = | |A| | | |A−1| | The condition number of the matrix A.

4-4

4 Intel® Math Kernel Library Reference Manual

Error Analysis
In practice, most computations are performed with rounding errors.
Besides, you often need to solve a system Ax = b where the data (the
elements of A and b) are not known exactly. Therefore, it’s important to
understand how the data errors and rounding errors can affect the solution x.

Data perturbations. If x is the exact solution of Ax = b, and x + δx is the
exact solution of a perturbed problem (A + δA)x = (b + δb), then

In other words, relative errors in A or b may be amplified in the solution
vector x by a factor κ(A) = | | A| | | |A−1| | called the condition number of A.

Rounding errors have the same effect as relative perturbations c(n)ε in
the original data. Here ε is the machine precision, and c(n) is a modest
function of the matrix order n. The corresponding solution error is
| | δx| | / | |x| | ≤ c(n)κ(A)ε . (The value of c(n) is seldom greater than 10n.)

Thus, if your matrix A is ill-conditioned (that is, its condition number κ(A)
is very large), then the error in the solution x is also large; you may even
encounter a complete loss of precision. LAPACK provides routines that
allow you to estimate κ(A) (see Routines for Estimating the Condition
Number) and also give you a more precise estimate for the actual solution
error (see Refining the Solution and Estimating Its Error).

δx
x

---------- κ A() δA
A

δb
b

----------+
 , where κ A()≤ A A 1– .=

LAPACK Routines: Linear Equations4

4-5

Computational Routines
Table 4-1 lists the LAPACK computational routines for factorizing,
equilibrating, and inverting real matrices, estimating their condition numbers,
solving systems of equations with real matrices, refining the solution, and
estimating its error.
Table 4-2 lists similar routines for complex matrices.

In this table ? denotes s (single precision) or d (double precision).

Table 4-1 Computational Routines for Systems of Equations with Real Matrices

Matrix type,
storage scheme

Factorize
matrix

Equilibrate
matrix

Solve
system

Condition
number

Estimate
error

Invert
matrix

general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri

general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs

general
tridiagonal

?gttrf ?gttrs ?gtcon ?gtrfs

symmetric
positive-definite

?potrf ?poequ ?potrs ?pocon ?porfs ?potri

symmetric
positive-definite,
packed storage

?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri

symmetric
positive-definite,
band

?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

symmetric
positive-definite,
tridiagonal

?pttrf ?pttrs ?ptcon ?ptrfs

symmetric
indefinite

?sytrf ?sytrs ?sycon ?syrfs ?sytri

symmetric
indefinite,
packed storage

?sptrf ?sptrs ?spcon ?sprfs ?sptri

triangular ?trtrs ?trcon ?trrfs ?trtri

triangular,
packed storage

?tptrs ?tpcon ?tprfs ?tptri

triangular band ?tbtrs ?tbcon ?tbrfs

4-6

4 Intel® Math Kernel Library Reference Manual

In this table ? stands for c (single precision complex) or z (double precision
complex).

Table 4-2 Computational Routines for Systems of Equations with Complex
Matrices

Matrix type,
storage scheme

Factorize
matrix

Equilibrate
matrix

Solve
system

Condition
number

Estimate
error

Invert
matrix

general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri

general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs

general
tridiagonal

?gttrf ?gttrs ?gtcon ?gtrfs

Hermitian
positive-definite

?potrf ?poequ ?potrs ?pocon ?porfs ?potri

Hermitian
positive-definite,
packed storage

?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri

Hermitian
positive-definite,
band

?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

Hermitian
positive-definite,
tridiagonal

?pttrf ?pttrs ?ptcon ?ptrfs

Hermitian
indefinite

?hetrf ?hetrs ?hecon ?herfs ?hetri

symmetric
indefinite

?sytrf ?sytrs ?sycon ?syrfs ?sytri

Hermitian
indefinite,
packed storage

?hptrf ?hptrs ?hpcon ?hprfs ?hptri

symmetric
indefinite,
packed storage

?sptrf ?sptrs ?spcon ?sprfs ?sptri

triangular ?trtrs ?trcon ?trrfs ?trtri

triangular,
packed storage

?tptrs ?tpcon ?tprfs ?tptri

triangular band ?tbtrs ?tbcon ?tbrfs

LAPACK Routines: Linear Equations4

4-7

Routines for Matrix Factorization
This section describes the LAPACK routines for matrix factorization. The
following factorizations are supported:

• LU factorization
• Cholesky factorization of real symmetric positive-definite matrices
• Cholesky factorization of Hermitian positive-definite matrices
• Bunch-Kaufman factorization of real and complex symmetric matrices
• Bunch-Kaufman factorization of Hermitian matrices.

You can compute the LU factorization using full and band storage of
matrices; the Cholesky factorization using full, packed, and band storage;
and the Bunch-Kaufman factorization using full and packed storage.

?getrf
Computes the LU factorization of a
general m by n matrix.

call sgetrf (m, n, a, lda, ipiv, info)

call dgetrf (m, n, a, lda, ipiv, info)

call cgetrf (m, n, a, lda, ipiv, info)

call zgetrf (m, n, a, lda, ipiv, info)

Discussion

The routine forms the LU factorization of a general m by n matrix A as

where P is a permutation matrix, L is lower triangular with unit diagonal
elements (lower trapezoidal if m > n) and U is upper triangular (upper
trapezoidal if m < n). Usually A is square (m = n), and both L and U are
triangular. The routine uses partial pivoting, with row interchanges.

A PLU=

4-8

4 Intel® Math Kernel Library Reference Manual

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a REAL for sgetrf
DOUBLE PRECISION for dgetrf
COMPLEX for cgetrf
DOUBLE COMPLEX for zgetrf.
Array, DIMENSION (lda,*). Contains the matrix A.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a.

Output Parameters

a Overwritten by L and U. The unit diagonal elements of L
are not stored.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row
ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been
completed, but U is exactly singular. Division by 0 will
occur if you use the factor U for solving a system of
linear equations.

Application Notes

The computed L and U are the exact factors of a perturbed matrix A + E,
where

c(n) is a modest linear function of n, and ε is the machine precision.

The approximate number of floating-point operations for real flavors is

(2/3)n3 if m = n,

(1/3)n2(3m-n) if m > n,

E c min m n,()()ε P L U≤

LAPACK Routines: Linear Equations4

4-9

(1/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

After calling this routine with m = n, you can call the following:

?getrs to solve AX = B or ATX = B or AHX = B;

?gecon to estimate the condition number of A;

?getri to compute the inverse of A.

4-10

4 Intel® Math Kernel Library Reference Manual

?gbtrf
Computes the LU factorization of a
general m by n band matrix.

call sgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)

call dgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)

call cgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)

call zgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)

Discussion

The routine forms the LU factorization of a general m by n band matrix A
with kl non-zero sub-diagonals and ku non-zero super-diagonals. Usually
A is square (m = n), and then

where P is a permutation matrix; L is lower triangular with unit diagonal
elements and at most kl non-zero elements in each column; U is an upper
triangular band matrix with kl + ku super-diagonals. The routine uses
partial pivoting, with row interchanges (which creates the additional kl
super-diagonals in U).

Input Parameters
m INTEGER. The number of rows in the matrix A (m ≥ 0).
n INTEGER. The number of columns in A (n ≥ 0).
kl INTEGER. The number of sub-diagonals within the

band of A (kl ≥ 0).
ku INTEGER. The number of super-diagonals within the

band of A (ku ≥ 0).
ab REAL for sgbtrf

DOUBLE PRECISION for dgbtrf
COMPLEX for cgbtrf
DOUBLE COMPLEX for zgbtrf.
Array, DIMENSION (ldab,*).

A PLU=

LAPACK Routines: Linear Equations4

4-11

The array ab contains the matrix A in band storage
(see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ 2kl + ku +1)

Output Parameters

ab Overwritten by L and U. The diagonal and kl + ku

super-diagonals of U are stored in the first 1 + kl + ku

rows of ab. The multipliers used to form L are stored in
the next kl rows.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row
ipiv(i).

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been
completed, but U is exactly singular. Division by 0 will
occur if you use the factor U for solving a system of
linear equations.

Application Notes

The computed L and U are the exact factors of a perturbed matrix A + E,
where

c(k) is a modest linear function of k, and ε is the machine precision.

The total number of floating-point operations for real flavors varies between
approximately 2n(ku+1)kl and 2n(kl+ku+1)kl. The number of
operations for complex flavors is 4 times greater. All these estimates assume
that kl and ku are much less than min(m,n).

After calling this routine with m = n, you can call the following:

?gbtrs to solve AX = B or ATX = B or AHX = B;

?gbcon to estimate the condition number of A.

E c kl ku 1+ +()ε P L U≤

4-12

4 Intel® Math Kernel Library Reference Manual

?gttrf
Computes the LU factorization of a
tridiagonal matrix.

call sgttrf (n, dl, d, du, du2, ipiv, info)

call dgttrf (n, dl, d, du, du2, ipiv, info)

call cgttrf (n, dl, d, du, du2, ipiv, info)

call zgttrf (n, dl, d, du, du2, ipiv, info)

Discussion

The routine computes the LU factorization of a real or complex tridiagonal
matrix A in the form

where P is a permutation matrix; L is lower bidiagonal with unit diagonal
elements; and U is an upper triangular matrix with nonzeroes in only the
main diagonal and first two superdiagonals. The routine uses elimination
with partial pivoting and row interchanges .

Input Parameters
n INTEGER. The order of the matrix A (n ≥ 0).
dl, d, du REAL for sgttrf

DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Arrays containing elements of A.
The array dl of dimension (n - 1) contains the
sub-diagonal elements of A.
The array d of dimension n contains the diagonal
elements of A.
The array du of dimension (n - 1) contains the
super-diagonal elements of A.

A PLU=

LAPACK Routines: Linear Equations4

4-13

Output Parameters

dl Overwritten by the (n-1) multipliers that define the
matrix L from the LU factorization of A.

d Overwritten by the n diagonal elements of the upper
triangular matrix U from the LU factorization of A.

du Overwritten by the (n-1) elements of the first
super-diagonal of U.

du2 REAL for sgttrf
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Array, dimension (n-2). On exit, du2 contains (n-2)
elements of the second super-diagonal of U.

ipiv INTEGER.
Array, dimension (n).
The pivot indices: row i was interchanged with row
ipiv(i).

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been
completed, but U is exactly singular. Division by zero
will occur if you use the factor U for solving a system of
linear equations.

Application Notes

?gbtrs to solve AX = B or ATX = B or AHX = B;

?gbcon to estimate the condition number of A.

4-14

4 Intel® Math Kernel Library Reference Manual

?potrf
Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite
matrix.

call spotrf (uplo, n, a, lda, info)

call dpotrf (uplo, n, a, lda, info)

call cpotrf (uplo, n, a, lda, info)

call zpotrf (uplo, n, a, lda, info)

Discussion

This routine forms the Cholesky factorization of a symmetric positive-
definite or, for complex data, Hermitian positive-definite matrix A:

A = UHU if uplo='U'

A = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular
part of the matrix A, and A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular
part of the matrix A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).
a REAL for spotrf

DOUBLE PRECISION for dpotrf
COMPLEX for cpotrf
DOUBLE COMPLEX for zpotrf.
Array, DIMENSION (lda,*).

LAPACK Routines: Linear Equations4

4-15

The array a contains either the upper or the lower
triangular part of the matrix A (see uplo).
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a.

Output Parameters

a The upper or lower triangular part of a is overwritten by
the Cholesky factor U or L, as specified by uplo.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the
matrix A itself) is not positive-definite, and the
factorization could not be completed. This may indicate
an error in forming the matrix A.

Application Notes

If uplo = 'U', the computed factor U is the exact factor of a perturbed
matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for
real flavors or (4/3)n3 for complex flavors.

After calling this routine, you can call the following:

?potrs to solve AX = B;

?pocon to estimate the condition number of A;

?potri to compute the inverse of A.

E c n()ε UH U eij c n()ε aiiajj≤,≤

4-16

4 Intel® Math Kernel Library Reference Manual

?pptrf
Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite
matrix using packed storage.

call spptrf (uplo, n, ap, info)

call dpptrf (uplo, n, ap, info)

call cpptrf (uplo, n, ap, info)

call zpptrf (uplo, n, ap, info)

Discussion

This routine forms the Cholesky factorization of a symmetric positive-
definite or, for complex data, Hermitian positive-definite packed matrix A:

A = UHU if uplo='U'

A = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is packed in the array ap, and how A is factored:
If uplo = 'U', the array ap stores the upper triangular
part of the matrix A, and A is factored as UHU.
If uplo = 'L', the array ap stores the lower triangular
part of the matrix A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).
ap REAL for spptrf

DOUBLE PRECISION for dpptrf
COMPLEX for cpptrf
DOUBLE COMPLEX for zpptrf.
Array, DIMENSION at least max(1,n(n+1)/2).

LAPACK Routines: Linear Equations4

4-17

The array ap contains either the upper or the lower
triangular part of the matrix A (as specified by uplo) in
packed storage (see Matrix Storage Schemes).

Output Parameters

ap The upper or lower triangular part of A in packed storage
is overwritten by the Cholesky factor U or L, as
specified by uplo.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the
matrix A itself) is not positive-definite, and the
factorization could not be completed. This may indicate
an error in forming the matrix A.

Application Notes

If uplo = 'U', the computed factor U is the exact factor of a perturbed
matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for
real flavors and (4/3)n3 for complex flavors.

After calling this routine, you can call the following:

?pptrs to solve AX = B;

?ppcon to estimate the condition number of A;

?pptri to compute the inverse of A.

E c n()ε UH U eij c n()ε aiiajj≤,≤

4-18

4 Intel® Math Kernel Library Reference Manual

?pbtrf
Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite
band matrix.

call spbtrf (uplo, n, kd, ab, ldab, info)

call dpbtrf (uplo, n, kd, ab, ldab, info)

call cpbtrf (uplo, n, kd, ab, ldab, info)

call zpbtrf (uplo, n, kd, ab, ldab, info)

Discussion

This routine forms the Cholesky factorization of a symmetric positive-
definite or, for complex data, Hermitian positive-definite band matrix A:

A = UHU if uplo='U'

A = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is stored in the array ab, and how A is factored:
If uplo = 'U', the array ab stores the upper triangular
part of the matrix A, and A is factored as UHU.
If uplo = 'L', the array ab stores the lower triangular
part of the matrix A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrix A (kd ≥ 0).
ab REAL for spbtrf

DOUBLE PRECISION for dpbtrf
COMPLEX for cpbtrf
DOUBLE COMPLEX for zpbtrf.
Array, DIMENSION (ldab,*).

LAPACK Routines: Linear Equations4

4-19

The array ap contains either the upper or the lower
triangular part of the matrix A (as specified by uplo) in
band storage (see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1)

Output Parameters

ap The upper or lower triangular part of A (in band storage)
is overwritten by the Cholesky factor U or L, as
specified by uplo.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the
matrix A itself) is not positive-definite, and the
factorization could not be completed. This may indicate
an error in forming the matrix A.

Application Notes

If uplo = 'U', the computed factor U is the exact factor of a perturbed
matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations for real flavors is
approximately n(kd+1)2. The number of operations for complex flavors is 4
times greater. All these estimates assume that kd is much less than n.

After calling this routine, you can call the following:

?pbtrs to solve AX = B;

?pbcon to estimate the condition number of A;

E c kd 1+()ε UH U eij c kd 1+()ε aiiajj≤,≤

4-20

4 Intel® Math Kernel Library Reference Manual

?pttrf
Computes the factorization of
a symmetric (Hermitian) positive-definite
tridiagonal matrix.

call spttrf (n, d, e, info)

call dpttrf (n, d, e, info)

call cpttrf (n, d, e, info)

call zpttrf (n, d, e, info)

Discussion

This routine forms the factorization of a symmetric positive-definite or, for
complex data, Hermitian positive-definite tridiagonal matrix A:

A = LDLH , where D is diagonal and L is unit lower bidiagonal. The
factorization may also be regarded as having the form A = UHDU , where D
is unit upper bidiagonal.

Input Parameters
n INTEGER. The order of the matrix A (n ≥ 0).
d REAL for spttrf, cpttrf

DOUBLE PRECISION for dpttrf, zpttrf.
Array, dimension (n). Contains the diagonal elements
of A.

e REAL for spttrf
DOUBLE PRECISION for dpttrf
COMPLEX for cpttrf
DOUBLE COMPLEX for zpttrf.
Array, dimension (n - 1). Contains the sub-diagonal
elements of A.

Output Parameters

d Overwritten by the n diagonal elements of the diagonal
matrix D from the LDLH factorization of A.

LAPACK Routines: Linear Equations4

4-21

e Overwritten by the (n - 1) off-diagonal elements of the
unit bidiagonal factor L or U from the factorization of A.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the
matrix A itself) is not positive-definite; if i < n , the
factorization could not be completed, while if i = n , the
factorization was completed, but d (n) = 0 .

4-22

4 Intel® Math Kernel Library Reference Manual

?sytrf
Computes the Bunch-Kaufman
factorization of a symmetric matrix.

call ssytrf (uplo, n, a, lda, ipiv, work, lwork, info)

call dsytrf (uplo, n, a, lda, ipiv, work, lwork, info)

call csytrf (uplo, n, a, lda, ipiv, work, lwork, info)

call zsytrf (uplo, n, a, lda, ipiv, work, lwork, info)

Discussion

This routine forms the Bunch-Kaufman factorization of a symmetric matrix:

if uplo='U', A = PUDUTPT

if uplo='L', A = PLDLTPT

where A is the input matrix, P is a permutation matrix, U and L are upper
and lower triangular matrices with unit diagonal, and D is a symmetric
block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U and L
have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular
part of the matrix A, and A is factored as PUDUTPT.
If uplo = 'L', the array a stores the lower triangular
part of the matrix A; A is factored as PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).
a REAL for ssytrf

DOUBLE PRECISION for dsytrf
COMPLEX for csytrf
DOUBLE COMPLEX for zsytrf.
Array, DIMENSION (lda,*).

LAPACK Routines: Linear Equations4

4-23

The array a contains either the upper or the lower
triangular part of the matrix A (see uplo).
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).
work Same type as a. Workspace array of dimension lwork

lwork INTEGER. The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters
a The upper or lower triangular part of a is overwritten by

details of the block-diagonal matrix D and the
multipliers used to obtain the factor U (or L).

work(1) If info=0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block
structure of D.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the
ith row and column of A was interchanged with the kth
row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been
completed, but D is exactly singular. Division by 0 will
occur if you use D for solving a system of linear
equations.

4-24

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L
are not stored. The remaining elements of U and L are stored in the
corresponding columns of the array a, but additional row interchanges are
required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L)
are stored explicitly in the corresponding elements of the array a.

If uplo = 'U', the computed factors U and D are the exact factors of a
perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for
real flavors or (4/3)n3 for complex flavors.

After calling this routine, you can call the following:

?sytrs to solve AX = B;

?sycon to estimate the condition number of A;

?sytri to compute the inverse of A.

E c n()ε P U D UT PT≤

LAPACK Routines: Linear Equations4

4-25

?hetrf
Computes the Bunch-Kaufman
factorization of a complex Hermitian
matrix.

call chetrf (uplo, n, a, lda, ipiv, work, lwork, info)

call zhetrf (uplo, n, a, lda, ipiv, work, lwork, info)

Discussion

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix:

if uplo='U', A = PUDUHPT

if uplo='L', A = PLDLHPT

where A is the input matrix, P is a permutation matrix, U and L are upper
and lower triangular matrices with unit diagonal, and D is a Hermitian
block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U and L
have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is stored and how A is factored:

If uplo = 'U', the array a stores the upper triangular
part of the matrix A, and A is factored as PUDUHPT.
If uplo = 'L', the array a stores the lower triangular
part of the matrix A; A is factored as PLDLHPT.

n INTEGER. The order of matrix A (n ≥ 0).

a COMPLEX for chetrf
DOUBLE COMPLEX for zhetrf.
Array, DIMENSION (lda,*).
The array a contains either the upper or the lower
triangular part of the matrix A (see uplo).
The second dimension of a must be at least max(1, n).

4-26

4 Intel® Math Kernel Library Reference Manual

lda INTEGER. The first dimension of a; at least max(1, n).

work Same type as a. Workspace array of dimension lwork

lwork INTEGER. The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a The upper or lower triangular part of a is overwritten by
details of the block-diagonal matrix D and the
multipliers used to obtain the factor U (or L).

work(1) If info=0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block
structure of D.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the
ith row and column of A was interchanged with the kth
row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been
completed, but D is exactly singular. Division by 0 will
occur if you use D for solving a system of linear
equations.

LAPACK Routines: Linear Equations4

4-27

Application Notes

This routine is suitable for Hermitian matrices that are not known to be
positive-definite. If A is in fact positive-definite, the routine does not
perform interchanges, and no 2-by-2 diagonal blocks occur in D.

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L
are not stored. The remaining elements of U and L are stored in the
corresponding columns of the array a, but additional row interchanges are
required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L)
are stored explicitly in the corresponding elements of the array a.

If uplo = 'U', the computed factors U and D are the exact factors of a
perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following:

?hetrs to solve AX = B;

?hecon to estimate the condition number of A;

?hetri to compute the inverse of A.

E c n()ε P U D UT PT≤

4-28

4 Intel® Math Kernel Library Reference Manual

?sptrf
Computes the Bunch-Kaufman
factorization of a symmetric matrix using
packed storage.

call ssptrf (uplo, n, ap, ipiv, info)

call dsptrf (uplo, n, ap, ipiv, info)

call csptrf (uplo, n, ap, ipiv, info)

call zsptrf (uplo, n, ap, ipiv, info)

Discussion

This routine forms the Bunch-Kaufman factorization of a symmetric matrix
A using packed storage:

if uplo='U', A = PUDUTPT

if uplo='L', A = PLDLTPT

where P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a symmetric block-diagonal matrix
with 1-by-1 and 2-by-2 diagonal blocks. U and L have 2-by-2 unit diagonal
blocks corresponding to the 2-by-2 blocks of D.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is packed in the array ap and how A is factored:

If uplo = 'U', the array ap stores the upper triangular
part of the matrix A, and A is factored as PUDUTPT.
If uplo = 'L', the array ap stores the lower triangular
part of the matrix A; A is factored as PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

LAPACK Routines: Linear Equations4

4-29

ap REAL for ssptrf
DOUBLE PRECISION for dsptrf
COMPLEX for csptrf
DOUBLE COMPLEX for zsptrf.
Array, DIMENSION at least max(1,n(n+1)/2).
The array ap contains either the upper or the lower
triangular part of the matrix A (as specified by uplo) in
packed storage (see Matrix Storage Schemes).

Output Parameters

ap The upper or lower triangle of A (as specified by uplo)
is overwritten by details of the block-diagonal matrix D
and the multipliers used to obtain the factor U (or L).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block
structure of D.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the
ith row and column of A was interchanged with the kth
row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been
completed, but D is exactly singular. Division by 0 will
occur if you use D for solving a system of linear
equations.

4-30

4 Intel® Math Kernel Library Reference Manual

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L
are not stored. The remaining elements of U and L overwrite elements of the
corresponding columns of the matrix A, but additional row interchanges are
required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L)
are stored explicitly in packed form.

If uplo = 'U', the computed factors U and D are the exact factors of a
perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for
real flavors or (4/3)n3 for complex flavors.

After calling this routine, you can call the following:

?sptrs to solve AX = B;

?spcon to estimate the condition number of A;

?sptri to compute the inverse of A.

E c n()ε P U D UT PT≤

LAPACK Routines: Linear Equations4

4-31

?hptrf
Computes the Bunch-Kaufman
factorization of a complex Hermitian
matrix using packed storage.

call chptrf (uplo, n, ap, ipiv, info)

call zhptrf (uplo, n, ap, ipiv, info)

Discussion

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix
using packed storage:

if uplo='U', A = PUDUHPT

if uplo='L', A = PLDLHPT

where A is the input matrix, P is a permutation matrix, U and L are upper
and lower triangular matrices with unit diagonal, and D is a Hermitian
block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U and L
have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is packed and how A is factored:

If uplo = 'U', the array ap stores the upper triangular
part of the matrix A, and A is factored as PUDUHPT.
If uplo = 'L', the array ap stores the lower triangular
part of the matrix A; A is factored as PLDLHPT.

n INTEGER. The order of matrix A (n ≥ 0).

ap COMPLEX for chptrf
DOUBLE COMPLEX for zhptrf.
Array, DIMENSION at least max(1,n(n+1)/2).

4-32

4 Intel® Math Kernel Library Reference Manual

The array ap contains either the upper or the lower
triangular part of the matrix A (as specified by uplo) in
packed storage (see Matrix Storage Schemes).

Output Parameters

ap The upper or lower triangle of A (as specified by uplo)
is overwritten by details of the block-diagonal matrix D
and the multipliers used to obtain the factor U (or L).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block
structure of D.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the
ith row and column of A was interchanged with the kth
row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been
completed, but D is exactly singular. Division by 0 will
occur if you use D for solving a system of linear
equations.

LAPACK Routines: Linear Equations4

4-33

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L
are not stored. The remaining elements of U and L are stored in the
corresponding columns of the array a, but additional row interchanges are
required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L)
are stored explicitly in the corresponding elements of the array a.

If uplo = 'U', the computed factors U and D are the exact factors of a
perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following:

?hptrs to solve AX = B;

?hpcon to estimate the condition number of A;

?hptri to compute the inverse of A.

Routines for Solving Systems of Linear Equations
This section describes the LAPACK routines for solving systems of linear
equations. Before calling most of these routines, you need to factorize the
matrix of your system of equations (see Routines for Matrix Factorizationin
this chapter). However, the factorization is not necessary if your system of
equations has a triangular matrix.

E c n()ε P U D UT PT≤

4-34

4 Intel® Math Kernel Library Reference Manual

?getrs
Solves a system of linear equations with
an LU-factored square matrix, with
multiple right-hand sides.

call sgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call dgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call cgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call zgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

Discussion

This routine solves for X the following systems of linear equations:

AX = B if trans='N',

ATX = B if trans='T',

AHX = B if trans='C' (for complex matrices only).

Before calling this routine, you must call ?getrf to compute the LU
factorization of A.

Input Parameters
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans = 'N', then AX = B is solved for X.
If trans = 'T', then ATX = B is solved for X.
If trans = 'C', then AHX = B is solved for X.

n INTEGER. The order of A; the number of rows in B (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, b REAL for sgetrs
DOUBLE PRECISION for dgetrs
COMPLEX for cgetrs
DOUBLE COMPLEX for zgetrs.
Arrays: a(lda,*), b(ldb,*).

LAPACK Routines: Linear Equations4

4-35

The array a contains the matrix A.
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.

The second dimension of a must be at least max(1,n),
the second dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?getrf.

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number
of AT and AH might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand
side vector b is 2n2 for real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?gecon.
To refine the solution and estimate the error, call ?gerfs.

E c n()ε P L U≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε≤

4-36

4 Intel® Math Kernel Library Reference Manual

?gbtrs
Solves a system of linear equations with
an LU-factored band matrix, with
multiple right-hand sides.

call sgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call dgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call cgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call zgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

Discussion

This routine solves for X the following systems of linear equations:

AX = B if trans='N',
ATX = B if trans='T',
AHX = B if trans='C' (for complex matrices only).

Here A is an LU-factored general band matrix of order n with kl non-zero
sub-diagonals and ku non-zero super-diagonals. Before calling this routine,
you must call ?gbtrf to compute the LU factorization of A.

Input Parameters
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
n INTEGER. The order of A; the number of rows in B (n ≥ 0).
kl INTEGER. The number of sub-diagonals within the band

of A (kl ≥ 0).
ku INTEGER. The number of super-diagonals within the band

of A (ku ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab, b REAL for sgbtrs
DOUBLE PRECISION for dgbtrs
COMPLEX for cgbtrs
DOUBLE COMPLEX for zgbtrs.
Arrays: ab(ldab,*), b(ldb,*).

LAPACK Routines: Linear Equations4

4-37

The array ab contains the matrix A in band storage
(see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the
right-hand sides for the systems of equations.
The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ 2kl + ku +1).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrf.

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(k) is a modest linear function of k, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number
of AT and AH might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand
side vector is 2n(ku + 2kl) for real flavors. The number of operations for
complex flavors is 4 times greater. All these estimates assume that kl and
ku are much less than min(m,n).

To estimate the condition number κ∞(A), call ?gbcon.
To refine the solution and estimate the error, call ?gbrfs.

E c kl ku 1+ +()ε P L U≤

x x0– ∞
x ∞

-------------------- c kl ku 1+ +() cond A x,()ε≤

4-38

4 Intel® Math Kernel Library Reference Manual

?gttrs
Solves a system of linear equations with
a tridiagonal matrix using the LU
factorization computed by ?gttrf.

call sgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call dgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call cgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call zgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

Discussion

This routine solves for X the following systems of linear equations with
multiple right hand sides:

AX = B if trans='N',

ATX = B if trans='T',

AHX = B if trans='C' (for complex matrices only).

Before calling this routine, you must call ?gttrf to compute the LU
factorization of A.

Input Parameters
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans = 'N', then AX = B is solved for X.
If trans = 'T', then ATX = B is solved for X.
If trans = 'C', then AHX = B is solved for X.

n INTEGER. The order of A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides, i.e., the
number of columns in B (nrhs ≥ 0).

dl,d,du,du2,b REAL for sgttrs
DOUBLE PRECISION for dgttrs
COMPLEX for cgttrs
DOUBLE COMPLEX for zgttrf.

LAPACK Routines: Linear Equations4

4-39

Arrays: dl(n - 1), d(n), du(n - 1), du2(n - 2),
b(ldb,nrhs).
The array dl contains the (n - 1) multipliers that define
the matrix L from the LU factorization of A.
The array d contains the n diagonal elements of the upper
triangular matrix U from the LU factorization of A.
The array du contains the (n - 1) elements of the first
super-diagonal of U.
The array du2 contains the (n - 2) elements of the
second super-diagonal of U.
The array b contains the matrix B whose columns are the
right-hand sides for the systems of equations.

ldb INTEGER. The leading dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION (n).
The ipiv array, as returned by ?gttrf.

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| |A| | x| | | ∞ / | |x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ =
κ∞(A).

E c n()ε P L U≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε≤

4-40

4 Intel® Math Kernel Library Reference Manual

Note that cond(A,x) can be much smaller than κ∞(A); the condition number
of AT and AH might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand
side vector b is 2n2 for real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?gecon.
To refine the solution and estimate the error, call ?gerfs.

LAPACK Routines: Linear Equations4

4-41

?potrs
Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite matrix.

call spotrs (uplo, n, nrhs, a, lda, b, ldb, info)

call dpotrs (uplo, n, nrhs, a, lda, b, ldb, info)

call cpotrs (uplo, n, nrhs, a, lda, b, ldb, info)

call zpotrs (uplo, n, nrhs, a, lda, b, ldb, info)

Discussion

This routine solves for X the system of linear equations AX = B with a
symmetric positive-definite or, for complex data, Hermitian
positive-definite matrix A, given the Cholesky factorization of A:

A = UHU if uplo ='U'

A = LLH if uplo ='L'

where L is a lower triangular matrix and U is upper triangular. The system is
solved with multiple right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?potrf to compute the Cholesky
factorization of A.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the factor U of the
Cholesky factorization A = UHU.
If uplo = 'L', the array a stores the factor L of the
Cholesky factorization A = LLH.

n INTEGER. The order of matrix A (n ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-42

4 Intel® Math Kernel Library Reference Manual

a, b REAL for spotrs
DOUBLE PRECISION for dpotrs
COMPLEX for cpotrs
DOUBLE COMPLEX for zpotrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of a must be at least max(1,n),
the second dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact
solution of a perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for uplo = 'L'.
If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).
The approximate number of floating-point operations for one right-hand
side vector b is 2n2 for real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?pocon.
To refine the solution and estimate the error, call ?porfs.

E c n()ε UH U≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-43

?pptrs
Solves a system of linear equations with a
packed Cholesky-factored symmetric
(Hermitian) positive-definite matrix.

call spptrs (uplo, n, nrhs, ap, b, ldb, info)

call dpptrs (uplo, n, nrhs, ap, b, ldb, info)

call cpptrs (uplo, n, nrhs, ap, b, ldb, info)

call zpptrs (uplo, n, nrhs, ap, b, ldb, info)

Discussion

This routine solves for X the system of linear equations AX = B with a
packed symmetric positive-definite or, for complex data, Hermitian
positive-definite matrix A, given the Cholesky factorization of A:

A = UHU if uplo ='U'

A = LLH if uplo ='L'

where L is a lower triangular matrix and U is upper triangular. The system is
solved with multiple right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pptrf to compute the Cholesky
factorization of A.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo ='U', the array a stores the packed factor U of
the Cholesky factorization A = UHU.
If uplo ='L', the array a stores the packed factor L of
the Cholesky factorization A = LLH.

n INTEGER. The order of matrix A (n ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-44

4 Intel® Math Kernel Library Reference Manual

ap, b REAL for spptrs
DOUBLE PRECISION for dpptrs
COMPLEX for cpptrs
DOUBLE COMPLEX for zpptrs.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by
uplo, in packed storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact
solution of a perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The approximate number of floating-point operations for one right-hand
side vector b is 2n2 for real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?ppcon.
To refine the solution and estimate the error, call ?pprfs.

E c n()ε UH U≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-45

?pbtrs
Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite band matrix.

call spbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call dpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call cpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call zpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

Discussion

This routine solves for X the system of linear equations AX = B with a
symmetric positive-definite or, for complex data, Hermitian
positive-definite band matrix A, given the Cholesky factorization of A:

A = UHU if uplo='U'
A = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular. The system is
solved with multiple right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pbtrf to compute the Cholesky
factorization of A in the band storage form.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the factor U of the
factorization A = UHU in the band storage form.
If uplo = 'L', the array a stores the factor L of the
factorization A = LLH in the band storage form.

n INTEGER. The order of matrix A (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrix A (kd ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-46

4 Intel® Math Kernel Library Reference Manual

ab, b REAL for spbtrs
DOUBLE PRECISION for dpbtrs
COMPLEX for cpbtrs
DOUBLE COMPLEX for zpbtrs.
Arrays: ab(ldab,*), b(ldb,*).
The array ab contains the Cholesky factor, as returned by
the factorization routine, in band storage form.
The array b contains the matrix B whose columns are the
right-hand sides for the systems of equations.
The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes
For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(k) is a modest linear function of k, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The approximate number of floating-point operations for one right-hand
side vector is 4n*kd for real flavors and 16n*kd for complex flavors.

To estimate the condition number κ∞(A), call ?pbcon.
To refine the solution and estimate the error, call ?pbrfs.

E c kd 1+()ε P UH U or E c kd 1+()ε P LH L≤ ≤

x x0– ∞
x ∞

-------------------- c kd 1+() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-47

?pttrs
Solves a system of linear equations with a
symmetric (Hermitian) positive-definite
tridiagonal matrix using the factorization
computed by ?pttrf.

call spttrs (n, nrhs, d, e, b, ldb, info)

call dpttrs (n, nrhs, d, e, b, ldb, info)

call cpttrs (uplo, n, nrhs, d, e, b, ldb, info)

call zpttrs (uplo, n, nrhs, d, e, b, ldb, info)

Discussion

This routine solves for X a system of linear equations AX = B with a
symmetric (Hermitian) positive-definite tridiagonal matrix A.
Before calling this routine, you must call ?pttrf to compute the LDLH or
UHDU factorization of A.

Input Parameters
uplo CHARACTER*1. Used for cpttrs/zpttrs only.

Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal
of the tridiagonal matrix A is stored and how A is
factored:
If uplo = 'U', the array e stores the superdiagonal of A,
and A is factored as UHDU;
If uplo = 'L', the array e stores the subdiagonal of A,
and A is factored as LDLH.

n INTEGER. The order of A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides, i.e., the
number of columns of the matrix B (nrhs ≥ 0).

4-48

4 Intel® Math Kernel Library Reference Manual

d REAL for spttrs, cpttrs

DOUBLE PRECISION for dpttrs, zpttrs.
Array, dimension (n). Contains the diagonal elements
of the diagonal matrix D from the factorization
computed by ?pttrf.

e, b REAL for spttrs
DOUBLE PRECISION for dpttrs
COMPLEX for cpttrs
DOUBLE COMPLEX for zpttrs.
Arrays: e(n - 1), b(ldb,nrhs).
The array e contains the (n - 1) off-diagonal elements
of the unit bidiagonal factor U or L from the
factorization computed by ?pttrf (see uplo).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.

ldb INTEGER. The leading dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations4

4-49

?sytrs
Solves a system of linear equations with a
UDU- or LDL-factored symmetric matrix.

call ssytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call dsytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call csytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call zsytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

Discussion

This routine solves for X the system of linear equations AX = B with a
symmetric matrix A, given the Bunch-Kaufman factorization of A:

if uplo='U', A = PUDUTPT

if uplo='L', A = PLDLTPT

where P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a symmetric block-diagonal matrix.
The system is solved with multiple right-hand sides stored in the columns of
the matrix B. You must supply to this routine the factor U (or L) and the
array ipiv returned by the factorization routine ?sytrf.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular
factor U of the factorization A = PUDUTPT.
If uplo = 'L', the array a stores the lower triangular
factor L of the factorization A = PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sytrf.

4-50

4 Intel® Math Kernel Library Reference Manual

a, b REAL for ssytrs
DOUBLE PRECISION for dsytrs
COMPLEX for csytrs
DOUBLE COMPLEX for zsytrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the
right-hand sides for the system of equations.

The second dimension of a must be at least max(1,n),
the second dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector
is approximately 2n2 for real flavors or 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?sycon.
To refine the solution and estimate the error, call ?syrfs.

E c n()ε P U D UT PT or E c n()ε P L D LT PT≤≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-51

?hetrs
Solves a system of linear equations with a
UDU- or LDL-factored Hermitian matrix.

call chetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call zhetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

Discussion

This routine solves for X the system of linear equations AX = B with a
Hermitian matrix A, given the Bunch-Kaufman factorization of A:

if uplo ='U', A = PUDUHPT

if uplo ='L', A = PLDLHPT

where P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a symmetric block-diagonal matrix.
The system is solved with multiple right-hand sides stored in the columns of
the matrix B. You must supply to this routine the factor U (or L) and the
array ipiv returned by the factorization routine ?hetrf.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular
factor U of the factorization A = PUDUHPT.

If uplo = 'L', the array a stores the lower triangular
factor L of the factorization A = PLDLHPT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

4-52

4 Intel® Math Kernel Library Reference Manual

a, b COMPLEX for chetrs.
DOUBLE COMPLEX for zhetrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the
right-hand sides for the system of equations.

The second dimension of a must be at least max(1,n),
the second dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector
is approximately 8n2.

To estimate the condition number κ∞(A), call ?hecon.
To refine the solution and estimate the error, call ?herfs.

E c n()ε P U D UH PT or E c n()ε P L D LH PT≤≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-53

?sptrs
Solves a system of linear equations with a
UDU- or LDL-factored symmetric matrix
using packed storage.

call ssptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call dsptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call csptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zsptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

Discussion

This routine solves for X the system of linear equations AX = B with a
symmetric matrix A, given the Bunch-Kaufman factorization of A:

if uplo='U', A = PUDUTPT

if uplo='L', A = PLDLTPT

where P is a permutation matrix, U and L are upper and lower packed
triangular matrices with unit diagonal, and D is a symmetric block-diagonal
matrix. The system is solved with multiple right-hand sides stored in the
columns of the matrix B. You must supply the factor U (or L) and the array
ipiv returned by the factorization routine ?sptrf.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the packed factor U
of the factorization A = PUDUTPT.
If uplo = 'L', the array ap stores the packed factor L of
the factorization A = PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

4-54

4 Intel® Math Kernel Library Reference Manual

ap, b REAL for ssptrs
DOUBLE PRECISION for dsptrs
COMPLEX for csptrs
DOUBLE COMPLEX for zsptrs.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by
uplo, in packed storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are
the right-hand sides for the system of equations. The
second dimension of b must be at least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector
is approximately 2n2 for real flavors or 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?spcon.
To refine the solution and estimate the error, call ?sprfs.

E c n()ε P U D UT PT or E c n()ε P L D LT PT≤≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-55

?hptrs
Solves a system of linear equations with a
UDU- or LDL-factored Hermitian matrix
using packed storage.

call chptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zhptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

Discussion

This routine solves for X the system of linear equations AX = B with a
Hermitian matrix A, given the Bunch-Kaufman factorization of A:

if uplo='U', A = PUDUHPT

if uplo='L', A = PLDLHPT

where P is a permutation matrix, U and L are upper and lower packed
triangular matrices with unit diagonal, and D is a symmetric block-diagonal
matrix. The system is solved with multiple right-hand sides stored in the
columns of the matrix B.

You must supply to this routine the arrays ap (containing U or L) and ipiv
in the form returned by the factorization routine ?hptrf.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the packed factor U
of the factorization A = PUDUHPT.
If uplo = 'L', the array ap stores the packed factor L of
the factorization A = PLDLHPT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hptrf.

4-56

4 Intel® Math Kernel Library Reference Manual

ap, b COMPLEX for chptrs.
DOUBLE COMPLEX for zhptrs.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by
uplo, in packed storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are
the right-hand sides for the system of equations. The
second dimension of b must be at least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector
is approximately 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?hpcon.
To refine the solution and estimate the error, call ?hprfs.

E c n()ε P U D UH PT or E c n()ε P L D LH PT≤≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-57

?trtrs
Solves a system of linear equations with
a triangular matrix, with multiple
right-hand sides.

call strtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

call dtrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

call ctrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

call ztrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

Discussion

This routine solves for X the following systems of linear equations with a
triangular matrix A, with multiple right-hand sides stored in B:

AX = B if trans='N',
ATX = B if trans='T',
AHX = B if trans='C' (for complex matrices only).

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
If trans = 'N', then AX = B is solved for X.
If trans = 'T', then ATX = B is solved for X.
If trans = 'C', then AHX = B is solved for X.

diag CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements
of A are assumed to be 1 and not referenced in the array a.

n INTEGER. The order of A; the number of rows in B (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-58

4 Intel® Math Kernel Library Reference Manual

a, b REAL for strtrs
DOUBLE PRECISION for dtrtrs
COMPLEX for ctrtrs
DOUBLE COMPLEX for ztrtrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the matrix A.
The array b contains the matrix B whose columns are the
right-hand sides for the systems of equations.
The second dimension of a must be at least max(1,n), the
second dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.
If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number
of AT and AH might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand
side vector b is n2 for real flavors and 4n2 for complex flavors.

To estimate the condition number κ∞(A), call ?trcon.
To estimate the error in the solution, call ?trrfs.

E c n()ε A≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε , provided c n() cond A x,()ε 1<≤

LAPACK Routines: Linear Equations4

4-59

?tptrs
Solves a system of linear equations with
a packed triangular matrix, with
multiple right-hand sides.

call stptrs (uplo,trans,diag,n,nrhs,ap,b,ldb,info)

call dtptrs (uplo,trans,diag,n,nrhs,ap,b,ldb,info)

call ctptrs (uplo,trans,diag,n,nrhs,ap,b,ldb,info)

call ztptrs (uplo,trans,diag,n,nrhs,ap,b,ldb,info)

Discussion

This routine solves for X the following systems of linear equations with a
packed triangular matrix A, with multiple right-hand sides stored in B:

AX = B if trans='N',
ATX = B if trans='T',
AHX = B if trans='C' (for complex matrices only).

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
If trans = 'N', then AX = B is solved for X.
If trans = 'T', then ATX = B is solved for X.
If trans = 'C', then AHX = B is solved for X.

diag CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements
are assumed to be 1 and not referenced in the array ap.

n INTEGER. The order of A; the number of rows in B (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-60

4 Intel® Math Kernel Library Reference Manual

ap, b REAL for stptrs
DOUBLE PRECISION for dtptrs
COMPLEX for ctptrs
DOUBLE COMPLEX for ztptrs.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the matrix A in packed storage
(see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the
right-hand sides for the system of equations. The second
dimension of b must be at least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number
of AT and AH might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand
side vector b is n2 for real flavors and 4n2 for complex flavors.

To estimate the condition number κ∞(A), call ?tpcon.
To estimate the error in the solution, call ?tprfs.

E c n()ε A≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε , provided c n() cond A x,()ε 1<≤

LAPACK Routines: Linear Equations4

4-61

?tbtrs
Solves a system of linear equations with
a band triangular matrix, with multiple
right-hand sides.

call stbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call dtbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call ctbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call ztbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

Discussion
This routine solves for X the following systems of linear equations with a
band triangular matrix A, with multiple right-hand sides stored in B:
AX = B if trans='N',
ATX = B if trans='T',
AHX = B if trans='C' (for complex matrices only).

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
If trans = 'N', then AX = B is solved for X.
If trans = 'T', then ATX = B is solved for X.
If trans = 'C', then AHX = B is solved for X.

diag CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements
are assumed to be 1 and not referenced in the array ab.

n INTEGER. The order of A; the number of rows in B (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrix A (kd ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-62

4 Intel® Math Kernel Library Reference Manual

ab, b REAL for stbtrs
DOUBLE PRECISION for dtbtrs
COMPLEX for ctbtrs
DOUBLE COMPLEX for ztbtrs.
Arrays: ab(ldab,*), b(ldb,*).
The array ab contains the matrix A in band storage form.
The array b contains the matrix B whose columns are the
right-hand sides for the systems of equations.
The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1,nrhs).

ldab INTEGER. The first dimension of ab; ldab ≥ kd + 1.
ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters
b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.
If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = | | | A-1| | A| | x| | | ∞ / | | x| | ∞ ≤ | | A-1| | ∞ | | A| | ∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number
of AT and AH might or might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand
side vector b is 2n*kd for real flavors and 8n*kd for complex flavors.

To estimate the condition number κ∞(A), call ?tbcon.
To estimate the error in the solution, call ?tbrfs.

E c n()ε A≤

x x0– ∞
x ∞

-------------------- c n() cond A x,()ε , provided c n() cond A x,()ε 1<≤

LAPACK Routines: Linear Equations4

4-63

Routines for Estimating the Condition Number
This section describes the LAPACK routines for estimating the condition
number of a matrix. The condition number is used for analyzing the errors
in the solution of a system of linear equations (see Error Analysis). Since
the condition number may be arbitrarily large when the matrix is nearly
singular, the routines actually compute the reciprocal condition number.

?gecon
Estimates the reciprocal of the condition
number of a general matrix in either the
1-norm or the infinity-norm.

call sgecon (norm,n,a,lda,anorm,rcond,work,iwork,info)

call dgecon (norm,n,a,lda,anorm,rcond,work,iwork,info)

call cgecon (norm,n,a,lda,anorm,rcond,work,rwork,info)

call zgecon (norm,n,a,lda,anorm,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a general
matrix A in either the 1-norm or infinity-norm:

 κ1(A) = | |A| | 1 | | A−1| | 1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = | |A| | ∞ | | A−1| | ∞ = κ1 (A

T) = κ1 (A
H) .

Before calling this routine:

• compute anorm (either | | A| | 1 = maxj Σi | aij| or | | A| | ∞ = maxi Σj | aij|)
• call ?getrf to compute the LU factorization of A.

Input Parameters
norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

n INTEGER. The order of the matrix A (n ≥ 0).

4-64

4 Intel® Math Kernel Library Reference Manual

a, work REAL for sgecon
DOUBLE PRECISION for dgecon
COMPLEX for cgecon
DOUBLE COMPLEX for zgecon.
Arrays: a(lda,*), work(*).
The array a contains the LU-factored matrix A, as
returned by ?getrf.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 4*n) for
real flavors and max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).
iwork INTEGER.

Workspace array, DIMENSION at least max(1, n).
rwork REAL for cgecon

DOUBLE PRECISION for zgecon
Workspace array, DIMENSION at least max(1, 2*n).

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call to
this routine involves solving a number of systems of linear equations Ax = b
or AHx = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n2 floating-point operations for real
flavors and 8n2 for complex flavors.

LAPACK Routines: Linear Equations4

4-65

?gbcon
Estimates the reciprocal of the condition
number of a band matrix in either the
1-norm or the infinity-norm.

call sgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,iwork,info)

call dgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,iwork,info)

call cgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,rwork,info)

call zgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a general
band matrix A in either the 1-norm or infinity-norm:

 κ1(A) = | |A| | 1 | | A−1| | 1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = | |A| | ∞ | | A−1| | ∞ = κ1 (A

T) = κ1 (A
H) .

Before calling this routine:

• compute anorm (either | | A| | 1 = maxj Σi | aij| or | | A| | ∞ = maxi Σj | aij|)
• call ?gbtrf to compute the LU factorization of A.

Input Parameters
norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

n INTEGER. The order of the matrix A (n ≥ 0).
kl INTEGER. The number of sub-diagonals within the band

of A (kl ≥ 0).
ku INTEGER. The number of super-diagonals within the

band of A (ku ≥ 0).
ldab INTEGER. The first dimension of the array ab.

(ldab ≥ 2kl + ku +1).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrf.

4-66

4 Intel® Math Kernel Library Reference Manual

ab, work REAL for sgbcon
DOUBLE PRECISION for dgbcon
COMPLEX for cgbcon
DOUBLE COMPLEX for zgbcon.
Arrays: ab(ldab,*), work(*).

The array ab contains the factored band matrix A,
as returned by ?gbtrf.

The second dimension of ab must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for
real flavors and max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgbcon
DOUBLE PRECISION for zgbcon
Workspace array, DIMENSION at least max(1, 2*n).

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations4

4-67

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call to
this routine involves solving a number of systems of linear equations Ax = b
or AHx = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n(ku + 2kl) floating-point operations for
real flavors and 8n(ku + 2kl) for complex flavors.

?gtcon
Estimates the reciprocal of the condition
number of a tridiagonal matrix using the
factorization computed by ?gttrf.

call sgtcon (norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,iwork,info)

call dgtcon (norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,iwork,info)

call cgtcon (norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,info)

call zgtcon (norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,info)

Discussion

This routine estimates the reciprocal of the condition number of a real or
complex tridiagonal matrix A in either the 1-norm or infinity-norm:

 κ1(A) = | |A| | 1 | | A−1| | 1
 κ∞ (A) = | |A| | ∞ | | A−1| | ∞

An estimate is obtained for | | A−1| | , and the reciprocal of the condition
number is computed as rcond = 1 / (| | A| | | |A−1| |) .

Before calling this routine:

• compute anorm (either | | A| | 1 = maxj Σi | aij| or | | A| | ∞ = maxi Σj | aij|)
• call ?gttrf to compute the LU factorization of A.

4-68

4 Intel® Math Kernel Library Reference Manual

Input Parameters
norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

n INTEGER. The order of the matrix A (n ≥ 0).
dl,d,du,du2 REAL for sgtcon

DOUBLE PRECISION for dgtcon
COMPLEX for cgtcon
DOUBLE COMPLEX for zgtcon.
Arrays: dl(n - 1), d(n), du(n - 1), du2(n - 2).
The array dl contains the (n - 1) multipliers that define
the matrix L from the LU factorization of A as
computed by ?gttrf.
The array d contains the n diagonal elements of the
upper triangular matrix U from the LU factorization of
A.
The array du contains the (n - 1) elements of the first
super-diagonal of U.
The array du2 contains the (n - 2) elements of the
second super-diagonal of U.

ipiv INTEGER.
Array, DIMENSION (n).
The array of pivot indices, as returned by ?gttrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

work REAL for sgtcon
DOUBLE PRECISION for dgtcon
COMPLEX for cgtcon
DOUBLE COMPLEX for zgtcon.
Workspace array, DIMENSION (2*n).

iwork INTEGER.
Workspace array, DIMENSION (n).
Used for real flavors only.

LAPACK Routines: Linear Equations4

4-69

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n2 floating-point operations for real flavors and 8n2

for complex flavors.

4-70

4 Intel® Math Kernel Library Reference Manual

?pocon
Estimates the reciprocal of the condition
number of a symmetric (Hermitian)
positive-definite matrix.

call spocon (uplo,n,a,lda,anorm,rcond,work,iwork,info)

call dpocon (uplo,n,a,lda,anorm,rcond,work,iwork,info)

call cpocon (uplo,n,a,lda,anorm,rcond,work,rwork,info)

call zpocon (uplo,n,a,lda,anorm,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite matrix A:

 κ1(A)= | |A| | 1 | | A−1| | 1 (sinceA is symmetricorHermitian,κ∞(A) = κ1(A)) .
Before calling this routine:
• compute anorm (either | | A| | 1 = maxj Σi | aij| or | | A| | ∞ = maxi Σj | aij|)
• call ?potrf to compute the Cholesky factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular
factor U of the factorization A = UHU.

If uplo = 'L', the array a stores the lower triangular
factor L of the factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).
a, work REAL for spocon

DOUBLE PRECISION for dpocon
COMPLEX for cpocon
DOUBLE COMPLEX for zpocon.
Arrays: a(lda,*), work(*).

LAPACK Routines: Linear Equations4

4-71

The array a contains the factored matrix A, as returned
by ?potrf.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 3*n) for
real flavors and max(1, 2*n) for complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).
anorm REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpocon
DOUBLE PRECISION for zpocon
Workspace array, DIMENSION at least max(1, n).

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n2 floating-point operations for real flavors and 8n2

for complex flavors.

4-72

4 Intel® Math Kernel Library Reference Manual

?ppcon
Estimates the reciprocal of the condition
number of a packed symmetric (Hermitian)
positive-definite matrix.

call sppcon (uplo,n,ap,anorm,rcond,work,iwork,info)

call dppcon (uplo,n,ap,anorm,rcond,work,iwork,info)

call cppcon (uplo,n,ap,anorm,rcond,work,rwork,info)

call zppcon (uplo,n,ap,anorm,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a packed
symmetric (Hermitian) positive-definite matrix A:

 κ1(A)= | |A| | 1 | | A−1| | 1 (sinceA is symmetricorHermitian,κ∞(A) = κ1(A)) .
Before calling this routine:
• compute anorm (either | | A| | 1 = maxj Σi | aij| or | | A| | ∞ = maxi Σj | aij|)
• call ?pptrf to compute the Cholesky factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the upper triangular
factor U of the factorization A = UHU.

If uplo = 'L', the array ap stores the lower triangular
factor L of the factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).
ap, work REAL for sppcon

DOUBLE PRECISION for dppcon
COMPLEX for cppcon
DOUBLE COMPLEX for zppcon.
Arrays: ap(*), work(*).

LAPACK Routines: Linear Equations4

4-73

The array ap contains the packed factored matrix A, as
returned by ?pptrf.
The dimension of ap must be at least max(1,n(n+1)/2).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 3*n) for
real flavors and max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cppcon
DOUBLE PRECISION for zppcon
Workspace array, DIMENSION at least max(1, n).

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n2 floating-point operations for real flavors and 8n2

for complex flavors.

4-74

4 Intel® Math Kernel Library Reference Manual

?pbcon
Estimates the reciprocal of the condition
number of a symmetric (Hermitian)
positive-definite band matrix.

call spbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)

call dpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)

call cpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

call zpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite band matrix A:
 κ1(A)= | |A| | 1 | | A−1| | 1 (sinceA issymmetricorHermitian,κ∞(A) = κ1(A)) .
Before calling this routine:

• compute anorm (either | | A| | 1 = maxj Σi | aij| or | | A| | ∞ = maxi Σj | aij|)
• call ?pbtrf to compute the Cholesky factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ab stores the upper triangular
factor U of the Cholesky factorization A = UHU.
If uplo = 'L', the array ab stores the lower triangular
factor L of the factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrix A (kd ≥ 0).
ldab INTEGER. The first dimension of the array ab.

(ldab ≥ kd +1).

ab, work REAL for spbcon
DOUBLE PRECISION for dpbcon
COMPLEX for cpbcon
DOUBLE COMPLEX for zpbcon.

LAPACK Routines: Linear Equations4

4-75

Arrays: ab(ldab,*), work(*).

The array ab contains the factored matrix A in band
form, as returned by ?pbtrf.
The second dimension of ab must be at least max(1, n),
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 3*n) for
real flavors and max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpbcon
DOUBLE PRECISION for zpbcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 4n(kd + 1) floating-point operations for real flavors
and 16n(kd + 1) for complex flavors.

4-76

4 Intel® Math Kernel Library Reference Manual

?ptcon
Estimates the reciprocal of the condition
number of a symmetric (Hermitian)
positive-definite tridiagonal matrix.

call sptcon (n, d, e, anorm, rcond, work, info)

call dptcon (n, d, e, anorm, rcond, work, info)

call cptcon (n, d, e, anorm, rcond, work, info)

call zptcon (n, d, e, anorm, rcond, work, info)

Discussion

This routine computes the reciprocal of the condition number (in the
1-norm) of a real symmetric or complex Hermitian positive-definite
tridiagonal matrix using the factorization A = LDLH or A = UHDU
computed by ?pttrf :

 κ1(A) = | |A| | 1 | | A−1| | 1 (since A is symmetric or Hermitian, κ∞(A) =
κ1(A)) .

The norm | | A−1| | is computed by a direct method, and the reciprocal of the
condition number is computed as rcond = 1 / (| | A| | | |A−1| |) .

Before calling this routine:
• compute anorm as | | A| | 1 = maxj Σi | aij|
• call ?pttrf to compute the factorization of A.

Input Parameters
n INTEGER. The order of the matrix A (n ≥ 0).
d, work REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.
Arrays, dimension (n).
The array d contains the n diagonal elements of the
diagonal matrix D from the factorization of A, as
computed by ?pttrf ;
work is a workspace array.

LAPACK Routines: Linear Equations4

4-77

e REAL for sptcon
DOUBLE PRECISION for dptcon
COMPLEX for cptcon
DOUBLE COMPLEX for zptcon.
Array, DIMENSION (n - 1).
Contains off-diagonal elements of the unit bidiagonal
factor U or L from the factorization computed by ?pttrf .

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The 1- norm of the original matrix A (see Discussion).

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 4n(kd + 1) floating-point operations for real flavors
and 16n(kd + 1) for complex flavors.

4-78

4 Intel® Math Kernel Library Reference Manual

?sycon
Estimates the reciprocal of the condition
number of a symmetric matrix.

call ssycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

call dsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

call csycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

call zsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a
symmetric matrix A:

 κ1(A) = | |A| | 1 | | A−1| | 1 (since A is symmetric, κ∞(A) = κ1(A)) .

Before calling this routine:
• compute anorm (either | | A| | 1 = maxj Σi | aij| or | | A| | ∞ = maxi Σj | aij|)
• call ?sytrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular
factor U of the factorization A = PUDUTPT.
If uplo = 'L', the array a stores the lower triangular
factor L of the factorization A = PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

a, work REAL for ssycon
DOUBLE PRECISION for dsycon
COMPLEX for csycon
DOUBLE COMPLEX for zsycon.
Arrays: a(lda,*), work(*).
The array a contains the factored matrix A, as returned
by ?sytrf.
The second dimension of a must be at least max(1,n).

LAPACK Routines: Linear Equations4

4-79

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?sytrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for csycon
DOUBLE PRECISION for zsycon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n2 floating-point operations for real flavors and 8n2

for complex flavors.

4-80

4 Intel® Math Kernel Library Reference Manual

?hecon
Estimates the reciprocal of the condition
number of a Hermitian matrix.

call checon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

call zhecon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a Hermitian
matrix A:

 κ1(A) = | |A| | 1 | | A−1| | 1 (since A is Hermitian, κ∞(A) = κ1(A)) .

Before calling this routine:
• compute anorm (either | | A| | 1 = maxj Σi | aij| or | | A| | ∞ = maxi Σj | aij|)
• call ?hetrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular
factor U of the factorization A = PUDUHPT.

If uplo = 'L', the array a stores the lower triangular
factor L of the factorization A = PLDLHPT.

n INTEGER. The order of matrix A (n ≥ 0).

a, work COMPLEX for checon
DOUBLE COMPLEX for zhecon.
Arrays: a(lda,*), work(*).

The array a contains the factored matrix A, as returned
by ?hetrf.
The second dimension of a must be at least max(1,n).

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

LAPACK Routines: Linear Equations4

4-81

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?hetrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

rwork REAL for checon
DOUBLE PRECISION for zhecon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 5 and never more than 11. Each solution
requires approximately 8n2 floating-point operations.

4-82

4 Intel® Math Kernel Library Reference Manual

?spcon
Estimates the reciprocal of the condition
number of a packed symmetric matrix.

call sspcon (uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

call dspcon (uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

call cspcon (uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

call zspcon (uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a packed
symmetric matrix A:

 κ1(A) = | |A| | 1 | | A−1| | 1 (since A is symmetric, κ∞(A) = κ1(A)) .

Before calling this routine:
• compute anorm (either | | A| | 1 = maxj Σi | aij| or | | A| | ∞ = maxi Σj | aij|)
• call ?sptrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed upper
triangular factor U of the factorization A = PUDUTPT.
If uplo = 'L', the array ap stores the packed lower
triangular factor L of the factorization A = PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

ap, work REAL for sspcon
DOUBLE PRECISION for dspcon
COMPLEX for cspcon
DOUBLE COMPLEX for zspcon.
Arrays: ap(*), work(*).

The array ap contains the packed factored matrix A, as
returned by ?sptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

LAPACK Routines: Linear Equations4

4-83

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?sptrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cspcon
DOUBLE PRECISION for zspcon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n2 floating-point operations for real flavors and 8n2

for complex flavors.

4-84

4 Intel® Math Kernel Library Reference Manual

?hpcon
Estimates the reciprocal of the condition
number of a packed Hermitian matrix.

call chpcon (uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

call zhpcon (uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a Hermitian
matrix A:

 κ1(A) = | |A| | 1 | | A−1| | 1 (since A is Hermitian, κ∞(A) = κ1(A)) .

Before calling this routine:

• compute anorm (either | | A| | 1 = maxj Σi | aij| or | | A| | ∞ = maxi Σj | aij|)
• call ?hptrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the packed upper
triangular factor U of the factorization A = PUDUTPT.

If uplo = 'L', the array ap stores the packed lower
triangular factor L of the factorization A = PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

ap, work COMPLEX for chpcon
DOUBLE COMPLEX for zhpcon.
Arrays: ap(*), work(*).

The array ap contains the packed factored matrix A, as
returned by ?hptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

LAPACK Routines: Linear Equations4

4-85

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?hptrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Discussion).

rwork REAL for chpcon
DOUBLE PRECISION for zhpcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 5 and never more than 11. Each solution
requires approximately 8n2 floating-point operations.

4-86

4 Intel® Math Kernel Library Reference Manual

?trcon
Estimates the reciprocal of the condition
number of a triangular matrix.

call strcon (norm, uplo, diag, n, a, lda, rcond, work, iwork, info)
call dtrcon (norm, uplo, diag, n, a, lda, rcond, work, iwork, info)
call ctrcon (norm, uplo, diag, n, a, lda, rcond, work, rwork, info)
call ztrcon (norm, uplo, diag, n, a, lda, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a triangular
matrix A in either the 1-norm or infinity-norm:

 κ1(A) = | |A| | 1 | | A−1| | 1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = | |A| | ∞ | | A−1| | ∞ = κ1 (A

T) = κ1 (A
H) .

Input Parameters
norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', the array a stores the upper triangle of A,
other array elements are not referenced.
If uplo = 'L', the array a stores the lower triangle of A,
other array elements are not referenced.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements
are assumed to be 1 and not referenced in the array a.

n INTEGER. The order of the matrix A (n ≥ 0).

LAPACK Routines: Linear Equations4

4-87

a, work REAL for strcon
DOUBLE PRECISION for dtrcon
COMPLEX for ctrcon
DOUBLE COMPLEX for ztrcon.
Arrays: a(lda,*), work(*).
The array a contains the matrix A.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 3*n) for
real flavors and max(1, 2*n) for complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).
iwork INTEGER.

Workspace array, DIMENSION at least max(1, n).
rwork REAL for ctrcon

DOUBLE PRECISION for ztrcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately n2 floating-point operations for real flavors and 4n2

operations for complex flavors.

4-88

4 Intel® Math Kernel Library Reference Manual

?tpcon
Estimates the reciprocal of the condition
number of a packed triangular matrix.

call stpcon (norm,uplo,diag,n,ap,rcond,work,iwork,info)

call dtpcon (norm,uplo,diag,n,ap,rcond,work,iwork,info)

call ctpcon (norm,uplo,diag,n,ap,rcond,work,rwork,info)

call ztpcon (norm,uplo,diag,n,ap,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a packed
triangular matrix A in either the 1-norm or infinity-norm:

 κ1(A) = | |A| | 1 | | A−1| | 1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = | |A| | ∞ | | A−1| | ∞ = κ1 (A

T) = κ1 (A
H) .

Input Parameters
norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', the array ap stores the upper triangle of A
in packed form.
If uplo = 'L', the array ap stores the lower triangle of A
in packed form.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements
are assumed to be 1 and not referenced in the array ap.

n INTEGER. The order of the matrix A (n ≥ 0).

LAPACK Routines: Linear Equations4

4-89

ap, work REAL for stpcon
DOUBLE PRECISION for dtpcon
COMPLEX for ctpcon
DOUBLE COMPLEX for ztpcon.
Arrays: ap(*), work(*).
The array ap contains the packed matrix A.
The dimension of ap must be at least max(1,n(n+1)/2).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 3*n) for
real flavors and max(1, 2*n) for complex flavors.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctpcon
DOUBLE PRECISION for ztpcon
Workspace array, DIMENSION at least max(1, n).

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately n2 floating-point operations for real flavors and 4n2

operations for complex flavors.

4-90

4 Intel® Math Kernel Library Reference Manual

?tbcon
Estimates the reciprocal of the condition
number of a triangular band matrix.

call stbcon (norm,uplo,diag,n,kd,ab,ldab,rcond,work,iwork,info)

call dtbcon (norm,uplo,diag,n,kd,ab,ldab,rcond,work,iwork,info)

call ctbcon (norm,uplo,diag,n,kd,ab,ldab,rcond,work,rwork,info)

call ztbcon (norm,uplo,diag,n,kd,ab,ldab,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a triangular
band matrix A in either the 1-norm or infinity-norm:

 κ1(A) = | |A| | 1 | | A−1| | 1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = | |A| | ∞ | | A−1| | ∞ = κ1 (A

T) = κ1 (A
H) .

Input Parameters
norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', the array ap stores the upper triangle of A
in packed form.
If uplo = 'L', the array ap stores the lower triangle of A
in packed form.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements
are assumed to be 1 and not referenced in the array ab.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super-diagonals or
sub-diagonals in the matrix A (kd ≥ 0).

LAPACK Routines: Linear Equations4

4-91

ab, work REAL for stbcon
DOUBLE PRECISION for dtbcon
COMPLEX for ctbcon
DOUBLE COMPLEX for ztbcon.
Arrays: ab(ldab,*), work(*).
The array ab contains the band matrix A.
The second dimension of ab must be at least max(1,n)).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 3*n) for
real flavors and max(1, 2*n) for complex flavors.

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctbcon
DOUBLE PRECISION for ztbcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters
rcond REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n(kd + 1) floating-point operations for real flavors
and 8n(kd + 1) operations for complex flavors.

4-92

4 Intel® Math Kernel Library Reference Manual

Refining the Solution and Estimating Its Error
This section describes the LAPACK routines for refining the computed
solution of a system of linear equations and estimating the solution error.
You can call these routines after factorizing the matrix of the system of
equations and computing the solution (see Routines for Matrix
Factorization and Routines for Solving Systems of Linear Equations).

?gerfs
Refines the solution of a system of linear
equations with a general matrix and
estimates its error.

call sgerfs (trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dgerfs (trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call cgerfs (trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call zgerfs (trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B or ATX = B or AHX = B with a general matrix A, with
multiple right-hand sides. For each computed solution vector x, the routine
computes the component-wise backward error β. This error is the smallest
relative perturbation in elements of A and b such that x is the exact solution
of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

LAPACK Routines: Linear Equations4

4-93

Before calling this routine:

• call the factorization routine ?getrf
• call the solver routine ?getrs.

Input Parameters
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans = 'N', the system has the form AX = B.
If trans = 'T', the system has the form ATX = B.
If trans = 'C', the system has the form AHX = B.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, af, b, x, work REAL for sgerfs
DOUBLE PRECISION for dgerfs
COMPLEX for cgerfs
DOUBLE COMPLEX for zgerfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied
to ?getrf.

af(ldaf,*) contains the factored matrix A, as returned
by ?getrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least
max(1,n); the second dimension of b and x must be at
least max(1,nrhs); the dimension of work must be at
least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

4-94

4 Intel® Math Kernel Library Reference Manual

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?getrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgerfs
DOUBLE PRECISION for zgerfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n2 floating-point operations (for real flavors) or 16n2

operations (for complex flavors). In addition, each step of iterative
refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.
Estimating the forward error involves solving a number of systems of linear
equations Ax = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n2 floating-point operations for real
flavors or 8n2 for complex flavors.

LAPACK Routines: Linear Equations4

4-95

?gbrfs
Refines the solution of a system of linear
equations with a general band matrix
and estimates its error.

call sgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b,ldb,x,ldx,ferr,berr,work,iwork,info)

call dgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b,ldb,x,ldx,ferr,berr,work,iwork,info)

call cgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b,ldb,x,ldx,ferr,berr,work,rwork,info)

call zgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b,ldb,x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B or ATX = B or AHX = B with a band matrix A, with
multiple right-hand sides. For each computed solution vector x, the routine
computes the component-wise backward error β. This error is the smallest
relative perturbation in elements of A and b such that x is the exact solution
of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?gbtrf

• call the solver routine ?gbtrs.

4-96

4 Intel® Math Kernel Library Reference Manual

Input Parameters
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', the system has the form AX = B.

If trans = 'T', the system has the form ATX = B.

If trans = 'C', the system has the form AHX = B.

n INTEGER. The order of the matrix A (n ≥ 0).

kl INTEGER. The number of sub-diagonals within the band
of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the
band of A (ku ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab,afb,b,x,work REAL for sgbrfs
DOUBLE PRECISION for dgbrfs
COMPLEX for cgbrfs
DOUBLE COMPLEX for zgbrfs.

Arrays:

ab(ldab,*) contains the original band matrix A, as
supplied to ?gbtrf, but stored in rows from 1 to kl + ku

+ 1.

afb(ldafb,*) contains the factored band matrix A, as
returned by ?gbtrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of ab and afb must be at least
max(1,n); the second dimension of b and x must be at
least max(1,nrhs); the dimension of work must be at
least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

ldab INTEGER. The first dimension of ab.
ldafb INTEGER. The first dimension of afb .

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

LAPACK Routines: Linear Equations4

4-97

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgbrfs
DOUBLE PRECISION for zgbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n(kl + ku) floating-point operations (for real flavors) or
16n(kl + ku) operations (for complex flavors). In addition, each step of
iterative refinement involves 2n(4kl + 3ku) operations (for real flavors) or
8n(4kl + 3ku) operations (for complex flavors); the number of iterations
may range from 1 to 5. Estimating the forward error involves solving a
number of systems of linear equations Ax = b; the number is usually 4 or 5
and never more than 11. Each solution requires approximately 2n2

floating-point operations for real flavors or 8n2 for complex flavors.

4-98

4 Intel® Math Kernel Library Reference Manual

?gtrfs
Refines the solution of a system of linear
equations with a tridiagonal matrix and
estimates its error.

call sgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, iwork, info)

call dgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, iwork, info)

call cgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, rwork, info)

call zgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, rwork, info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B or ATX = B or AHX = B with a tridiagonal matrix A,
with multiple right-hand sides. For each computed solution vector x, the
routine computes the component-wise backward error β. This error is the
smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?gttrf
• call the solver routine ?gttrs.

Input Parameters
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans = 'N', the system has the form AX = B.
If trans = 'T', the system has the form ATX = B.
If trans = 'C', the system has the form AHX = B.

LAPACK Routines: Linear Equations4

4-99

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides , i.e., the
number of columns of the matrix B (nrhs ≥ 0).

dl,d,du,dlf,df,

duf,du2,b,x,work REAL for sgtrfs
DOUBLE PRECISION for dgtrfs
COMPLEX for cgtrfs
DOUBLE COMPLEX for zgtrfs.

Arrays:

dl, dimension (n - 1), contains the subdiagonal
elements of A.

d, dimension (n), contains the diagonal elements of A.

du, dimension (n - 1), contains the superdiagonal
elements of A.

dlf, dimension (n - 1), contains the (n - 1) multipliers
that define the matrix L from the LU factorization of A
as computed by ?gttrf.

df, dimension (n), contains the n diagonal elements
of the upper triangular matrix U from the LU
factorization of A.

duf, dimension (n - 1), contains the (n - 1) elements
of the first super-diagonal of U.

du2, dimension (n - 2), contains the (n - 2) elements
of the second super-diagonal of U.

b(ldb,nrhs) contains the right-hand side matrix B.

x(ldx,nrhs) contains the solution matrix X, as
computed by ?gttrs.

work (*) is a workspace array;
the dimension of work must be at least max(1, 3*n) for
real flavors and max(1, 2*n) for complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gttrf.

4-100

4 Intel® Math Kernel Library Reference Manual

iwork INTEGER.
Workspace array, DIMENSION (n). Used for real
flavors only.

rwork REAL for cgtrfs
DOUBLE PRECISION for zgtrfs.
Workspace array, DIMENSION (n). Used for complex
flavors only.

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations4

4-101

?porfs
Refines the solution of a system of linear
equations with a symmetric (Hermitian)
positive-definite matrix and estimates its
error.

call sporfs (uplo,n,nrhs,a,lda,af,ldaf,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dporfs (uplo,n,nrhs,a,lda,af,ldaf,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call cporfs (uplo,n,nrhs,a,lda,af,ldaf,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call zporfs (uplo,n,nrhs,a,lda,af,ldaf,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B with a symmetric (Hermitian) positive definite
matrix A, with multiple right-hand sides. For each computed solution vector
x, the routine computes the component-wise backward error β. This error is
the smallest relative perturbation in elements of A and b such that x is the
exact solution of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?potrf
• call the solver routine ?potrs.

4-102

4 Intel® Math Kernel Library Reference Manual

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array af stores the factor U of the
Cholesky factorization A = UHU.
If uplo = 'L', the array af stores the factor L of the
Cholesky factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, af, b, x, work REAL for sporfs
DOUBLE PRECISION for dporfs
COMPLEX for cporfs
DOUBLE COMPLEX for zporfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied
to ?potrf.

af(ldaf,*) contains the factored matrix A, as returned
by ?potrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least
max(1,n); the second dimension of b and x must be at
least max(1,nrhs); the dimension of work must be at
least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cporfs
DOUBLE PRECISION for zporfs
Workspace array, DIMENSION at least max(1, n).

LAPACK Routines: Linear Equations4

4-103

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n2 floating-point operations (for real flavors) or 16n2

operations (for complex flavors). In addition, each step of iterative
refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.
Estimating the forward error involves solving a number of systems of linear
equations Ax = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n2 floating-point operations for real
flavors or 8n2 for complex flavors.

4-104

4 Intel® Math Kernel Library Reference Manual

?pprfs
Refines the solution of a system of linear
equations with a packed symmetric
(Hermitian) positive-definite matrix and
estimates its error.

call spprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,iwork,info)

call dpprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,iwork,info)

call cpprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

call zpprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B with a packed symmetric (Hermitian) positive
definite matrix A, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error
β. This error is the smallest relative perturbation in elements of A and b such
that x is the exact solution of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pptrf
• call the solver routine ?pptrs.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

LAPACK Routines: Linear Equations4

4-105

If uplo = 'U', the array afp stores the packed factor U
of the Cholesky factorization A = UHU.
If uplo = 'L', the array afp stores the packed factor L
of the Cholesky factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap, afp, b, x, work REAL for spprfs
DOUBLE PRECISION for dpprfs
COMPLEX for cpprfs
DOUBLE COMPLEX for zpprfs.

Arrays:

ap(*) contains the original packed matrix A, as
supplied to ?pptrf.

afp(*) contains the factored packed matrix A, as
returned by ?pptrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least
max(1,n(n+1)/2); the second dimension of b and x must
be at least max(1,nrhs); the dimension of work must be
at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpprfs
DOUBLE PRECISION for zpprfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters
x The refined solution matrix X.

4-106

4 Intel® Math Kernel Library Reference Manual

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n2 floating-point operations (for real flavors) or 16n2

operations (for complex flavors). In addition, each step of iterative
refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more
than 11. Each solution requires approximately 2n2 floating-point operations
for real flavors or 8n2 for complex flavors.

LAPACK Routines: Linear Equations4

4-107

?pbrfs
Refines the solution of a system of linear
equations with a band symmetric
(Hermitian) positive-definite matrix and
estimates its error.

call spbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b,ldb,x,ldx,ferr,berr,work,iwork,info)

call dpbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b,ldb,x,ldx,ferr,berr,work,iwork,info)

call cpbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b,ldb,x,ldx,ferr,berr,work,rwork,info)

call zpbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b,ldb,x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B with a symmetric (Hermitian) positive definite band
matrix A, with multiple right-hand sides. For each computed solution vector
x, the routine computes the component-wise backward error β. This error is
the smallest relative perturbation in elements of A and b such that x is the
exact solution of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pbtrf

• call the solver routine ?pbtrs.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

4-108

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U', the array afb stores the factor U of the
Cholesky factorization A = UHU.
If uplo = 'L', the array afb stores the factor L of the
Cholesky factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super-diagonals or
sub-diagonals in the matrix A (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab,afb,b,x,work REAL for spbrfs
DOUBLE PRECISION for dpbrfs
COMPLEX for cpbrfs
DOUBLE COMPLEX for zpbrfs.

Arrays:

ab(ldab,*) contains the original band matrix A, as
supplied to ?pbtrf.

afb(ldafb,*) contains the factored band matrix A, as
returned by ?pbtrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of ab and afb must be at least
max(1,n); the second dimension of b and x must be at
least max(1,nrhs); the dimension of work must be at
least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

ldab INTEGER. The first dimension of ab; ldab ≥ kd + 1.

ldafb INTEGER. The first dimension of afb; ldafb ≥ kd + 1.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpbrfs
DOUBLE PRECISION for zpbrfs
Workspace array, DIMENSION at least max(1, n).

LAPACK Routines: Linear Equations4

4-109

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 8n*kd floating-point operations (for real flavors) or 32n*kd
operations (for complex flavors). In addition, each step of iterative
refinement involves 12n*kd operations (for real flavors) or 48n*kd
operations (for complex flavors); the number of iterations may range from 1
to 5.

Estimating the forward error involves solving a number of systems of linear
equations Ax = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 4n*kd floating-point operations for real
flavors or 16n*kd for complex flavors.

4-110

4 Intel® Math Kernel Library Reference Manual

?ptrfs
Refines the solution of a system of linear
equations with a symmetric (Hermitian)
positive-definite tridiagonal matrix and
estimates its error.

call sptrfs (n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,work,info)

call dptrfs (n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,work,info)

call cptrfs (uplo,n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,
work,rwork,info)

call cptrfs (uplo,n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,
work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B with a symmetric (Hermitian) positive definite
tridiagonal matrix A, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error
β. This error is the smallest relative perturbation in elements of A and b such
that x is the exact solution of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pttrf
• call the solver routine ?pttrs.

Input Parameters
uplo CHARACTER*1. Used for complex flavors only.

Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal
of the tridiagonal matrix A is stored and how A is
factored:

LAPACK Routines: Linear Equations4

4-111

If uplo = 'U', the array e stores the superdiagonal of A,
and A is factored as UHDU;
If uplo = 'L', the array e stores the subdiagonal of A,
and A is factored as LDLH.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

d,df,rwork REAL for single precision flavors
DOUBLE PRECISION for double precision flavors
Arrays: d(n), df(n), rwork(n).
The array d contains the n diagonal elements of the
tridiagonal matrix A.
The array df contains the n diagonal elements of the
diagonal matrix D from the factorization of A as
computed by ?pttrf.
The array rwork is a workspace array used for complex
flavors only.

e,ef,b,x,work REAL for sptrfs
DOUBLE PRECISION for dptrfs
COMPLEX for cptrfs
DOUBLE COMPLEX for zptrfs.
Arrays: e(n - 1), ef(n - 1), b(ldb,nrhs),
x(ldx,nrhs), work(*).
The array e contains the (n - 1) off-diagonal elements
of the tridiagonal matrix A (see uplo).
The array ef contains the (n - 1) off-diagonal elements
of the unit bidiagonal factor U or L from the
factorization computed by ?pttrf (see uplo).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The array x contains the solution matrix X as computed
by ?pttrs.
The array work is a workspace array. The dimension of
work must be at least 2*n for real flavors, and at least
n for complex flavors.

ldb INTEGER. The leading dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The leading dimension of x; ldx ≥ max(1, n).

4-112

4 Intel® Math Kernel Library Reference Manual

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations4

4-113

?syrfs
Refines the solution of a system of linear
equations with a symmetric matrix and
estimates its error.

call ssyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dsyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call csyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call zsyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B with a symmetric full-storage matrix A, with
multiple right-hand sides. For each computed solution vector x, the routine
computes the component-wise backward error β. This error is the smallest
relative perturbation in elements of A and b such that x is the exact solution
of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?sytrf
• call the solver routine ?sytrs.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

4-114

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U', the array af stores the Bunch-Kaufman
factorization A = PUDUTPT.
If uplo = 'L', the array af stores the Bunch-Kaufman
factorization A = PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, af, b, x, work REAL for ssyrfs
DOUBLE PRECISION for dsyrfs
COMPLEX for csyrfs
DOUBLE COMPLEX for zsyrfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied
to ?sytrf.

af(ldaf,*) contains the factored matrix A, as returned
by ?sytrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least
max(1,n); the second dimension of b and x must be at
least max(1,nrhs); the dimension of work must be at
least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sytrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for csyrfs
DOUBLE PRECISION for zsyrfs.
Workspace array, DIMENSION at least max(1, n).

LAPACK Routines: Linear Equations4

4-115

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n2 floating-point operations (for real flavors) or 16n2

operations (for complex flavors). In addition, each step of iterative
refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.
Estimating the forward error involves solving a number of systems of linear
equations Ax = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n2 floating-point operations for real
flavors or 8n2 for complex flavors.

4-116

4 Intel® Math Kernel Library Reference Manual

?herfs
Refines the solution of a system of linear
equations with a complex Hermitian
matrix and estimates its error.

call cherfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call zherfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B with a complex Hermitian full-storage matrix A,
with multiple right-hand sides. For each computed solution vector x, the
routine computes the component-wise backward error β. This error is the
smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?hetrf
• call the solver routine ?hetrs.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array af stores the Bunch-Kaufman
factorization A = PUDUHPT.
If uplo = 'L', the array af stores the Bunch-Kaufman
factorization A = PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0).

LAPACK Routines: Linear Equations4

4-117

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, af, b, x, work COMPLEX for cherfs
DOUBLE COMPLEX for zherfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied
to ?hetrf.

af(ldaf,*) contains the factored matrix A, as returned
by ?hetrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least
max(1,n); the second dimension of b and x must be at
least max(1,nrhs); the dimension of work must be at
least max(1, 2*n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

rwork REAL for cherfs
DOUBLE PRECISION for zherfs.
Workspace array, DIMENSION at least max(1, n).

4-118

4 Intel® Math Kernel Library Reference Manual

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for cherfs

DOUBLE PRECISION for zherfs.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 16n2 operations. In addition, each step of iterative refinement
involves 24n2 operations; the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear
equations Ax = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 8n2 floating-point operations.

The real counterpart of this routine is ssyrfs / dsyrfs.

LAPACK Routines: Linear Equations4

4-119

?sprfs
Refines the solution of a system of linear
equations with a packed symmetric
matrix and estimates the solution error.

call ssprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,iwork,info)

call dsprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,iwork,info)

call csprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

call zsprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B with a packed symmetric matrix A, with multiple
right-hand sides. For each computed solution vector x, the routine computes
the component-wise backward error β. This error is the smallest relative
perturbation in elements of A and b such that x is the exact solution of the
perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?sptrf
• call the solver routine ?sptrs.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

4-120

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U', the array afp stores the packed
Bunch-Kaufman factorization A = PUDUTPT.
If uplo = 'L', the array afp stores the packed
Bunch-Kaufman factorization A = PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap, afp, b, x, work REAL for ssprfs
DOUBLE PRECISION for dsprfs
COMPLEX for csprfs
DOUBLE COMPLEX for zsprfs.

Arrays:

ap(*) contains the original packed matrix A, as
supplied to ?sptrf.

afp(*) contains the factored packed matrix A, as
returned by ?sptrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least
max(1,n(n+1)/2); the second dimension of b and x must
be at least max(1,nrhs); the dimension of work must be
at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors..

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for csprfs
DOUBLE PRECISION for zsprfs
Workspace array, DIMENSION at least max(1, n).

LAPACK Routines: Linear Equations4

4-121

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n2 floating-point operations (for real flavors) or 16n2

operations (for complex flavors). In addition, each step of iterative
refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more
than 11. Each solution requires approximately 2n2 floating-point operations
for real flavors or 8n2 for complex flavors.

4-122

4 Intel® Math Kernel Library Reference Manual

?hprfs
Refines the solution of a system of linear
equations with a packed complex Hermitian
matrix and estimates the solution error.

call chprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

call zhprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equations AX = B with a packed complex Hermitian matrix A, with
multiple right-hand sides. For each computed solution vector x, the routine
computes the component-wise backward error β. This error is the smallest
relative perturbation in elements of A and b such that x is the exact solution
of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?hptrf
• call the solver routine ?hptrs.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array afp stores the packed
Bunch-Kaufman factorization A = PUDUHPT.
If uplo = 'L', the array afp stores the packed
Bunch-Kaufman factorization A = PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

LAPACK Routines: Linear Equations4

4-123

ap, afp, b, x, work COMPLEX for chprfs
DOUBLE COMPLEX for zhprfs.

Arrays:

ap(*) contains the original packed matrix A, as
supplied to ?hptrf.

afp(*) contains the factored packed matrix A, as
returned by ?hptrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least
max(1,n(n+1)/2); the second dimension of b and x must
be at least max(1,nrhs); the dimension of work must be
at least max(1, 2*n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hptrf.

rwork REAL for chprfs
DOUBLE PRECISION for zhprfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters
x The refined solution matrix X.
ferr, berr REAL for chprfs.

DOUBLE PRECISION for zhprfs.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

4-124

4 Intel® Math Kernel Library Reference Manual

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 16n2 operations. In addition, each step of iterative refinement
involves 24n2 operations; the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear
equations Ax = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 8n2 floating-point operations.

The real counterpart of this routine is ssprfs / dsprfs.

?trrfs
Estimates the error in the solution of
a system of linear equations with a
triangular matrix.

call strrfs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dtrrfs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call ctrrfs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call ztrrfs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine estimates the errors in the solution to a system of linear
equations AX = B or ATX = B or AHX = B with a triangular matrix A, with
multiple right-hand sides. For each computed solution vector x, the routine
computes the component-wise backward error β. This error is the smallest
relative perturbation in elements of A and b such that x is the exact solution
of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

LAPACK Routines: Linear Equations4

4-125

The routine also estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine, call the solver routine ?trtrs.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form AX = B.
If trans = 'T', the system has the form ATX = B.
If trans = 'C', the system has the form AHX = B.

diag CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements
of A are assumed to be 1 and not referenced in the array a.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, b, x, work REAL for strrfs
DOUBLE PRECISION for dtrrfs
COMPLEX for ctrrfs
DOUBLE COMPLEX for ztrrfs.

Arrays:

a(lda,*) contains the upper or lower triangular matrix A,
as specified by uplo.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a must be at least max(1,n);
the second dimension of b and x must be at least
max(1,nrhs); the dimension of work must be at least
max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

4-126

4 Intel® Math Kernel Library Reference Manual

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctrrfs
DOUBLE PRECISION for ztrrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of
systems of linear equations Ax = b; the number of systems is usually 4 or 5
and never more than 11. Each solution requires approximately n2

floating-point operations for real flavors or 4n2 for complex flavors.

LAPACK Routines: Linear Equations4

4-127

?tprfs
Estimates the error in the solution of
a system of linear equations with a
packed triangular matrix.

call stprfs (uplo,trans,diag,n,nrhs,ap,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dtprfs (uplo,trans,diag,n,nrhs,ap,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call ctprfs (uplo,trans,diag,n,nrhs,ap,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call ztprfs (uplo,trans,diag,n,nrhs,ap,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine estimates the errors in the solution to a system of linear
equations AX = B or ATX = B or AHX = B with a packed triangular matrix A,
with multiple right-hand sides. For each computed solution vector x, the
routine computes the component-wise backward error β. This error is the
smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

The routine also estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine, call the solver routine ?tptrs.

4-128

4 Intel® Math Kernel Library Reference Manual

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form AX = B.
If trans = 'T', the system has the form ATX = B.
If trans = 'C', the system has the form AHX = B.

diag CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', A is not a unit triangular matrix.
If diag = 'U', A is unit triangular: diagonal elements of A
are assumed to be 1 and not referenced in the array ap.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap, b, x, work REAL for strrfs
DOUBLE PRECISION for dtrrfs
COMPLEX for ctrrfs
DOUBLE COMPLEX for ztrrfs.

Arrays:

ap(*) contains the upper or lower triangular matrix A, as
specified by uplo.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of ap must be at least max(1,n(n+1)/2);
the second dimension of b and x must be at least
max(1,nrhs); the dimension of work must be at least
max(1, 3*n) for real flavors and max(1, 2*n) for complex
flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

LAPACK Routines: Linear Equations4

4-129

rwork REAL for ctrrfs
DOUBLE PRECISION for ztrrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of
systems of linear equations Ax = b; the number of systems is usually 4 or 5
and never more than 11. Each solution requires approximately n2

floating-point operations for real flavors or 4n2 for complex flavors.

4-130

4 Intel® Math Kernel Library Reference Manual

?tbrfs
Estimates the error in the solution of
a system of linear equations with a
triangular band matrix.

call stbrfs (uplo,trans,diag,n,kd,nrhs,ab,ldab,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dtbrfs (uplo,trans,diag,n,kd,nrhs,ab,ldab,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call ctbrfs (uplo,trans,diag,n,kd,nrhs,ab,ldab,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call ztbrfs (uplo,trans,diag,n,kd,nrhs,ab,ldab,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine estimates the errors in the solution to a system of linear
equations AX = B or ATX = B or AHX = B with a triangular band matrix A,
with multiple right-hand sides. For each computed solution vector x, the
routine computes the component-wise backward error β. This error is the
smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

| δaij| / | aij| ≤ β | aij| , | δbi| / | bi| ≤ β | bi| such that (A + δA)x = (b + δb).

The routine also estimates the component-wise forward error in the
computed solution | | x − xe| | ∞/ | | x| | ∞(here xe is the exact solution).

Before calling this routine, call the solver routine ?tbtrs.

LAPACK Routines: Linear Equations4

4-131

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', the system has the form AX = B.
If trans = 'T', the system has the form ATX = B.
If trans = 'C', the system has the form AHX = B.

diag CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', A is not a unit triangular matrix.
If diag = 'U', A is unit triangular: diagonal elements of A
are assumed to be 1 and not referenced in the array ab.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super-diagonals or
sub-diagonals in the matrix A (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab, b, x, work REAL for stbrfs
DOUBLE PRECISION for dtbrfs
COMPLEX for ctbrfs
DOUBLE COMPLEX for ztbrfs.

Arrays:

ab(ldab,*) contains the upper or lower triangular matrix
A, as specified by uplo, in band storage format.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a must be at least max(1,n);
the second dimension of b and x must be at least
max(1,nrhs).
The dimension of work must be at least max(1, 3*n) for
real flavors and max(1, 2*n) for complex flavors.

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1).

4-132

4 Intel® Math Kernel Library Reference Manual

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctbrfs
DOUBLE PRECISION for ztbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters
ferr, berr REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost
always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of
systems of linear equations Ax = b; the number of systems is usually 4 or 5
and never more than 11. Each solution requires approximately 2n*kd
floating-point operations for real flavors or 8n*kd operations for complex
flavors.

LAPACK Routines: Linear Equations4

4-133

Routines for Matrix Inversion
It is seldom necessary to compute an explicit inverse of a matrix.
In particular, do not attempt to solve a system of equations Ax = b by first
computing A−1 and then forming the matrix-vector product x = A−1b.
Call a solver routine instead (see Routines for Solving Systems of Linear
Equations); this is more efficient and more accurate.

However, matrix inversion routines are provided for the rare occasions
when an explicit inverse matrix is needed.

?getri
Computes the inverse of an LU-factored
general matrix.

call sgetri (n, a, lda, ipiv, work, lwork, info)

call dgetri (n, a, lda, ipiv, work, lwork, info)

call cgetri (n, a, lda, ipiv, work, lwork, info)

call zgetri (n, a, lda, ipiv, work, lwork, info)

Discussion

This routine computes the inverse (A−1) of a general matrix A.
Before calling this routine, call ?getrf to factorize A.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgetri
DOUBLE PRECISION for dgetri
COMPLEX for cgetri
DOUBLE COMPLEX for zgetri.
Arrays: a(lda,*), work(lwork).
a(lda,*) contains the factorization of the matrix A, as
returned by ?getrf: A = PLU.
The second dimension of a must be at least max(1,n).

work(lwork) is a workspace array.

4-134

4 Intel® Math Kernel Library Reference Manual

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?getrf.

lwork INTEGER. The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the n by n matrix A-1.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance.
Use this lwork for subsequent runs.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the factor U is
zero, U is singular, and the inversion could not be
completed.

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The computed inverse X satisfies the following error bound:

where c(n) is a modest linear function of n; ε is the machine precision;
I denotes the identity matrix; P, L, and U are the factors of the matrix
factorization A = PLU.

The total number of floating-point operations is approximately (4/3)n3 for
real flavors and (16/3)n3 for complex flavors.

XA I– c n()ε X P L U≤

LAPACK Routines: Linear Equations4

4-135

?potri
Computes the inverse of a symmetric
(Hermitian) positive-definite matrix.

call spotri (uplo, n, a, lda, info)

call dpotri (uplo, n, a, lda, info)

call cpotri (uplo, n, a, lda, info)

call zpotri (uplo, n, a, lda, info)

Discussion

This routine computes the inverse (A−1) of a symmetric positive definite or,
for complex flavors, Hermitian positive-definite matrix A.
Before calling this routine, call ?potrf to factorize A.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the factor U of the
Cholesky factorization A = UHU.
If uplo = 'L', the array a stores the factor L of the
Cholesky factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

a REAL for spotri
DOUBLE PRECISION for dpotri
COMPLEX for cpotri
DOUBLE COMPLEX for zpotri.
Array: a(lda,*).

Contains the factorization of the matrix A, as returned by
?potrf.

The second dimension of a must be at least max(1,n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

4-136

4 Intel® Math Kernel Library Reference Manual

Output Parameters

a Overwritten by the n by n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the Cholesky
factor (and hence the factor itself) is zero, and the
inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

where c(n) is a modest linear function of n, and ε is the machine precision;
I denotes the identity matrix.

The 2-norm | | A| | 2of a matrix A is defined by | | A| | 2= maxx·x=1(Ax · Ax) 1/2,
and the condition number κ2(A) is defined by κ2(A) = | |A| | 2 | | A−1| | 2 .

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

XA I– 2 c n()ε κ2 A() AX I– 2 c n()ε κ2 A()≤,≤

LAPACK Routines: Linear Equations4

4-137

?pptri
Computes the inverse of a packed
symmetric (Hermitian) positive-definite
matrix

call spptri (uplo, n, ap, info)

call dpptri (uplo, n, ap, info)

call cpptri (uplo, n, ap, info)

call zpptri (uplo, n, ap, info)

Discussion

This routine computes the inverse (A−1) of a symmetric positive definite or,
for complex flavors, Hermitian positive-definite matrix A in packed form.
Before calling this routine, call ?pptrf to factorize A.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed factor U
of the Cholesky factorization A = UHU.
If uplo = 'L', the array ap stores the packed factor L of
the Cholesky factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

ap REAL for spptri
DOUBLE PRECISION for dpptri
COMPLEX for cpptri
DOUBLE COMPLEX for zpptri.
Array, DIMENSION at least max(1,n(n+1)/2).

Contains the factorization of the packed matrix A,
as returned by ?pptrf.

The dimension ap must be at least max(1,n(n+1)/2).

4-138

4 Intel® Math Kernel Library Reference Manual

Output Parameters

ap Overwritten by the packed n by n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the Cholesky
factor (and hence the factor itself) is zero, and the
inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

where c(n) is a modest linear function of n, and ε is the machine precision;
I denotes the identity matrix.

The 2-norm | | A| | 2of a matrix A is defined by | | A| | 2= maxx·x=1(Ax · Ax) 1/2,
and the condition number κ2(A) is defined by κ2(A) = | |A| | 2 | | A−1| | 2 .

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

XA I– 2 c n()ε κ2 A() AX I– 2 c n()ε κ2 A()≤,≤

LAPACK Routines: Linear Equations4

4-139

?sytri
Computes the inverse of a symmetric
matrix.

call ssytri (uplo, n, a, lda, ipiv, work, info)

call dsytri (uplo, n, a, lda, ipiv, work, info)

call csytri (uplo, n, a, lda, ipiv, work, info)

call zsytri (uplo, n, a, lda, ipiv, work, info)

Discussion

This routine computes the inverse (A−1) of a symmetric matrix A.
Before calling this routine, call ?sytrf to factorize A.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the Bunch-Kaufman
factorization A = PUDUTPT.
If uplo = 'L', the array a stores the Bunch-Kaufman
factorization A = PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for ssytri
DOUBLE PRECISION for dsytri
COMPLEX for csytri
DOUBLE COMPLEX for zsytri.
Arrays:

a(lda,*) contains the factorization of the matrix A,
as returned by ?sytrf.
The second dimension of a must be at least max(1,n).

work(*) is a workspace array.
The dimension of work must be at least max(1,2*n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

4-140

4 Intel® Math Kernel Library Reference Manual

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sytrf.

Output Parameters

a Overwritten by the n by n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info =-i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is
singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the
machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

DUTPTXPU I– c n()ε D UT PT X P U D D 1–+()≤

DLTPTXPL I– c n()ε D LT PT X P L D D 1–+()≤

LAPACK Routines: Linear Equations4

4-141

?hetri
Computes the inverse of a complex
Hermitian matrix.

call chetri (uplo, n, a, lda, ipiv, work, info)

call zhetri (uplo, n, a, lda, ipiv, work, info)

Discussion

This routine computes the inverse (A−1) of a complex Hermitian matrix A.
Before calling this routine, call ?hetrf to factorize A.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the Bunch-Kaufman
factorization A = PUDUHPT.
If uplo = 'L', the array a stores the Bunch-Kaufman
factorization A = PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work COMPLEX for chetri
DOUBLE COMPLEX for zhetri.
Arrays:

a(lda,*) contains the factorization of the matrix A,
as returned by ?hetrf.
The second dimension of a must be at least max(1,n).

work(*) is a workspace array.
The dimension of work must be at least max(1,n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

4-142

4 Intel® Math Kernel Library Reference Manual

Output Parameters

a Overwritten by the n by n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is
singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the
machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

The real counterpart of this routine is ?sytri.

DUHPTXPU I– c n()ε D UH PT X P U D D 1–+()≤

DLHPTXPL I– c n()ε D LH PT X P L D D 1–+()≤

LAPACK Routines: Linear Equations4

4-143

?sptri
Computes the inverse of a symmetric
matrix using packed storage.

call ssptri (uplo, n, ap, ipiv, work, info)

call dsptri (uplo, n, ap, ipiv, work, info)

call csptri (uplo, n, ap, ipiv, work, info)

call zsptri (uplo, n, ap, ipiv, work, info)

Discussion

This routine computes the inverse (A−1) of a packed symmetric matrix A.
Before calling this routine, call ?sptrf to factorize A.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the Bunch-Kaufman
factorization A = PUDUTPT.
If uplo = 'L', the array ap stores the Bunch-Kaufman
factorization A = PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0).

ap, work REAL for ssptri
DOUBLE PRECISION for dsptri
COMPLEX for csptri
DOUBLE COMPLEX for zsptri.
Arrays:

ap(*) contains the factorization of the matrix A,
as returned by ?sptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

work(*) is a workspace array.
The dimension of work must be at least max(1,n).

4-144

4 Intel® Math Kernel Library Reference Manual

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

Output Parameters

ap Overwritten by the n by n matrix A-1 in packed form.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is
singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the
machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

DUTPTXPU I– c n()ε D UT PT X P U D D 1–+()≤

DLTPTXPL I– c n()ε D LT PT X P L D D 1–+()≤

LAPACK Routines: Linear Equations4

4-145

?hptri
Computes the inverse of a complex
Hermitian matrix using packed storage.

call chptri (uplo, n, ap, ipiv, work, info)

call zhptri (uplo, n, ap, ipiv, work, info)

Discussion

This routine computes the inverse (A−1) of a complex Hermitian matrix A
using packed storage.
Before calling this routine, call ?hptrf to factorize A.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed
Bunch-Kaufman factorization A = PUDUHPT.
If uplo = 'L', the array ap stores the packed
Bunch-Kaufman factorization A = PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0).

ap COMPLEX for chptri
DOUBLE COMPLEX for zhptri.
Arrays:

ap(*) contains the factorization of the matrix A,
as returned by ?hptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

work(*) is a workspace array.
The dimension of work must be at least max(1,n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hptrf.

4-146

4 Intel® Math Kernel Library Reference Manual

Output Parameters

ap Overwritten by the n by n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is
singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the
machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

The real counterpart of this routine is ?sptri.

DUHPTXPU I– c n()ε D UH PT X P U D D 1–+()≤

DLHPTXPL I– c n()ε D LH PT X P L D D 1–+()≤

LAPACK Routines: Linear Equations4

4-147

?trtri
Computes the inverse of a triangular
matrix.

call strtri (uplo, diag, n, a, lda, info)

call dtrtri (uplo, diag, n, a, lda, info)

call ctrtri (uplo, diag, n, a, lda, info)

call ztrtri (uplo, diag, n, a, lda, info)

Discussion

This routine computes the inverse (A−1) of a triangular matrix A.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

diag CHARACTER*1. Must be 'N' or 'U'.
If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', A is unit triangular: diagonal elements of
A are assumed to be 1 and not referenced in the array a.

n INTEGER. The order of the matrix A (n ≥ 0).

a REAL for strtri
DOUBLE PRECISION for dtrtri
COMPLEX for ctrtri
DOUBLE COMPLEX for ztrtri.

Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1,n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

4-148

4 Intel® Math Kernel Library Reference Manual

Output Parameters

a Overwritten by the n by n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is zero, A is
singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

where c(n) is a modest linear function of n; ε is the machine precision;
I denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)n3 for
real flavors and (4/3)n3 for complex flavors.

?tptri
Computes the inverse of a triangular
matrix using packed storage.

call stptri (uplo, diag, n, ap, info)

call dtptri (uplo, diag, n, ap, info)

call ctptri (uplo, diag, n, ap, info)

call ztptri (uplo, diag, n, ap, info)

Discussion

This routine computes the inverse (A−1) of a packed triangular matrix A.

XA I– c n()ε X A≤

X A 1–– c n()ε A 1– A X≤

LAPACK Routines: Linear Equations4

4-149

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', A is unit triangular: diagonal elements of
A are assumed to be 1 and not referenced in the array ap.

n INTEGER. The order of the matrix A (n ≥ 0).

ap REAL for stptri
DOUBLE PRECISION for dtptri
COMPLEX for ctptri
DOUBLE COMPLEX for ztptri.

Array: DIMENSION at least max(1,n(n+1)/2).
Contains the packed triangular matrix A.

Output Parameters

ap Overwritten by the packed n by n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is zero, A is
singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

where c(n) is a modest linear function of n; ε is the machine precision;
I denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)n3 for
real flavors and (4/3)n3 for complex flavors.

XA I– c n()ε X A≤

X A 1–– c n()ε A 1– A X≤

4-150

4 Intel® Math Kernel Library Reference Manual

Routines for Matrix Equilibration
Routines described in this section are used to compute scaling factors
needed to equilibrate a matrix. Note that these routines do not actually scale
the matrices.

?geequ
Computes row and column scaling
factors intended to equilibrate a matrix
and reduce its condition number.

call sgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call dgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call cgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call zgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

Discussion

This routine computes row and column scalings intended to equilibrate an
m-by-n matrix A and reduce its condition number. The output array r returns
the row scale factors and the array c the column scale factors. These factors
are chosen to try to make the largest element in each row and column of the
matrix B with elements bij=r(i)*aij*c(j) have absolute value 1.

Input Parameters
m INTEGER. The number of rows of the matrix A, m ≥0.
n INTEGER. The number of columns of the matrix A,

n ≥0.

a REAL for sgeequ
DOUBLE PRECISION for dgeequ
COMPLEX for cgeequ
DOUBLE COMPLEX for zgeequ.

LAPACK Routines: Linear Equations4

4-151

Array: DIMENSION (lda,*).
Contains the m-by-n matrix A whose equilibration
factors are to be computed.
The second dimension of a must be at least max(1,n).

lda INTEGER. The leading dimension of a; lda ≥ max(1, m).

Output Parameters

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(m), c(n).
If info = 0, or info > m, the array r contains the row
scale factors of the matrix A.
If info = 0 , the array c contains the column scale
factors of the matrix A.

rowcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > m, rowcnd contains the ratio of
the smallest r(i) to the largest r(i).

colcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, colcnd contains the ratio of the smallest
c(i) to the largest c(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i and

i≤ m, the ith row of A is exactly zero;
i > m, the (i-m)th column of A is exactly zero.

4-152

4 Intel® Math Kernel Library Reference Manual

Application Notes

All the components of r and c are restricted to be between SMLNUM =
smallest safe number and BIGNUM = largest safe number. Use of these
scaling factors is not guaranteed to reduce the condition number of A but
works well in practice.

If rowcnd ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by r. If colcnd ≥ 0.1 , it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix A
should be scaled.

LAPACK Routines: Linear Equations4

4-153

?gbequ
Computes row and column scaling
factors intended to equilibrate a band
matrix and reduce its condition number.

call sgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)

call dgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)

call cgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)

call zgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)

Discussion

This routine computes row and column scalings intended to equilibrate an
m-by-n band matrix A and reduce its condition number. The output array r

returns the row scale factors and the array c the column scale factors. These
factors are chosen to try to make the largest element in each row and
column of the matrix B with elements bij=r(i)*aij*c(j) have absolute
value 1.

Input Parameters
m INTEGER. The number of rows of the matrix A, m ≥0.
n INTEGER. The number of columns of the matrix A,

n ≥0.
kl INTEGER. The number of sub-diagonals within the band

of A (kl ≥ 0).
ku INTEGER. The number of super-diagonals within the

band of A (ku ≥ 0).

ab REAL for sgbequ
DOUBLE PRECISION for dgbequ
COMPLEX for cgbequ
DOUBLE COMPLEX for zgbequ.

Array, DIMENSION (ldab,*).
Contains the original band matrix A stored in rows
from 1 to kl + ku + 1.

4-154

4 Intel® Math Kernel Library Reference Manual

The second dimension of ab must be at least max(1,n);

ldab INTEGER. The leading dimension of ab,
ldab ≥ kl+ku+1.

Output Parameters

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(m), c(n).
If info = 0, or info > m, the array r contains the row
scale factors of the matrix A.
If info = 0 , the array c contains the column scale
factors of the matrix A.

rowcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > m, rowcnd contains the ratio of
the smallest r(i) to the largest r(i).

colcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, colcnd contains the ratio of the smallest
c(i) to the largest c(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i and

i≤ m, the ith row of A is exactly zero;
i > m, the (i-m)th column of A is exactly zero.

Application Notes

All the components of r and c are restricted to be between SMLNUM =
smallest safe number and BIGNUM = largest safe number. Use of these
scaling factors is not guaranteed to reduce the condition number of A but
works well in practice.

LAPACK Routines: Linear Equations4

4-155

If rowcnd ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by r. If colcnd ≥ 0.1 , it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix A
should be scaled.

?poequ
Computes row and column scaling
factors intended to equilibrate a
symmetric (Hermitian) positive definite
matrix and reduce its condition number.

call spoequ (n, a, lda, s, scond, amax, info)

call dpoequ (n, a, lda, s, scond, amax, info)

call cpoequ (n, a, lda, s, scond, amax, info)

call zpoequ (n, a, lda, s, scond, amax, info)

Discussion

This routine computes row and column scalings intended to equilibrate a
symmetric (Hermitian) positive definite matrix A and reduce its condition
number (with respect to the two-norm). The output array s returns scale
factors computed as

These factors are chosen so that the scaled matrix B with elements
bij=s(i)*aij*s(j) has diagonal elements equal to 1.

This choice of s puts the condition number of B within a factor n of the
smallest possible condition number over all possible diagonal scalings.

Input Parameters
n INTEGER. The order of the matrix A, n ≥0.

s i() 1

ai i,
-------------=

4-156

4 Intel® Math Kernel Library Reference Manual

a REAL for spoequ
DOUBLE PRECISION for dpoequ
COMPLEX for cpoequ
DOUBLE COMPLEX for zpoequ.

Array: DIMENSION (lda,*).
Contains the n-by-n symmetric or Hermitian positive
definite matrix A whose scaling factors are to be
computed. Only diagonal elements of A are referenced.
The second dimension of a must be at least max(1,n).

lda INTEGER. The leading dimension of a; lda ≥ max(1, m).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info = 0, the array s contains the scale factors for A.

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest
s(i) to the largest s(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is
nonpositive.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by s.

If amax is very close to overflow or very close to underflow, the matrix A
should be scaled.

LAPACK Routines: Linear Equations4

4-157

?ppequ
Computes row and column scaling factors
intended to equilibrate a symmetric
(Hermitian) positive definite matrix in packed
storage and reduce its condition number.

call sppequ (uplo, n, ap, s, scond, amax, info)

call dppequ (uplo, n, ap, s, scond, amax, info)

call cppequ (uplo, n, ap, s, scond, amax, info)

call zppequ (uplo, n, ap, s, scond, amax, info)

Discussion

This routine computes row and column scalings intended to equilibrate a
symmetric (Hermitian) positive definite matrix A in packed storage and
reduce its condition number (with respect to the two-norm). The output
array s returns scale factors computed as

These factors are chosen so that the scaled matrix B with elements
bij=s(i)*aij*s(j) has diagonal elements equal to 1.

This choice of s puts the condition number of B within a factor n of the
smallest possible condition number over all possible diagonal scalings.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is packed in the array ap:
If uplo = 'U', the array ap stores the upper triangular
part of the matrix A.
If uplo = 'L', the array ap stores the lower triangular
part of the matrix A.

s i() 1

ai i,
-------------=

4-158

4 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of matrix A (n ≥ 0).
ap REAL for sppequ

DOUBLE PRECISION for dppequ
COMPLEX for cppequ
DOUBLE COMPLEX for zppequ.
Array, DIMENSION at least max(1,n(n+1)/2).
The array ap contains either the upper or the lower
triangular part of the matrix A (as specified by uplo) in
packed storage (see Matrix Storage Schemes).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info = 0, the array s contains the scale factors for A.

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest
s(i) to the largest s(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is
nonpositive.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by s.

If amax is very close to overflow or very close to underflow, the matrix A
should be scaled.

LAPACK Routines: Linear Equations4

4-159

?pbequ
Computes row and column scaling factors
intended to equilibrate a symmetric (Hermitian)
positive definite band matrix and reduce its
condition number.

call spbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
call dpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
call cpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
call zpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)

Discussion

This routine computes row and column scalings intended to equilibrate a
symmetric (Hermitian) positive definite matrix A in packed storage and
reduce its condition number (with respect to the two-norm). The output
array s returns scale factors computed as

These factors are chosen so that the scaled matrix B with elements
bij=s(i)*aij*s(j) has diagonal elements equal to 1.
This choice of s puts the condition number of B within a factor n of the
smallest possible condition number over all possible diagonal scalings.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is packed in the array ab:
If uplo = 'U', the array ab stores the upper triangular
part of the matrix A.
If uplo = 'L', the array ab stores the lower triangular
part of the matrix A.

n INTEGER. The order of matrix A (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrix A (kd ≥ 0).

s i() 1

ai i,
-------------=

4-160

4 Intel® Math Kernel Library Reference Manual

ab REAL for spbequ
DOUBLE PRECISION for dpbequ
COMPLEX for cpbequ
DOUBLE COMPLEX for zpbequ.
Array, DIMENSION (ldab,*).
The array ap contains either the upper or the lower
triangular part of the matrix A (as specified by uplo) in
band storage (see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).

ldab INTEGER. The leading dimension of the array ab.
(ldab ≥ kd +1).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info = 0, the array s contains the scale factors for A.

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest
s(i) to the largest s(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is
nonpositive.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by s.

If amax is very close to overflow or very close to underflow, the matrix A
should be scaled.

LAPACK Routines: Linear Equations4

4-161

Driver Routines
Table 4-3 lists the LAPACK driver routines for solving systems of linear
equations with real or complex matrices.

In this table ? stands for s (single precision real), d (double precision real),
c (single precision complex), or z (double precision complex).

Table 4-3 Driver Routines for Solving Systems of Linear Equations

Matrix type,
storage scheme

Simple Driver Expert Driver

general ?gesv ?gesvx

general band ?gbsv ?gbsvx

general tridiagonal ?gtsv ?gtsvx

symmetric/Hermitian
positive-definite

?posv ?posvx

symmetric/Hermitian
positive-definite,
packed storage

?ppsv ?ppsvx

symmetric/Hermitian
positive-definite,
band

?pbsv ?pbsvx

symmetric/Hermitian
positive-definite,
tridiagonal

?ptsv ?ptsvx

symmetric/Hermitian
indefinite

?sysv /?hesv ?sysvx /?hesvx

symmetric/Hermitian
indefinite,
packed storage

?spsv /?hpsv ?spsvx /?hpsvx

complex symmetric ?sysv ?sysvx

complex symmetric,
packed storage

?spsv ?spsvx

4-162

4 Intel® Math Kernel Library Reference Manual

?gesv
Computes the solution to the system of
linear equations with a square matrix A
and multiple right-hand sides.

call sgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

call dgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

call cgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

call zgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

Discussion

This routine solves for X the system of linear equations AX = B, where A is
an n-by-n matrix, the columns of matrix B are individual right-hand sides,
and the columns of X are the corresponding solutions.

The LU decomposition with partial pivoting and row interchanges is used to
factor A as A = P L U, where P is a permutation matrix, L is unit lower
triangular, and U is upper triangular. The factored form of A is then used to
solve the system of equations AX = B.

Input Parameters

n INTEGER. The order of A; the number of rows in B
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

a, b REAL for sgesv
DOUBLE PRECISION for dgesv
COMPLEX for cgesv
DOUBLE COMPLEX for zgesv.
Arrays: a(lda,*), b(ldb,*).

The array a contains the matrix A.
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of a must be at least max(1,n),
the second dimension of b at least max(1,nrhs).

LAPACK Routines: Linear Equations4

4-163

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

a Overwritten by the factors L and U from the
factorization of A = P L U; the unit diagonal elements of
L are not stored .

b Overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly singular,
so the solution could not be computed.

?gesvx
Computes the solution to the system of
linear equations with a square matrix A
and multiple right-hand sides, and
provides error bounds on the solution.

call sgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

call zgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

4-164

4 Intel® Math Kernel Library Reference Manual

Discussion

This routine uses the LU factorization to compute the solution to a real or
complex system of linear equations AX = B, where A is an n-by-n matrix,
the columns of matrix B are individual right-hand sides, and the columns of
X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gesvx performs the following steps:

1. If fact = 'E', real scaling factors r and c are computed to equilibrate
the system:

trans = 'N': diag(r)*A*diag(c) *diag(c)-1*X = diag(r)*B

trans = 'T': (diag(r)*A*diag(c))T *diag(r)-1*X = diag(c)*B

trans = 'C': (diag(r)*A*diag(c))H *diag(r)-1*X = diag(c)*B

Whether or not the system will be equilibrated depends on the scaling of the
matrix A, but if equilibration is used, A is overwritten by diag(r)*A*diag(c)
and B by diag(r)*B (if trans='N') or diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the matrix A
(after equilibration if fact = 'E') as A = P L U, where P is a permutation
matrix, L is a unit lower triangular matrix, and U is upper triangular.

3. If some Ui,i = 0, so that U is exactly singular, then the routine returns
with info = i. Otherwise, the factored form of A is used to estimate the
condition number of the matrix A. If the reciprocal of the condition number
is less than machine precision, info = n + 1 is returned as a warning, but
the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if
trans = 'N') or diag(r) (if trans = 'T' or 'C') so that it solves the original
system before equilibration.

LAPACK Routines: Linear Equations4

4-165

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrix A
should be equilibrated before it is factored.

If fact = 'F': on entry, af and ipiv contain the
factored form of A. If equed is not 'N', the matrix A has
been equilibrated with scaling factors given by r and c.
a, af, and ipiv are not modified.

If fact = 'N', the matrix A will be copied to af and
factored.
If fact = 'E', the matrix A will be equilibrated if
necessary, then copied to af and factored.

trans CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form A X = B
(No transpose);
If trans = 'T', the system has the form AT X = B
(Transpose);
If trans = 'C', the system has the form AH X = B
(Conjugate transpose);

n INTEGER. The number of linear equations; the order of
the matrix A (n ≥ 0).

nrhs INTEGER. The number of right hand sides; the number
of columns of the matrices B and X (nrhs ≥ 0).

a,af,b,work REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*),
work(*).

The array a contains the matrix A. If fact = 'F' and
equed is not 'N', then A must have been equilibrated by
the scaling factors in r and/or c. The second dimension

4-166

4 Intel® Math Kernel Library Reference Manual

of a must be at least max(1,n).
The array af is an input argument if fact = 'F' . It
contains the factored form of the matrix A, i.e., the
factors L and U from the factorization A = P L U as
computed by ?getrf. If equed is not 'N', then af is the
factored form of the equilibrated matrix A. The second
dimension of af must be at least max(1,n).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,4*n) for
real flavors, and at least max(1,2*n) for complex
flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains the pivot indices from the factorization
A = P L U as computed by ?getrf; row i of the matrix
was interchanged with row ipiv(i).

equed CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact = 'F' . It specifies
the form of equilibration that was done:
If equed = 'N', no equilibration was done (always
true if fact = 'N');
If equed = 'R', row equilibration was done and A has
been premultiplied by diag(r);
If equed = 'C', column equilibration was done and A
has been postmultiplied by diag(c);
If equed = 'B', both row and column equilibration was
done; A has been replaced by diag(r)*A*diag(c).

LAPACK Routines: Linear Equations4

4-167

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(n), c(n).
The array r contains the row scale factors for A, and the
array c contains the column scale factors for A. These
arrays are input arguments if fact = 'F' only; otherwise
they are output arguments.
If equed = 'R' or 'B', A is multiplied on the left by
diag(r); if equed = 'N' or 'C', r is not accessed.
If fact = 'F' and equed = 'R' or 'B', each element of
r must be positive.

If equed = 'C' or 'B', A is multiplied on the right by
diag(c); if equed = 'N' or 'R', c is not accessed.
If fact = 'F' and equed = 'C' or 'B', each element of
c must be positive.

ldx INTEGER. The first dimension of the output array x;
ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used
in real flavors only.

rwork REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1, 2*n);
used in complex flavors only.

Output Parameters

x REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the
solution matrix X to the original system of equations.
Note that A and B are modified on exit if equed ≠ 'N',
and the solution to the equilibrated system is:
diag(c)-1*X, if trans = 'N' and equed = 'C' or 'B';

4-168

4 Intel® Math Kernel Library Reference Manual

diag(r)-1*X, if trans = 'T' or 'C' and equed = 'R'

or 'B'.
The second dimension of x must be at least
max(1,nrhs).

a Array a is not modified on exit if fact = 'F' or 'N', or if
fact = 'E' and equed = 'N'.
If equed ≠ 'N', A is scaled on exit as follows:
equed = 'R': A = diag(r)*A
equed = 'C': A = A*diag(c)
equed = 'B': A = diag(r)*A*diag(c)

af If fact = 'N' or 'E', then af is an output argument and
on exit returns the factors L and U from the factorization
A = P L U of the original matrix A(if fact = 'N') or of
the equilibrated matrix A (if fact = 'E'). See the
description of a for the form of the equilibrated matrix.

b Overwritten by diag(r)* B if trans = 'N' and
equed = 'R' or 'B';
overwritten by diag(c)*B if trans = 'T' and equed

= 'C' or 'B';
not changed if equed = 'N'.

r, c These arrays are output arguments if fact ≠ 'F' .
See the description of r, c in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done). The routine sets
rcond =0 if the estimate underflows; in this case the
matrix is singular (to working precision). However,
anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

LAPACK Routines: Linear Equations4

4-169

ipiv If fact = 'N' or 'E', then ipiv is an output argument
and on exit contains the pivot indices from the
factorization A = P L U of the original matrix A(if fact
= 'N') or of the equilibrated matrix A (if fact = 'E').

equed If fact ≠ 'F' , then equed is an output argument. It
specifies the form of equilibration that was done (see the
description of equed in Input Arguments section).

work, rwork On exit, work(1) for real flavors, or rwork(1) for
complex flavors, contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element"
norm is used. If work(1) for real flavors, or rwork(1)
for complex flavors is much less than 1, then the
stability of the LU factorization of the (equilibrated)
matrix A could be poor. This also means that the solution
x, condition estimator rcond, and forward error bound
ferr could be unreliable. If factorization fails with
0 < info ≤ n, then work(1) for real flavors, or rwork(1)
for complex flavors contains the reciprocal pivot growth
factor for the leading info columns of A.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The
factorization has been completed, but the factor U is
exactly singular, so the solution and error bounds could
not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

4-170

4 Intel® Math Kernel Library Reference Manual

?gbsv
Computes the solution to the system of
linear equations with a band matrix A
and multiple right-hand sides.

call sgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call dgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call cgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call zgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

Discussion

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n band matrix with kl subdiagonals and ku

superdiagonals, the columns of matrix B are individual right-hand sides,
and the columns of X are the corresponding solutions.

The LU decomposition with partial pivoting and row interchanges is used to
factor A as A = L U, where L is a product of permutation and unit lower
triangular matrices with kl subdiagonals, and U is upper triangular with
kl+ku superdiagonals. The factored form of A is then used to solve the
system of equations AX = B.

Input Parameters

n INTEGER. The order of A; the number of rows in B
(n ≥ 0).

kl INTEGER. The number of sub-diagonals within the
band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the
band of A (ku ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

ab, b REAL for sgbsv
DOUBLE PRECISION for dgbsv
COMPLEX for cgbsv

LAPACK Routines: Linear Equations4

4-171

DOUBLE COMPLEX for zgbsv.
Arrays: ab(ldab,*), b(ldb,*).
The array ab contains the matrix A in band storage
(see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ 2kl + ku +1)

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

ab Overwritten by L and U. The diagonal and kl + ku

super-diagonals of U are stored in the first 1 + kl + ku

rows of ab. The multipliers used to form L are stored in
the next kl rows.

b Overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: row i was interchanged with row
ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly singular,
so the solution could not be computed.

4-172

4 Intel® Math Kernel Library Reference Manual

?gbsvx
Computes the solution to the real or
complex system of linear equations with a
band matrix A and multiple right-hand
sides, and provides error bounds on the
solution.

call sgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,
work, iwork, info)

call dgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,
work, iwork, info)

call cgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,
work, rwork, info)

call zgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,
work, rwork, info)

Discussion

This routine uses the LU factorization to compute the solution to a real or
complex system of linear equations AX = B, ATX = B, or AHX = B, where
A is a band matrix of order n with kl subdiagonals and ku superdiagonals,
the columns of matrix B are individual right-hand sides, and the columns of
X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gbsvx performs the following steps:

1. If fact = 'E', real scaling factors r and c are computed to equilibrate
the system:

trans = 'N': diag(r)*A*diag(c) *diag(c)-1*X = diag(r)*B

trans = 'T': (diag(r)*A*diag(c))T *diag(r)-1*X = diag(c)*B

trans = 'C': (diag(r)*A*diag(c))H *diag(r)-1*X = diag(c)*B

LAPACK Routines: Linear Equations4

4-173

Whether or not the system will be equilibrated depends on the scaling of the
matrix A, but if equilibration is used, A is overwritten by diag(r)*A*diag(c)
and B by diag(r)*B (if trans='N') or diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the matrix A
(after equilibration if fact = 'E') as A = L U, where L is a product of
permutation and unit lower triangular matrices with kl subdiagonals, and
U is upper triangular with kl+ku superdiagonals.

3. If some Ui,i = 0, so that U is exactly singular, then the routine returns
with info = i. Otherwise, the factored form of A is used to estimate the
condition number of the matrix A. If the reciprocal of the condition number
is less than machine precision, info = n + 1 is returned as a warning, but
the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if
trans = 'N') or diag(r) (if trans = 'T' or 'C') so that it solves the original
system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrix A
should be equilibrated before it is factored.

If fact = 'F': on entry, afb and ipiv contain the
factored form of A. If equed is not 'N', the matrix A has
been equilibrated with scaling factors given by r and c.
ab, afb, and ipiv are not modified.

If fact = 'N', the matrix A will be copied to afb and
factored.
If fact = 'E', the matrix A will be equilibrated if
necessary, then copied to afb and factored.

trans CHARACTER*1. Must be 'N', 'T', or 'C'.

4-174

4 Intel® Math Kernel Library Reference Manual

Specifies the form of the system of equations:

If trans = 'N', the system has the form A X = B
(No transpose);
If trans = 'T', the system has the form AT X = B
(Transpose);
If trans = 'C', the system has the form AH X = B
(Conjugate transpose);

n INTEGER. The number of linear equations; the order of
the matrix A (n ≥ 0).

kl INTEGER. The number of sub-diagonals within the
band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the
band of A (ku ≥ 0).

nrhs INTEGER. The number of right hand sides; the number
of columns of the matrices B and X (nrhs ≥ 0).

ab,afb,b,work REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*),
work(*).

The array ab contains the matrix A in band storage
(see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).
If fact = 'F' and equed is not 'N', then A must have

been equilibrated by the scaling factors in r and/or c.

The array afb is an input argument if fact = 'F' .
The second dimension of afb must be at least max(1,n).
It contains the factored form of the matrix A, i.e., the
factors L and U from the factorization A = L U as
computed by ?gbtrf. U is stored as an upper triangular
band matrix with kl + ku super-diagonals in the first
1 + kl + ku rows of afb. The multipliers used during

LAPACK Routines: Linear Equations4

4-175

the factorization are stored in the next kl rows.
If equed is not 'N', then afb is the factored form of the
equilibrated matrix A.

The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,3*n) for
real flavors, and at least max(1,2*n) for complex
flavors.

ldab INTEGER. The first dimension of ab; ldab ≥ kl+ku+1.

ldafb INTEGER. The first dimension of afb;
ldafb ≥ 2*kl+ku+1.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains the pivot indices from the factorization
A = L U as computed by ?gbtrf; row i of the matrix was
interchanged with row ipiv(i).

equed CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact = 'F' . It specifies
the form of equilibration that was done:
If equed = 'N', no equilibration was done (always
true if fact = 'N');
If equed = 'R', row equilibration was done and A has
been premultiplied by diag(r);
If equed = 'C', column equilibration was done and A
has been postmultiplied by diag(c);
If equed = 'B', both row and column equilibration was
done; A has been replaced by diag(r)*A*diag(c).

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(n), c(n).
The array r contains the row scale factors for A, and the

4-176

4 Intel® Math Kernel Library Reference Manual

array c contains the column scale factors for A. These
arrays are input arguments if fact = 'F' only; otherwise
they are output arguments.
If equed = 'R' or 'B', A is multiplied on the left by
diag(r); if equed = 'N' or 'C', r is not accessed.
If fact = 'F' and equed = 'R' or 'B', each element of
r must be positive.
If equed = 'C' or 'B', A is multiplied on the right by
diag(c); if equed = 'N' or 'R', c is not accessed.
If fact = 'F' and equed = 'C' or 'B', each element of
c must be positive.

ldx INTEGER. The first dimension of the output array x;
ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used
in real flavors only.

rwork REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1, n); used
in complex flavors only.

Output Parameters

x REAL for sgbsvx
DOUBLE PRECISION for dgbsvx
COMPLEX for cgbsvx
DOUBLE COMPLEX for zgbsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the
solution matrix X to the original system of equations.
Note that A and B are modified on exit if equed ≠ 'N',
and the solution to the equilibrated system is:
diag(c)-1*X, if trans = 'N' and equed = 'C' or 'B';
diag(r)-1*X, if trans = 'T' or 'C' and equed = 'R'

or 'B'.
The second dimension of x must be at least
max(1,nrhs).

LAPACK Routines: Linear Equations4

4-177

ab Array ab is not modified on exit if fact = 'F' or 'N', or if
fact = 'E' and equed = 'N'.
If equed ≠ 'N', A is scaled on exit as follows:
equed = 'R': A = diag(r)*A
equed = 'C': A = A*diag(c)
equed = 'B': A = diag(r)*A*diag(c)

afb If fact = 'N' or 'E', then afb is an output argument
and on exit returns details of the LU factorization of the
original matrix A(if fact = 'N') or of the equilibrated
matrix A (if fact = 'E'). See the description of ab for the
form of the equilibrated matrix.

b Overwritten by diag(r)*b if trans = 'N' and
equed = 'R' or 'B';
overwritten by diag(c)*b if trans = 'T' and equed

= 'C' or 'B';
not changed if equed = 'N'.

r, c These arrays are output arguments if fact ≠ 'F' .
See the description of r, c in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done).
If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

ipiv If fact = 'N' or 'E', then ipiv is an output argument
and on exit contains the pivot indices from the
factorization A = L U of the original matrix A(if fact =
'N') or of the equilibrated matrix A (if fact = 'E').

4-178

4 Intel® Math Kernel Library Reference Manual

equed If fact ≠ 'F' , then equed is an output argument. It
specifies the form of equilibration that was done (see the
description of equed in Input Arguments section).

work, rwork On exit, work(1) for real flavors, or rwork(1) for
complex flavors, contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element"
norm is used. If work(1) for real flavors, or rwork(1)
for complex flavors is much less than 1, then the
stability of the LU factorization of the (equilibrated)
matrix A could be poor. This also means that the solution
x, condition estimator rcond, and forward error bound
ferr could be unreliable. If factorization fails with
0 < info ≤ n, then work(1) for real flavors, or rwork(1)
for complex flavors contains the reciprocal pivot growth
factor for the leading info columns of A.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The
factorization has been completed, but the factor U is
exactly singular, so the solution and error bounds could
not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

LAPACK Routines: Linear Equations4

4-179

?gtsv
Computes the solution to the system of
linear equations with a tridiagonal
matrix A and multiple right-hand sides.

call sgtsv (n, nrhs, dl, d, du, b, ldb, info)

call dgtsv (n, nrhs, dl, d, du, b, ldb, info)

call cgtsv (n, nrhs, dl, d, du, b, ldb, info)

call zgtsv (n, nrhs, dl, d, du, b, ldb, info)

Discussion

This routine solves for X the system of linear equations AX = B, where A is
an n-by-n tridiagonal matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.
The routine uses Gaussian elimination with partial pivoting.

Note that the equation ATX = B may be solved by interchanging the order
of the arguments du and dl.

Input Parameters

n INTEGER. The order of A; the number of rows in B
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

dl, d, du, b REAL for sgtsv
DOUBLE PRECISION for dgtsv
COMPLEX for cgtsv
DOUBLE COMPLEX for zgtsv.
Arrays: dl(n - 1), d(n), du(n - 1), b(ldb,*).
The array dl contains the (n - 1) subdiagonal elements
of A.
The array d contains the diagonal elements of A.
The array du contains the (n - 1) superdiagonal
elements of A.

4-180

4 Intel® Math Kernel Library Reference Manual

The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

dl Overwritten by the (n-2) elements of the second
superdiagonal of the upper triangular matrix U from the
LU factorization of A. These elements are stored in
dl(1), ... , dl(n-2).

d Overwritten by the n diagonal elements of U.

du Overwritten by the (n-1) elements of the first
superdiagonal of U.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, U(i,i) is exactly zero, and the solution has
not been computed. The factorization has not been
completed unless i = n.

LAPACK Routines: Linear Equations4

4-181

?gtsvx
Computes the solution to the real or complex
system of linear equations with a tridiagonal
matrix A and multiple right-hand sides, and
provides error bounds on the solution.

call sgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
iwork, info)

call dgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
iwork, info)

call cgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
rwork, info)

call zgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
rwork, info)

Discussion

This routine uses the LU factorization to compute the solution to a real or
complex system of linear equations AX = B, ATX = B, or AHX = B, where
A is a tridiagonal matrix of order n, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gtsvx performs the following steps:

1. If fact = 'N', the LU decomposition is used to factor the matrix A as
A = LU, where L is a product of permutation and unit lower bidiagonal
matrices and U is an upper triangular matrix with nonzeroes in only the
main diagonal and first two superdiagonals.

2. If some Ui,i = 0, so that U is exactly singular, then the routine returns
with info = i. Otherwise, the factored form of A is used to estimate the
condition number of the matrix A. If the reciprocal of the condition number

4-182

4 Intel® Math Kernel Library Reference Manual

is less than machine precision, info = n + 1 is returned as a warning, but
the routine still goes on to solve for X and compute error bounds as
described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix
A has been supplied on entry.

If fact = 'F': on entry, dlf, df, duf, du2, and
ipiv contain the factored form of A; arrays dl, d, du,
dlf, df, duf, du2, and ipiv will not be modified.

If fact = 'N', the matrix A will be copied to dlf, df,
and duf and factored.

trans CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form A X = B
(No transpose);
If trans = 'T', the system has the form AT X = B
(Transpose);
If trans = 'C', the system has the form AH X = B
(Conjugate transpose);

n INTEGER. The number of linear equations; the order of
the matrix A (n ≥ 0).

nrhs INTEGER. The number of right hand sides; the number
of columns of the matrices B and X (nrhs ≥ 0).

dl,d,du,dlf,df,

duf,du2,b,x,work REAL for sgtsvx
DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx
DOUBLE COMPLEX for zgtsvx.

Arrays:

LAPACK Routines: Linear Equations4

4-183

dl, dimension (n - 1), contains the subdiagonal
elements of A.

d, dimension (n), contains the diagonal elements of A.

du, dimension (n - 1), contains the superdiagonal
elements of A.

dlf, dimension (n - 1). If fact = 'F' , then dlf is an
input argument and on entry contains the (n - 1)
multipliers that define the matrix L from the LU
factorization of A as computed by ?gttrf.

df, dimension (n). If fact = 'F' , then df is an input
argument and on entry contains the n diagonal elements
of the upper triangular matrix U from the LU
factorization of A.

duf, dimension (n - 1). If fact = 'F' , then duf is an
input argument and on entry contains the (n - 1)
elements of the first super-diagonal of U.

du2, dimension (n - 2). If fact = 'F' , then du2 is an
input argument and on entry contains the (n - 2)
elements of the second super-diagonal of U.

b(ldb,*) contains the right-hand side matrix B. The
second dimension of b must be at least max(1,nrhs).

x(ldx,*) contains the solution matrix X. The second
dimension of x must be at least max(1,nrhs).

work (*) is a workspace array;
the dimension of work must be at least max(1, 3*n) for
real flavors and max(1, 2*n) for complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n). If fact = 'F' , then
ipiv is an input argument and on entry contains the
pivot indices, as returned by ?gttrf.

iwork INTEGER.
Workspace array, DIMENSION (n). Used for real
flavors only.

4-184

4 Intel® Math Kernel Library Reference Manual

rwork REAL for cgtsvx
DOUBLE PRECISION for zgtsvx.
Workspace array, DIMENSION (n). Used for complex
flavors only.

Output Parameters

x REAL for sgtsvx
DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx
DOUBLE COMPLEX for zgtsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the
solution matrix X. The second dimension of x must be
at least max(1,nrhs).

dlf If fact = 'N' , then dlf is an output argument and on
exit contains the (n - 1) multipliers that define the
matrix L from the LU factorization of A.

df If fact = 'N' , then df is an output argument and on exit
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.

duf If fact = 'N' , then duf is an output argument and on
exit contains the (n - 1) elements of the first
super-diagonal of U.

du2 If fact = 'N' , then du2 is an output argument and on
exit contains the (n - 2) elements of the second
super-diagonal of U.

ipiv The array ipiv is an output argument if fact = 'N' and,
on exit, contains the pivot indices from the factorization
A = L U ; row i of the matrix was interchanged with
row ipiv(i). The value of ipiv(i) will always be
either i or i+1; ipiv(i)=i indicates a row interchange
was not required.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the

LAPACK Routines: Linear Equations4

4-185

matrix A.
If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The
factorization has not been completed unless i = n, but
the factor U is exactly singular, so the solution and error
bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

4-186

4 Intel® Math Kernel Library Reference Manual

?posv
Computes the solution to the system of
linear equations with a symmetric or
Hermitian positive definite matrix A and
multiple right-hand sides.

call sposv (uplo, n, nrhs, a, lda, b, ldb, info)

call dposv (uplo, n, nrhs, a, lda, b, ldb, info)

call cposv (uplo, n, nrhs, a, lda, b, ldb, info)

call zposv (uplo, n, nrhs, a, lda, b, ldb, info)

Discussion

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric/Hermitian positive definite
matrix, the columns of matrix B are individual right-hand sides, and the
columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as A = UHU if uplo ='U'

or A = LLH if uplo ='L', where U is an upper triangular matrix and L is a
lower triangular matrix. The factored form of A is then used to solve the
system of equations AX = B.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular
part of the matrix A, and A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular
part of the matrix A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

LAPACK Routines: Linear Equations4

4-187

a, b REAL for sposv
DOUBLE PRECISION for dposv
COMPLEX for cposv
DOUBLE COMPLEX for zposv.
Arrays: a(lda,*), b(ldb,*).
The array a contains either the upper or the lower
triangular part of the matrix A (see uplo).
The second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

a If info=0, the upper or lower triangular part of a is
overwritten by the Cholesky factor U or L, as specified
by uplo.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the
matrix A itself) is not positive definite, so the
factorization could not be completed, and the solution
has not been computed.

4-188

4 Intel® Math Kernel Library Reference Manual

?posvx
Uses the Cholesky factorization to compute
the solution to the system of linear
equations with a symmetric or Hermitian
positive definite matrix A, and provides
error bounds on the solution.

call sposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

call zposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

Discussion

This routine uses the Cholesky factorization A=UHU or A=LLH to compute
the solution to a real or complex system of linear equations AX = B, where
A is a n-by-n real symmetric/Hermitian positive definite matrix, the
columns of matrix B are individual right-hand sides, and the columns of X
are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?posvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

diag(s)*A*diag(s) *diag(s)-1*X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the
matrix A, but if equilibration is used, A is overwritten by diag(s)*A*diag(s)
and B by diag(s)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the
matrix A (after equilibration if fact = 'E') as

LAPACK Routines: Linear Equations4

4-189

A = UH U, if uplo = ‘U’, or
A = L LH , if uplo = ‘L’,
where U is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive definite, then the
routine returns with info = i. Otherwise, the factored form of A is used to
estimate the condition number of the matrix A. If the reciprocal of the
condition number is less than machine precision, info = n + 1 is returned
as a warning, but the routine still goes on to solve for X and compute error
bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that
it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrix A
should be equilibrated before it is factored.

If fact = 'F': on entry, af contains the factored form
of A. If equed = 'Y', the matrix A has been equilibrated
with scaling factors given by s.
a and af will not be modified.

If fact = 'N', the matrix A will be copied to af and
factored.
If fact = 'E', the matrix A will be equilibrated if
necessary, then copied to af and factored.

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular
part of the matrix A, and A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular
part of the matrix A; A is factored as LLH.

4-190

4 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

a,af,b,work REAL for sposvx
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*),
work(*).

The array a contains the matrix Aas specified by uplo.
If fact = 'F' and equed = 'Y', then A must have been
equilibrated by the scaling factors in s, and a must
contain the equilibrated matrix diag(s)*A*diag(s). The
second dimension of a must be at least max(1,n).

The array af is an input argument if fact = 'F' .
It contains the triangular factor U or L from the
Cholesky factorization of A in the same storage format
as A. If equed is not 'N', then af is the factored form of
the equilibrated matrix diag(s)*A*diag(s). The second
dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,3*n) for
real flavors, and at least max(1,2*n) for complex
flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

equed CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies
the form of equilibration that was done:
If equed = 'N', no equilibration was done (always

LAPACK Routines: Linear Equations4

4-191

true if fact = 'N');
If equed = 'Y', equilibration was done and A has been
replaced by diag(s)*A*diag(s).

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The array s contains the scale factors for A. This array
is an input argument if fact = 'F' only; otherwise it is an
output argument.
If equed = 'N' , s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must
be positive.

ldx INTEGER. The first dimension of the output array x;
ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used
in real flavors only.

rwork REAL for cposvx;
DOUBLE PRECISION for zposvx.
Workspace array, DIMENSION at least max(1, n); used
in complex flavors only.

Output Parameters

x REAL for sposvx
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the
solution matrix X to the original system of equations.
Note that if equed = 'Y', A and B are modified on exit,
and the solution to the equilibrated system is
diag(s)-1*X.
The second dimension of x must be at least
max(1,nrhs).

4-192

4 Intel® Math Kernel Library Reference Manual

a Array a is not modified on exit if fact = 'F' or 'N', or if
fact = 'E' and equed = 'N'.
If fact = 'E' and equed = 'Y', A is overwritten by
diag(s)*A*diag(s)

af If fact = 'N' or 'E', then af is an output argument and
on exit returns the triangular factor U or L from the
Cholesky factorization A=UHU or A=LLH of the
original matrix A(if fact = 'N'), or of the equilibrated
matrix A (if fact = 'E'). See the description of a for the
form of the equilibrated matrix.

b Overwritten by diag(s)*B , if equed = 'Y';
not changed if equed = 'N'.

s This array is an output argument if fact ≠ 'F' .
See the description of s in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done). If rcond is less
than the machine precision (in particular, if rcond = 0),
the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

equed If fact ≠ 'F' , then equed is an output argument. It
specifies the form of equilibration that was done (see the
description of equed in Input Arguments section).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and
hence the matrix A itself) is not positive definite, so the
factorization could not be completed, and the solution
and error bounds could not be computed; rcond = 0 is

LAPACK Routines: Linear Equations4

4-193

returned.
If info = i, and i = n +1, then U is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

?ppsv
Computes the solution to the system of linear
equations with a symmetric (Hermitian)
positive definite packed matrix A and
multiple right-hand sides.

call sppsv (uplo, n, nrhs, ap, b, ldb, info)

call dppsv (uplo, n, nrhs, ap, b, ldb, info)

call cppsv (uplo, n, nrhs, ap, b, ldb, info)

call zppsv (uplo, n, nrhs, ap, b, ldb, info)

Discussion

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n real symmetric/Hermitian positive definite
matrix stored in packed format, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as A = UHU if uplo ='U'

or A = LLH if uplo ='L', where U is an upper triangular matrix and L is a
lower triangular matrix. The factored form of A is then used to solve the
system of equations AX = B.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

4-194

4 Intel® Math Kernel Library Reference Manual

Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular
part of the matrix A, and A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular
part of the matrix A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

ap, b REAL for sppsv
DOUBLE PRECISION for dppsv
COMPLEX for cppsv
DOUBLE COMPLEX for zppsv.
Arrays: ap(*), b(ldb,*).
The array ap contains either the upper or the lower
triangular part of the matrix A (as specified by uplo) in
packed storage (see Matrix Storage Schemes).
The dimension of ap must be at least max(1,n(n+1)/2).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

ap If info=0, the upper or lower triangular part of A in
packed storage is overwritten by the Cholesky factor U
or L, as specified by uplo.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the
matrix A itself) is not positive definite, so the
factorization could not be completed, and the solution
has not been computed.

LAPACK Routines: Linear Equations4

4-195

?ppsvx
Uses the Cholesky factorization to compute the
solution to the system of linear equations with a
symmetric (Hermitian) positive definite packed
matrix A, and provides error bounds on the
solution.

call sppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call dppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call cppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

call zppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

Discussion

This routine uses the Cholesky factorization A=UHU or A=LLH to compute
the solution to a real or complex system of linear equations AX = B, where
A is a n-by-n symmetric or Hermitian positive definite matrix stored in
packed format, the columns of matrix B are individual right-hand sides, and
the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ppsvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

diag(s)*A*diag(s) *diag(s)-1*X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the
matrix A, but if equilibration is used, A is overwritten by diag(s)*A*diag(s)
and B by diag(s)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the
matrix A (after equilibration if fact = 'E') as

4-196

4 Intel® Math Kernel Library Reference Manual

A = UH U, if uplo = ‘U’, or
A = L LH , if uplo = ‘L’,
where U is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive definite, then the
routine returns with info = i. Otherwise, the factored form of A is used to
estimate the condition number of the matrix A. If the reciprocal of the
condition number is less than machine precision, info = n + 1 is returned
as a warning, but the routine still goes on to solve for X and compute error
bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that
it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrix A
should be equilibrated before it is factored.

If fact = 'F': on entry, afp contains the factored form
of A. If equed = 'Y', the matrix A has been equilibrated
with scaling factors given by s.
ap and afp will not be modified.

If fact = 'N', the matrix A will be copied to afp and
factored.
If fact = 'E', the matrix A will be equilibrated if
necessary, then copied to afp and factored.

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array ap stores the upper triangular
part of the matrix A, and A is factored as UHU.
If uplo = 'L', the array ap stores the lower triangular
part of the matrix A; A is factored as LLH.

LAPACK Routines: Linear Equations4

4-197

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

ap,afp,b,work REAL for sppsvx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Arrays: ap(*), afp(*), b(ldb,*), work (*).

The array ap contains the upper or lower triangle of the
original symmetric/Hermitian matrix A in packed
storage (see Matrix Storage Schemes). In case when
fact = 'F' and equed = 'Y', ap must contain the
equilibrated matrix diag(s)*A*diag(s).

The array afp is an input argument if fact = 'F' and
contains the triangular factor U or L from the Cholesky
factorization of A in the same storage format as A. If
equed is not 'N', then afp is the factored form of the
equilibrated matrix A.
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
work (*) is a workspace array.
The dimension of arrays ap and afp must be at least
max(1,n(n+1)/2); the second dimension of b must be at
least max(1,nrhs); the dimension of work must be at
least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

equed CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies
the form of equilibration that was done:
If equed = 'N', no equilibration was done (always
true if fact = 'N');
If equed = 'Y', equilibration was done and A has been
replaced by diag(s)*A*diag(s).

4-198

4 Intel® Math Kernel Library Reference Manual

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The array s contains the scale factors for A. This array
is an input argument if fact = 'F' only; otherwise it is an
output argument.
If equed = 'N' , s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must
be positive.

ldx INTEGER. The first dimension of the output array x;
ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used
in real flavors only.

rwork REAL for cppsvx;
DOUBLE PRECISION for zppsvx.
Workspace array, DIMENSION at least max(1, n); used
in complex flavors only.

Output Parameters

x REAL for sppsvx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the
solution matrix X to the original system of equations.
Note that if equed ='Y', A and B are modified on exit,
and the solution to the equilibrated system is
diag(s)-1*X.
The second dimension of x must be at least
max(1,nrhs).

ap Array ap is not modified on exit if fact = 'F' or 'N', or if
fact = 'E' and equed = 'N'.
If fact = 'E' and equed = 'Y', A is overwritten by
diag(s)*A*diag(s)

LAPACK Routines: Linear Equations4

4-199

afp If fact = 'N' or 'E', then afp is an output argument
and on exit returns the triangular factor U or L from the
Cholesky factorization A=UHU or A=LLH of the
original matrix A(if fact = 'N'), or of the equilibrated
matrix A (if fact = 'E'). See the description of ap for the
form of the equilibrated matrix.

b Overwritten by diag(s)*B , if equed = 'Y';
not changed if equed = 'N'.

s This array is an output argument if fact ≠ 'F' .
See the description of s in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done). If rcond is less
than the machine precision (in particular, if rcond = 0),
the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

equed If fact ≠ 'F' , then equed is an output argument. It
specifies the form of equilibration that was done (see the
description of equed in Input Arguments section).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i
(and hence the matrix A itself) is not positive definite, so
the factorization could not be completed, and the
solution and error bounds could not be computed;
rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

4-200

4 Intel® Math Kernel Library Reference Manual

?pbsv
Computes the solution to the system of
linear equations with a symmetric or
Hermitian positive definite band
matrix A and multiple right-hand sides.

call spbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call dpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call cpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call zpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

Discussion

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric/Hermitian positive definite band
matrix, the columns of matrix B are individual right-hand sides, and the
columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as A = UHU if uplo ='U'

or A = LLH if uplo ='L', where U is an upper triangular band matrix and
L is a lower triangular band matrix, with the same number of superdiagonals
or subdiagonals as A. The factored form of A is then used to solve the
system of equations AX = B.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is stored in the array ab, and how A is factored:
If uplo = 'U', the array ab stores the upper triangular
part of the matrix A, and A is factored as UHU.
If uplo = 'L', the array ab stores the lower triangular
part of the matrix A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).

LAPACK Routines: Linear Equations4

4-201

kd INTEGER. The number of superdiagonals of the
matrix A if uplo = 'U', or the number of subdiagonals
if uplo = 'L' (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

ab, b REAL for spbsv
DOUBLE PRECISION for dpbsv
COMPLEX for cpbsv
DOUBLE COMPLEX for zpbsv.
Arrays: ab(ldab, *), b(ldb,*).
The array ab contains either the upper or the lower
triangular part of the matrix A (as specified by uplo) in
band storage (see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1)

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

ab The upper or lower triangular part of A (in band storage)
is overwritten by the Cholesky factor U or L, as
specified by uplo, in the same storage format as A.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the
matrix A itself) is not positive definite, so the
factorization could not be completed, and the solution
has not been computed.

4-202

4 Intel® Math Kernel Library Reference Manual

?pbsvx
Uses the Cholesky factorization to compute the
solution to the system of linear equations with a
symmetric (Hermitian) positive definite band
matrix A, and provides error bounds on the
solution.

call spbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call zpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

Discussion

This routine uses the Cholesky factorization A=UHU or A=LLH to compute
the solution to a real or complex system of linear equations AX = B, where
A is a n-by-n symmetric or Hermitian positive definite band matrix, the
columns of matrix B are individual right-hand sides, and the columns of X
are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?pbsvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

diag(s)*A*diag(s) *diag(s)-1*X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the
matrix A, but if equilibration is used, A is overwritten by diag(s)*A*diag(s)
and B by diag(s)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the
matrix A (after equilibration if fact = 'E') as

LAPACK Routines: Linear Equations4

4-203

A = UH U, if uplo = ‘U’, or
A = L LH , if uplo = ‘L’,
where U is an upper triangular band matrix and L is a lower triangular band
matrix.

3. If the leading i-by-i principal minor is not positive definite, then the
routine returns with info = i. Otherwise, the factored form of A is used to
estimate the condition number of the matrix A. If the reciprocal of the
condition number is less than machine precision, info = n + 1 is returned
as a warning, but the routine still goes on to solve for X and compute error
bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that
it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrix A
should be equilibrated before it is factored.

If fact = 'F': on entry, afb contains the factored form
of A. If equed = 'Y', the matrix A has been equilibrated
with scaling factors given by s.
ab and afb will not be modified.

If fact = 'N', the matrix A will be copied to afb and
factored.
If fact = 'E', the matrix A will be equilibrated if
necessary, then copied to afb and factored.

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A
is stored and how A is factored:

4-204

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U', the array ab stores the upper triangular
part of the matrix A, and A is factored as UHU.
If uplo = 'L', the array ab stores the lower triangular
part of the matrix A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrix A (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

ab,afb,b,work REAL for spbsvx
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Arrays: ab(ldab,*), afb(ldab,*), b(ldb,*),
work(*).
The array ab contains the upper or lower triangle of the
matrix A in band storage (see Matrix Storage Schemes).
If fact = 'F' and equed = 'Y', then ab must contain the

equilibrated matrix diag(s)*A*diag(s). The second
dimension of ab must be at least max(1, n).
The array afb is an input argument if fact = 'F' .

It contains the triangular factor U or L from the
Cholesky factorization of the band matrix A in the same
storage format as A. If equed = 'Y', then afb is the
factored form of the equilibrated matrix A.
The second dimension of afb must be at least max(1,n).

The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,3*n) for
real flavors, and at least max(1,2*n) for complex
flavors.

ldab INTEGER. The first dimension of ab; ldab ≥ kd+1.

ldafb INTEGER. The first dimension of afb; ldafb ≥ kd+1.

LAPACK Routines: Linear Equations4

4-205

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

equed CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies
the form of equilibration that was done:
If equed = 'N', no equilibration was done (always
true if fact = 'N');
If equed = 'Y', equilibration was done and A has been
replaced by diag(s)*A*diag(s).

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The array s contains the scale factors for A. This array
is an input argument if fact = 'F' only; otherwise it is an
output argument.
If equed = 'N' , s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must
be positive.

ldx INTEGER. The first dimension of the output array x;
ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used
in real flavors only.

rwork REAL for cpbsvx;
DOUBLE PRECISION for zpbsvx.
Workspace array, DIMENSION at least max(1, n); used
in complex flavors only.

Output Parameters

x REAL for spbsvx
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Array, DIMENSION (ldx,*).

4-206

4 Intel® Math Kernel Library Reference Manual

If info = 0 or info = n+1, the array x contains the
solution matrix X to the original system of equations.
Note that if equed ='Y', A and B are modified on exit,
and the solution to the equilibrated system is
diag(s)-1*X.
The second dimension of x must be at least
max(1,nrhs).

ab On exit, if fact = 'E' and equed = 'Y', A is overwritten
by diag(s)*A*diag(s)

afb If fact = 'N' or 'E', then afb is an output argument
and on exit returns the triangular factor U or L from the
Cholesky factorization A=UHU or A=LLH of the
original matrix A(if fact = 'N'), or of the equilibrated
matrix A (if fact = 'E'). See the description of ab for the
form of the equilibrated matrix.

b Overwritten by diag(s)*B , if equed = 'Y';
not changed if equed = 'N'.

s This array is an output argument if fact ≠ 'F' .
See the description of s in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done). If rcond is less
than the machine precision (in particular, if rcond = 0),
the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

equed If fact ≠ 'F' , then equed is an output argument. It
specifies the form of equilibration that was done (see the
description of equed in Input Arguments section).

LAPACK Routines: Linear Equations4

4-207

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and
hence the matrix A itself) is not positive definite, so the
factorization could not be completed, and the solution
and error bounds could not be computed; rcond = 0 is
returned.
If info = i, and i = n +1, then U is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

?ptsv
Computes the solution to the system of
linear equations with a symmetric or
Hermitian positive definite tridiagonal
matrix A and multiple right-hand sides.

call sptsv (n, nrhs, d, e, b, ldb, info)

call dptsv (n, nrhs, d, e, b, ldb, info)

call cptsv (n, nrhs, d, e, b, ldb, info)

call zptsv (n, nrhs, d, e, b, ldb, info)

Discussion

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric/Hermitian positive definite
tridiagonal matrix, the columns of matrix B are individual right-hand sides,
and the columns of X are the corresponding solutions.

A is factored as A = L D LH , and the factored form of A is then used to
solve the system of equations AX = B.

4-208

4 Intel® Math Kernel Library Reference Manual

Input Parameters
n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

d REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Array, dimension at least max(1, n). Contains the
diagonal elements of the tridiagonal matrix A.

e, b REAL for sptsv
DOUBLE PRECISION for dptsv
COMPLEX for cptsv
DOUBLE COMPLEX for zptsv.
Arrays: e(n - 1) , b(ldb,*).
The array e contains the (n - 1) subdiagonal elements
of A.
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

d Overwritten by the n diagonal elements of the diagonal
matrix D from the LDLH factorization of A.

e Overwritten by the (n - 1) subdiagonal elements of the
unit bidiagonal factor L from the factorization of A.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the
matrix A itself) is not positive definite, and the solution
has not been computed. The factorization has not been
completed unless i = n.

LAPACK Routines: Linear Equations4

4-209

?ptsvx
Uses the factorization A=LDLH to compute
the solution to the system of linear equations
with a symmetric (Hermitian) positive definite
tridiagonal matrix A, and provides error bounds
on the solution.

call sptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
ferr, berr, work, info)

call dptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
ferr, berr, work, info)

call cptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

call zptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

Discussion

This routine uses the Cholesky factorization A=L D LH to compute the
solution to a real or complex system of linear equations AX = B, where A is
a n-by-n symmetric or Hermitian positive definite tridiagonal matrix, the
columns of matrix B are individual right-hand sides, and the columns of X
are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ptsvx performs the following steps:

1. If fact = 'N', the matrix A is factored as A = L D LH, where L is a unit
lower bidiagonal matrix and D is diagonal. The factorization can also be
regarded as having the form A = UH D U.

2. If the leading i-by-i principal minor is not positive definite, then the
routine returns with info = i. Otherwise, the factored form of A is used to
estimate the condition number of the matrix A. If the reciprocal of the
condition number is less than machine precision, info = n + 1 is returned
as a warning, but the routine still goes on to solve for X and compute error
bounds as described below.

4-210

4 Intel® Math Kernel Library Reference Manual

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix
A is supplied on entry.

If fact = 'F': on entry, df and ef contain the
factored form of A. Arrays d, e, df, and ef will not be
modified.

If fact = 'N', the matrix A will be copied to df and ef
and factored.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

d,df,rwork REAL for single precision flavors
DOUBLE PRECISION for double precision flavors
Arrays: d(n), df(n), rwork(n).
The array d contains the n diagonal elements of the
tridiagonal matrix A.
The array df is an input argument if fact = 'F' and
on entry contains the n diagonal elements of the
diagonal matrix D from the L D LH factorization of A .
The array rwork is a workspace array used for complex
flavors only.

e,ef,b,work REAL for sptsvx
DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx
DOUBLE COMPLEX for zptsvx.
Arrays: e(n - 1), ef(n - 1), b(ldb,*), work(*).
The array e contains the (n - 1) subdiagonal elements
of the tridiagonal matrix A.

LAPACK Routines: Linear Equations4

4-211

The array ef is an input argument if fact = 'F' and
on entry contains the (n - 1) subdiagonal elements of
the unit bidiagonal factor L from the L D LH

factorization of A.
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The array work is a workspace array. The dimension of
work must be at least 2*n for real flavors, and at least
n for complex flavors.

ldb INTEGER. The leading dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The leading dimension of x; ldx ≥ max(1, n).

Output Parameters

x REAL for sptsvx
DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx
DOUBLE COMPLEX for zptsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the
solution matrix X to the system of equations. The
second dimension of x must be at least max(1,nrhs).

df, ef These arrays are output arguments if fact = 'N' .
See the description of df, ef in Input Arguments
section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done). If rcond is less
than the machine precision (in particular, if rcond = 0),
the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

4-212

4 Intel® Math Kernel Library Reference Manual

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and
hence the matrix A itself) is not positive definite, so the
factorization could not be completed, and the solution
and error bounds could not be computed; rcond = 0 is
returned.
If info = i, and i = n +1, then U is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

?sysv
Computes the solution to the system of
linear equations with a real or complex
symmetric matrix A and multiple
right-hand sides.

call ssysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call dsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call csysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call zsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

Discussion

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric matrix, the columns of matrix B
are individual right-hand sides, and the columns of X are the corresponding
solutions.

LAPACK Routines: Linear Equations4

4-213

The diagonal pivoting method is used to factor A as A = U D UT or
A = L D LT , where U (or L) is a product of permutation and unit upper
(lower) triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular
part of the matrix A, and A is factored as UDUT.
If uplo = 'L', the array a stores the lower triangular
part of the matrix A; A is factored as LDLT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

a, b, work REAL for ssysv
DOUBLE PRECISION for dsysv
COMPLEX for csysv
DOUBLE COMPLEX for zsysv.
Arrays: a(lda,*), b(ldb,*), work(lwork).
The array a contains either the upper or the lower
triangular part of the symmetric matrix A (see uplo).
The second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).
work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

lwork INTEGER. The size of the work array (lwork ≥ 1)
See Application notes for the suggested value of lwork.

4-214

4 Intel® Math Kernel Library Reference Manual

Output Parameters
a If info = 0, a is overwritten by the block-diagonal

matrix D and the multipliers used to obtain the factor U
(or L) from the factorization of A as computed by ?sytrf.

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block
structure of D, as determined by ?sytrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block,
and the ith row and column of A was interchanged with
the kth row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

work(1) If info=0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been
completed, but D is exactly singular, so the solution
could not be computed.

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use lwork =-1 for the
first run. In this case, a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first

LAPACK Routines: Linear Equations4

4-215

entry work(1) of the work array , and no error message related to lwork

is issued by XERBLA. On exit, examine work(1) and use this value for
subsequent runs.

?sysvx
Uses the diagonal pivoting factorization to
compute the solution to the system of linear
equations with a real or complex symmetric
matrix A, and provides error bounds on the
solution.

call ssysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, iwork, info)

call dsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, iwork, info)

call csysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, rwork, info)

call zsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, rwork, info)

Discussion

This routine uses the diagonal pivoting factorization to compute the solution
to a real or complex system of linear equations AX = B, where A is a
n-by-n symmetric matrix, the columns of matrix B are individual right-hand
sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?sysvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A.
The form of the factorization is A = U D UT or A = L D LT, where U (or L)
is a product of permutation and unit upper (lower) triangular matrices, and
D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

4-216

4 Intel® Math Kernel Library Reference Manual

2. If some di,i = 0, so that D is exactly singular, then the routine returns
with info = i. Otherwise, the factored form of A is used to estimate the
condition number of the matrix A. If the reciprocal of the condition number
is less than machine precision, info = n + 1 is returned as a warning, but
the routine still goes on to solve for X and compute error bounds as
described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix
A has been supplied on entry.

If fact = 'F': on entry, af and ipiv contain the
factored form of A. Arrays a, af, and ipiv will not be
modified.

If fact = 'N', the matrix A will be copied to af and
factored.

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular
part of the symmetric matrix A, and A is factored
as UDUT.
If uplo = 'L', the array a stores the lower triangular
part of the symmetric matrix A; A is factored as LDLT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

a,af,b,work REAL for ssysvx
DOUBLE PRECISION for dsysvx
COMPLEX for csysvx

LAPACK Routines: Linear Equations4

4-217

DOUBLE COMPLEX for zsysvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*),
work(*).

The array a contains either the upper or the lower
triangular part of the symmetric matrix A (see uplo).
The second dimension of a must be at least max(1,n).

The array af is an input argument if fact = 'F' . It
contains he block diagonal matrix D and the multipliers
used to obtain the factor U or L from the factorization A
= U D UT or A = L D LT as computed by ?sytrf.
The second dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1,nrhs).

work(*) is a workspace array of dimension (lwork).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains details of the interchanges and the block
structure of D, as determined by ?sytrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block,
and the ith row and column of A was interchanged with
the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

4-218

4 Intel® Math Kernel Library Reference Manual

ldx INTEGER. The leading dimension of the output array x;
ldx ≥ max(1, n).

lwork INTEGER. The size of the work array .
See Application notes for the suggested value of lwork.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used
in real flavors only.

rwork REAL for csysvx;
DOUBLE PRECISION for zsysvx.
Workspace array, DIMENSION at least max(1, n); used
in complex flavors only.

Output Parameters

x REAL for ssysvx
DOUBLE PRECISION for dsysvx
COMPLEX for csysvx
DOUBLE COMPLEX for zsysvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the
solution matrix X to the system of equations. The
second dimension of x must be at least max(1,nrhs).

af, ipiv These arrays are output arguments if fact = 'N' .
See the description of af, ipiv in Input Arguments
section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the
matrix A. If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

LAPACK Routines: Linear Equations4

4-219

work(1) If info=0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular, so the solution and error
bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then D is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

Application Notes

For real flavors, lwork must be at least 3*n, and for complex flavors at
least 2*n. For better performance, try using lwork = n*blocksize, where
blocksize is the optimal block size for ?sytrf.

If you are in doubt how much workspace to supply, use lwork =-1 for the
first run. In this case, a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry work(1) of the work array , and no error message related to lwork

is issued by XERBLA. On exit, examine work(1) and use this value for
subsequent runs.

4-220

4 Intel® Math Kernel Library Reference Manual

?hesvx
Uses the diagonal pivoting factorization to
compute the solution to the complex system of
linear equations with a Hermitian matrix A, and
provides error bounds on the solution.

call chesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, rwork, info)

call zhesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, rwork, info)

Discussion

This routine uses the diagonal pivoting factorization to compute the solution
to a complex system of linear equations AX = B, where A is a n-by-n
Hermitian matrix, the columns of matrix B are individual right-hand sides,
and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?hesvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A.
The form of the factorization is A = U D UH or A = L D LH, where U (or L)
is a product of permutation and unit upper (lower) triangular matrices, and
D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

2. If some di,i = 0, so that D is exactly singular, then the routine returns
with info = i. Otherwise, the factored form of A is used to estimate the
condition number of the matrix A. If the reciprocal of the condition number
is less than machine precision, info = n + 1 is returned as a warning, but
the routine still goes on to solve for X and compute error bounds as
described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

LAPACK Routines: Linear Equations4

4-221

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix
A has been supplied on entry.

If fact = 'F': on entry, af and ipiv contain the
factored form of A. Arrays a, af, and ipiv will not be
modified.

If fact = 'N', the matrix A will be copied to af and
factored.

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular
part of the Hermitian matrix A, and A is factored
as UDUH.
If uplo = 'L', the array a stores the lower triangular
part of the Hermitian matrix A; A is factored as LDLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

a,af,b,work COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*),
work(*).

The array a contains either the upper or the lower
triangular part of the Hermitian matrix A (see uplo).
The second dimension of a must be at least max(1,n).

The array af is an input argument if fact = 'F' . It
contains he block diagonal matrix D and the multipliers
used to obtain the factor U or L from the factorization A
= U D UH or A = L D LH as computed by ?hetrf.
The second dimension of af must be at least max(1,n).

4-222

4 Intel® Math Kernel Library Reference Manual

The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations. The
second dimension of b must be at least max(1,nrhs).

work(*) is a workspace array of dimension (lwork).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains details of the interchanges and the block
structure of D, as determined by ?hetrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block,
and the ith row and column of A was interchanged with
the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

ldx INTEGER. The leading dimension of the output array x;
ldx ≥ max(1, n).

lwork INTEGER. The size of the work array .
See Application notes for the suggested value of lwork.

rwork REAL for chesvx;
DOUBLE PRECISION for zhesvx.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Array, DIMENSION (ldx,*).

LAPACK Routines: Linear Equations4

4-223

If info = 0 or info = n+1, the array x contains the
solution matrix X to the system of equations. The
second dimension of x must be at least max(1,nrhs).

af, ipiv These arrays are output arguments if fact = 'N' .
See the description of af, ipiv in Input Arguments
section.

rcond REAL for chesvx;
DOUBLE PRECISION for zhesvx.
An estimate of the reciprocal condition number of the
matrix A. If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code of info > 0.

ferr, berr REAL for chesvx;
DOUBLE PRECISION for zhesvx.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

work(1) If info=0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular, so the solution and error
bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then D is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

4-224

4 Intel® Math Kernel Library Reference Manual

Application Notes

The value of lwork must be at least 2*n. For better performance, try using
lwork = n*blocksize, where blocksize is the optimal block size for ?hetrf.

If you are in doubt how much workspace to supply, use lwork =-1 for the
first run. In this case, a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry work(1) of the work array , and no error message related to lwork

is issued by XERBLA. On exit, examine work(1) and use this value for
subsequent runs.

?hesv
Computes the solution to the system of
linear equations with a Hermitian
matrix A and multiple right-hand sides.

call chesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call zhesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

Discussion

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric matrix, the columns of matrix B
are individual right-hand sides, and the columns of X are the corresponding
solutions.

The diagonal pivoting method is used to factor A as A = U D UH or
A = L D LH , where U (or L) is a product of permutation and unit upper
(lower) triangular matrices, and D is Hermitian and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

LAPACK Routines: Linear Equations4

4-225

Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular
part of the matrix A, and A is factored as UDUH.
If uplo = 'L', the array a stores the lower triangular
part of the matrix A; A is factored as LDLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

a, b, work COMPLEX for chesv
DOUBLE COMPLEX for zhesv.
Arrays: a(lda,*), b(ldb,*), work(lwork).
The array a contains either the upper or the lower
triangular part of the Hermitian matrix A (see uplo).
The second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).
work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

lwork INTEGER. The size of the work array (lwork ≥ 1)
See Application notes for the suggested value of lwork.

Output Parameters
a If info = 0, a is overwritten by the block-diagonal

matrix D and the multipliers used to obtain the factor U
(or L) from the factorization of A as computed by ?hetrf.

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block
structure of D, as determined by ?hetrf.

4-226

4 Intel® Math Kernel Library Reference Manual

If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block,
and the ith row and column of A was interchanged with
the kth row and column.
If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

work(1) If info=0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been
completed, but D is exactly singular, so the solution
could not be computed.

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use lwork =-1 for the
first run. In this case, a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry work(1) of the work array , and no error message related to lwork

is issued by XERBLA. On exit, examine work(1) and use this value for
subsequent runs.

LAPACK Routines: Linear Equations4

4-227

?spsv
Computes the solution to the system of
linear equations with a real or complex
symmetric matrix A stored in packed
format, and multiple right-hand sides.

call sspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call dspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call cspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

Discussion

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric matrix stored in packed format,
the columns of matrix B are individual right-hand sides, and the columns of
X are the corresponding solutions.

The diagonal pivoting method is used to factor A as A = U D UT or
A = L D LT , where U (or L) is a product of permutation and unit upper
(lower) triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array ap stores the upper triangular
part of the matrix A, and A is factored as UDUT.
If uplo = 'L', the array ap stores the lower triangular
part of the matrix A; A is factored as LDLT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

4-228

4 Intel® Math Kernel Library Reference Manual

ap, b REAL for sspsv
DOUBLE PRECISION for dspsv
COMPLEX for cspsv
DOUBLE COMPLEX for zspsv.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by
uplo, in packed storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters
ap The block-diagonal matrix D and the multipliers used to

obtain the factor U (or L) from the factorization of A as
computed by ?sptrf, stored as a packed triangular matrix
in the same storage format as A.

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block
structure of D, as determined by ?sptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the
ith row and column of A was interchanged with the kth
row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

LAPACK Routines: Linear Equations4

4-229

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been
completed, but D is exactly singular, so the solution
could not be computed.

4-230

4 Intel® Math Kernel Library Reference Manual

?spsvx
Uses the diagonal pivoting factorization to
compute the solution to the system of linear
equations with a real or complex symmetric
matrix A stored in packed format, and provides
error bounds on the solution.

call sspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call dspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call cspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

call zspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

Discussion

This routine uses the diagonal pivoting factorization to compute the solution
to a real or complex system of linear equations AX = B, where A is a
n-by-n symmetric matrix stored in packed format, the columns of matrix B
are individual right-hand sides, and the columns of X are the corresponding
solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?spsvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A.
The form of the factorization is A = U D UT or A = L D LT, where U (or L)
is a product of permutation and unit upper (lower) triangular matrices, and
D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

2. If some di,i = 0, so that D is exactly singular, then the routine returns
with info = i. Otherwise, the factored form of A is used to estimate the
condition number of the matrix A. If the reciprocal of the condition number

LAPACK Routines: Linear Equations4

4-231

is less than machine precision, info = n + 1 is returned as a warning, but
the routine still goes on to solve for X and compute error bounds as
described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix
A has been supplied on entry.

If fact = 'F': on entry, afp and ipiv contain the
factored form of A. Arrays ap, afp, and ipiv will not
be modified.

If fact = 'N', the matrix A will be copied to afp and
factored.

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array ap stores the upper triangular
part of the symmetric matrix A, and A is factored
as UDUT.
If uplo = 'L', the array ap stores the lower triangular
part of the symmetric matrix A; A is factored as LDLT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

ap,afp,b,work REAL for sspsvx
DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx
DOUBLE COMPLEX for zspsvx.
Arrays: ap(*), afp(*), b(ldb,*), work (*).

4-232

4 Intel® Math Kernel Library Reference Manual

The array ap contains the upper or lower triangle of the
symmetric matrix A in packed storage (see Matrix
Storage Schemes).

The array afp is an input argument if fact = 'F' . It
contains the block diagonal matrix D and the multipliers
used to obtain the factor U or L from the factorization
A = U D UT or A = L D LT as computed by ?sptrf, in

the same storage format as A.
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
work (*) is a workspace array.
The dimension of arrays ap and afp must be at least
max(1,n(n+1)/2); the second dimension of b must be at
least max(1,nrhs); the dimension of work must be at
least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains details of the interchanges and the block
structure of D, as determined by ?sptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block,
and the ith row and column of A was interchanged with
the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

ldx INTEGER. The leading dimension of the output array x;
ldx ≥ max(1, n).

LAPACK Routines: Linear Equations4

4-233

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used
in real flavors only.

rwork REAL for cspsvx;
DOUBLE PRECISION for zspsvx.
Workspace array, DIMENSION at least max(1, n); used
in complex flavors only.

Output Parameters

x REAL for sspsvx
DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx
DOUBLE COMPLEX for zspsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the
solution matrix X to the system of equations. The
second dimension of x must be at least max(1,nrhs).

afp, ipiv These arrays are output arguments if fact = 'N' .
See the description of afp, ipiv in Input Arguments
section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the
matrix A. If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The
factorization has been completed, but the block diagonal

4-234

4 Intel® Math Kernel Library Reference Manual

matrix D is exactly singular, so the solution and error
bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then D is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

LAPACK Routines: Linear Equations4

4-235

?hpsvx
Uses the diagonal pivoting factorization to
compute the solution to the system of linear
equations with a Hermitian matrix A stored in
packed format, and provides error bounds on
the solution.

call chpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

call zhpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

Discussion

This routine uses the diagonal pivoting factorization to compute the solution
to a complex system of linear equations AX = B, where A is a n-by-n
Hermitian matrix stored in packed format, the columns of matrix B are
individual right-hand sides, and the columns of X are the corresponding
solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?hpsvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A.
The form of the factorization is A = U D UH or A = L D LH, where U (or L)
is a product of permutation and unit upper (lower) triangular matrices, and
D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

2. If some di,i = 0, so that D is exactly singular, then the routine returns
with info = i. Otherwise, the factored form of A is used to estimate the
condition number of the matrix A. If the reciprocal of the condition number
is less than machine precision, info = n + 1 is returned as a warning, but
the routine still goes on to solve for X and compute error bounds as
described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

4-236

4 Intel® Math Kernel Library Reference Manual

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix
A has been supplied on entry.

If fact = 'F': on entry, afp and ipiv contain the
factored form of A. Arrays ap, afp, and ipiv will not
be modified.

If fact = 'N', the matrix A will be copied to afp and
factored.

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array ap stores the upper triangular
part of the Hermitian matrix A, and A is factored
as UDUH.
If uplo = 'L', the array ap stores the lower triangular
part of the Hermitian matrix A; A is factored as LDLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

ap,afp,b,work COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Arrays: ap(*), afp(*), b(ldb,*), work (*).

The array ap contains the upper or lower triangle of the
Hermitian matrix A in packed storage (see Matrix
Storage Schemes).

The array afp is an input argument if fact = 'F' . It
contains the block diagonal matrix D and the multipliers
used to obtain the factor U or L from the factorization
A = U D UH or A = L D LH as computed by ?hptrf, in

the same storage format as A.
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
work (*) is a workspace array.

LAPACK Routines: Linear Equations4

4-237

The dimension of arrays ap and afp must be at least
max(1,n(n+1)/2); the second dimension of b must be at
least max(1,nrhs); the dimension of work must be at
least max(1, 2*n) .

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains details of the interchanges and the block
structure of D, as determined by ?hptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block,
and the ith row and column of A was interchanged with
the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

ldx INTEGER. The leading dimension of the output array x;
ldx ≥ max(1, n).

rwork REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the
solution matrix X to the system of equations. The
second dimension of x must be at least max(1,nrhs).

4-238

4 Intel® Math Kernel Library Reference Manual

afp, ipiv These arrays are output arguments if fact = 'N' .
See the description of afp, ipiv in Input Arguments
section.

rcond REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
An estimate of the reciprocal condition number of the
matrix A. If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code of info > 0.

ferr, berr REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
Arrays, DIMENSION at least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular, so the solution and error
bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then D is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value of rcond
would suggest.

LAPACK Routines: Linear Equations4

4-239

?hpsv
Computes the solution to the system of
linear equations with a Hermitian
matrix A stored in packed format, and
multiple right-hand sides.

call chpsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zhpsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

Discussion

This routine solves for X the system of linear equations AX = B, where A is
an n-by-n Hermitian matrix stored in packed format, the columns of matrix
B are individual right-hand sides, and the columns of X are the
corresponding solutions.

The diagonal pivoting method is used to factor A as A = U D UH or
A = L D LH , where U (or L) is a product of permutation and unit upper
(lower) triangular matrices, and D is Hermitian and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A
is stored and how A is factored:
If uplo = 'U', the array ap stores the upper triangular
part of the matrix A, and A is factored as UDUH.
If uplo = 'L', the array ap stores the lower triangular
part of the matrix A; A is factored as LDLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

4-240

4 Intel® Math Kernel Library Reference Manual

ap, b COMPLEX for chpsv
DOUBLE COMPLEX for zhpsv.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by
uplo, in packed storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters
ap The block-diagonal matrix D and the multipliers used to

obtain the factor U (or L) from the factorization of A as
computed by ?hptrf, stored as a packed triangular matrix
in the same storage format as A.

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block
structure of D, as determined by ?hptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the
ith row and column of A was interchanged with the kth
row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i-1,
and (i-1)th row and column of A was interchanged
with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0,
then D has a 2-by-2 block in rows/columns i and i+1,
and (i+1)th row and column of A was interchanged
with the mth row and column.

LAPACK Routines: Linear Equations4

4-241

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been
completed, but D is exactly singular, so the solution
could not be computed.

5-1

LAPACK Routines:
Least Squares and
Eigenvalue Problems 5

This chapter describes the Intel® Math Kernel Library implementation of
routines from the LAPACK package that are used for solving linear
least-squares problems, eigenvalue and singular value problems, as well as
performing a number of related computational tasks.

Sections in this chapter include descriptions of LAPACK computational
routines and driver routines.

For full reference on LAPACK routines and related information see [LUG].

Least-Squares Problems. A typical least-squares problem is as follows:
given a matrix A and a vector b, find the vector x that minimizes the sum of
squares Σi ((Ax)i - bi)

2 or, equivalently, find the vector x that minimizes the
2-norm | | Ax −b| | 2.

In the most usual case, A is an m by n matrix with m ≥ n and rank(A) = n.
This problem is also referred to as finding the least-squares solution to an
overdetermined system of linear equations (here we have more equations
than unknowns). To solve this problem, you can use the QR factorization of
the matrix A (see QR Factorization on page 5-6).

If m < n and rank(A) = m, there exist an infinite number of solutions x which
exactly satisfy Ax = b, and thus minimize the norm | | Ax −b| | 2. In this case it
is often useful to find the unique solution that minimizes | | x| | 2. This problem
is referred to as finding the minimum-norm solution to an underdetermined
system of linear equations (here we have more unknowns than equations).
To solve this problem, you can use the LQ factorization of the matrix A (see
LQ Factorization on page 5-7).

5-2

5 Intel® Math Kernel Library Reference Manual

In the general case you may have a rank-deficient least-squares problem,
with rank(A) < min(m, n): find the minimum-norm least-squares solution
that minimizes both | | x| | 2 and | | Ax −b| | 2. In this case (or when the rank of A
is in doubt) you can use the QR factorization with pivoting or singular value
decomposition (see page 5-74).

Eigenvalue Problems (from German eigen “own”) are stated as follows:
given a matrix A, find the eigenvalues λ and the corresponding eigenvectors
z that satisfy the equation

Az = λz (right eigenvectors z)

or the equation
zHA = λzH (left eigenvectors z).

If A is a real symmetric or complex Hermitian matrix, the above two
equations are equivalent, and the problem is called a symmetric eigenvalue
problem. Routines for solving this type of problems are described in the
section Symmetric Eigenvalue Problems (see page 5-101).

Routines for solving eigenvalue problems with nonsymmetric or
non-Hermitian matrices are described in the section Nonsymmetric
Eigenvalue Problems (see page 5-174).

The library also includes routines that handle generalized symmetric-
definite eigenvalue problems: find the eigenvalues λ and the corresponding
eigenvectors x that satisfy one of the following equations:

Az = λBz, ABz = λz, or BAz = λz

where A is symmetric or Hermitian, and B is symmetric positive-definite or
Hermitian positive-definite. Routines for reducing these problems to
standard symmetric eigenvalue problems are described in the section
Generalized Symmetric-Definite Eigenvalue Problems (see page 5-157).

* * *

To solve a particular problem, you usually call several computational
routines. Sometimes you need to combine the routines of this chapter with
other LAPACK routines described in Chapter 4 as well as with BLAS
routines (Chapter 2).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-3

For example, to solve a set of least-squares problems minimizing | | Ax −b| | 2
for all columns b of a given matrix B (where A and B are real matrices), you
can call ?geqrf to form the factorization A = QR, then call ?ormqr to
compute C = QHB, and finally call the BLAS routine ?trsm to solve for X
the system of equations RX = C.

Another way is to call an appropriate driver routine that performs several
tasks in one call. For example, to solve the least-squares problem the driver
routine ?gels can be used.

5-4

5 Intel® Math Kernel Library Reference Manual

Routine Naming Conventions
For each routine in this chapter, you can use the LAPACK name.

LAPACK names have the structure xyyzzz, which is described below.

The initial letter x indicates the data type:
s real, single precision c complex, single precision
d real, double precision z complex, double precision

The second and third letters yy indicate the matrix type and storage scheme:
bd bidiagonal matrix
ge general matrix
gb general band matrix
hs upper Hessenberg matrix
or (real) orthogonal matrix
op (real) orthogonal matrix (packed storage)
un (complex) unitary matrix
up (complex) unitary matrix (packed storage)
pt symmetric or Hermitian positive-definite tridiagonal matrix
sy symmetric matrix
sp symmetric matrix (packed storage)
sb (real) symmetric band matrix
st (real) symmetric tridiagonal matrix
he Hermitian matrix
hp Hermitian matrix (packed storage)
hb (complex) Hermitian band matrix
tr triangular or quasi-triangular matrix.

The last three letters zzz indicate the computation performed, for example:
qrf form the QR factorization
lqf form the LQ factorization.

Thus, the routine sgeqrf forms the QR factorization of general real
matrices in single precision; the corresponding routine for complex matrices
is cgeqrf.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-5

Matrix Storage Schemes
LAPACK routines use the following matrix storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the
matrix element aij stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or
triangular matrices more compactly: the upper or lower triangle of the
matrix is packed by columns in a one-dimensional array.

• Band storage: an m by n band matrix with kl sub-diagonals and ku
super-diagonals is stored compactly in a two-dimensional array ab
with kl+ku+1 rows and n columns. Columns of the matrix are stored
in the corresponding columns of the array, and diagonals of the matrix
are stored in rows of the array.

In Chapters 4 and 5, arrays that hold matrices in packed storage have names
ending in p; arrays with matrices in band storage have names ending in b.

For more information on matrix storage schemes, see Matrix Arguments in
Appendix A.

Mathematical Notation
In addition to the mathematical notation used in previous chapters,
descriptions of routines in this chapter use the following notation:

λ i Eigenvalues of the matrix A (for the definition of
eigenvalues, see Eigenvalue Problems on page 5-2).

σi Singular values of the matrix A. They are equal to
square roots of the eigenvalues of AHA. (For more
information, see Singular Value Decomposition).

| | x| | 2 The2-normofthevectorx:| | x| | 2=(Σi| xi|
2)1/2=| | x| | E.

| | A| | 2 The 2-norm (or spectral norm) of the matrix A.
| | A| | 2 = maxi σi , | |A| | 2

2 = max| x| =1(Ax·Ax).

| | A| | E TheEuclideannormofthematrixA: | | A| | E
2=ΣiΣj| aij|

2

(for vectors, the Euclidean norm and the 2-norm are
equal: | | x| | E = | |x| | 2).

θ(x, y) The acute angle between vectors x and y:
cos θ(x, y) = | x·y| / (| | x| | 2 | | y| | 2) .

5-6

5 Intel® Math Kernel Library Reference Manual

Computational Routines
In the sections that follow, the descriptions of LAPACK computational
routines are given. These routines perform distinct computational tasks that
can be used for:

Orthogonal Factorizations

Singular Value Decomposition

Symmetric Eigenvalue Problems

Generalized Symmetric-Definite Eigenvalue Problems

Nonsymmetric Eigenvalue Problems

Generalized Nonsymmetric Eigenvalue Problems

Generalized Singular Value Decomposition

See also the respective driver routines.

Orthogonal Factorizations

This section describes the LAPACK routines for the QR (RQ) and LQ (QL)
factorization of matrices. Routines for the RZ factorization as well as for
generalized QR and RQ factorizations are also included.

QR Factorization. Assume that A is an m by n matrix to be factored.
If m ≥ n, the QR factorization is given by

where R is an n by n upper triangular matrix with real diagonal elements,
and Q is an m by m orthogonal (or unitary) matrix.

You can use the QR factorization for solving the following least-squares
problem: minimize | | Ax −b| | 2 where A is a full-rank m by n matrix (m ≥ n).
After factoring the matrix, compute the solution x by solving Rx = (Q1)

T b.

If m < n, the QR factorization is given by

where R is trapezoidal, R1 is upper triangular and R2 is rectangular.

The LAPACK routines do not form the matrix Q explicitly. Instead, Q is
represented as a product of min(m, n) elementary reflectors. Routines are
provided to work with Q in this representation.

A Q R
0

 Q1 Q2,() R
0

 = =

A QR Q R1R2()= =

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-7

LQ Factorization of an m by n matrix A is as follows. If m ≤n,

where L is an m by m lower triangular matrix with real diagonal elements,
and Q is an n by n orthogonal (or unitary) matrix.

If m > n, the LQ factorization is

where L1 is an n by n lower triangular matrix, L2 is rectangular, and Q is an
n by n orthogonal (or unitary) matrix.

You can use the LQ factorization to find the minimum-norm solution of an
underdetermined system of linear equations Ax = b where A is an m by n
matrix of rank m (m < n). After factoring the matrix, compute the solution
vector x as follows: solve Ly = b for y, and then compute x = (Q1)

H y.

Table 5-1 lists LAPACK routines that perform orthogonal factorization of
matrices.

Table 5-1 Computational Routines for Orthogonal Factorization

Matrix type, factorization
Factorize
without pivoting

Factorize
with pivoting

Generate
matrix Q

Apply
matrix Q

general matrices,
QR factorization

?geqrf ?geqpf
?geqp3

?orgqr
?ungqr

?ormqr
?unmqr

general matrices,
RQ factorization

?gerqf ?orgrq
?ungrq

?ormrq
?unmrq

general matrices,
LQ factorization

?gelqf ?orglq
?unglq

?ormlq
?unmlq

general matrices,
QL factorization

?geqlf ?orgql
?ungql

?ormql
?unmql

trapezoidal matrices,
RZ factorization

?tzrzf ?ormrz
?unmrz

pair of matrices, generalized
QR factorization

?ggqrf

pair of matrices, generalized
RQ factorization

?ggrqf

A L 0,()Q L 0,() Q1

Q2
 LQ1= = =

A
L1

L2
 Q=

5-8

5 Intel® Math Kernel Library Reference Manual

?geqrf
Computes the QR factorization of a
general m by n matrix.

call sgeqrf (m, n, a, lda, tau, work, lwork, info)

call dgeqrf (m, n, a, lda, tau, work, lwork, info)

call cgeqrf (m, n, a, lda, tau, work, lwork, info)

call zgeqrf (m, n, a, lda, tau, work, lwork, info)

Discussion

The routine forms the QR factorization of a general m by n matrix A
(see Orthogonal Factorizations on page 5-6). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeqrf
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-9

Output Parameters

a Overwritten by the factorization data as follows:

If m ≥ n, the elements below the diagonal are overwritten
by the details of the unitary matrix Q, and the upper
triangle is overwritten by the corresponding elements of
the upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten
by the details of the unitary matrix Q, and the remaining
elements are overwritten by the corresponding elements
of the m by n upper trapezoidal matrix R.

tau REAL for sgeqrf
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Array, DIMENSION at least max (1, min(m, n)).
Contains additional information on the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The computed factorization is the exact factorization of a matrix A + E,
where | | E| | 2 = O(ε) | | A| | 2.

5-10

5 Intel® Math Kernel Library Reference Manual

The approximate number of floating-point operations for real flavors is

(4/3)n3 if m = n,

(2/3)n2(3m-n) if m > n,

(2/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing | | Ax −b| | 2 for all
columns b of a given matrix B, you can call the following:

?geqrf (this routine) to factorize A = QR;

?ormqr to compute C = QTB (for real matrices);

?unmqr to compute C = QHB (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the least-squares solution vectors x.)

To compute the elements of Q explicitly, call

?orgqr (for real matrices)

?ungqr (for complex matrices).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-11

?geqpf
Computes the QR factorization of a
general m by n matrix with pivoting.

call sgeqpf (m, n, a, lda, jpvt, tau, work, info)

call dgeqpf (m, n, a, lda, jpvt, tau, work, info)

call cgeqpf (m, n, a, lda, jpvt, tau, work, rwork, info)

call zgeqpf (m, n, a, lda, jpvt, tau, work, rwork, info)

Discussion

This routine is deprecated and has been replaced by routine ?geqp3.

The routine ?geqpf forms the QR factorization of a general m by n matrix
A with column pivoting: AP = QR (see Orthogonal Factorizations on page
5-6). Here P denotes an n by n permutation matrix.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeqpf
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf
DOUBLE COMPLEX for zgeqpf.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; must be at least
max(1, 3∗ n).

5-12

5 Intel® Math Kernel Library Reference Manual

jpvt INTEGER. Array, DIMENSION at least max(1, n).

On entry, if jpvt(i)> 0, the ith column of A is moved
to the beginning of AP before the computation, and
fixed in place during the computation.
If jpvt(i) = 0, the ith column of A is a free column
(that is, it may be interchanged during the computation
with any other free column).

rwork REAL for cgeqpf
DOUBLE PRECISION for zgeqpf.
A workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

a Overwritten by the factorization data as follows:

If m ≥ n, the elements below the diagonal are overwritten
by the details of the unitary (orthogonal) matrix Q, and
the upper triangle is overwritten by the corresponding
elements of the upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten
by the details of the matrix Q, and the remaining
elements are overwritten by the corresponding elements
of the m by n upper trapezoidal matrix R.

tau REAL for sgeqpf
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf
DOUBLE COMPLEX for zgeqpf.
Array, DIMENSION at least max (1, min(m, n)).
Contains additional information on the matrix Q.

jpvt Overwritten by details of the permutation matrix P in the
factorization AP = QR. More precisely, the columns of
AP are the columns of A in the following order:
jpvt(1), jpvt(2), ..., jpvt(n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-13

Application Notes

The computed factorization is the exact factorization of a matrix A + E,
where | | E| | 2 = O(ε) | | A| | 2.

The approximate number of floating-point operations for real flavors is

(4/3)n3 if m = n,

(2/3)n2(3m-n) if m > n,

(2/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing | | Ax −b| | 2 for all
columns b of a given matrix B, you can call the following:

?geqpf (this routine) to factorize AP = QR;

?ormqr to compute C = QTB (for real matrices);

?unmqr to compute C = QHB (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the permuted least-squares solution
vectors x; the output array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call

?orgqr (for real matrices)

?ungqr (for complex matrices).

5-14

5 Intel® Math Kernel Library Reference Manual

?geqp3
Computes the QR factorization of a
general m by n matrix with column
pivoting using Level 3 BLAS.

call sgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, info)

call dgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, info)

call cgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, rwork, info)

call zgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, rwork, info)

Discussion

The routine forms the QR factorization of a general m by n matrix A with
column pivoting: AP = QR (see Orthogonal Factorizations on page 5-6)
using Level 3 BLAS. Here P denotes an n by n permutation matrix.
Use this routine instead of ?geqpf for better performance.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeqp3
DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-15

lwork INTEGER. The size of the work array; must be at least
max(1, 3∗ n+1) for real flavors, and at least max(1, n+1)
for complex flavors.

jpvt INTEGER. Array, DIMENSION at least max(1, n).

On entry, if jpvt(i)≠ 0, the ith column of A is moved
to the beginning of AP before the computation, and
fixed in place during the computation.
If jpvt(i) = 0, the ith column of A is a free column
(that is, it may be interchanged during the computation
with any other free column).

rwork REAL for cgeqp3
DOUBLE PRECISION for zgeqp3.
A workspace array, DIMENSION at least max(1, 2*n).
Used in complex flavors only.

Output Parameters

a Overwritten by the factorization data as follows:

If m ≥ n, the elements below the diagonal are overwritten
by the details of the unitary (orthogonal) matrix Q, and
the upper triangle is overwritten by the corresponding
elements of the upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten
by the details of the matrix Q, and the remaining
elements are overwritten by the corresponding elements
of the m by n upper trapezoidal matrix R.

tau REAL for sgeqp3
DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.
Array, DIMENSION at least max (1, min(m, n)).
Contains scalar factors of the elementary reflectors for
the matrix Q.

5-16

5 Intel® Math Kernel Library Reference Manual

jpvt Overwritten by details of the permutation matrix P in the
factorization AP = QR. More precisely, the columns of
AP are the columns of A in the following order:
jpvt(1), jpvt(2), ..., jpvt(n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

To solve a set of least-squares problems minimizing | | Ax −b| | 2 for all
columns b of a given matrix B, you can call the following:

?geqp3 (this routine) to factorize AP = QR;

?ormqr to compute C = QTB (for real matrices);

?unmqr to compute C = QHB (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the permuted least-squares solution
vectors x; the output array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call

?orgqr (for real matrices)

?ungqr (for complex matrices).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-17

?orgqr
Generates the real orthogonal matrix Q of
the QR factorization formed by ?geqrf.

call sorgqr (m, n, k, a, lda, tau, work, lwork, info)

call dorgqr (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part of m by m orthogonal matrix Q of the
QR factorization formed by the routines sgeqrf/dgeqrf (see page 5-8) or
sgeqpf/dgeqpf (see page 5-11). Use this routine after a call to
sgeqrf/dgeqrf or sgeqpf/dgeqpf.

Usually Q is determined from the QR factorization of an m by p matrix A
with m ≥ p. To compute the whole matrix Q, use:

call ?orgqr (m, m, p, a, lda, tau, work, lwork, info)

To compute the leading p columns of Q (which form an orthonormal basis
in the space spanned by the columns of A):

call ?orgqr (m, p, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the QR factorization of A’s leading k columns:

call ?orgqr (m, m, k, a, lda, tau, work, lwork, info)

To compute the leading k columns of Qk (which form an orthonormal basis
in the space spanned by A’s leading k columns):

call ?orgqr (m, k, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The order of the orthogonal matrix Q (m ≥ 0).

n INTEGER. The number of columns of Q to be computed
(0 ≤n ≤m).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q (0 ≤k ≤n).

5-18

5 Intel® Math Kernel Library Reference Manual

a, tau, work REAL for sorgqr
DOUBLE PRECISION for dorgqr
Arrays:
a(lda,*) and tau(*) are the arrays returned by
sgeqrf / dgeqrf or sgeqpf / dgeqpf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by n leading columns of the m by m

orthogonal matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly orthogonal matrix by a matrix E
such that | | E| | 2 = O(ε) | | A| | 2 where ε is the machine precision.

The total number of floating-point operations is approximately
4*m*n*k - 2*(m + n)*k2 + (4/3)*k3.
If n = k, the number is approximately (2/3)*n2*(3m - n).

The complex counterpart of this routine is ?ungqr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-19

?ormqr
Multiplies a real matrix by the orthogonal
matrix Q of the QR factorization formed by
?geqrf or ?geqpf.

call sormqr (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormqr (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal
matrix Q of the QR factorization formed by the routines sgeqrf/dgeqrf
(see page 5-8) or sgeqpf/dgeqpf (see page 5-11).

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QTC, CQ, or CQT (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:
0 ≤k ≤m if side ='L';
0 ≤k ≤n if side ='R'.

a,work,tau,c REAL for sgeqrf
DOUBLE PRECISION for dgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by

5-20

5 Intel® Math Kernel Library Reference Manual

sgeqrf / dgeqrf or sgeqpf / dgeqpf.
The second dimension of a must be at least max(1, k).
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a. Constraints:
lda ≥ max(1, m) if side ='L';
lda ≥ max(1, n) if side ='R'.

ldc INTEGER. The first dimension of c. Constraint:
ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or
lwork = m*blocksize (if side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?unmqr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-21

?ungqr
Generates the complex unitary matrix Q of
the QR factorization formed by ?geqrf.

call cungqr (m, n, k, a, lda, tau, work, lwork, info)

call zungqr (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part of m by m unitary matrix Q of the QR
factorization formed by the routines cgeqrf/zgeqrf (see page 5-8) or
cgeqpf/zgeqpf (see page 5-11). Use this routine after a call to
cgeqrf/zgeqrf or cgeqpf/zgeqpf.

Usually Q is determined from the QR factorization of an m by p matrix A
with m ≥ p. To compute the whole matrix Q, use:

call ?ungqr (m, m, p, a, lda, tau, work, lwork, info)

To compute the leading p columns of Q (which form an orthonormal basis
in the space spanned by the columns of A):

call ?ungqr (m, p, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the QR factorization of A’s leading k columns:

call ?ungqr (m, m, k, a, lda, tau, work, lwork, info)

To compute the leading k columns of Qk (which form an orthonormal basis
in the space spanned by A’s leading k columns):

call ?ungqr (m, k, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The order of the unitary matrix Q (m ≥ 0).

n INTEGER. The number of columns of Q to be computed
(0 ≤n ≤m).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q (0 ≤k ≤n).

5-22

5 Intel® Math Kernel Library Reference Manual

a, tau, work COMPLEX for cungqr
DOUBLE COMPLEX for zungqr
Arrays:
a(lda,*) and tau(*) are the arrays returned by
cgeqrf/zgeqrf or cgeqpf/zgeqpf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by n leading columns of the m by m unitary
matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly unitary matrix by a matrix E such
that | | E| | 2 = O(ε) | | A| | 2 where ε is the machine precision.

The total number of floating-point operations is approximately
16*m*n*k - 8*(m + n)*k2 + (16/3)*k3.
If n = k, the number is approximately (8/3)*n2*(3m - n).

The real counterpart of this routine is ?orgqr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-23

?unmqr
Multiplies a complex matrix by the unitary
matrix Q of the QR factorization formed by
?geqrf.

call cunmqr (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmqr (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a rectangular complex matrix C by Q or QH, where Q
is the unitary matrix Q of the QR factorization formed by the routines
cgeqrf/zgeqrf (see page 5-8) or cgeqpf/zgeqpf (see page 5-11).

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QHC, CQ, or CQH (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:
0 ≤k ≤m if side ='L';
0 ≤k ≤n if side ='R'.

a,work,tau,c COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by

5-24

5 Intel® Math Kernel Library Reference Manual

cgeqrf / zgeqrf or cgeqpf / zgeqpf.
The second dimension of a must be at least max(1, k).
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a. Constraints:
lda ≥ max(1, m) if side ='L';
lda ≥ max(1, n) if side ='R'.

ldc INTEGER. The first dimension of c. Constraint:
ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or
lwork = m*blocksize (if side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?ormqr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-25

?gelqf
Computes the LQ factorization of a
general m by n matrix.

call sgelqf (m, n, a, lda, tau, work, lwork, info)

call dgelqf (m, n, a, lda, tau, work, lwork, info)

call cgelqf (m, n, a, lda, tau, work, lwork, info)

call zgelqf (m, n, a, lda, tau, work, lwork, info)

Discussion

The routine forms the LQ factorization of a general m by n matrix A
(see Orthogonal Factorizations on page 5-6). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgelqf
DOUBLE PRECISION for dgelqf
COMPLEX for cgelqf
DOUBLE COMPLEX for zgelqf.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of lwork.

5-26

5 Intel® Math Kernel Library Reference Manual

Output Parameters

a Overwritten by the factorization data as follows:

If m ≤n, the elements above the diagonal are overwritten
by the details of the unitary (orthogonal) matrix Q, and
the lower triangle is overwritten by the corresponding
elements of the lower triangular matrix L.

If m >n, the strictly upper triangular part is overwritten
by the details of the matrix Q, and the remaining
elements are overwritten by the corresponding elements
of the m by n lower trapezoidal matrix L.

tau REAL for sgelqf
DOUBLE PRECISION for dgelqf
COMPLEX for cgelqf
DOUBLE COMPLEX for zgelqf.
Array, DIMENSION at least max(1, min(m, n)).
Contains additional information on the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The computed factorization is the exact factorization of a matrix A + E,
where | | E| | 2 = O(ε) | | A| | 2.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-27

The approximate number of floating-point operations for real flavors is

(4/3)n3 if m = n,

(2/3)n2(3m-n) if m > n,

(2/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

To find the minimum-norm solution of an underdetermined least-squares
problem minimizing | | Ax −b| | 2 for all columns b of a given matrix B, you
can call the following:

?gelqf (this routine) to factorize A = LQ;

?trsm (a BLAS routine) to solve LY = B for Y;

?ormlq to compute X = (Q1)
TY (for real matrices);

?unmlq to compute X = (Q1)
HY (for complex matrices).

(The columns of the computed X are the minimum-norm solution vectors x.
Here A is an m by n matrix with m < n; Q1 denotes the first m columns of Q).

To compute the elements of Q explicitly, call

?orglq (for real matrices)

?unglq (for complex matrices).

5-28

5 Intel® Math Kernel Library Reference Manual

?orglq
Generates the real orthogonal matrix Q of
the LQ factorization formed by ?gelqf.

call sorglq (m, n, k, a, lda, tau, work, lwork, info)

call dorglq (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part of n by n orthogonal matrix Q of the
LQ factorization formed by the routines sgelqf/dgelqf (see page 5-25).
Use this routine after a call to sgelqf/dgelqf.

Usually Q is determined from the LQ factorization of an p by n matrix A
with n ≥ p. To compute the whole matrix Q, use:

call ?orglq (n, n, p, a, lda, tau, work, lwork, info)

To compute the leading p rows of Q (which form an orthonormal basis in
the space spanned by the rows of A):

call ?orglq (p, n, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the LQ factorization of A’s leading k rows:

call ?orglq (n, n, k, a, lda, tau, work, lwork, info)

To compute the leading k rows of Qk (which form an orthonormal basis in
the space spanned by A’s leading k rows):

call ?orgqr (k, n, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The number of rows of Q to be computed
(0 ≤m ≤n).

n INTEGER. The order of the orthogonal matrix Q (n ≥ m).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q (0 ≤k ≤m).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-29

a, tau, work REAL for sorglq
DOUBLE PRECISION for dorglq
Arrays:
a(lda,*) and tau(*) are the arrays returned by
sgelqf/dgelqf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by m leading rows of the n by n orthogonal
matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly orthogonal matrix by a matrix E
such that | | E| | 2 = O(ε) | | A| | 2 where ε is the machine precision.

The total number of floating-point operations is approximately
4*m*n*k - 2*(m + n)*k2 + (4/3)*k3.
If m = k, the number is approximately (2/3)*m2*(3n - m).

The complex counterpart of this routine is ?unglq.

5-30

5 Intel® Math Kernel Library Reference Manual

?ormlq
Multiplies a real matrix by the orthogonal
matrix Q of the LQ factorization formed by
?gelqf.

call sormlq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormlq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the
orthogonal matrix Q of the LQ factorization formed by the routine
sgelqf/dgelqf (see page 5-25).

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QTC, CQ, or CQT (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:
0 ≤k ≤m if side ='L';
0 ≤k ≤n if side ='R'.

a,work,tau,c REAL for sormlq
DOUBLE PRECISION for dormlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-31

The second dimension of a must be:
at least max(1, m) if side ='L';
at least max(1, n) if side ='R'.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k).

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or
lwork = m*blocksize (if side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?unmlq.

5-32

5 Intel® Math Kernel Library Reference Manual

?unglq
Generates the complex unitary matrix Q of
the LQ factorization formed by ?gelqf.

call cunglq (m, n, k, a, lda, tau, work, lwork, info)

call zunglq (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part of n by n unitary matrix Q of the LQ
factorization formed by the routines cgelqf/zgelqf (see page 5-25). Use
this routine after a call to cgelqf/zgelqf.

Usually Q is determined from the LQ factorization of an p by n matrix A
with n ≥ p. To compute the whole matrix Q, use:

call ?unglq (n, n, p, a, lda, tau, work, lwork, info)

To compute the leading p rows of Q (which form an orthonormal basis in
the space spanned by the rows of A):

call ?unglq (p, n, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the LQ factorization of A’s leading k rows:

call ?unglq (n, n, k, a, lda, tau, work, lwork, info)

To compute the leading k rows of Qk (which form an orthonormal basis in
the space spanned by A’s leading k rows):

call ?ungqr (k, n, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The number of rows of Q to be computed
(0 ≤m ≤n).

n INTEGER. The order of the unitary matrix Q (n ≥ m).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q (0 ≤k ≤m).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-33

a, tau, work COMPLEX for cunglq
DOUBLE COMPLEX for zunglq
Arrays:
a(lda,*) and tau(*) are the arrays returned by
sgelqf/dgelqf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by m leading rows of the n by n unitary
matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly unitary matrix by a matrix E such
that | | E| | 2 = O(ε) | | A| | 2 where ε is the machine precision.

The total number of floating-point operations is approximately
16*m*n*k - 8*(m + n)*k2 + (16/3)*k3.
If m = k, the number is approximately (8/3)*m2*(3n - m) .

The real counterpart of this routine is ?orglq.

5-34

5 Intel® Math Kernel Library Reference Manual

?unmlq
Multiplies a complex matrix by the unitary
matrix Q of the LQ factorization formed by
?gelqf.

call cunmlq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmlq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a real m-by-n matrix C by Q or QH, where Q is the
unitary matrix Q of the LQ factorization formed by the routine
cgelqf/zgelqf (see page 5-25).

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QHC, CQ, or CQH (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:
0 ≤k ≤m if side ='L';
0 ≤k ≤n if side ='R'.

a,work,tau,c COMPLEX for cunmlq
DOUBLE COMPLEX for zunmlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-35

The second dimension of a must be:
at least max(1, m) if side ='L';
at least max(1, n) if side ='R'.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k).

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or
lwork = m*blocksize (if side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?ormlq.

5-36

5 Intel® Math Kernel Library Reference Manual

?geqlf
Computes the QL factorization of a
general m by n matrix.

call sgeqlf (m, n, a, lda, tau, work, lwork, info)

call dgeqlf (m, n, a, lda, tau, work, lwork, info)

call cgeqlf (m, n, a, lda, tau, work, lwork, info)

call zgeqlf (m, n, a, lda, tau, work, lwork, info)

Discussion

The routine forms the QL factorization of a general m-by-n matrix A.
No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeqlf
DOUBLE PRECISION for dgeqlf
COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqlf.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, n).
See Application notes for the suggested value of lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-37

Output Parameters

a Overwritten on exit by the factorization data as follows:

if m ≥ n, the lower triangle of the subarray
a(m-n+1:m, 1:n) contains the n-by-n lower triangular
matrix L;
if m ≤n, the elements on and below the (n-m)th
superdiagonal contain the m-by-n lower trapezoidal
matrix L;
in both cases, the remaining elements, with the array
tau, represent the orthogonal/unitary matrix Q as a
product of elementary reflectors.

tau REAL for sgeqlf
DOUBLE PRECISION for dgeqlf
COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqlf.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors for
the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.
Related routines include:
?orgql to generate matrix Q (for real matrices);
?ungql to generate matrix Q (for complex matrices);
?ormql to apply matrix Q (for real matrices);
?unmql to apply matrix Q (for complex matrices).

5-38

5 Intel® Math Kernel Library Reference Manual

?orgql
Generates the real matrix Q of the QL
factorization formed by ?geqlf.

call sorgql (m, n, k, a, lda, tau, work, lwork, info)

call dorgql (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates an m-by-n real matrix Q with orthonormal columns,
which is defined as the last n columns of a product of k elementary
reflectors Hi of order m : Q = Hk ⋅ ⋅ ⋅ H2H1 as returned by the routines
sgeqlf/dgeqlf . Use this routine after a call to sgeqlf/dgeqlf.

Input Parameters

m INTEGER. The number of rows of the matrix Q
(m ≥ 0).

n INTEGER. The number of columns of the matrix Q
(m ≥ n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q (n ≥ k ≥ 0).

a, tau, work REAL for sorgql
DOUBLE PRECISION for dorgql
Arrays: a(lda,*), tau(*), work(lwork).

On entry, the (n - k + i)th column of a must contain the
vector which defines the elementary reflector Hi, for i =
1,2,...,k, as returned by sgeqlf/dgeqlf in the last k
columns of its array argument a;
tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by sgeqlf/dgeqlf;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-39

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, n).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?ungql.

5-40

5 Intel® Math Kernel Library Reference Manual

?ungql
Generates the complex matrix Q of the QL
factorization formed by ?geqlf.

call cungql (m, n, k, a, lda, tau, work, lwork, info)

call zungql (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates an m-by-n complex matrix Q with orthonormal
columns, which is defined as the last n columns of a product of k
elementary reflectors Hi of order m : Q = Hk ⋅ ⋅ ⋅ H2 H1 as returned by the
routines cgeqlf/zgeqlf . Use this routine after a call to cgeqlf/zgeqlf.

Input Parameters

m INTEGER. The number of rows of the matrix Q
(m ≥ 0).

n INTEGER. The number of columns of the matrix Q
(m ≥ n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q (n ≥ k ≥ 0).

a, tau, work COMPLEX for cungql
DOUBLE COMPLEX for zungql
Arrays: a(lda,*), tau(*), work(lwork).

On entry, the (n - k + i)th column of a must contain the
vector which defines the elementary reflector Hi, for i =
1,2,...,k, as returned by cgeqlf/zgeqlf in the last k
columns of its array argument a;
tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by cgeqlf/zgeqlf;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-41

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, n).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?orgql.

5-42

5 Intel® Math Kernel Library Reference Manual

?ormql
Multiplies a real matrix by the orthogonal
matrix Q of the QL factorization formed by
?geqlf.

call sormql (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormql (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

This routine multiplies a real m-by-n matrix C by Q or QT, where Q is the
orthogonal matrix Q of the QL factorization formed by the routine
sgeqlf/dgeqlf .

Depending on the parameters side and trans, the routine ?ormql can
form one of the matrix products QC, QTC, CQ, or CQT (overwriting the
result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:
0 ≤k ≤m if side ='L';
0 ≤k ≤n if side ='R'.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-43

a,tau,c,work REAL for sormql
DOUBLE PRECISION for dormql.
Arrays: a(lda,*), tau(*), c(ldc,*),
work(lwork).

On entry, the ith column of a must contain the vector
which defines the elementary reflector Hi, for i =
1,2,...,k, as returned by sgeqlf/dgeqlf in the last k
columns of its array argument a.
The second dimension of a must be at least max(1, k).

tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by sgeqlf/dgeqlf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a;

if side ='L', lda ≥ max(1, m);
if side ='R', lda ≥ max(1, n) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

5-44

5 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or
lwork = m*blocksize (if side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?unmql.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-45

?unmql
Multiplies a complex matrix by the unitary
matrix Q of the QL factorization formed by
?geqlf.

call cunmql (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmql (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is
the unitary matrix Q of the QL factorization formed by the routine
cgeqlf/zgeqlf .

Depending on the parameters side and trans, the routine ?unmql can
form one of the matrix products QC, QHC, CQ, or CQH (overwriting the
result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:
0 ≤k ≤m if side ='L';
0 ≤k ≤n if side ='R'.

5-46

5 Intel® Math Kernel Library Reference Manual

a,tau,c,work COMPLEX for cunmql
DOUBLE COMPLEX for zunmql.
Arrays: a(lda,*), tau(*), c(ldc,*),
work(lwork).

On entry, the ith column of a must contain the vector
which defines the elementary reflector Hi, for i =
1,2,...,k, as returned by cgeqlf/zgeqlf in the last k
columns of its array argument a.
The second dimension of a must be at least max(1, k).

tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by cgeqlf/zgeqlf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a;

if side ='L', lda ≥ max(1, m);
if side ='R', lda ≥ max(1, n) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-47

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or
lwork = m*blocksize (if side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?ormql.

5-48

5 Intel® Math Kernel Library Reference Manual

?gerqf
Computes the RQ factorization of a
general m by n matrix.

call sgerqf (m, n, a, lda, tau, work, lwork, info)

call dgerqf (m, n, a, lda, tau, work, lwork, info)

call cgerqf (m, n, a, lda, tau, work, lwork, info)

call zgerqf (m, n, a, lda, tau, work, lwork, info)

Discussion

The routine forms the RQ factorization of a general m-by-n matrix A.
No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgerqf
DOUBLE PRECISION for dgerqf
COMPLEX for cgerqf
DOUBLE COMPLEX for zgerqf.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array;
lwork ≥ max(1, m).
See Application notes for the suggested value of lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-49

Output Parameters

a Overwritten on exit by the factorization data as follows:
if m ≤ n, the upper triangle of the subarray
a(1:m, n-m+1:n) contains the m-by-m upper triangular
matrix R;
if m ≥ n, the elements on and above the (m-n)th
subdiagonal contain the m-by-n upper trapezoidal
matrix R;
in both cases, the remaining elements, with the array
tau, represent the orthogonal/unitary matrix Q as a
product of min(m,n) elementary reflectors.

tau REAL for sgerqf
DOUBLE PRECISION for dgerqf
COMPLEX for cgerqf
DOUBLE COMPLEX for zgerqf.
Array, DIMENSION at least max (1, min(m, n)).
Contains scalar factors of the elementary reflectors for
the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.
Related routines include:
?orgrq to generate matrix Q (for real matrices);
?ungrq to generate matrix Q (for complex matrices);
?ormrq to apply matrix Q (for real matrices);
?unmrq to apply matrix Q (for complex matrices).

5-50

5 Intel® Math Kernel Library Reference Manual

?orgrq
Generates the real matrix Q of the RQ
factorization formed by ?gerqf.

call sorgrq (m, n, k, a, lda, tau, work, lwork, info)

call dorgrq (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates an m-by-n real matrix Q with orthonormal rows,
which is defined as the last m rows of a product of k elementary reflectors Hi
of order n : Q = H1 H2 ⋅ ⋅ ⋅ Hk as returned by the routinessgerqf/dgerqf.
Use this routine after a call to sgerqf/dgerqf.

Input Parameters

m INTEGER. The number of rows of the matrix Q
(m ≥ 0).

n INTEGER. The number of columns of the matrix Q
(n ≥ m).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q (m ≥ k ≥ 0).

a, tau, work REAL for sorgrq
DOUBLE PRECISION for dorgrq
Arrays: a(lda,*), tau(*), work(lwork).

On entry, the (m - k + i)th row of a must contain the
vector which defines the elementary reflector Hi, for i =
1,2,...,k, as returned by sgerqf/dgerqf in the last k
rows of its array argument a;
tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by sgerqf/dgerqf;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-51

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?ungrq.

5-52

5 Intel® Math Kernel Library Reference Manual

?ungrq
Generates the complex matrix Q of the RQ
factorization formed by ?gerqf.

call cungrq (m, n, k, a, lda, tau, work, lwork, info)

call zungrq (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates an m-by-n complex matrix Q with orthonormal rows,
which is defined as the last m rows of a product of k elementary reflectors Hi
of order n : Q = H1

H H2
H ⋅ ⋅ ⋅ Hk

H as returned by the routines
sgerqf/dgerqf. Use this routine after a call to sgerqf/dgerqf.

Input Parameters

m INTEGER. The number of rows of the matrix Q
(m ≥ 0).

n INTEGER. The number of columns of the matrix Q
(n ≥ m).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q (m ≥ k ≥ 0).

a, tau, work REAL for cungrq
DOUBLE PRECISION for zungrq
Arrays: a(lda,*), tau(*), work(lwork).

On entry, the (m - k + i)th row of a must contain the
vector which defines the elementary reflector Hi, for i =
1,2,...,k, as returned by sgerqf/dgerqf in the last k
rows of its array argument a;
tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by sgerqf/dgerqf;

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-53

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?orgrq.

5-54

5 Intel® Math Kernel Library Reference Manual

?ormrq
Multiplies a real matrix by the orthogonal
matrix Q of the RQ factorization formed by
?gerqf.

call sormrq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormrq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the
real orthogonal matrix defined as a product of k elementary reflectors Hi :
Q = H1 H2 ⋅ ⋅ ⋅ Hk as returned by the RQ factorization routine
sgerqf/dgerqf .

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QTC, CQ, or CQT (overwriting the result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:
0 ≤k ≤m , if side ='L';
0 ≤k ≤n , if side ='R'.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-55

a,tau,c,work REAL for sormrq
DOUBLE PRECISION for dormrq.
Arrays: a(lda,*), tau(*), c(ldc,*),
work(lwork).

On entry, the ith row of a must contain the vector which
defines the elementary reflector Hi, for i = 1,2,...,k, as
returned by sgerqf/dgerqf in the last k rows of its
array argument a.
The second dimension of a must be at least max(1, m) if
side ='L', and at least max(1, n) if side ='R'.

tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by sgerqf/dgerqf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

5-56

5 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or
lwork = m*blocksize (if side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?unmrq.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-57

?unmrq
Multiplies a complex matrix by the unitary
matrix Q of the RQ factorization formed by
?gerqf.

call cunmrq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmrq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is
the complex unitary matrix defined as a product of k elementary reflectors
Hi : Q = H1

H H2
H ⋅ ⋅ ⋅ Hk

H as returned by the RQ factorization routine
cgerqf/zgerqf .

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QHC, CQ, or CQH (overwriting the result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:
0 ≤k ≤m , if side ='L';
0 ≤k ≤n , if side ='R'.

5-58

5 Intel® Math Kernel Library Reference Manual

a,tau,c,work COMPLEX for cunmrq
DOUBLE COMPLEX for zunmrq.
Arrays: a(lda,*), tau(*), c(ldc,*),
work(lwork).

On entry, the ith row of a must contain the vector which
defines the elementary reflector Hi, for i = 1,2,...,k, as
returned by cgerqf/zgerqf in the last k rows of its
array argument a.
The second dimension of a must be at least max(1, m) if
side ='L', and at least max(1, n) if side ='R'.

tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by cgerqf/zgerqf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-59

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or
lwork = m*blocksize (if side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?ormrq.

5-60

5 Intel® Math Kernel Library Reference Manual

?tzrzf
Reduces the upper trapezoidal matrix A
to upper triangular form.

call stzrzf (m, n, a, lda, tau, work, lwork, info)

call dtzrzf (m, n, a, lda, tau, work, lwork, info)

call ctzrzf (m, n, a, lda, tau, work, lwork, info)

call ztzrzf (m, n, a, lda, tau, work, lwork, info)

Discussion

This routine reduces the m-by-n (m ≤n) real/complex upper trapezoidal
matrix A to upper triangular form by means of orthogonal/unitary
transformations. The upper trapezoidal matrix A is factored as

A = (R 0) * Z,

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by-m upper
triangular matrix.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ m).

a, work REAL for stzrzf
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Arrays: a(lda,*), work(lwork).

The leading m-by-n upper trapezoidal part of the array a
contains the matrix A to be factorized.
The second dimension of a must be at least max(1, n).

work is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array;

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-61

lwork ≥ max(1, m).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten on exit by the factorization data as follows:

the leading m-by-m upper triangular part of a contains
the upper triangular matrix R, and elements m +1 to n of
the first m rows of a, with the array tau, represent the
orthogonal matrix Z as a product of m elementary
reflectors.

tau REAL for stzrzf
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Array, DIMENSION at least max (1, m).
Contains scalar factors of the elementary reflectors for
the matrix Z.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.
Related routines include:

?ormrz to apply matrix Q (for real matrices);

?unmrz to apply matrix Q (for complex matrices).

5-62

5 Intel® Math Kernel Library Reference Manual

?ormrz
Multiplies a real matrix by the orthogonal
matrix defined from the factorization
formed by ?tzrzf.

call sormrz (side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info)

call dormrz (side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the
real orthogonal matrix defined as a product of k elementary reflectors Hi :
Q = H1 H2 ⋅ ⋅ ⋅ Hkas returned by the factorization routinestzrzf/dtzrzf .

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QTC, CQ, or CQT (overwriting the result over C).

The matrix Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:
0 ≤k ≤m , if side ='L';
0 ≤k ≤n , if side ='R'.

l INTEGER.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-63

The number of columns of the matrix A containing the
meaningful part of the Householder reflectors.
Constraints:
0 ≤l ≤m , if side ='L';
0 ≤l ≤n , if side ='R'.

a,tau,c,work REAL for sormrz
DOUBLE PRECISION for dormrz.
Arrays: a(lda,*), tau(*), c(ldc,*),
work(lwork).

On entry, the ith row of a must contain the vector which
defines the elementary reflector Hi, for i = 1,2,...,k, as
returned by stzrzf/dtzrzf in the last k rows of its
array argument a.
The second dimension of a must be at least max(1, m) if
side ='L', and at least max(1, n) if side ='R'.

tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by stzrzf/dtzrzf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

5-64

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or
lwork = m*blocksize (if side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?unmrz.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-65

?unmrz
Multiplies a complex matrix by the unitary
matrix defined from the factorization
formed by ?tzrzf.

call cunmrz (side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info)

call zunmrz (side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is
the unitary matrix defined as a product of k elementary reflectors Hi :
Q = H1

H H2
H ⋅ ⋅ ⋅ Hk

H as returned by the factorization routine
ctzrzf/ztzrzf .

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QHC, CQ, or CQH (overwriting the result over C).

The matrix Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrix Q. Constraints:
0 ≤k ≤m , if side ='L';
0 ≤k ≤n , if side ='R'.

l INTEGER.

5-66

5 Intel® Math Kernel Library Reference Manual

The number of columns of the matrix A containing the
meaningful part of the Householder reflectors.
Constraints:
0 ≤l ≤m , if side ='L';
0 ≤l ≤n , if side ='R'.

a,tau,c,work COMPLEX for cunmrz
DOUBLE COMPLEX for zunmrz.
Arrays: a(lda,*), tau(*), c(ldc,*),
work(lwork).

On entry, the ith row of a must contain the vector which
defines the elementary reflector Hi, for i = 1,2,...,k, as
returned by ctzrzf/ztzrzf in the last k rows of its
array argument a.
The second dimension of a must be at least max(1, m) if
side ='L', and at least max(1, n) if side ='R'.

tau(i) must contain the scalar factor of the elementary
reflector Hi, as returned by ctzrzf/ztzrzf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-67

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or
lwork = m*blocksize (if side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?ormrz.

5-68

5 Intel® Math Kernel Library Reference Manual

?ggqrf
Computes the generalized QR
factorization of two matrices.

call sggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call dggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call cggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call zggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

Discussion

The routine forms the generalized QR factorization of an n-by-m matrix A
and an n-by-p matrix B as A = Q R, B = Q T Z ,
where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p
orthogonal/unitary matrix, and R and T assume one of the forms:

, if n ≥ m

or

, if n < m ,

where R11 is upper triangular, and

, if n ≤p , or

, if n >p

where T12 or T21 is a p-by-p upper triangular matrix.

R m

n m–

=

m

R
11

0

n m n–
R n= R11(R12)

p n– n

T n= 0(T12)

T n p–

p

=

p

T11

T21

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-69

In particular, if B is square and nonsingular, the GQR factorization of A and
B implicitly gives the QR factorization of B-1A as:

B -1 A = ZH (T -1 R)

Input Parameters

n INTEGER. The number of rows of the matrices A and B
(n ≥ 0).

m INTEGER. The number of columns in A (m ≥ 0).

p INTEGER. The number of columns in B (p ≥ 0).

a, b, work REAL for sggqrf
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, p).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The size of the work array; must be at least
max(1, n, m, p)
See Application notes for the suggested value of lwork.

Output Parameters

a, b Overwritten by the factorization data as follows:

on exit, the elements on and above the diagonal of the
array a contain the min(n,m)-by-m upper trapezoidal
matrix R (R is upper triangular if n ≥ m); the elements
below the diagonal, with the array taua, represent the
orthogonal/unitary matrix Q as a product of min(n,m)
elementary reflectors ;

5-70

5 Intel® Math Kernel Library Reference Manual

if n ≤p, the upper triangle of the subarray
b(1:n, p-n+1:p) contains the n-by-n upper triangular
matrix T;
if n >p, the elements on and above the (n-p)th
subdiagonal contain the n-by-p upper trapezoidal
matrix T; the remaining elements, with the array taub,
represent the orthogonal/unitary matrix Z as a product of
elementary reflectors.

taua, taub REAL for sggqrf
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays, DIMENSION at least max (1, min(n, m)) for taua
and at least max (1, min(n, p)) for taub.
The array taua contains the scalar factors of the
elementary reflectors which represent the
orthogonal/unitary matrix Q.

The array taub contains the scalar factors of the
elementary reflectors which represent the
orthogonal/unitary matrix Z.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using
lwork ≥ max(n,m,p)*max(nb1,nb2,nb3),
where nb1 is the optimal blocksize for the QR factorization of an n-by-m

matrix, nb2 is the optimal blocksize for the RQ factorization of an n-by-p
matrix, and nb3 is the optimal blocksize for a call of ?ormqr/?unmqr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-71

?ggrqf
Computes the generalized RQ
factorization of two matrices.

call sggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call dggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call cggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call zggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

Discussion

The routine forms the generalized RQ factorization of an m-by-n matrix A
and an p-by-n matrix B as A = R Q, B = Z T Q ,
where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p
orthogonal/unitary matrix, and R and T assume one of the forms:

, if m ≤n ,

or

, if m >n

where R11 or R21 is upper triangular, and

, if p ≥ n

or

, if p < n ,

n m– m

R m= 0(R12)

R m n–

n

=

n

R11

R21

T n

p n–

=

n

T11

0

p n p–
T p= T11(T12)

5-72

5 Intel® Math Kernel Library Reference Manual

where T11 is upper triangular.

In particular, if B is square and nonsingular, the GRQ factorization of A and
B implicitly gives the RQ factorization of AB-1 as:

AB -1 = (R T -1) ZH

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

p INTEGER. The number of rows in B (p ≥ 0).

n INTEGER. The number of columns of the matrices A
and B (n ≥ 0).

a, b, work REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

lwork INTEGER. The size of the work array; must be at least
max(1, n, m, p)
See Application notes for the suggested value of lwork.

Output Parameters

a, b Overwritten by the factorization data as follows:

on exit, if m ≤n, the upper triangle of the subarray
a(1:m, n-m+1:n) contains the m-by-m upper triangular
matrix R;
if m >n, the elements on and above the (m-n)th
subdiagonal contain the m-by-n upper trapezoidal

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-73

matrix R; the remaining elements, with the array taua,
represent the orthogonal/unitary matrix Q as a product
of elementary reflectors;
the elements on and above the diagonal of the array b

contain the min(p,n)-by-n upper trapezoidal matrix T (T
is upper triangular if p ≥ n); the elements below the
diagonal, with the array taub, represent the
orthogonal/unitary matrix Z as a product of elementary
reflectors.

taua, taub REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays, DIMENSION at least max (1, min(m, n)) for taua
and at least max (1, min(p, n)) for taub.
The array taua contains the scalar factors of the
elementary reflectors which represent the
orthogonal/unitary matrix Q.

The array taub contains the scalar factors of the
elementary reflectors which represent the
orthogonal/unitary matrix Z.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using
lwork ≥ max(n,m,p)*max(nb1,nb2,nb3),

where nb1 is the optimal blocksize for the RQ factorization of an m-by-n
matrix, nb2 is the optimal blocksize for the QR factorization of an p-by-n
matrix, and nb3 is the optimal blocksize for a call of ?ormrq/?unmrq.
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

5-74

5 Intel® Math Kernel Library Reference Manual

Singular Value Decomposition

This section describes LAPACK routines for computing the singular value
decomposition (SVD) of a general m by n matrix A:

A = UΣVH.

In this decomposition, U and V are unitary (for complex A) or orthogonal
(for real A); Σ is an m by n diagonal matrix with real diagonal elements σi:

σ1 ≥ σ2 ≥ ... ≥ σmin(m, n) ≥ 0.

The diagonal elements σi are singular values of A. The first min(m, n)
columns of the matrices U and V are, respectively, left and right singular
vectors of A. The singular values and singular vectors satisfy

Avi = σiui and AHui = σivi

where ui and vi are the ith columns of U and V, respectively.

To find the SVD of a general matrix A, call the LAPACK routine ?gebrd or
?gbbrd for reducing A to a bidiagonal matrix B by a unitary (orthogonal)
transformation: A = QBPH. Then call ?bdsqr, which forms the SVD of a
bidiagonal matrix: B = U1ΣV1

H.

Thus, the sought-for SVD of A is given by A = UΣVH = (QU1) Σ (V1
HPH).

Table 5-2 Computational Routines for Singular Value Decomposition (SVD)

Operation Real matrices Complex matrices

Reduce A to a bidiagonal matrix B:
A = QBPH (full storage)

?gebrd ?gebrd

Reduce A to a bidiagonal matrix B:
A = QBPH (band storage)

?gbbrd ?gbbrd

Generate the orthogonal (unitary)
matrix Q or P

?orgbr ?ungbr

Apply the orthogonal (unitary)
matrix Q or P

?ormbr ?unmbr

Form singular value decomposition
of the bidiagonal matrix B:
B = U ΣVH

?bdsqr
?bdsdc

?bdsqr

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-75

Figure 5-1 Decision Tree: Singular Value Decomposition

Figure 5-1 presents a decision tree that helps you choose the right sequence
of routines for SVD, depending on whether you need singular values only or
singular vectors as well, whether A is real or complex, and so on.

You can use the SVD to find a minimum-norm solution to a (possibly)
rank-deficient least-squares problem of minimizing | | Ax−b| | 2. The effective
rank k of the matrix A can be determined as the number of singular values
which exceed a suitable threshold. The minimum-norm solution is

x = Vk(Σk) −1c

where Σk is the leading k by k submatrix of Σ, the matrix Vk consists of the
first k columns of V = PV1, and the vector c consists of the first k elements
of UHb = U1

HQHb.

no

yes

no

no

Is A a complex
matrix?

Is A bidiagonal?

no

Are singular
values only
required?

Are singular
values only
required?

?GEBRD ?BDSQR

?GEBRD ?UNGBR

?BDSQR

?GEBRD

?BDSQR

?GEBRD ?ORGBR

?BDSQR

?BDSQR
yes

yes

yes

no

Is A banded?
?GBBRD

?BDSQR

yes

Is A banded?
no

yes

?GBBRD

?BDSQR

5-76

5 Intel® Math Kernel Library Reference Manual

?gebrd
Reduces a general matrix to bidiagonal
form.

call sgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call dgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call cgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call zgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)

Discussion

The routine reduces a general m by n matrix A to a bidiagonal matrix B by
an orthogonal (unitary) transformation.

If m ≥ n, the reduction is given by

where B1 is an n by n upper diagonal matrix, Q and P are orthogonal or, for
a complex A, unitary matrices; Q1 consists of the first n columns of Q.

If m < n, the reduction is given by

where B1 is an m by m lower diagonal matrix, Q and P are orthogonal or, for
a complex A, unitary matrices; P1 consists of the first m rows of P.

The routine does not form the matrices Q and P explicitly, but represents
them as products of elementary reflectors. Routines are provided to work
with the matrices Q and P in this representation:

If the matrix A is real,

• to compute Q and P explicitly, call ?orgbr.
• to multiply a general matrix by Q or P, call ?ormbr.

If the matrix A is complex,

• to compute Q and P explicitly, call ?ungbr.
• to multiply a general matrix by Q or P, call ?unmbr.

A QBPH Q B1

0
 PH Q1B1PH,= = =

A QBPH Q B10()PH Q1B1P1
H,= = =

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-77

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.

Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The dimension of work; at least max(1, m, n).
See Application notes for the suggested value of lwork.

Output Parameters

a If m ≥ n, the diagonal and first super-diagonal of a are
overwritten by the upper bidiagonal matrix B. Elements
below the diagonal are overwritten by details of Q, and
the remaining elements are overwritten by details of P.

If m < n, the diagonal and first sub-diagonal of a are
overwritten by the lower bidiagonal matrix B. Elements
above the diagonal are overwritten by details of P, and
the remaining elements are overwritten by details of Q.

d REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n)).
Contains the diagonal elements of B.

e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n) −1).
Contains the off-diagonal elements of B.

5-78

5 Intel® Math Kernel Library Reference Manual

tauq,taup REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays, DIMENSION at least max (1, min(m, n)).
Contain further details of the matrices Q and P.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = (m + n)*blocksize, where
blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The computed matrices Q, B, and P satisfy QBPH = A + E, where
| | E| | 2 = c(n)ε | | A| | 2, c(n) is a modestly increasing function of n, and
ε is the machine precision.

The approximate number of floating-point operations for real flavors is
(4/3)*n2*(3*m −n) for m ≥ n,
(4/3)*m2*(3*n −m) for m < n.
The number of operations for complex flavors is four times greater.

If n is much less than m, it can be more efficient to first form the QR
factorization of A by calling ?geqrf and then reduce the factor R to
bidiagonal form. This requires approximately 2*n2*(m +n) floating-point
operations.

If m is much less than n, it can be more efficient to first form the LQ
factorization of A by calling ?gelqf and then reduce the factor L to
bidiagonal form. This requires approximately 2*m2*(m +n) floating-point
operations.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-79

?gbbrd
Reduces a general band matrix to
bidiagonal form.

call sgbbrd (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, info)

call dgbbrd (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, info)

call cgbbrd (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, rwork, info)

call zgbbrd (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, rwork, info)

Discussion

This routine reduces an m by n band matrix A to upper bidiagonal matrix B:
A = QBPH. Here the matrices Q and P are orthogonal (for real A) or unitary
(for complex A). They are determined as products of Givens rotation
matrices, and may be formed explicitly by the routine if required. The
routine can also update a matrix C as follows: C = QHC.

Input Parameters

vect CHARACTER*1. Must be 'N' or 'Q' or 'P' or 'B'.
If vect = 'N', neither Q nor PH is generated.
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PH.
If vect = 'B', the routine generates both Q and PH.

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

ncc INTEGER. The number of columns in C (ncc ≥ 0).

kl INTEGER. The number of sub-diagonals within the
band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the
band of A (ku ≥ 0).

5-80

5 Intel® Math Kernel Library Reference Manual

ab,c,work REAL for sgbbrd
DOUBLE PRECISION for dgbbrd
COMPLEX for cgbbrd
DOUBLE COMPLEX for zgbbrd.
Arrays:
ab(ldab,*) contains the matrix A in band storage
(see Matrix Storage Schemes).
The second dimension of a must be at least max(1, n).

c(ldc,*) contains an m by ncc matrix C.
If ncc = 0, the array c is not referenced. The second
dimension of c must be at least max(1, ncc).

work(*) is a workspace array.
The dimension of work must be at least 2*max(m, n) for
real flavors, or max(m, n) for complex flavors.

ldab INTEGER. The first dimension of the array ab

(ldab ≥ kl + ku + 1).

ldq INTEGER. The first dimension of the output array q.
ldq ≥ max(1, m) if vect = 'Q' or 'B',
ldq ≥ 1 otherwise.

ldpt INTEGER. The first dimension of the output array pt.
ldpt ≥ max(1, n) if vect = 'P' or 'B',
ldpt ≥ 1 otherwise.

ldc INTEGER. The first dimension of the array c.
ldc ≥ max(1, m) if ncc > 0; ldc ≥ 1 if ncc = 0.

rwork REAL for cgbbrd
DOUBLE PRECISION for zgbbrd.
A workspace array, DIMENSION at least max(m, n).

Output Parameters

ab Overwritten by values generated during the reduction.

d REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n)).
Contains the diagonal elements of the matrix B.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-81

e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n) −1).
Contains the off-diagonal elements of B.

q, pt REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays:

q(ldq,*) contains the output m by m matrix Q.
The second dimension of q must be at least max(1, m).

p(ldpt,*) contains the output n by n matrix PH.
The second dimension of pt must be at least max(1, n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrices Q, B, and P satisfy QBPH = A + E, where
| | E| | 2 = c(n)ε | | A| | 2, c(n) is a modestly increasing function of n, and
ε is the machine precision.

If m = n, the total number of floating-point operations for real flavors is
approximately the sum of:

6*n2*(kl + ku) if vect = 'N' and ncc = 0,

3*n2*ncc*(kl + ku −1)/(kl + ku) if C is updated, and

3*n3*(kl + ku −1)/(kl + ku) if either Q or PH is generated
(double this if both).

To estimate the number of operations for complex flavors, use the same
formulas with the coefficients 20 and 10 (instead of 6 and 3).

5-82

5 Intel® Math Kernel Library Reference Manual

?orgbr
Generates the real orthogonal matrix Q
or PT determined by ?gebrd.

call sorgbr (vect, m, n, k, a, lda, tau, work, lwork, info)

call dorgbr (vect, m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part of the orthogonal matrices Q and PT

formed by the routines sgebrd/dgebrd (see page 5-76). Use this routine
after a call to sgebrd/dgebrd. All valid combinations of arguments are
described in Input parameters. In most cases you’ll need the following:

To compute the whole m by m matrix Q:
call ?orgbr ('Q', m, m, n, a ...)

(note that the array a must have at least m columns).

To form the n leading columns of Q if m > n:
call ?orgbr ('Q', m, n, n, a ...)

To compute the whole n by n matrix PT:
call ?orgbr ('P', n, n, m, a ...)

(note that the array a must have at least n rows).

To form the m leading rows of PT if m < n:
call ?orgbr ('P', m, n, m, a ...)

Input Parameters

vect CHARACTER*1. Must be 'Q' or 'P'.
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PT.

m INTEGER. The number of required rows of Q or PT.

n INTEGER. The number of required columns of Q or PT.

k INTEGER. One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-83

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.
For vect ='Q': k ≤n ≤m if m > k, or m = n if m ≤k.
For vect ='P': k ≤m ≤n if n > k, or m = n if n ≤k.

a, work REAL for sorgbr
DOUBLE PRECISION for dorgbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

tau REAL for sorgbr
DOUBLE PRECISION for dorgbr.
For vect = 'Q', the array tauq as returned by ?gebrd.
For vect = 'P', the array taup as returned by ?gebrd.
The dimension of tau must be at least max(1, min(m,k))
for vect ='Q', or max(1, min(m, k)) for vect = 'P'.

lwork INTEGER. The size of the work array.
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the orthogonal matrix Q or PT (or the
leading rows or columns thereof) as specified by vect,
m, and n.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = min(m,n)*blocksize, where
blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm.

5-84

5 Intel® Math Kernel Library Reference Manual

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The computed matrix Q differs from an exactly orthogonal matrix by a
matrix E such that | | E| | 2 = O(ε).

The approximate numbers of floating-point operations for the cases listed in
Discussion are as follows:

To form the whole of Q:

(4/3)n(3m2 - 3m*n + n2) if m > n;

(4/3)m3 if m ≤n.

To form the n leading columns of Q when m > n:

(2/3)n2(3m - n2) if m > n.

To form the whole of PT:

(4/3)n3 if m ≥ n;

(4/3)m(3n2 - 3m*n + m2) if m < n.

To form the m leading columns of PT when m < n:

(2/3)n2(3m - n2) if m > n.

The complex counterpart of this routine is ?ungbr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-85

?ormbr
Multiplies an arbitrary real matrix by
the real orthogonal matrix Q or PT

determined by ?gebrd.

call sormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

Given an arbitrary real matrix C, this routine forms one of the matrix
products QC, QTC, CQ, CQT, PC, PTC, CP, or CPT, where Q and P are
orthogonal matrices computed by a call to sgebrd/dgebrd (see page 5-76).
The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or PT:
If side ='L', r = m; if side ='R', r = n.

vect CHARACTER*1. Must be 'Q' or 'P'.
If vect ='Q', then Q or QT is applied to C.
If vect ='P', then P or PT is applied to C.

side CHARACTER*1. Must be 'L' or 'R'.
If side ='L', multipliers are applied to C from the left.
If side ='R', they are applied to C from the right.

trans CHARACTER*1. Must be 'N' or 'T'.
If trans ='N', then Q or P is applied to C.
If trans ='T', then QT or PT is applied to C.

m INTEGER. The number of rows in C.

n INTEGER. The number of columns in C.

k INTEGER. One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.

5-86

5 Intel® Math Kernel Library Reference Manual

a, c, work REAL for sormbr
DOUBLE PRECISION for dormbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
Its second dimension must be at least max(1, min(r,k))
for vect = 'Q', or max(1, r)) for vect = 'P'.

c(ldc,*) holds the matrix C.
Its second dimension must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a. Constraints:
lda ≥ max(1, r) if vect = 'Q';
lda ≥ max(1, min(r,k)) if vect = 'P'.

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

tau REAL for sormbr
DOUBLE PRECISION for dormbr.
Array, DIMENSION at least max (1, min(r, k)).
For vect = 'Q', the array tauq as returned by ?gebrd.
For vect = 'P', the array taup as returned by ?gebrd.

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, CQT, PC,
PTC, CP, or CPT, as specified by vect, side, and
trans.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-87

Application Notes

For better performance, try using
lwork = n*blocksize for side ='L', or
lwork = m*blocksize for side ='R',

where blocksize is a machine-dependent value (typically, 16 to 64) required
for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The computed product differs from the exact product by a matrix E such
that | | E| | 2 = O(ε) | | C| | 2.

The total number of floating-point operations is approximately

2*n*k(2*m - k) if side ='L' and m ≥ k;

2*m*k(2*n - k) if side ='R' and n ≥ k;

2*m2*n if side ='L' and m < k;

2*n2*m if side ='R' and n < k.

The complex counterpart of this routine is ?unmbr.

5-88

5 Intel® Math Kernel Library Reference Manual

?ungbr
Generates the complex unitary matrix Q
or PH determined by ?gebrd.

call cungbr (vect, m, n, k, a, lda, tau, work, lwork, info)

call zungbr (vect, m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part of the unitary matrices Q and PH

formed by the routines cgebrd/zgebrd (see page 5-76). Use this routine
after a call to cgebrd/zgebrd. All valid combinations of arguments are
described in Input Parameters; in most cases you’ll need the following:

To compute the whole m by m matrix Q:
call ?ungbr ('Q', m, m, n, a ...)

(note that the array a must have at least m columns).

To form the n leading columns of Q if m > n:
call ?ungbr ('Q', m, n, n, a ...)

To compute the whole n by n matrix PH:
call ?ungbr ('P', n, n, m, a ...)

(note that the array a must have at least n rows).

To form the m leading rows of PH if m < n:
call ?ungbr ('P', m, n, m, a ...)

Input Parameters

vect CHARACTER*1. Must be 'Q' or 'P'.
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PH.

m INTEGER. The number of required rows of Q or PH.

n INTEGER. The number of required columns of Q or PH.

k INTEGER. One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-89

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.
For vect ='Q': k ≤n ≤m if m > k, or m = n if m ≤k.
For vect ='P': k ≤m ≤n if n > k, or m = n if n ≤k.

a, work COMPLEX for cungbr
DOUBLE COMPLEX for zungbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

tau COMPLEX for cungbr
DOUBLE COMPLEX for zungbr.
For vect = 'Q', the array tauq as returned by ?gebrd.
For vect = 'P', the array taup as returned by ?gebrd.
The dimension of tau must be at least max(1, min(m,k))
for vect ='Q', or max(1, min(m, k)) for vect = 'P'.

lwork INTEGER. The size of the work array.
Constraint: lwork ≥ max(1, min(m, n)).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the orthogonal matrix Q or PT (or the
leading rows or columns thereof) as specified by vect,
m, and n.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

5-90

5 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork = min(m,n)*blocksize, where
blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The computed matrix Q differs from an exactly orthogonal matrix by a
matrix E such that | | E| | 2 = O(ε).

The approximate numbers of floating-point operations for the cases listed in
Discussion are as follows:

To form the whole of Q:

(16/3)n(3m2 - 3m*n + n2) if m > n;

(16/3)m3 if m ≤n.

To form the n leading columns of Q when m > n:

(8/3)n2(3m - n2) if m > n.

To form the whole of PT:

(16/3)n3 if m ≥ n;

(16/3)m(3n2 - 3m*n + m2) if m < n.

To form the m leading columns of PT when m < n:

(8/3)n2(3m - n2) if m > n.

The real counterpart of this routine is ?orgbr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-91

?unmbr
Multiplies an arbitrary complex matrix
by the unitary matrix Q or P determined
by ?gebrd.

call cunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

Given an arbitrary complex matrix C, this routine forms one of the matrix
products QC, QHC, CQ, CQH, PC, PHC, CP, or CPH, where Q and P are
orthogonal matrices computed by a call to cgebrd/zgebrd (see page 5-76).
The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or PH:
If side ='L', r = m; if side ='R', r = n.

vect CHARACTER*1. Must be 'Q' or 'P'.
If vect ='Q', then Q or QH is applied to C.
If vect ='P', then P or PH is applied to C.

side CHARACTER*1. Must be 'L' or 'R'.
If side ='L', multipliers are applied to C from the left.
If side ='R', they are applied to C from the right.

trans CHARACTER*1. Must be 'N' or 'C'.
If trans ='N', then Q or P is applied to C.
If trans ='C', then QH or PH is applied to C.

m INTEGER. The number of rows in C.

n INTEGER. The number of columns in C.

k INTEGER. One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.

5-92

5 Intel® Math Kernel Library Reference Manual

a, c, work COMPLEX for cunmbr
DOUBLE COMPLEX for zunmbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
Its second dimension must be at least max(1, min(r,k))
for vect = 'Q', or max(1, r)) for vect = 'P'.

c(ldc,*) holds the matrix C.
Its second dimension must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a. Constraints:
lda ≥ max(1, r) if vect = 'Q';
lda ≥ max(1, min(r,k)) if vect = 'P'.

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

tau COMPLEX for cunmbr
DOUBLE COMPLEX for zunmbr.
Array, DIMENSION at least max (1, min(r, k)).
For vect = 'Q', the array tauq as returned by ?gebrd.
For vect = 'P', the array taup as returned by ?gebrd.

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, CQH, PC,
PHC, CP, or CPH, as specified by vect, side, and
trans.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-93

Application Notes

For better performance, try using
lwork = n*blocksize for side ='L', or
lwork = m*blocksize for side ='R',

where blocksize is a machine-dependent value (typically, 16 to 64) required
for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The computed product differs from the exact product by a matrix E such
that | | E| | 2 = O(ε) | | C| | 2.

The total number of floating-point operations is approximately

8*n*k(2*m - k) if side ='L' and m ≥ k;

8*m*k(2*n - k) if side ='R' and n ≥ k;

8*m2*n if side ='L' and m < k;

8*n2*m if side ='R' and n < k.

The real counterpart of this routine is ?ormbr.

5-94

5 Intel® Math Kernel Library Reference Manual

?bdsqr
Computes the singular value decomposition
of a general matrix that has been reduced
to bidiagonal form.

call sbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info)

call dbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info)

call cbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info)

call zbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info)

Discussion

This routine computes the singular values and, optionally, the right and/or
left singular vectors from the Singular Value Decomposition (SVD) of a real
n-by-n (upper or lower) bidiagonal matrix B using the implicit zero-shift
QR algorithm. The SVD of B has the form B = Q *S *PH where S is the
diagonal matrix of singular values, Q is an orthogonal matrix of left singular
vectors, and P is an orthogonal matrix of right singular vectors. If left
singular vectors are requested, this subroutine actually returns U *Q instead
of Q, and, if right singular vectors are requested, this subroutine returns
PH *VT instead of PH, for given real/complex input matrices U and VT.
When U and VT are the orthogonal/unitary matrices that reduce a general
matrix A to bidiagonal form: A = U *B *VT, as computed by ?gebrd, then

A = (U *Q) *S *(PH *VT)
is the SVD of A. Optionally, the subroutine may also compute QH *C for a
given real/complex input matrix C.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', B is an upper bidiagonal matrix.
If uplo = 'L', B is a lower bidiagonal matrix.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-95

n INTEGER. The order of the matrix B (n ≥ 0).

ncvt INTEGER. The number of columns of the matrix VT,
that is, the number of right singular vectors (ncvt ≥ 0).
Set ncvt = 0 if no right singular vectors are required.

nru INTEGER. The number of rows in U, that is, the number
of left singular vectors (nru ≥ 0).
Set nru = 0 if no left singular vectors are required.

ncc INTEGER. The number of columns in the matrix C
used for computing the product QHC (ncc ≥ 0).
Set ncc = 0 if no matrix C is supplied.

d, e, work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of B.
The dimension of d must be at least max(1, n).

e(*) contains the (n-1) off-diagonal elements of B.
The dimension of e must be at least max(1, n).
e(n) is used for workspace.

work(*) is a workspace array.
The dimension of work must be at least
max(1, 2*n) if ncvt = nru = ncc = 0;
max(1, 4*(n-1)) otherwise.

vt, u, c REAL for sbdsqr
DOUBLE PRECISION for dbdsqr
COMPLEX for cbdsqr
DOUBLE COMPLEX for zbdsqr.
Arrays:
vt(ldvt,*) contains an n by ncvt matrix VT.
The second dimension of vt must be at least
max(1, ncvt).
vt is not referenced if ncvt = 0.

u(ldu,*) contains an nru by n unit matrix U.
The second dimension of u must be at least max(1, n).
u is not referenced if nru = 0.

5-96

5 Intel® Math Kernel Library Reference Manual

c(ldc,*) contains the matrix C for computing the
product QH *C. The second dimension of c must be at
least max(1,ncc). The array is not referenced if ncc = 0.

ldvt INTEGER. The first dimension of vt. Constraints:
ldvt ≥ max(1, n) if ncvt > 0;
ldvt ≥ 1 if ncvt = 0.

ldu INTEGER. The first dimension of u. Constraint:
ldu ≥ max(1, nru).

ldc INTEGER. The first dimension of c. Constraints:
ldc ≥ max(1, n) if ncc > 0;
ldc ≥ 1 otherwise.

Output Parameters

d On exit, if info = 0, overwritten by the singular values
in decreasing order (see info).

e On exit, if info = 0, e is destroyed. See also info

below.

c Overwritten by the product QH *C.

vt On exit, this array is overwritten by PH *VT.

u On exit, this array is overwritten by U *Q .

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the algorithm failed to converge;
i specifies how many off-diagonals did not converge.
In this case, d and e contain on exit the diagonal and
off-diagonal elements, respectively, of a bidiagonal
matrix orthogonally equivalent to B.

Application Notes

Each singular value and singular vector is computed to high relative
accuracy. However, the reduction to bidiagonal form (prior to calling the
routine) may decrease the relative accuracy in the small singular values of
the original matrix if its singular values vary widely in magnitude.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-97

If σi is an exact singular value of B, and si is the corresponding computed
value, then

 |si - σi| ≤p(m, n)εσi

where p(m, n) is a modestly increasing function of m and n, and ε is the
machine precision. If only singular values are computed, they are computed
more accurately than when some singular vectors are also computed (that is,
the function p(m, n) is smaller).

If ui is the corresponding exact left singular vector of B, and wi is the
corresponding computed left singular vector, then the angle θ(ui, wi)
between them is bounded as follows:
 θ(ui, wi) ≤p(m, n)ε / mini≠j(| σi - σj| / | σi + σj|) .
Here mini≠j(| σi - σj| / | σi + σj|) is the relative gap between σi and the other
singular values. A similar error bound holds for the right singular vectors.

The total number of real floating-point operations is roughly proportional to
n2 if only the singular values are computed. About 6n2*nru additional
operations (12n2*nru for complex flavors) are required to compute the left
singular vectors and about 6n2*ncvt operations (12n2*ncvt for complex
flavors) to compute the right singular vectors.

5-98

5 Intel® Math Kernel Library Reference Manual

?bdsdc
Computes the singular value decomposition
of a real bidiagonal matrix using a divide
and conquer method.

call sbdsdc (uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
iwork, info)

call dbdsdc (uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
iwork, info)

Discussion

This routine computes the Singular Value Decomposition (SVD) of a real
n-by-n (upper or lower) bidiagonal matrix B: B = U Σ VT, using a divide
and conquer method, where Σ is a diagonal matrix with non-negative
diagonal elements (the singular values of B), and U and V are orthogonal
matrices of left and right singular vectors, respectively. ?bdsdc can be used
to compute all singular values, and optionally, singular vectors or singular
vectors in compact form.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', B is an upper bidiagonal matrix.
If uplo = 'L', B is a lower bidiagonal matrix.

compq CHARACTER*1. Must be 'N', 'P', or 'I'.
If compq = 'N', compute singular values only.
If compq = 'P', compute singular values and compute
singular vectors in compact form.
If compq = 'I', compute singular values and singular
vectors.

n INTEGER. The order of the matrix B (n ≥ 0).

d, e, work REAL for sbdsdc
DOUBLE PRECISION for sbdsdc.
Arrays:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-99

d(*) contains the n diagonal elements of the bidiagonal
matrix B. The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of the
bidiagonal matrix B. The dimension of e must be at least
max(1, n).

work(*) is a workspace array.
The dimension of work must be at least:
max(1, 4*n), if compq = 'N';
max(1, 6*n), if compq = 'P';
max(1, 3*n2+4*n), if compq = 'I'.

ldu INTEGER. The first dimension of the output array u;
ldu ≥ 1. If singular vectors are desired, then
ldu ≥ max(1, n).

ldvt INTEGER. The first dimension of the output array vt;
ldvt ≥ 1. If singular vectors are desired, then
ldvt ≥ max(1, n).

iwork INTEGER.
Workspace array, dimension at least max(1, 8*n).

Output Parameters

d If info = 0, overwritten by the singular values of B.

e On exit, e is overwritten.

u, vt, q REAL for sbdsdc
DOUBLE PRECISION for sbdsdc.
Arrays: u(ldu,*), vt(ldvt,*), q(*).
If compq = 'I', then on exit u contains the left singular
vectors of the bidiagonal matrix B, unless info ≠ 0 (see
info). For other values of compq, u is not referenced.
The second dimension of u must be at least max(1,n).

If compq = 'I', then on exit vt contains the right
singular vectors of the bidiagonal matrix B, unless
info ≠ 0 (see info). For other values of compq, vt is
not referenced. The second dimension of vt must be at
least max(1,n).

5-100

5 Intel® Math Kernel Library Reference Manual

If compq = 'P', then on exit, if info = 0, q and iq

contain the left and right singular vectors in a compact
form. Specifically, q contains all the REAL (for sbdsdc)
or DOUBLE PRECISION (for dbdsdc) data for singular
vectors. For other values of compq , q is not referenced.
See Application notes for details.

iq INTEGER.
Array: iq(*).
If compq = 'P', then on exit, if info = 0, q and iq

contain the left and right singular vectors in a compact
form. Specifically, iq contains all the INTEGER data for
singular vectors. For other values of compq , iq is not
referenced. See Application notes for details.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the algorithm failed to compute a singular
value. The update process of divide and conquer failed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-101

Symmetric Eigenvalue Problems

Symmetric eigenvalue problems are posed as follows: given an n by n real
symmetric or complex Hermitian matrix A, find the eigenvalues λ and the
corresponding eigenvectors z that satisfy the equation

Az = λz. (or, equivalently, zHA = λzH).

In such eigenvalue problems, all n eigenvalues are real not only for real
symmetric but also for complex Hermitian matrices A, and there exists an
orthonormal system of n eigenvectors. If A is a symmetric or Hermitian
positive-definite matrix, all eigenvalues are positive.

To solve a symmetric eigenvalue problem with LAPACK, you usually need
to reduce the matrix to tridiagonal form and then solve the eigenvalue
problem with the tridiagonal matrix obtained. LAPACK includes routines for
reducing the matrix to a tridiagonal form by an orthogonal (or unitary)
similarity transformation A = QTQH as well as for solving tridiagonal
symmetric eigenvalue problems. These routines are listed in Table 5-3.

There are different routines for symmetric eigenvalue problems, depending
on whether you need all eigenvectors or only some of them or eigenvalues
only, whether the matrix A is positive-definite or not, and so on.
These routines are based on three primary algorithms for computing
eigenvalues and eigenvectors of symmetric problems: the divide and conquer
algorithm, the QR algorithm, and bisection followed by inverse iteration. The
divide and conquer algorithm is generally more efficient and is
recommended for computing all eigenvalues and eigenvectors.
Furthermore, to solve an eigenvalue problem using the divide and conquer
algorithm, you need to call only one routine. In general, more than one
routine has to be called if the QR algorithm or bisection followed by inverse
iteration is used.

Decision tree in Figure 5-2 will help you choose the right routine or sequence
of routines for eigenvalue problems with real symmetric matrices. A similar
decision tree for complex Hermitian matrices is presented in Figure 5-3.

5-102

5 Intel® Math Kernel Library Reference Manual

Figure 5-2 Decision Tree: Real Symmetric Eigenvalue Problems

no

yesAre eigenvalues
only required?

yes

no

Is A tridiagonal?

no

no

no

yes

yes

yes

yes

yes

?STEBZ

?SBTRD
?STEBZ

?SPTRD
?STEBZ

?SYTRD ?STEBZ

Is A a band
matrix?

Is A tridiagonal?

Is one triangle
of A stored as a
linear array?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

?STERF or
?STEVD

(?SBTRD
?STERF) or
?SBEVD

(?SPTRD
?STERF) or
?SPEVD

no

no

Are all
eigenvalues and
eigenvectors
required?

Is A tridiagonal?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

no

no

(?SYTRD ?ORGTR
?STEQR) or
?SYEVD

?STEQR or
?STEVD

(?SBTRD
?STEQR) or
?SBEVD

yes

yes

yes

no

(?SPTRD
?OPGTR
?STEQR) or
?SPEVD

yes

Is A tridiagonal?

Is one triangle
of A stored as a
linear array?

?STEBZ ?STEIN

?SPTRD ?STEBZ
?STEIN ?OPMTR

?SYTRD ?STEBZ
?STEIN ?ORMTR

yes

yes

no

no

no

no

Are all the
eigenvalues
required?

(?SYTRD
?STERF) or
?SYEVD

yes

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-103

Figure 5-3 Decision Tree: Complex Hermitian Eigenvalue Problems

no

yesAre
eigenvalues
only required?

no

no

yes

yes

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

no

no

Are all
eigenvalues and
eigenvectors
required?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

no

no

yes

yes

Is one triangle
of A stored as a
linear array?

no

no

no

(?HBTRD
?STERF) or
?HBEVD

(?HPTRD
?STERF) or
?HPEVD

(?HETRD
?STERF) or
?HEEVD

?HBTRD
?STEBZ

?HPTRD
?STEBZ

?HETRD ?STEBZ

(?HBTRD
?STEQR) or
?HBEVD

(?HPTRD
?UPGTR
?STEQR) or
?HPEVD

(?HETRD ?UNGTR
?STEQR) or
?HEEVD

?HPTRD ?STEBZ
?STEIN ?UPMTR

?HETRD ?STEBZ
?STEIN ?UNMTR

Are all the
eigenvalues
required?

yes

yes

yes

yes

yes

5-104

5 Intel® Math Kernel Library Reference Manual

Table 5-3 Computational Routines for Solving Symmetric Eigenvalue
Problems

Operation Real symmetric
matrices

Complex Hermitian
matrices

Reduce to tridiagonal form
A = QTQH (full storage)

?sytrd ?hetrd

Reduce to tridiagonal form
A = QTQH (packed storage)

?sptrd ?hptrd

Reduce to tridiagonal form
A = QTQH (band storage).

?sbtrd ?hbtrd

Generate matrix Q
(full storage)

?orgtr ?ungtr

Generate matrix Q
(packed storage)

?opgtr ?upgtr

Apply matrix Q
(full storage)

?ormtr ?unmtr

Apply matrix Q
(packed storage)

?opmtr ?upmtr

Find all eigenvalues of
a tridiagonal matrix T

?sterf

Find all eigenvalues and eigenvectors
of a tridiagonal matrix T

?steqr ?stedc ?steqr ?stedc

Find all eigenvalues and eigenvectors
of a tridiagonal positive-definite
matrix T.

?pteqr ?pteqr

Find selected eigenvalues of a
tridiagonal matrix T

?stebz
?stegr ?stegr

Find selected eigenvectors of a
tridiagonal matrix T

?stein
?stegr

?stein

?stegr

Compute the reciprocal condition
numbers for the eigenvectors

?disna ?disna

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-105

?sytrd
Reduces a real symmetric matrix to
tridiagonal form.

call ssytrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

call dsytrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

Discussion

This routine reduces a real symmetric matrix A to symmetric tridiagonal
form T by an orthogonal similarity transformation: A = QTQT. The
orthogonal matrix Q is not formed explicitly but is represented as a product
of n-1 elementary reflectors. Routines are provided for working with Q in
this representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for ssytrd
DOUBLE PRECISION for dsytrd.
a(lda,*) is an array containing either upper or lower
triangular part of the matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the tridiagonal matrix T and details of
the orthogonal matrix Q, as specified by uplo.

5-106

5 Intel® Math Kernel Library Reference Manual

d, e, tau REAL for ssytrd
DOUBLE PRECISION for dsytrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau(*) stores further details of the orthogonal matrix
Q. The dimension of tau must be at least max(1, n-1).

work(1) If info=0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed matrix T is exactly similar to a matrix A + E, where
| | E| | 2 = c(n)ε | | A| | 2, c(n) is a modestly increasing function of n, and ε is the
machine precision.

The approximate number of floating-point operations is (4/3)n3.

After calling this routine, you can call the following:

?orgtr to form the computed matrix Q explicitly;

?ormtr to multiply a real matrix by Q.

The complex counterpart of this routine is ?hetrd.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-107

?orgtr
Generates the real orthogonal matrix Q
determined by ?sytrd.

call sorgtr (uplo, n, a, lda, tau, work, lwork, info)

call dorgtr (uplo, n, a, lda, tau, work, lwork, info)

Discussion

The routine explicitly generates the n by n orthogonal matrix Q formed by
?sytrd (see page 5-105) when reducing a real symmetric matrix A to
tridiagonal form: A = QTQT. Use this routine after a call to ?sytrd.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Use the same uplo as supplied to ?sytrd.

n INTEGER. The order of the matrix Q (n ≥ 0).

a, tau, work REAL for sorgtr
DOUBLE PRECISION for dorgtr.
Arrays:
a(lda,*) is the array a as returned by ?sytrd.
The second dimension of a must be at least max(1, n).

tau(*) is the array tau as returned by ?sytrd.
The dimension of tau must be at least max(1, n-1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the orthogonal matrix Q.

5-108

5 Intel® Math Kernel Library Reference Manual

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = (n-1)*blocksize, where blocksize
is a machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The computed matrix Q differs from an exactly orthogonal matrix by a
matrix E such that | | E| | 2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is ?ungtr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-109

?ormtr
Multiplies a real matrix by the real
orthogonal matrix Q determined by
?sytrd.

call sormtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

call dormtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal
matrix Q formed by ?sytrd (see page 5-105) when reducing a real
symmetric matrix A to tridiagonal form: A = QTQT. Use this routine after a
call to ?sytrd.

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QTC, CQ, or CQT (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:
If side ='L', r = m; if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sytrd.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

a,work,tau,c REAL for sormtr
DOUBLE PRECISION for dormtr.
a(lda,*) and tau are the arrays returned by ?sytrd.

5-110

5 Intel® Math Kernel Library Reference Manual

The second dimension of a must be at least max(1, r).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, r).

ldc INTEGER. The first dimension of c; ldc ≥ max(1, n).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize for side ='L', or
lwork = m*blocksize for side ='R', where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix E such
that | | E| | 2 = O(ε) | | C| | 2.

The total number of floating-point operations is approximately 2*m2*n if
side ='L' or 2*n2*m if side ='R'.

The complex counterpart of this routine is ?unmtr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-111

?hetrd
Reduces a complex Hermitian matrix to
tridiagonal form.

call chetrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

call zhetrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

Discussion

This routine reduces a complex Hermitian matrix A to symmetric
tridiagonal form T by a unitary similarity transformation: A = QTQH. The
unitary matrix Q is not formed explicitly but is represented as a product of
n-1 elementary reflectors. Routines are provided to work with Q in this
representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work COMPLEX for chetrd
DOUBLE COMPLEX for zhetrd.
a(lda,*) is an array containing either upper or lower
triangular part of the matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the tridiagonal matrix T and details of
the unitary matrix Q, as specified by uplo.

5-112

5 Intel® Math Kernel Library Reference Manual

d, e REAL for chetrd
DOUBLE PRECISION for zhetrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau COMPLEX for chetrd
DOUBLE COMPLEX for zhetrd.
Array, DIMENSION at least max(1, n-1).
Stores further details of the unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed matrix T is exactly similar to a matrix A + E, where
| | E| | 2 = c(n)ε | | A| | 2, c(n) is a modestly increasing function of n, and ε is the
machine precision.

The approximate number of floating-point operations is (16/3)n3.

After calling this routine, you can call the following:

?ungtr to form the computed matrix Q explicitly;

?unmtr to multiply a complex matrix by Q.

The real counterpart of this routine is ?sytrd.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-113

?ungtr
Generates the complex unitary matrix Q
determined by ?hetrd.

call cungtr (uplo, n, a, lda, tau, work, lwork, info)

call zungtr (uplo, n, a, lda, tau, work, lwork, info)

Discussion

The routine explicitly generates the n by n unitary matrix Q formed by
?hetrd (see page 5-111) when reducing a complex Hermitian matrix A to
tridiagonal form: A = QTQH. Use this routine after a call to ?hetrd.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Use the same uplo as supplied to ?hetrd.

n INTEGER. The order of the matrix Q (n ≥ 0).

a, tau, work COMPLEX for cungtr
DOUBLE COMPLEX for zungtr.
Arrays:
a(lda,*) is the array a as returned by ?hetrd.
The second dimension of a must be at least max(1, n).

tau(*) is the array tau as returned by ?hetrd.
The dimension of tau must be at least max(1, n-1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array (lwork ≥ n)
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the unitary matrix Q.

5-114

5 Intel® Math Kernel Library Reference Manual

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = (n-1)*blocksize, where
blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

The computed matrix Q differs from an exactly unitary matrix by a matrix E
such that | | E| | 2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is ?orgtr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-115

?unmtr
Multiplies a complex matrix by the complex
unitary matrix Q determined by ?hetrd.

call cunmtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

call zunmtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a complex matrix C by Q or QH, where Q is the
unitary matrix Q formed by ?hetrd (see page 5-111) when reducing a
complex Hermitian matrix A to tridiagonal form: A = QTQH. Use this
routine after a call to ?hetrd.

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QHC, CQ, or CQH (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:
If side ='L', r = m; if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?hetrd.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

a,work,tau,c COMPLEX for cunmtr
DOUBLE COMPLEX for zunmtr.
a(lda,*) and tau are the arrays returned by ?hetrd.

5-116

5 Intel® Math Kernel Library Reference Manual

The second dimension of a must be at least max(1, r).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, r).

ldc INTEGER. The first dimension of c; ldc ≥ max(1, n).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH

(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize (for side ='L') or
lwork = m*blocksize (for side ='R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix E such
that | | E| | 2 = O(ε) | | C| | 2, where ε is the machine precision.

The total number of floating-point operations is approximately 8*m2*n if
side ='L' or 8*n2*m if side ='R'.

The real counterpart of this routine is ?ormtr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-117

?sptrd
Reduces a real symmetric matrix to
tridiagonal form using packed storage.

call ssptrd (uplo,n,ap,d,e,tau,info)

call dsptrd (uplo,n,ap,d,e,tau,info)

Discussion

This routine reduces a packed real symmetric matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation: A = QTQT.
The orthogonal matrix Q is not formed explicitly but is represented as a
product of n-1 elementary reflectors. Routines are provided for working
with Q in this representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo ='U', ap stores the packed upper triangle of A.
If uplo ='L', ap stores the packed lower triangle of A.

n INTEGER. The order of the matrix A (n ≥ 0).

ap REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains either upper or lower triangle of A (as specified
by uplo) in packed form.

Output Parameters

ap Overwritten by the tridiagonal matrix T and details of
the orthogonal matrix Q, as specified by uplo.

d, e, tau REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

5-118

5 Intel® Math Kernel Library Reference Manual

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau(*) stores further details of the matrix Q.
The dimension of tau must be at least max(1, n-1).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where
| | E| | 2 = c(n)ε | | A| | 2, c(n) is a modestly increasing function of n, and ε is the
machine precision.

The approximate number of floating-point operations is (4/3)n3.

After calling this routine, you can call the following:

?opgtr to form the computed matrix Q explicitly;

?opmtr to multiply a real matrix by Q.

The complex counterpart of this routine is ?hptrd.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-119

?opgtr
Generates the real orthogonal matrix Q
determined by ?sptrd.

call sopgtr (uplo, n, ap, tau, q, ldq, work, info)
call dopgtr (uplo, n, ap, tau, q, ldq, work, info)

Discussion

The routine explicitly generates the n by n orthogonal matrix Q formed by
?sptrd (see page 5-117) when reducing a packed real symmetric matrix A
to tridiagonal form: A = QTQT. Use this routine after a call to ?sptrd.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Use the same uplo as supplied to ?sptrd.

n INTEGER. The order of the matrix Q (n ≥ 0).

ap, tau REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Arrays ap and tau, as returned by ?sptrd.
The dimension of ap must be at least max(1, n(n+1)/2).
The dimension of tau must be at least max(1, n-1).

ldq INTEGER. The first dimension of the output array q;
at least max(1, n).

work REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Workspace array, DIMENSION at least max(1, n-1).

Output Parameters

q REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Array, DIMENSION (ldq,*).
Contains the computed matrix Q.
The second dimension of q must be at least max(1, n).

5-120

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a
matrix E such that | | E| | 2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is ?upgtr.

?opmtr
Multiplies a real matrix by the real
orthogonal matrix Q determined by
?sptrd.

call sopmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

call dopmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

Discussion

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal
matrix Q formed by ?sptrd (see page 5-117) when reducing a packed real
symmetric matrix A to tridiagonal form: A = QTQT. Use this routine after a
call to ?sptrd.

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QTC, CQ, or CQT (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:
If side ='L', r = m; if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-121

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sptrd.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

ap,work,tau,c REAL for sopmtr
DOUBLE PRECISION for dopmtr.
ap and tau are the arrays returned by ?sptrd.
The dimension of ap must be at least max(1, r(r+1)/2).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(*) is a workspace array.
The dimension of work must be at least
max(1, n) if side ='L';
max(1, m) if side ='R'.

ldc INTEGER. The first dimension of c; ldc ≥ max(1, n).

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT

(as specified by side and trans).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed product differs from the exact product by a matrix E such that
| | E| | 2 = O(ε) | | C| | 2, where ε is the machine precision.

The total number of floating-point operations is approximately 2*m2*n if
side ='L' or 2*n2*m if side ='R'.

The complex counterpart of this routine is ?upmtr.

5-122

5 Intel® Math Kernel Library Reference Manual

?hptrd
Reduces a complex Hermitian matrix to
tridiagonal form using packed storage.

call chptrd (uplo,n,ap,d,e,tau,info)

call zhptrd (uplo,n,ap,d,e,tau,info)

Discussion

This routine reduces a packed complex Hermitian matrix A to symmetric
tridiagonal form T by a unitary similarity transformation: A = QTQH. The
unitary matrix Q is not formed explicitly but is represented as a product of
n-1 elementary reflectors. Routines are provided for working with Q in this
representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo ='U', ap stores the packed upper triangle of A.
If uplo ='L', ap stores the packed lower triangle of A.

n INTEGER. The order of the matrix A (n ≥ 0).

ap COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains either upper or lower triangle of A (as specified
by uplo) in packed form.

Output Parameters

ap Overwritten by the tridiagonal matrix T and details of
the orthogonal matrix Q, as specified by uplo.

d, e REAL for chptrd
DOUBLE PRECISION for zhptrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-123

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Arrays, DIMENSION at least max(1, n-1).
Contains further details of the orthogonal matrix Q.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where
| | E| | 2 = c(n)ε | | A| | 2, c(n) is a modestly increasing function of n, and ε is the
machine precision.

The approximate number of floating-point operations is (16/3)n3.

After calling this routine, you can call the following:

?upgtr to form the computed matrix Q explicitly;

?upmtr to multiply a complex matrix by Q.

The real counterpart of this routine is ?sptrd.

5-124

5 Intel® Math Kernel Library Reference Manual

?upgtr
Generates the complex unitary matrix Q
determined by ?hptrd.

call cupgtr (uplo, n, ap, tau, q, ldq, work, info)
call zupgtr (uplo, n, ap, tau, q, ldq, work, info)

Discussion

The routine explicitly generates the n by n unitary matrix Q formed by
?hptrd (see page 5-122) when reducing a packed complex Hermitian
matrix A to tridiagonal form: A = QTQH. Use this routine after a call to
?hptrd.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

Use the same uplo as supplied to ?sptrd.

n INTEGER. The order of the matrix Q (n ≥ 0).

ap, tau COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Arrays ap and tau, as returned by ?hptrd.
The dimension of ap must be at least max(1, n(n+1)/2).
The dimension of tau must be at least max(1, n-1).

ldq INTEGER. The first dimension of the output array q;
at least max(1, n).

work COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Workspace array, DIMENSION at least max(1, n-1).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-125

Output Parameters

q COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Array, DIMENSION (ldq,*).
Contains the computed matrix Q.
The second dimension of q must be at least max(1, n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a
matrix E such that | | E| | 2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is ?opgtr.

?upmtr
Multiplies a complex matrix by the unitary
matrix Q determined by ?hptrd.

call cupmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

call zupmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

Discussion

The routine multiplies a complex matrix C by Q or QH, where Q is the
unitary matrix Q formed by ?hptrd (see page 5-122) when reducing a
packed complex Hermitian matrix A to tridiagonal form: A = QTQH. Use
this routine after a call to ?hptrd.

Depending on the parameters side and trans, the routine can form one of
the matrix products QC, QHC, CQ, or CQH (overwriting the result on C).

5-126

5 Intel® Math Kernel Library Reference Manual

Input Parameters

In the descriptions below, r denotes the order of Q:
If side ='L', r = m; if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?hptrd.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

ap,tau,c,work COMPLEX for cupmtr
DOUBLE COMPLEX for zupmtr.
ap and tau are the arrays returned by ?hptrd.

The dimension of ap must be at least max(1, r(r+1)/2).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(*) is a workspace array.
The dimension of work must be at least
max(1, n) if side ='L';
max(1, m) if side ='R'.

ldc INTEGER. The first dimension of c; ldc ≥ max(1, n).

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH

(as specified by side and trans).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-127

Application Notes

The computed product differs from the exact product by a matrix E such that
| | E| | 2 = O(ε) | | C| | 2, where ε is the machine precision.

The total number of floating-point operations is approximately 8*m2*n if
side ='L' or 8*n2*m if side ='R'.

The real counterpart of this routine is ?opmtr.

5-128

5 Intel® Math Kernel Library Reference Manual

?sbtrd
Reduces a real symmetric band matrix to
tridiagonal form.

call ssbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

call dsbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

Discussion

This routine reduces a real symmetric band matrix A to symmetric
tridiagonal form T by an orthogonal similarity transformation: A = QTQT.
The orthogonal matrix Q is determined as a product of Givens rotations. If
required, the routine can also form the matrix Q explicitly.

Input Parameters
vect CHARACTER*1. Must be 'V' or 'N'.

If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work REAL for ssbtrd
DOUBLE PRECISION for dsbtrd.
ab (ldab,*) is an array containing either upper or
lower triangular part of the matrix A (as specified by
uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

ldab INTEGER. The first dimension of ab; at least kd+1.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-129

ldq INTEGER. The first dimension of q. Constraints:
ldq ≥ max(1, n) if vect = 'V';
ldq ≥ 1 if vect = 'N'.

Output Parameters

ab On exit, the array ab is overwritten.

d, e, q REAL for ssbtrd
DOUBLE PRECISION for dsbtrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

q(ldq,*) is not referenced if vect = 'N'.
If vect ='V', q contains the n by n matrix Q.
The second dimension of q must be:
at least max(1, n) if vect = 'V';
at least 1 if vect = 'N'.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where
| | E| | 2 = c(n)ε | | A| | 2, c(n) is a modestly increasing function of n, and ε is the
machine precision. The computed matrix Q differs from an exactly
orthogonal matrix by a matrix E such that | | E| | 2 = O(ε).

The total number of floating-point operations is approximately 6n2*kd if
vect ='N', with 3n3*(kd-1)/kd additional operations if vect ='V'.

The complex counterpart of this routine is ?hbtrd.

5-130

5 Intel® Math Kernel Library Reference Manual

?hbtrd
Reduces a complex Hermitian band matrix
to tridiagonal form.

call chbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

call zhbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

Discussion

This routine reduces a complex Hermitian band matrix A to symmetric
tridiagonal form T by a unitary similarity transformation: A = QTQH. The
unitary matrix Q is determined as a product of Givens rotations. If required,
the routine can also form the matrix Q explicitly.

Input Parameters
vect CHARACTER*1. Must be 'V' or 'N'.

If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
ab (ldab,*) is an array containing either upper or
lower triangular part of the matrix A (as specified by
uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

ldab INTEGER. The first dimension of ab; at least kd+1.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-131

ldq INTEGER. The first dimension of q. Constraints:
ldq ≥ max(1, n) if vect = 'V';
ldq ≥ 1 if vect = 'N'.

Output Parameters

ab On exit, the array ab is overwritten.

d, e REAL for chbtrd
DOUBLE PRECISION for zhbtrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

q COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
Array, DIMENSION (ldq,*).
If vect ='N', q is not referenced.
If vect ='V', q contains the n by n matrix Q.
The second dimension of q must be:
at least max(1, n) if vect = 'V';
at least 1 if vect = 'N'.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where
| | E| | 2 = c(n)ε | | A| | 2, c(n) is a modestly increasing function of n, and ε is the
machine precision. The computed matrix Q differs from an exactly unitary
matrix by a matrix E such that | | E| | 2 = O(ε).

The total number of floating-point operations is approximately 20n2*kd if
vect ='N', with 10n3*(kd-1)/kd additional operations if vect ='V'.

The real counterpart of this routine is ?sbtrd.

5-132

5 Intel® Math Kernel Library Reference Manual

?sterf
Computes all eigenvalues of a real
symmetric tridiagonal matrix using QR
algorithm.

call ssterf (n, d, e, info)

call dsterf (n, d, e, info)

Discussion

This routine computes all the eigenvalues of a real symmetric tridiagonal
matrix T (which can be obtained by reducing a symmetric or Hermitian
matrix to tridiagonal form). The routine uses a square-root-free variant of
the QR algorithm.

If you need not only the eigenvalues but also the eigenvectors, call ?steqr
(page 5-134).

Input Parameters

n INTEGER. The order of the matrix T (n ≥ 0).

d, e REAL for ssterf
DOUBLE PRECISION for dsterf.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

Output Parameters

d The n eigenvalues in ascending order, unless info > 0.
See also info.

e On exit, the array is overwritten; see info.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-133

info INTEGER.
If info = 0, the execution is successful.
If info = i, the algorithm failed to find all the
eigenvalues after 30n iterations: i off-diagonal elements
have not converged to zero. On exit, d and e contain,
respectively, the diagonal and off-diagonal elements of a
tridiagonal matrix orthogonally similar to T.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that | | E| | 2 = O(ε) | | T| | 2, where ε is the machine precision.

If λ i is an exact eigenvalue, and µi is the corresponding computed value,
then

 | µi - λi| ≤c(n)ε | |T| | 2

where c(n) is a modestly increasing function of n.

The total number of floating-point operations depends on how rapidly the
algorithm converges. Typically, it is about 14n2.

5-134

5 Intel® Math Kernel Library Reference Manual

?steqr
Computes all eigenvalues and
eigenvectors of a symmetric or Hermitian
matrix reduced to tridiagonal form
(QR algorithm).

call ssteqr (compz, n, d, e, z, ldz, work, info)
call dsteqr (compz, n, d, e, z, ldz, work, info)
call csteqr (compz, n, d, e, z, ldz, work, info)
call zsteqr (compz, n, d, e, z, ldz, work, info)

Discussion

This routine computes all the eigenvalues and (optionally) all the
eigenvectors of a real symmetric tridiagonal matrix T. In other words, the
routine can compute the spectral factorization: T = ZΛ ZT.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ i;
Z is an orthogonal matrix whose columns are eigenvectors. Thus,

Tzi = λ izi for i = 1, 2, ..., n.
(The routine normalizes the eigenvectors so that | | zi| | 2 = 1.)

You can also use the routine for computing the eigenvalues and eigenvectors
of an arbitrary real symmetric (or complex Hermitian) matrix A reduced to
tridiagonal form T: A = QTQH. In this case, the spectral factorization is as
follows: A = QTQH = (QZ)Λ (QZ)H. Before calling ?steqr, you must
reduce A to tridiagonal form and generate the explicit matrix Q by calling
the following routines:

for real matrices: for complex matrices:
full storage ?sytrd,?orgtr ?hetrd,?ungtr

packed storage ?sptrd,?opgtr ?hptrd,?upgtr

band storage ?sbtrd (vect='V') ?hbtrd (vect='V')

If you need eigenvalues only, it’s more efficient to call ?sterf (page
5-132). If T is positive-definite, ?pteqr (page 5-146) can compute small
eigenvalues more accurately than ?steqr.

To solve the problem by a single call, use one of the divide and conquer
routines ?stevd, ?syevd, ?spevd, or ?sbevd for real symmetric
matrices or ?heevd, ?hpevd, or ?hbevd for complex Hermitian matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-135

Input Parameters
compz CHARACTER*1. Must be 'N' or 'I' or 'V'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues
and eigenvectors of the tridiagonal matrix T.
If compz ='V', the routine computes the eigenvalues
and eigenvectors of A (and the array z must contain the
matrix Q on entry).

n INTEGER. The order of the matrix T (n ≥ 0).

d,e,work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1, 2*n-2) if compz ='V' or 'I'.

z REAL for ssteqr
DOUBLE PRECISION for dsteqr
COMPLEX for csteqr
DOUBLE COMPLEX for zsteqr.
Array, DIMENSION (ldz, *)
If compz ='N' or 'I', z need not be set.
If vect ='V', z must contain the n by n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1, n) if compz ='V' or 'I'.

work (lwork) is a workspace array.

ldz INTEGER. The first dimension of z. Constraints:
ldz ≥ 1 if compz = 'N';
ldz ≥ max(1, n) if compz ='V' or 'I'.

5-136

5 Intel® Math Kernel Library Reference Manual

Output Parameters

d The n eigenvalues in ascending order, unless info > 0.
See also info.

e On exit, the array is overwritten; see info.

z If info = 0, contains the n orthonormal eigenvectors,
stored by columns. (The ith column corresponds to the
ith eigenvalue.)

info INTEGER.
If info = 0, the execution is successful.
If info = i, the algorithm failed to find all the
eigenvalues after 30n iterations: i off-diagonal elements
have not converged to zero. On exit, d and e contain,
respectively, the diagonal and off-diagonal elements of a
tridiagonal matrix orthogonally similar to T.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that | | E| | 2 = O(ε) | | T| | 2, where ε is the machine precision.

If λ i is an exact eigenvalue, and µi is the corresponding computed value,
then

 | µi - λi| ≤c(n)ε | |T| | 2

where c(n) is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and wi is the corresponding
computed vector, then the angle θ(zi, wi) between them is bounded as
follows:
 θ(zi, wi) ≤c(n)ε | | T| | 2 / mini≠j| λi - λj| .
The total number of floating-point operations depends on how rapidly the
algorithm converges. Typically, it is about

24n2 if compz = 'N';
7n3 (for complex flavors, 14n3) if compz ='V' or 'I'.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-137

?stedc
Computes all eigenvalues and
eigenvectors of a symmetric tridiagonal
matrix using the divide and conquer
method.

call sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork,info)

call dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork,info)

call cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork,info)

call zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork,info)

Discussion

This routine computes all the eigenvalues and (optionally) all the
eigenvectors of a symmetric tridiagonal matrix using the divide and conquer
method.
The eigenvectors of a full or band real symmetric or complex Hermitian
matrix can also be found if ?sytrd/?hetrd or ?sptrd/?hptrd or
?sbtrd/?hbtrd has been used to reduce this matrix to tridiagonal form.

Input Parameters
compz CHARACTER*1. Must be 'N' or 'I' or 'V'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues
and eigenvectors of the tridiagonal matrix.
If compz ='V', the routine computes the eigenvalues
and eigenvectors of original symmetric/Hermitian
matrix. On entry, the array z must contain the
orthogonal/unitary matrix used to reduce the original
matrix to tridiagonal form.

n INTEGER. The order of the symmetric tridiagonal
matrix (n ≥ 0).

5-138

5 Intel® Math Kernel Library Reference Manual

d, e, rwork REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of the tridiagonal
matrix. The dimension of d must be at least max(1, n).

e(*) contains the subdiagonal elements of the
tridiagonal matrix. The dimension of e must be at least
max(1, n-1).

rwork(lrwork) is a workspace array used in complex
flavors only.

z, work REAL for sstedc
DOUBLE PRECISION for dstedc
COMPLEX for cstedc
DOUBLE COMPLEX for zstedc.
Arrays: z(ldz, *), work(*).
If compz ='V', then, on entry, z must contain the
orthogonal/unitary matrix used to reduce the original
matrix to tridiagonal form.
The second dimension of z must be at least max(1, n).

work (lwork) is a workspace array.

ldz INTEGER. The first dimension of z. Constraints:
ldz ≥ 1 if compz = 'N';
ldz ≥ max(1, n) if compz ='V' or 'I'.

lwork INTEGER. The dimension of the array work.
See Application Notes for the required value of lwork.

lrwork INTEGER. The dimension of the array rwork (used for
complex flavors only).
See Application Notes for the required value of lrwork.

iwork INTEGER. Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork.
See Application Notes for the required value of liwork.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-139

Output Parameters

d The n eigenvalues in ascending order, unless info ≠ 0.
See also info.

e On exit, the array is overwritten; see info.

z If info = 0, then if compz ='V', z contains the
orthonormal eigenvectors of the original
symmetric/Hermitian matrix, and if compz ='I', z
contains the orthonormal eigenvectors of the symmetric
tridiagonal matrix. If compz ='N', z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the optimal
lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the
optimal lrwork (for complex flavors only).

iwork(1) On exit, if info = 0, then iwork(1) returns the
optimal liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.If
info = i, the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and
columns i/(n+1) through mod(i, n+1).

Application Notes

The required size of workspace arrays must be as follows.

For sstedc/dstedc:

If compz ='N' or n ≤1 then lwork must be at least 1.
If compz ='V' and n > 1 then lwork must be at least
(1 + 3n + 2n⋅ lgn + 3n2), where lg(n) = smallest integer k such that 2k≥ n.

If compz ='I' and n > 1 then lwork must be at least (1 + 4n + n2).

If compz ='N' or n ≤1 then liwork must be at least 1.
If compz ='V' and n > 1 then liwork must be at least (6 + 6n + 5n⋅ lgn).
If compz ='I' and n > 1 then liwork must be at least (3 + 5n).

For cstedc/zstedc:

5-140

5 Intel® Math Kernel Library Reference Manual

If compz ='N' or'I', or n ≤1, lwork must be at least 1.
If compz ='V' and n > 1, lwork must be at least n2.

If compz ='N' or n ≤1, lrwork must be at least 1.
If compz ='V' and n > 1, lrwork must be at least
(1 + 3n + 2n⋅ lgn + 3n2), where lg(n) = smallest integer k such that 2k≥
n.

If compz ='I' and n > 1, lrwork must be at least(1 + 4n + 2n2).

The required value of liwork for complex flavors is the same as for real
flavors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-141

?stegr
Computes selected eigenvalues and
eigenvectors of a real symmetric
tridiagonal matrix.

call sstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call dstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call cstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call zstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric tridiagonal matrix T. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues. The eigenvalues are computed by the dqds algorithm,
while orthogonal eigenvectors are computed from various “good'' LDLT

representations (also known as Relatively Robust Representations).
Gram-Schmidt orthogonalization is avoided as far as possible. More
specifically, the various steps of the algorithm are as follows. For the i-th
unreduced block of T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively
robust representation;
(b) Compute the eigenvalues, λ j, of Li Di Li

T to high relative accuracy
by the dqds algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the
cluster, and go to step (a);
(d) Given the approximate eigenvalue λ j of Li Di Li

T, compute the
corresponding eigenvector by forming a rank-revealing twisted
factorization.

5-142

5 Intel® Math Kernel Library Reference Manual

The desired accuracy of the output can be specified by the input parameter
abstol.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

n INTEGER. The order of the matrix T (n ≥ 0).

d, e, work REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the subdiagonal elements of T in
elements 1 to n-1; e(n) need not be set.
The dimension of e must be at least max(1, n).

work(lwork) is a workspace array.

vl, vu REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-143

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
The absolute tolerance to which each
eigenvalue/eigenvector is required.
If jobz = 'V', the eigenvalues and eigenvectors output
have residual norms bounded by abstol, and the dot
products between different eigenvectors are bounded by
abstol.Ifabstol<nε| | T| | 1,thennε| | T| | 1willbeused
in its place, where ε is the machine precision. The
eigenvalues are computed to an accuracy of ε| | T| | 1
irrespective of abstol. If high relative accuracy is
important, set abstol to ?lamch ('Safe minimum').

ldz INTEGER. The leading dimension of the output array z.
Constraints:
ldz ≥ 1 if jobz ='N';
ldz ≥ max(1, n) if jobz ='V'.

lwork INTEGER. The dimension of the array work,
lwork ≥ max(1, 18n).

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork,
lwork ≥ max(1, 10n).

Output Parameters

d, e On exit, d and e are overwritten.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, n).
The selected eigenvalues in ascending order, stored in
w(1) to w(m).

5-144

5 Intel® Math Kernel Library Reference Manual

z REAL for sstegr
DOUBLE PRECISION for dstegr
COMPLEX for cstegr
DOUBLE COMPLEX for zstegr.
Array z(ldz, *), the second dimension of z must be at
least max(1, m).

If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

isuppz INTEGER.
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices
indicating the nonzero elements in z. The i-th
eigenvector is nonzero only in elements isuppz(2i-1)
through isuppz(2i).

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

If info = 1, internal error in slarre occurred,
If info = 2, internal error in ?larrv occurred.

Application Notes

Currently ?stegr is only set up to find all the n eigenvalues and
eigenvectors of T in O(n2) time, that is, only range ='A' is supported.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-145

Currently the routine ?stein is called when an appropriate σi cannot be
chosen in step (c) above. ?stein invokes modified Gram-Schmidt when
eigenvalues are close.

?stegr works only on machines which follow IEEE-754 floating-point
standard in their handling of infinities and NaNs. Normal execution of
?stegr may create NaNs and infinities and hence may abort due to a
floating point exception in environments which do not conform to the
IEEE-754 standard.

5-146

5 Intel® Math Kernel Library Reference Manual

?pteqr
Computes all eigenvalues and (optionally)
all eigenvectors of a real symmetric
positive-definite tridiagonal matrix.

call spteqr (compz, n, d, e, z, ldz, work, info)

call dpteqr (compz, n, d, e, z, ldz, work, info)

call cpteqr (compz, n, d, e, z, ldz, work, info)

call zpteqr (compz, n, d, e, z, ldz, work, info)

Discussion

This routine computes all the eigenvalues and (optionally) all the
eigenvectors of a real symmetric positive-definite tridiagonal matrix T. In
other words, the routine can compute the spectral factorization: T = ZΛ ZT.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ i;
Z is an orthogonal matrix whose columns are eigenvectors. Thus,

Tzi = λ izi for i = 1, 2, ..., n.

(The routine normalizes the eigenvectors so that | | zi| | 2 = 1.)

You can also use the routine for computing the eigenvalues and eigenvectors
of real symmetric (or complex Hermitian) positive-definite matrices A
reduced to tridiagonal form T: A = QTQH. In this case, the spectral
factorization is as follows: A = QTQH = (QZ)Λ (QZ)H. Before calling
?pteqr, you must reduce A to tridiagonal form and generate the explicit
matrix Q by calling the following routines:

for real matrices: for complex matrices:
full storage ?sytrd,?orgtr ?hetrd,?ungtr

packed storage ?sptrd,?opgtr ?hptrd,?upgtr

band storage ?sbtrd (vect='V') ?hbtrd (vect='V')

The routine first factorizes T as LDLH where L is a unit lower bidiagonal
matrix, and D is a diagonal matrix. Then it forms the bidiagonal matrix
B = LD1/2 and calls ?bdsqr to compute the singular values of B, which are
the same as the eigenvalues of T.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-147

Input Parameters
compz CHARACTER*1. Must be 'N' or 'I' or 'V'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues
and eigenvectors of the tridiagonal matrix T.
If compz ='V', the routine computes the eigenvalues
and eigenvectors of A (and the array z must contain the
matrix Q on entry).

n INTEGER. The order of the matrix T (n ≥ 0).

d,e,work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1, 4*n-4) if compz ='V' or 'I'.

z REAL for spteqr
DOUBLE PRECISION for dpteqr
COMPLEX for cpteqr
DOUBLE COMPLEX for zpteqr.
Array, DIMENSION (ldz,*)
If compz ='N' or 'I', z need not be set.
If vect ='V', z must contains the n by n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1, n) if compz ='V' or 'I'.

ldz INTEGER. The first dimension of z. Constraints:
ldz ≥ 1 if compz = 'N';
ldz ≥ max(1, n) if compz ='V' or 'I'.

5-148

5 Intel® Math Kernel Library Reference Manual

Output Parameters

d The n eigenvalues in descending order, unless info > 0.
See also info.

e On exit, the array is overwritten.

z If info = 0, contains the n orthonormal eigenvectors,
stored by columns. (The ith column corresponds to the
ith eigenvalue.)

info INTEGER.
If info = 0, the execution is successful.
If info = i, the leading minor of order i (and hence T
itself) is not positive-definite.
If info = n + i, the algorithm for computing singular
values failed to converge; i off-diagonal elements have
not converged to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

If λ i is an exact eigenvalue, and µi is the corresponding computed value,
then

 | µi - λi| ≤c(n)εKλ i

where c(n) is a modestly increasing function of n, ε is the machine
precision, and K = | | DTD| | 2 | | (DTD)−1| | 2, D is diagonal with dii = tii

-1/2.

If zi is the corresponding exact eigenvector, and wi is the corresponding
computed vector, then the angle θ(zi, wi) between them is bounded as
follows:
 θ(ui, wi) ≤c(n)εK / mini≠j(| λi - λj| / | λi + λj|) .

Here mini≠j(| λi - λj| / | λi + λj|) is the relative gap between λ i and the other
eigenvalues.

The total number of floating-point operations depends on how rapidly the
algorithm converges. Typically, it is about

30n2 if compz = 'N';
6n3 (for complex flavors, 12n3) if compz ='V' or 'I'.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-149

?stebz
Computes selected eigenvalues of a real
symmetric tridiagonal matrix by
bisection.

call sstebz (range, order, n, vl, vu, il, iu, abstol,
d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

call dstebz (range, order, n, vl, vu, il, iu, abstol,
d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

Discussion

This routine computes some (or all) of the eigenvalues of a real symmetric
tridiagonal matrix T by bisection. The routine searches for zero or negligible
off-diagonal elements to see if T splits into block-diagonal form
T = diag(T1, T2, ...). Then it performs bisection on each of the blocks Ti and
returns the block index of each computed eigenvalue, so that a subsequent
call to ?stein can also take advantage of the block structure.

Input Parameters
range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

order CHARACTER*1. Must be 'B' or 'E'.
If order ='B', the eigenvalues are to be ordered from
smallest to largest within each split-off block.
If order ='E', the eigenvalues for the entire matrix are
to be ordered from smallest to largest.

n INTEGER. The order of the matrix T (n ≥ 0).

5-150

5 Intel® Math Kernel Library Reference Manual

vl, vu REAL for sstebz
DOUBLE PRECISION for dstebz.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. Constraint: 1 ≤il ≤iu ≤n.
If range ='I', the routine computes eigenvalues λ i
such that il≤i ≤iu (assuming that the eigenvalues λ i
are in ascending order).

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sstebz
DOUBLE PRECISION for dstebz.
The absolute tolerance to which each eigenvalue is
required. An eigenvalue (or cluster) is considered to
have converged if it lies in an interval of width abstol.
If abstol ≤ 0.0, then the tolerance is taken as ε| | T| | 1,
where ε is the machine precision.

d, e REAL for sstebz
DOUBLE PRECISION for dstebz.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

iwork INTEGER. Workspace.
Array, DIMENSION at least max(1, 3n).

Output Parameters

m INTEGER. The actual number of eigenvalues found.

nsplit INTEGER. The number of diagonal blocks detected in T.

w REAL for sstebz
DOUBLE PRECISION for dstebz.
Array, DIMENSION at least max(1, n).
The computed eigenvalues, stored in w(1) to w(m).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-151

iblock,isplit INTEGER.
Arrays, DIMENSION at least max(1, n).
A positive value iblock(i) is the block number of the
eigenvalue stored in w(i) (see also info).
The leading nsplit elements of isplit contain points
at which T splits into blocks Ti as follows: the block
T1 contains rows/columns 1 to isplit(1); the block
T2 contains rows/columns isplit(1)+1 to
isplit(2), and so on.

info INTEGER.
If info = 0, the execution is successful.
If info = 1, for range ='A' or 'V', the algorithm
failed to compute some of the required eigenvalues to
the desired accuracy; iblock(i)< 0 indicates that the
eigenvalue stored in w(i) failed to converge.
If info = 2, for range ='I', the algorithm failed to
compute some of the required eigenvalues. Try calling
the routine again with range ='A'.
If info = 3:

for range ='A' or 'V', same as info = 1;
for range ='I', same as info = 2.

If info = 4, no eigenvalues have been computed. The
floating-point arithmetic on the computer is not
behaving as expected.
If info = -i, the ith parameter had an illegal value.

Application Notes

The eigenvalues of T are computed to high relative accuracy which means
that if they vary widely in magnitude, then any small eigenvalues will be
computed more accurately than, for example, with the standard QR
method. However, the reduction to tridiagonal form (prior to calling the
routine) may exclude the possibility of obtaining high relative accuracy in
the small eigenvalues of the original matrix if its eigenvalues vary widely in
magnitude.

5-152

5 Intel® Math Kernel Library Reference Manual

?stein
Computes the eigenvectors corresponding
to specified eigenvalues of a real symmetric
tridiagonal matrix.

call sstein (n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info)

call dstein (n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info)

call cstein (n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info)

call zstein (n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info)

Discussion

This routine computes the eigenvectors of a real symmetric tridiagonal
matrix T corresponding to specified eigenvalues, by inverse iteration. It is
designed to be used in particular after the specified eigenvalues have been
computed by ?stebz with order ='B', but may also be used when the
eigenvalues have been computed by other routines. If you use this routine
after ?stebz, it can take advantage of the block structure by performing
inverse iteration on each block Ti separately, which is more efficient than
using the whole matrix T.

If T has been formed by reduction of a full symmetric or Hermitian matrix A
to tridiagonal form, you can transform eigenvectors of T to eigenvectors of
A by calling ?ormtr or ?opmtr (for real flavors) or by calling ?unmtr or
?upmtr (for complex flavors).

Input Parameters

n INTEGER. The order of the matrix T (n ≥ 0).

m INTEGER. The number of eigenvectors to be returned.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-153

d, e, w REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

w(*) contains the eigenvalues of T, stored in w(1)

to w(m) (as returned by ?stebz, see page 5-149).
Eigenvalues of T1 must be supplied first, in
non-decreasing order; then those of T2, again in
non-decreasing order, and so on. Constraint:
if iblock(i) = iblock(i+1), w(i) ≤w(i+1).

The dimension of w must be at least max(1, n).

iblock,isplit INTEGER.
Arrays, DIMENSION at least max(1, n).
The arrays iblock and isplit, as returned by ?stebz
with order ='B'.

If you did not call ?stebz with order ='B', set all
elements of iblock to 1, and isplit(1) to n.)

ldz INTEGER. The first dimension of the output array z;
ldz ≥ max(1, n).

work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Workspace array, DIMENSION at least max(1, 5n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

z REAL for sstein
DOUBLE PRECISION for dstein
COMPLEX for cstein
DOUBLE COMPLEX for zstein.
Array, DIMENSION (ldz, *).

5-154

5 Intel® Math Kernel Library Reference Manual

If info = 0, z contains the m orthonormal eigenvectors,
stored by columns. (The ith column corresponds to the
ith specified eigenvalue.)

ifailv INTEGER. Array, DIMENSION at least max(1, m).
If info = i > 0, the first i elements of ifailv contain
the indices of any eigenvectors that failed to converge.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then i eigenvectors (as indicated by the
parameter ifailv) each failed to converge in 5
iterations. The current iterates are stored in the
corresponding columns of the array z.
If info = -i, the ith parameter had an illegal value.

Application Notes

Each computed eigenvector zi is an exact eigenvector of a matrix T + Ei,
where | | Ei| | 2 = O(ε) | | T| | 2.However, a setofeigenvectorscomputedby this
routine may not be orthogonal to so high a degree of accuracy as those
computed by ?steqr.

?disna
Computes the reciprocal condition numbers for
the eigenvectors of a symmetric/ Hermitian
matrix or for the left or right singular vectors of
a general matrix.

call sdisna (job, m, n, d, sep, info)

call ddisna (job, m, n, d, sep, info)

Discussion

This routine computes the reciprocal condition numbers for the eigenvectors
of a real symmetric or complex Hermitian matrix or for the left or right
singular vectors of a general m-by-n matrix.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-155

The reciprocal condition number is the 'gap' between the corresponding
eigenvalue or singular value and the nearest other one.

The bound on the error, measured by angle in radians, in the i-th computed
vector is given by

slamch('E') * (anorm / sep(i))

where anorm = | | A| | 2 = max(|d(j)|). sep(i) is not allowed to be smaller
than slamch('E')*anorm in order to limit the size of the error bound.

?disna may also be used to compute error bounds for eigenvectors of the
generalized symmetric definite eigenproblem.

Input Parameters

job CHARACTER*1. Must be 'E','L' , or 'R'.
Specifies for which problem the reciprocal condition
numbers should be computed:
job ='E': for the eigenvectors of a
symmetric/Hermitian matrix ;
job ='L': for the left singular vectors of a general
matrix;
job ='R': for the right singular vectors of a general
matrix .

m INTEGER. The number of rows of the matrix (m ≥ 0).

n INTEGER. If job ='L', or 'R', the number of columns
of the matrix (n ≥ 0). Ignored if job ='E'.

d REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least max(1,m) if job ='E', and at
least max(1, min(m,n)) if job ='L'or 'R'.
This array must contain the eigenvalues (if job ='E') or
singular values (if job ='L' or 'R') of the matrix, in
either increasing or decreasing order. If singular values,
they must be non-negative.

5-156

5 Intel® Math Kernel Library Reference Manual

Output Parameters

sep REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least max(1,m) if job ='E', and at
least max(1, min(m,n)) if job ='L'or 'R'.
The reciprocal condition numbers of the vectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-157

Generalized Symmetric-Definite Eigenvalue Problems

Generalized symmetric-definite eigenvalue problems are as follows: find the
eigenvalues λ and the corresponding eigenvectors z that satisfy one of these
equations:

Az = λBz, ABz = λz, or BAz = λz

where A is an n by n symmetric or Hermitian matrix, and B is an n by n
symmetric positive-definite or Hermitian positive-definite matrix.

In these problems, there exist n real eigenvectors corresponding to real
eigenvalues (even for complex Hermitian matrices A and B).

Routines described in this section allow you to reduce the above generalized
problems to standard symmetric eigenvalue problem Cy = λy ,
which you can solve by calling LAPACK routines described earlier in this
chapter (see page 5-101).

Different routines allow the matrices to be stored either conventionally or in
packed storage. Prior to reduction, the positive-definite matrix B must first
be factorized using either ?potrf or ?pptrf.
The reduction routine for the banded matrices A and B uses a split Cholesky
factorization for which a specific routine ?pbstf is provided. This
refinement halves the amount of work required to form matrix C.

Table 5-4 Computational Routines for Reducing Generalized Eigenproblems
to Standard Problems

Matrix
type

Reduce to standard
problems
(full storage)

Reduce to standard
problems
(packed storage)

Reduce to standard
problems
(band matrices)

Factorize
band
matrix

real
symmetric
matrices

?sygst ?spgst ?sbgst ?pbstf

complex
Hermitian
matrices

?hegst / ?hpgst ?hbgst ?pbstf

5-158

5 Intel® Math Kernel Library Reference Manual

?sygst
Reduces a real symmetric-definite
generalized eigenvalue problem to the
standard form.

call ssygst (itype, uplo, n, a, lda, b, ldb, info)

call dsygst (itype, uplo, n, a, lda, b, ldb, info)

Discussion

This routine reduces real symmetric-definite generalized eigenproblems

Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λy. Here A is a real symmetric matrix, and B is a
real symmetric positive-definite matrix. Before calling this routine, call
?potrf to compute the Cholesky factorization: B = UTU or B = LLT

(see page 4-14).

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is Az = λBz;

for uplo = 'U': C = U-TAU-1, z = U-1y;
for uplo = 'L': C = L-1AL-T, z = L-Ty.

If itype = 2, the generalized eigenproblem is ABz = λz;
for uplo = 'U': C = UAUT, z = U-1y;
for uplo = 'L': C = LTAL, z = L-Ty.

If itype = 3, the generalized eigenproblem is BAz = λz;
for uplo = 'U': C = UAUT, z = UTy;
for uplo = 'L': C = LTAL, z = Ly.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the array a stores the upper triangle of A;
you must supply B in the factored form B = UTU.
If uplo = 'L', the array a stores the lower triangle of A;
you must supply B in the factored form B = LLT.

n INTEGER. The order of the matrices A and B (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-159

a, b REAL for ssygst
DOUBLE PRECISION for dsygst.
Arrays:
a(lda,*) contains the upper or lower triangle of A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the Cholesky-factored matrix B:
B = UTU or B = LLT (as returned by ?potrf).
The second dimension of b must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

Output Parameters

a The upper or lower triangle of A is overwritten by the
upper or lower triangle of C, as specified by the
arguments itype and uplo.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves
implicit multiplication by B-1 (if itype = 1) or B (if itype = 2 or 3).
When the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

5-160

5 Intel® Math Kernel Library Reference Manual

?hegst
Reduces a complex Hermitian-definite
generalized eigenvalue problem to the
standard form.

call chegst (itype, uplo, n, a, lda, b, ldb, info)

call zhegst (itype, uplo, n, a, lda, b, ldb, info)

Discussion

This routine reduces complex Hermitian-definite generalized eigenvalue
problems

Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λy. Here the matrix A is complex Hermitian, and
B is complex Hermitian positive-definite. Before calling this routine, you
must call ?potrf to compute the Cholesky factorization: B = UHU or B =
LLH (see page 4-14).

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is Az = λBz;

for uplo = 'U': C = U-HAU-1, z = U-1y;
for uplo = 'L': C = L-1AL-H, z = L-Hy.

If itype = 2, the generalized eigenproblem is ABz = λz;
for uplo = 'U': C = UAUH, z = U-1y;
for uplo = 'L': C = LHAL, z = L-Hy.

If itype = 3, the generalized eigenproblem is BAz = λz;
for uplo = 'U': C = UAUH, z = UHy;
for uplo = 'L': C = LHAL, z = Ly.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the array a stores the upper triangle of A;
you must supply B in the factored form B = UHU.
If uplo = 'L', the array a stores the lower triangle of A;
you must supply B in the factored form B = LLH.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-161

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b COMPLEX for chegst
DOUBLE COMPLEX for zhegst.
Arrays:
a(lda,*) contains the upper or lower triangle of A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the Cholesky-factored matrix B:
B = UHU or B = LLH (as returned by ?potrf).
The second dimension of b must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

Output Parameters

a The upper or lower triangle of A is overwritten by the
upper or lower triangle of C, as specified by the
arguments itype and uplo.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves
implicit multiplication by B-1 (if itype = 1) or B (if itype = 2 or 3).
When the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

5-162

5 Intel® Math Kernel Library Reference Manual

?spgst
Reduces a real symmetric-definite
generalized eigenvalue problem to the
standard form using packed storage.

call sspgst (itype, uplo, n, ap, bp, info)

call dspgst (itype, uplo, n, ap, bp, info)

Discussion

This routine reduces real symmetric-definite generalized eigenproblems

Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λy, using packed matrix storage. Here A is a real
symmetric matrix, and B is a real symmetric positive-definite matrix.
Before calling this routine, call ?pptrf to compute the Cholesky
factorization: B = UTU or B = LLT (see page 4-16).

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is Az = λBz;

for uplo = 'U': C = U-TAU-1, z = U-1y;
for uplo = 'L': C = L-1AL-T, z = L-Ty.

If itype = 2, the generalized eigenproblem is ABz = λz;
for uplo = 'U': C = UAUT, z = U-1y;
for uplo = 'L': C = LTAL, z = L-Ty.

If itype = 3, the generalized eigenproblem is BAz = λz;
for uplo = 'U': C = UAUT, z = UTy;
for uplo = 'L': C = LTAL, z = Ly.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of A;
you must supply B in the factored form B = UTU.
If uplo = 'L', ap stores the packed lower triangle of A;
you must supply B in the factored form B = LLT.

n INTEGER. The order of the matrices A and B (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-163

ap, bp REAL for sspgst
DOUBLE PRECISION for dspgst.
Arrays:
ap(*) contains the packed upper or lower triangle of A.
The dimension of ap must be at least max(1,
n*(n+1)/2).

bp(*) contains the packed Cholesky factor of B
(as returned by ?pptrf with the same uplo value).
The dimension of bp must be at least max(1,
n*(n+1)/2).

Output Parameters

ap The upper or lower triangle of A is overwritten by the
upper or lower triangle of C, as specified by the
arguments itype and uplo.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves
implicit multiplication by B-1 (if itype = 1) or B (if itype = 2 or 3).
When the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

5-164

5 Intel® Math Kernel Library Reference Manual

?hpgst
Reduces a complex Hermitian-definite
generalized eigenvalue problem to the
standard form using packed storage.

call chpgst (itype, uplo, n, ap, bp, info)

call zhpgst (itype, uplo, n, ap, bp, info)

Discussion

This routine reduces real symmetric-definite generalized eigenproblems

Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λy, using packed matrix storage. Here A is a real
symmetric matrix, and B is a real symmetric positive-definite matrix.
Before calling this routine, you must call ?pptrf to compute the Cholesky
factorization: B = UHU or B = LLH (see page 4-16).

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is Az = λBz;

for uplo = 'U': C = U-HAU-1, z = U-1y;
for uplo = 'L': C = L-1AL-H, z = L-Hy.

If itype = 2, the generalized eigenproblem is ABz = λz;
for uplo = 'U': C = UAUH, z = U-1y;
for uplo = 'L': C = LHAL, z = L-Hy.

If itype = 3, the generalized eigenproblem is BAz = λz;
for uplo = 'U': C = UAUH, z = UHy;
for uplo = 'L': C = LHAL, z = Ly.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of A;
you must supply B in the factored form B = UHU.
If uplo = 'L', ap stores the packed lower triangle of A;
you must supply B in the factored form B = LLH.

n INTEGER. The order of the matrices A and B (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-165

ap, bp COMPLEX for chpgst
DOUBLE COMPLEX for zhpgst.
Arrays:
ap(*) contains the packed upper or lower triangle of A.
The dimension of a must be at least max(1, n*(n+1)/2).

bp(*) contains the packed Cholesky factor of B
(as returned by ?pptrf with the same uplo value).
The dimension of b must be at least max(1, n*(n+1)/2).

Output Parameters

ap The upper or lower triangle of A is overwritten by the
upper or lower triangle of C, as specified by the
arguments itype and uplo.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves
implicit multiplication by B-1 (if itype = 1) or B (if itype = 2 or 3).
When the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

5-166

5 Intel® Math Kernel Library Reference Manual

?sbgst
Reduces a real symmetric-definite
generalized eigenproblem for banded
matrices to the standard form using the
factorization performed by ?pbstf.

call ssbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, info)

call dsbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, info)

Discussion

To reduce the real symmetric-definite generalized eigenproblem Az = λBz
to the standard form Cy = λy , where A, B and C are banded, this routine
must be preceded by a call to spbstf/dpbstf, which computes the split
Cholesky factorization of the positive-definite matrix B: B = STS. The split
Cholesky factorization, compared with the ordinary Cholesky factorization,
allows the work to be approximately halved.

This routine overwrites A with C = XTAX, where X = S-1Q and Q is an
orthogonal matrix chosen (implicitly) to preserve the bandwidth of A.
The routine also has an option to allow the accumulation of X, and then, if z
is an eigenvector of C, Xz is an eigenvector of the original system.

Input Parameters
vect CHARACTER*1. Must be 'N' or 'V'.

If vect = 'N', then matrix X is not returned;
If vect = 'V', then matrix X is returned.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-167

kb INTEGER. The number of super- or sub-diagonals in B
(ka ≥ kb ≥ 0).

ab,bb,work REAL for ssbgst
DOUBLE PRECISION for dsbgst
ab (ldab,*) is an array containing either upper or
lower triangular part of the symmetric matrix A (as
specified by uplo) in band storage format. The second
dimension of the array ab must be at least max(1, n).
bb (ldbb,*) is an array containing the banded split
Cholesky factor of B as specified by uplo, n and kb and
returned by spbstf/dpbstf. The second dimension of
the array bb must be at least max(1, n).
work(*) is a workspace array, DIMENSION at least
max(1, 2*n)

ldab INTEGER. The first dimension of the array ab; must be
at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be
at least kb+1.

ldx The first dimension of the output array x. Constraints:
if vect ='N' , then ldx ≥ 1;
if vect ='V' , then ldx ≥ max(1, n).

Output Parameters

ab On exit, this array is overwritten by the upper or lower
triangle of C as specified by uplo.

x REAL for ssbgst
DOUBLE PRECISION for dsbgst
Array.
If vect ='V', then x (ldx,*) contains the n by n

matrix X = S-1Q.
If vect ='N', then x is not referenced.
The second dimension of x must be:
at least max(1, n), if vect ='V';
at least 1, if vect ='N'.

5-168

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C involves implicit multiplication by B-1. When
the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy if B is ill-conditioned with respect to inversion.
The total number of floating-point operations is approximately 6n2*kb,
when vect ='N'. Additional (3/2)n3*(kb/ka) operations are required
when vect ='V'. All these estimates assume that both ka and kb are much
less than n.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-169

?hbgst
Reduces a complex Hermitian-definite
generalized eigenproblem for banded
matrices to the standard form using the
factorization performed by ?pbstf.

call chbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, rwork, info)

call zhbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, rwork, info)

Discussion

To reduce the complex Hermitian-definite generalized eigenproblem Az =
λBz to the standard form Cy = λy , where A, B and C are banded, this
routine must be preceded by a call to cpbstf/zpbstf, which computes the
split Cholesky factorization of the positive-definite matrix B: B = SHS. The
split Cholesky factorization, compared with the ordinary Cholesky
factorization, allows the work to be approximately halved.

This routine overwrites A with C = XHAX, where X = S-1Q and Q is a
unitary matrix chosen (implicitly) to preserve the bandwidth of A.
The routine also has an option to allow the accumulation of X, and then, if z
is an eigenvector of C, Xz is an eigenvector of the original system.

Input Parameters
vect CHARACTER*1. Must be 'N' or 'V'.

If vect = 'N', then matrix X is not returned;
If vect = 'V', then matrix X is returned.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

5-170

5 Intel® Math Kernel Library Reference Manual

kb INTEGER. The number of super- or sub-diagonals in B
(ka ≥ kb ≥ 0).

ab,bb,work COMPLEX for chbgst
DOUBLE COMPLEX for zhbgst
ab (ldab,*) is an array containing either upper or
lower triangular part of the Hermitian matrix A (as
specified by uplo) in band storage format. The second
dimension of the array ab must be at least max(1, n).
bb (ldbb,*) is an array containing the banded split
Cholesky factor of B as specified by uplo, n and kb and
returned by cpbstf/zpbstf. The second dimension of
the array bb must be at least max(1, n).
work(*) is a workspace array, DIMENSION at least
max(1, n)

ldab INTEGER. The first dimension of the array ab; must be
at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be
at least kb+1.

ldx The first dimension of the output array x. Constraints:
if vect ='N' , then ldx ≥ 1;
if vect ='V' , then ldx ≥ max(1, n).

rwork REAL for chbgst
DOUBLE PRECISION for zhbgst
Workspace array, DIMENSION at least max(1, n)

Output Parameters

ab On exit, this array is overwritten by the upper or lower
triangle of C as specified by uplo.

x COMPLEX for chbgst
DOUBLE COMPLEX for zhbgst
Array.
If vect ='V', then x (ldx,*) contains the n by n
matrix X = S-1Q.
If vect ='N', then x is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-171

The second dimension of x must be:
at least max(1, n), if vect ='V';
at least 1, if vect ='N'.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

Forming the reduced matrix C involves implicit multiplication by B-1. When
the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy if B is ill-conditioned with respect to inversion.
The total number of floating-point operations is approximately 20n2*kb,
when vect ='N'. Additional 5n3*(kb/ka) operations are required when
vect ='V'. All these estimates assume that both ka and kb are much less
than n.

5-172

5 Intel® Math Kernel Library Reference Manual

?pbstf
Computes a split Cholesky factorization
of a real symmetric or complex
Hermitian positive-definite banded
matrix used in ?sbgst/?hbgst .

call spbstf (uplo, n, kb, bb, ldbb, info)
call dpbstf (uplo, n, kb, bb, ldbb, info)
call cpbstf (uplo, n, kb, bb, ldbb, info)
call zpbstf (uplo, n, kb, bb, ldbb, info)

Discussion

This routine computes a split Cholesky factorization of a real symmetric or
complex Hermitian positive-definite band matrix B. It is to be used in
conjunction with ?sbgst/?hbgst.

The factorization has the form B = STS (or B = SHS for complex flavors),
where S is a band matrix of the same bandwidth as B and the following
structure: S is upper triangular in the first (n+kb)/2 rows and lower
triangular in the remaining rows.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', bb stores the upper triangular part of B.
If uplo = 'L', bb stores the lower triangular part of B.

n INTEGER. The order of the matrix B (n ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

bb REAL for spbstf
DOUBLE PRECISION for dpbstf
COMPLEX for cpbstf
DOUBLE COMPLEX for zpbstf.
bb (ldbb,*) is an array containing either upper or
lower triangular part of the matrix B (as specified by

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-173

uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).

ldbb INTEGER. The first dimension of bb; must be at least
kb+1.

Output Parameters

bb On exit, this array is overwritten by the elements of the
split Cholesky factor S.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the factorization could not be
completed, because the updated element bii would be
the square root of a negative number; hence the matrix B
is not positive-definite.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed factor S is the exact factor of a perturbed matrix B + E,
where

c(n) is a modest linear function of n, and ε is the machine precision.

The total number of floating-point operations for real flavors is
approximately n(kb+1)2. The number of operations for complex flavors is 4
times greater. All these estimates assume that kb is much less than n.

After calling this routine, you can call ?sbgst/?hbgst to solve the
generalized eigenproblem Az = λBz , where A and B are banded and B is
positive-definite.

E c kb 1+()ε SH S eij c kb 1+()ε biibjj≤,≤

5-174

5 Intel® Math Kernel Library Reference Manual

Nonsymmetric Eigenvalue Problems

This section describes LAPACK routines for solving nonsymmetric
eigenvalue problems, computing the Schur factorization of general
matrices, as well as performing a number of related computational tasks.

A nonsymmetric eigenvalue problem is as follows: given a nonsymmetric
(or non-Hermitian) matrix A, find the eigenvalues λ and the corresponding
eigenvectors z that satisfy the equation

Az = λz (right eigenvectors z)

or the equation

zHA = λzH (left eigenvectors z).

Nonsymmetric eigenvalue problems have the following properties:

• The number of eigenvectors may be less than the matrix order (but is
not less than the number of distinct eigenvalues of A).

• Eigenvalues may be complex even for a real matrix A.
• If a real nonsymmetric matrix has a complex eigenvalue a+bi

corresponding to an eigenvector z, then a-bi is also an eigenvalue.
The eigenvalue a-bi corresponds to the eigenvector whose elements
are complex conjugate to the elements of z.

To solve a nonsymmetric eigenvalue problem with LAPACK, you usually
need to reduce the matrix to the upper Hessenberg form and then solve the
eigenvalue problem with the Hessenberg matrix obtained. Table 5-5 lists
LAPACK routines for reducing the matrix to the upper Hessenberg form by
an orthogonal (or unitary) similarity transformation A = QHQH as well as
routines for solving eigenvalue problems with Hessenberg matrices,
forming the Schur factorization of such matrices and computing the
corresponding condition numbers.

Decision tree in Figure 5-4 helps you choose the right routine or sequence
of routines for an eigenvalue problem with a real nonsymmetric matrix.
If you need to solve an eigenvalue problem with a complex non-Hermitian
matrix, use the decision tree shown in Figure 5-5.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-175

Table 5-5 Computational Routines for Solving Nonsymmetric Eigenvalue
Problems

Operation performed Routines for real matrices Routines for complex matrices

Reduce to Hessenberg
form A = QHQH

?gehrd, ?gehrd

Generate the matrix Q ?orghr ?unghr

Apply the matrix Q ?ormhr ?unmhr

Balance matrix ?gebal ?gebal

Transform eigenvectors of
balanced matrix to those
of the original matrix

?gebak ?gebak

Find eigenvalues and
Schur factorization
(QR algorithm)

?hseqr ?hseqr

Find eigenvectors from
Hessenberg form (inverse
iteration)

?hsein ?hsein

Find eigenvectors from
Schur factorization

?trevc ?trevc

Estimate sensitivities of
eigenvalues and
eigenvectors

?trsna ?trsna

Reorder Schur
factorization

?trexc ?trexc

Reorder Schur
factorization, find the
invariant subspace and
estimate sensitivities

?trsen ?trsen

Solves Sylvester’s
equation.

?trsyl ?trsyl

5-176

5 Intel® Math Kernel Library Reference Manual

Figure 5-4 Decision Tree: Real Nonsymmetric Eigenvalue Problems

Are eigenvalues
only required?

Is A an upper
Hessenberg matrix?

Is the Schur
factorization of A
required?

Are all eigenvectors
required?

Is A an upper
Hessenberg matrix?

?GEBAL ?GEHRD

?HSEQR ?HSEIN

?ORMHR ?GEBAK

?HSEQR

?HSEQR
Is A an upper
Hessenberg matrix?

Is A an upper
Hessenberg matrix?

?GEBAL ?GEHRD

?ORGHR ?HSEQR

?TREVC ?GEBAK

?HSEQR ?HSEIN

?HSEQR ?TREVC

yes

no

yes

yes

yes

no

no

no

no

no

no

?GEBAL

?GEHRD ?ORGHR

?HSEQR ?GEBAK

?GEBAL ?GEHRD

?HSEQR

yes

yes

yes

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-177

Figure 5-5 Decision Tree: Complex Non-Hermitian Eigenvalue Problems

yes

yes

yes

yes

yes

yes

?GEBAL ?GEHRD

?HSEQR ?HSEIN

?UNMHR ?GEBAK

?HSEQR ?HSEIN

?GEBAL ?GEHRD ?UNGHR

?HSEQR ?TREVC ?GEBAK

?HSEQR ?TREVC

?GEBAL ?GEHRD ?UNGHR

?HSEQR ?GEBAK

?HSEQR

?GEBAL ?GEHRD ?HSEQR

?HSEQR

no

no

no

no

no

no

yes

no

Is A an upper Hessenberg
matrix?

Is A an upper Hessenberg
matrix?

Is A an upper
Hessenberg matrix?

Are all eigenvectors
required?

Is the Schur
factorization of A
required?

Is A an upper Hessenberg
matrix?

Are eigenvalues only
required?

5-178

5 Intel® Math Kernel Library Reference Manual

?gehrd
Reduces a general matrix to upper
Hessenberg form.

call sgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)

call dgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)

call cgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)

call zgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)

Discussion

The routine reduces a general matrix A to upper Hessenberg form H by an
orthogonal or unitary similarity transformation A = QHQH. Here H has real
subdiagonal elements.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of elementary reflectors. Routines are provided to work with Q
in this representation.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

ilo, ihi INTEGER. If A has been output by ?gebal, then
ilo and ihi must contain the values returned by that
routine. Otherwise ilo = 1 and ihi = n. (If n >0, then 1
≤ ilo ≤ ihi ≤ n; if n = 0, ilo = 1 and ihi = 0.)

a, work REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-179

lwork INTEGER. The size of the work array; at least max(1,n).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the upper Hessenberg matrix H and
details of the matrix Q. The subdiagonal elements of H
are real.

tau REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Array, DIMENSION at least max (1, n-1).
Contains additional information on the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed Hessenberg matrix H is exactly similar to a nearby matrix
A+E,where | | E| | 2<c(n)ε| | A| | 2,c(n) isamodestly increasingfunctionofn,
and ε is the machine precision.

The approximate number of floating-point operations for real flavors is
(2/3)(ihi - ilo)2(2ihi + 2ilo + 3n); for complex flavors it is 4 times
greater.

5-180

5 Intel® Math Kernel Library Reference Manual

?orghr
Generates the real orthogonal matrix Q
determined by ?gehrd.

call sorghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

call dorghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

Discussion

This routine explicitly generates the orthogonal matrix Q that has been
determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd
reduces a real general matrix A to upper Hessenberg form H by an
orthogonal similarity transformation, A = QHQT, and represents the matrix
Q as a product of ihi-ilo elementary reflectors. Here ilo and ihi are
values determined by sgebal/dgebal when balancing the matrix; if the
matrix has not been balanced, ilo = 1 and ihi = n.)

The matrix Q generated by ?orghr has the structure:

where Q22 occupies rows and columns ilo to ihi.

Input Parameters

n INTEGER. The order of the matrix Q (n ≥ 0).

ilo, ihi INTEGER. These must be the same parameters ilo and
ihi, respectively, as supplied to ?gehrd. (If n >0, then
1 ≤ ilo ≤ ihi ≤ n; if n = 0, ilo = 1 and ihi = 0.)

a, tau, work REAL for sorghr
DOUBLE PRECISION for dorghr
Arrays:

Q
I 0 0

0 Q22 0

0 0 I

=

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-181

a(lda,*) contains details of the vectors which define
the elementary reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, n).

tau(*) contains further details of the elementary
reflectors, as returned by ?gehrd.
The dimension of tau must be at least max (1, n-1).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array;
lwork ≥ max(1,ihi−ilo).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the n by n orthogonal matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork =(ihi−ilo)*blocksize, where
blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how
much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that
| | E| | 2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (4/3)(ihi−ilo)3.

The complex counterpart of this routine is ?unghr.

5-182

5 Intel® Math Kernel Library Reference Manual

?ormhr
Multiplies an arbitrary real matrix C by
the real orthogonal matrix Q
determined by ?gehrd.

call sormhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info)

call dormhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info)

Discussion

This routine multiplies a matrix C by the orthogonal matrix Q that has been
determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd
reduces a real general matrix A to upper Hessenberg form H by an
orthogonal similarity transformation, A = QHQT, and represents the matrix
Q as a product of ihi-ilo elementary reflectors. Here ilo and ihi are
values determined by sgebal/dgebal when balancing the matrix; if the
matrix has not been balanced, ilo = 1 and ihi = n.)

With ?ormhr, you can form one of the matrix products QC, QTC, CQ, or
CQT, overwriting the result on C (which may be any real rectangular
matrix).

A common application of ?ormhr is to transform a matrix V of eigenvectors
of H to the matrix QV of eigenvectors of A.

Input Parameters

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then the routine forms QC or QTC.
If side = 'R', then the routine forms CQ or CQT.

trans CHARACTER*1. Must be 'N' or 'T'.
If trans = 'N', then Q is applied to C.
If trans = 'T', then QT is applied to C.

m INTEGER. The number of rows in C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-183

ilo, ihi INTEGER. These must be the same parameters ilo and
ihi, respectively, as supplied to ?gehrd.
If m >0 and side ='L', then 1 ≤ ilo ≤ ihi ≤ m.
If m = 0 and side ='L', then ilo = 1 and ihi = 0.
If n >0 and side ='R', then 1 ≤ ilo ≤ ihi ≤ n.
If n = 0 and side ='R', then ilo = 1 and ihi = 0.

a,tau,c,work REAL for sormhr
DOUBLE PRECISION for dormhr
Arrays:
a(lda,*) contains details of the vectors which define
the elementary reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, m) if
side = 'L' and at least max(1, n) if side = 'R'.

tau(*) contains further details of the elementary
reflectors, as returned by ?gehrd.
The dimension of tau must be at least max (1, m-1)
if side ='L' and at least max (1, n-1) if side ='R'.

c(ldc,*) contains the m by n matrix C.
The second dimension of c must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m)
if side ='L' and at least max (1, n) if side ='R'.

ldc INTEGER. The first dimension of c; at least max(1, m).

lwork INTEGER. The size of the work array.
If side ='L', lwork ≥ max(1,n).
If side ='R', lwork ≥ max(1,m).
See Application notes for the suggested value of lwork.

Output Parameters

c C is overwritten by QC or QTC or CQT or CQ as
specified by side and trans.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

5-184

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, lwork should be at least n*blocksize if side ='L'
and at least m*blocksize if side ='R', where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that
| | E| | 2 = O(ε)| | C| | 2, where ε is the machine precision.

The approximate number of floating-point operations is
2n(ihi−ilo)2 if side ='L';
2m(ihi−ilo)2 if side ='R'.

The complex counterpart of this routine is ?unmhr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-185

?unghr
Generates the complex unitary matrix Q
determined by ?gehrd.

call cunghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

call zunghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

Discussion

This routine is intended to be used following a call to cgehrd/zgehrd,
which reduces a complex matrix A to upper Hessenberg form H by a unitary
similarity transformation: A = QHQH. ?gehrd represents the matrix Q as a
product of ihi−ilo elementary reflectors. Here ilo and ihi are values
determined by cgebal/zgebal when balancing the matrix; if the matrix
has not been balanced, ilo = 1 and ihi = n.

Use the routine ?unghr to generate Q explicitly as a square matrix. The
matrix Q has the structure:

where Q22 occupies rows and columns ilo to ihi.

Input Parameters

n INTEGER. The order of the matrix Q (n ≥ 0).

ilo, ihi INTEGER. These must be the same parameters ilo and
ihi, respectively, as supplied to ?gehrd. (If n >0, then
1 ≤ ilo ≤ ihi ≤ n. If n = 0, then ilo = 1 and ihi = 0.)

a, tau, work COMPLEX for cunghr
DOUBLE COMPLEX for zunghr.
Arrays:

Q
I 0 0

0 Q22 0

0 0 I

=

5-186

5 Intel® Math Kernel Library Reference Manual

a(lda,*) contains details of the vectors which define
the elementary reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, n).

tau(*) contains further details of the elementary
reflectors, as returned by ?gehrd.
The dimension of tau must be at least max (1, n-1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array;
lwork ≥ max(1, ihi−ilo).
See Application notes for the suggested value of lwork.

Output Parameters

a Overwritten by the n by n unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using lwork = (ihi−ilo)*blocksize, where
blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how
much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that
| | E| | 2 = O(ε), where ε is the machine precision.

The approximate number of real floating-point operations is
(16/3)(ihi−ilo)3.

The real counterpart of this routine is ?orghr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-187

?unmhr
Multiplies an arbitrary complex matrix
C by the complex unitary matrix Q
determined by ?gehrd.

call cunmhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info)

call zunmhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info)

Discussion

This routine multiplies a matrix C by the unitary matrix Q that has been
determined by a preceding call to cgehrd/zgehrd. (The routine ?gehrd
reduces a real general matrix A to upper Hessenberg form H by an
orthogonal similarity transformation, A = QHQH, and represents the matrix
Q as a product of ihi-ilo elementary reflectors. Here ilo and ihi are
values determined by cgebal/zgebal when balancing the matrix; if the
matrix has not been balanced, ilo = 1 and ihi = n.)

With ?unmhr, you can form one of the matrix products QC, QHC, CQ, or
CQH, overwriting the result on C (which may be any complex rectangular
matrix). A common application of this routine is to transform a matrix V of
eigenvectors of H to the matrix QV of eigenvectors of A.

Input Parameters

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then the routine forms QC or QHC.
If side = 'R', then the routine forms CQ or CQH.

trans CHARACTER*1. Must be 'N' or 'C'.
If trans = 'N', then Q is applied to C.
If trans = 'T', then QH is applied to C.

m INTEGER. The number of rows in C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

5-188

5 Intel® Math Kernel Library Reference Manual

ilo, ihi INTEGER. These must be the same parameters ilo and
ihi, respectively, as supplied to ?gehrd.
If m >0 and side ='L', then 1 ≤ ilo ≤ ihi ≤ m.
If m = 0 and side ='L', then ilo = 1 and ihi = 0.
If n >0 and side ='R', then 1 ≤ ilo ≤ ihi ≤ n.
If n = 0 and side ='R', then ilo =1 and ihi = 0.

a,tau,c,work COMPLEX for cunmhr
DOUBLE COMPLEX for zunmhr.
Arrays:
a (lda,*) contains details of the vectors which define
the elementary reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, m) if
side = 'L' and at least max(1, n) if side = 'R'.

tau(*) contains further details of the elementary
reflectors, as returned by ?gehrd.
The dimension of tau must be at least max (1, m-1)
if side ='L' and at least max (1, n-1) if side ='R'.

c (ldc,*) contains the m by n matrix C.
The second dimension of c must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m)
if side ='L' and at least max (1, n) if side = 'R'.

ldc INTEGER. The first dimension of c; at least max(1, m).

lwork INTEGER. The size of the work array.
If side = 'L', lwork ≥ max(1,n).
If side = 'R', lwork ≥ max(1,m).
See Application notes for the suggested value of lwork.

Output Parameters

c C is overwritten by QC or QHC or CQH or CQ as
specified by side and trans.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-189

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, lwork should be at least n*blocksize if side ='L'
and at least m*blocksize if side = 'R', where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On
exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that
| | E| | 2 = O(ε) | | C| | 2, where ε is the machine precision.

The approximate number of floating-point operations is
8n(ihi−ilo)2 if side = 'L';
8m(ihi−ilo)2 if side = 'R'.

The real counterpart of this routine is ?ormhr.

5-190

5 Intel® Math Kernel Library Reference Manual

?gebal
Balances a general matrix to improve
the accuracy of computed eigenvalues
and eigenvectors.

call sgebal (job, n, a, lda, ilo, ihi, scale, info)
call dgebal (job, n, a, lda, ilo, ihi, scale, info)
call cgebal (job, n, a, lda, ilo, ihi, scale, info)
call zgebal (job, n, a, lda, ilo, ihi, scale, info)

Discussion

This routine balances a matrix A by performing either or both of the
following two similarity transformations:

(1) The routine first attempts to permute A to block upper triangular form:

where P is a permutation matrix, and A′ 11 and A′ 33 are upper triangular. The
diagonal elements of A′ 11 and A′ 33 are eigenvalues of A. The rest of the
eigenvalues of A are the eigenvalues of the central diagonal block A′ 22, in
rows and columns ilo to ihi. Subsequent operations to compute the
eigenvalues of A (or its Schur factorization) need only be applied to these
rows and columns; this can save a significant amount of work if ilo > 1 and
ihi < n. If no suitable permutation exists (as is often the case), the routine
sets ilo = 1 and ihi = n, and A′ 22 is the whole of A.

(2) The routine applies a diagonal similarity transformation to A′ , to make
the rows and columns of A′ 22 as close in norm as possible:

PAPT A ′
A ′

11 A ′
12 A ′

13

0 A ′
22 A ′

23

0 0 A ′
33

= =

A″ DA ′ D 1–
I 0 0

0 D22 0

0 0 I

A ′
11 A ′

12 A ′
13

0 A ′
22 A ′

23

0 0 A ′
33

×
I 0 0

0 D22
1– 0

0 0 I

×= =

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-191

Thisscalingcanreducethenormofthematrix(thatis,| | A′ ′22| | < | |A′ 22| |),and
hence reduce the effect of rounding errors on the accuracy of computed
eigenvalues and eigenvectors.

Input Parameters

job CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'.
If job ='N', then A is neither permuted nor scaled (but
ilo, ihi, and scale get their values).
If job ='P', then A is permuted but not scaled.
If job ='S', then A is scaled but not permuted.
If job ='B', then A is both scaled and permuted.

n INTEGER. The order of the matrix A (n ≥ 0).

a REAL for sgebal
DOUBLE PRECISION for dgebal
COMPLEX for cgebal
DOUBLE COMPLEX for zgebal.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).
a is not referenced if job ='N'.

lda INTEGER. The first dimension of a; at least max(1, n).

Output Parameters

a Overwritten by the balanced matrix (a is not referenced
if job = 'N').

ilo, ihi INTEGER. The values ilo and ihi such that on exit
a(i,j) is zero if i > j and 1 ≤ j < ilo or ihi < i ≤ n.
If job ='N' or 'S', then ilo = 1 and ihi = n.

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors
Array, DIMENSION at least max(1, n).

Contains details of the permutations and scaling factors.

5-192

5 Intel® Math Kernel Library Reference Manual

More precisely, if pj is the index of the row and column
interchanged with row and column j, and dj is the
scaling factor used to balance row and column j, then
scale(j)= pj for j = 1, 2,..., ilo-1, ihi+1,..., n;
scale(j)= dj for j = ilo, ilo + 1,..., ihi.
The order in which the interchanges are made is
n to ihi+1, then 1 to ilo-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The errors are negligible, compared with those in subsequent computations.

If the matrix A is balanced by this routine, then any eigenvectors computed
subsequently are eigenvectors of the matrix A′ ′ and hence you must call
?gebak (see page 5-193) to transform them back to eigenvectors of A.

If the Schur vectors of A are required, do not call this routine with
job = 'S' or 'B', because then the balancing transformation is not
orthogonal (not unitary for complex flavors). If you call this routine with
job = 'P', then any Schur vectors computed subsequently are Schur
vectors of the matrix A′ ′ , and you’ll need to call ?gebak (with side ='R')
to transform them back to Schur vectors of A.

The total number of floating-point operations is proportional to n2.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-193

?gebak
Transforms eigenvectors of a balanced
matrix to those of the original
nonsymmetric matrix.

call sgebak (job,side,n,ilo,ihi,scale,m,v,ldv,info)

call dgebak (job,side,n,ilo,ihi,scale,m,v,ldv,info)

call cgebak (job,side,n,ilo,ihi,scale,m,v,ldv,info)

call zgebak (job,side,n,ilo,ihi,scale,m,v,ldv,info)

Discussion

This routine is intended to be used after a matrix A has been balanced by
a call to ?gebal, and eigenvectors of the balanced matrix A′ ′22 have
subsequently been computed.
For a description of balancing, see ?gebal (page 5-190). The balanced
matrix A′ ′ is obtained as A′ ′ = DPAPTD-1, where P is a permutation
matrix and D is a diagonal scaling matrix. This routine transforms the
eigenvectors as follows:
if x is a right eigenvector of A′ ′ , then PTD-1x is a right eigenvector of A;
if x is a left eigenvector of A′ ′ , then PTDy is a left eigenvector of A.

Input Parameters

job CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'.
The same parameter job as supplied to ?gebal.

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then left eigenvectors are transformed.
If side = 'R', then right eigenvectors are transformed.

n INTEGER. The number of rows of the matrix of
eigenvectors (n ≥ 0).

ilo, ihi INTEGER. The values ilo and ihi, as returned by
?gebal. (If n >0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.)

5-194

5 Intel® Math Kernel Library Reference Manual

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors
Array, DIMENSION at least max(1, n).

Contains details of the permutations and/or the scaling
factors used to balance the original general matrix, as
returned by ?gebal.

m INTEGER. The number of columns of the matrix of
eigenvectors (m ≥ 0).

v REAL for sgebak
DOUBLE PRECISION for dgebak
COMPLEX for cgebak
DOUBLE COMPLEX for zgebak.
Arrays:
v (ldv,*) contains the matrix of left or right
eigenvectors to be transformed.
The second dimension of v must be at least max(1, m).

ldv INTEGER. The first dimension of v; at least max(1, n).

Output Parameters

v Overwritten by the transformed eigenvectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The errors in this routine are negligible.

The approximate number of floating-point operations is approximately
proportional to m*n.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-195

?hseqr
Computes all eigenvalues and
(optionally) the Schur factorization of a
matrix reduced to Hessenberg form.

call shseqr (job,compz,n,ilo,ihi,h,ldh,wr,wi,z,ldz,work,lwork,info)

call dhseqr (job,compz,n,ilo,ihi,h,ldh,wr,wi,z,ldz,work,lwork,info)

call chseqr (job,compz,n,ilo,ihi,h,ldh,w,z,ldz,work,lwork,info)

call zhseqr (job,compz,n,ilo,ihi,h,ldh,w,z,ldz,work,lwork,info)

Discussion

This routine computes all the eigenvalues, and optionally the Schur
factorization, of an upper Hessenberg matrix H: H = ZTZH, where T is an
upper triangular (or, for real flavors, quasi-triangular) matrix (the Schur
form of H), and Z is the unitary or orthogonal matrix whose columns are the
Schur vectors zi.

You can also use this routine to compute the Schur factorization of a general
matrix A which has been reduced to upper Hessenberg form H:
A = QHQH, where Q is unitary (orthogonal for real flavors);
A = (QZ)T(QZ)H.

In this case, after reducing A to Hessenberg form by ?gehrd (page 5-178),
call ?orghr to form Q explicitly (page 5-180) and then pass Q to ?hseqr

with compz ='V'.

You can also call ?gebal (page 5-190) to balance the original matrix before
reducing it to Hessenberg form by ?hseqr, so that the Hessenberg matrix H
will have the structure:

where H11 and H33 are upper triangular.

H11 H12 H13

0 H22 H23

0 0 H33

5-196

5 Intel® Math Kernel Library Reference Manual

If so, only the central diagonal block H22 (in rows and columns ilo to ihi)
needs to be further reduced to Schur form (the blocks H12 and H23 are also
affected). Therefore the values of ilo and ihi can be supplied to ?hseqr

directly. Also, after calling this routine you must call ?gebak (page 5-193)
to permute the Schur vectors of the balanced matrix to those of the original
matrix.

If ?gebal has not been called, however, then ilo must be set to 1 and ihi

to n. Note that if the Schur factorization of A is required, ?gebal must not
be called with job ='S' or 'B', because the balancing transformation is
not unitary (for real flavors, it is not orthogonal).

?hseqr uses a multishift form of the upper Hessenberg QR algorithm. The
Schur vectors are normalized so that | | zi| | 2 = 1, but are determined only to
within a complex factor of absolute value 1 (for the real flavors, to within a
factor ±1).

Input Parameters

job CHARACTER*1. Must be 'E' or 'S'.
If job ='E', then eigenvalues only are required.
If job ='S', then the Schur form T is required.

compz CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz ='N', then no Schur vectors are computed
(and the array z is not referenced).
If compz ='I', then the Schur vectors of H are
computed (and the array z is initialized by the routine).
If compz ='V', then the Schur vectors of A are
computed (and the array z must contain the matrix Q on
entry).

n INTEGER. The order of the matrix H (n ≥ 0).

ilo, ihi INTEGER. If A has been balanced by ?gebal, then ilo
and ihi must contain the values returned by ?gebal.
Otherwise, ilo must be set to 1 and ihi to n.

h, z, work REAL for shseqr
DOUBLE PRECISION for dhseqr
COMPLEX for chseqr
DOUBLE COMPLEX for zhseqr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-197

Arrays:
h(ldh,*) The n by n upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

z(ldz,*)

If compz ='V', then z must contain the matrix Q from
the reduction to Hessenberg form.
If compz ='I', then z need not be set.
If compz ='N', then z is not referenced.
The second dimension of z must be
at least max(1, n) if compz ='V' or 'I';
at least 1 if compz ='N'.

work(lwork) is a workspace array.
The dimension of work must be at least max (1, n).

ldh INTEGER. The first dimension of h; at least max(1, n).

ldz INTEGER. The first dimension of z;
If compz ='N', then ldz ≥ 1.
If compz ='V' or 'I', then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
lwork ≥ max(1,n). If lwork = -1, then a workspace
query is assumed; the routine only calculates the optimal
size of the work array, returns this value as the first
entry of the work array, and no error message related to
lwork is issued by xerbla.

Output Parameters

w COMPLEX for chseqr
DOUBLE COMPLEX for zhseqr.
Array, DIMENSION at least max (1, n).
Contains the computed eigenvalues, unless info>0. The
eigenvalues are stored in the same order as on the
diagonal of the Schur form T (if computed).

wr, wi REAL for shseqr
DOUBLE PRECISION for dhseqr
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the

5-198

5 Intel® Math Kernel Library Reference Manual

computed eigenvalues, unless info > 0. Complex
conjugate pairs of eigenvalues appear consecutively
with the eigenvalue having positive imaginary part first.
The eigenvalues are stored in the same order as on the
diagonal of the Schur form T (if computed).

z If compz ='V' or 'I', then z contains the unitary
(orthogonal) matrix of the required Schur vectors, unless
info > 0.
If compz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the optimal
lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info > 0, the algorithm has failed to find all the
eigenvalues after a total 30(ihi−ilo+1) iterations. If
info = i, elements 1,2, ..., ilo−1 and i+1, i+2, ..., n of
wr and wi contain the real and imaginary parts of the
eigenvalues which have been found.

Application Notes

The computed Schur factorization is the exact factorization of a nearby
matrix H + E, where | | E| | 2 < O(ε) | | H| | 2/si, and ε is the machine precision.
If λ i is an exact eigenvalue, and µi is the corresponding computed value,
then | λi − µi| ≤ c(n)ε | |H| | 2/si where c(n) is a modestly increasing function of
n, and si is the reciprocal condition number of λ i. You can compute the
condition numbers si by calling ?trsna (see page 5-210).

The total number of floating-point operations depends on how rapidly the
algorithm converges; typical numbers are as follows.

If only eigenvalues are computed: 7n3 for real flavors
25n3 for complex flavors.

If the Schur form is computed: 10n3 for real flavors
35n3 for complex flavors.

If the full Schur factorization is computed:20n3 for real flavors
70n3 for complex flavors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-199

?hsein
Computes selected eigenvectors of an
upper Hessenberg matrix that
correspond to specified eigenvalues.

call shsein (job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info)

call dhsein (job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info)

call chsein (job, eigsrc, initv, select, n, h, ldh, w, vl,
ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info)

call zhsein (job, eigsrc, initv, select, n, h, ldh, w, vl,
ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info)

Discussion

This routine computes left and/or right eigenvectors of an upper Hessenberg
matrix H, corresponding to selected eigenvalues.

The right eigenvector x and the left eigenvector y, corresponding to an
eigenvalue λ , are defined by: Hx = λx and yHH = λyH (or HHy = λ∗ y).
Here λ∗ denotes the conjugate of λ.

The eigenvectors are computed by inverse iteration. They are scaled so that,
for a real eigenvector x, max| xi| = 1, and for a complex eigenvector,
max(| Rexi| + | Imxi|) = 1.

If H has been formed by reduction of a general matrix A to upper
Hessenberg form, then eigenvectors of H may be transformed to
eigenvectors of A by ?ormhr (page 5-182) or ?unmhr (page 5-187).

Input Parameters

job CHARACTER*1. Must be 'R' or 'L' or 'B'.
If job ='R', then only right eigenvectors are computed.
If job ='L', then only left eigenvectors are computed.
If job ='B', then all eigenvectors are computed.

5-200

5 Intel® Math Kernel Library Reference Manual

eigsrc CHARACTER*1. Must be 'Q' or 'N'.
If eigsrc ='Q', then the eigenvalues of H were found
using ?hseqr (see page 5-195); thus if H has any zero
sub-diagonal elements (and so is block triangular), then
the jth eigenvalue can be assumed to be an eigenvalue of
the block containing the jth row/column. This property
allows the routine to perform inverse iteration on just
one diagonal block.
If eigsrc ='N', then no such assumption is made and
the routine performs inverse iteration using the whole
matrix.

initv CHARACTER*1. Must be 'N' or 'U'.
If initv ='N', then no initial estimates for the selected
eigenvectors are supplied.
If initv ='U', then initial estimates for the selected
eigenvectors are supplied in vl and/or vr.

select LOGICAL.
Array, DIMENSION at least max (1, n).
Specifies which eigenvectors are to be computed.
For real flavors:
To obtain the real eigenvector corresponding to the real
eigenvalue wr(j), set select(j) to .TRUE.

To select the complex eigenvector corresponding to the
complex eigenvalue (wr(j),wi(j)) with complex
conjugate (wr(j+1),wi(j+1)), set select(j) and/or
select(j+1) to .TRUE.; the eigenvector corresponding
to the first eigenvalue in the pair is computed.
For complex flavors:
To select the eigenvector corresponding to the
eigenvalue w(j), set select(j) to .TRUE.

n INTEGER. The order of the matrix H (n ≥ 0).

h,vl,vr,work REAL for shsein
DOUBLE PRECISION for dhsein
COMPLEX for chsein
DOUBLE COMPLEX for zhsein.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-201

Arrays:
h(ldh,*) The n by n upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

vl(ldvl,*)

If initv ='V' and job ='L' or 'B', then vl must
contain starting vectors for inverse iteration for the left
eigenvectors. Each starting vector must be stored in the
same column or columns as will be used to store the
corresponding eigenvector.
If initv ='N', then vl need not be set.
The second dimension of vl must be at least max(1, mm)
if job ='L' or 'B' and at least 1 if job ='R'.
The array vl is not referenced if job ='R'.

vr(ldvr,*)

If initv ='V' and job ='R' or 'B', then vr must
contain starting vectors for inverse iteration for the right
eigenvectors. Each starting vector must be stored in the
same column or columns as will be used to store the
corresponding eigenvector.
If initv ='N', then vr need not be set.
The second dimension of vr must be at least max(1, mm)
if job ='R' or 'B' and at least 1 if job ='L'.
The array vr is not referenced if job ='L'.

work(*) is a workspace array.
DIMENSION at least max (1, n*(n+2)) for real flavors
and at least max (1, n*n) for complex flavors.

ldh INTEGER. The first dimension of h; at least max(1, n).

w COMPLEX for chsein
DOUBLE COMPLEX for zhsein.
Array, DIMENSION at least max (1, n).
Contains the eigenvalues of the matrix H.
If eigsrc ='Q', the array must be exactly as returned
by ?hseqr.

5-202

5 Intel® Math Kernel Library Reference Manual

wr, wi REAL for shsein
DOUBLE PRECISION for dhsein
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the
eigenvalues of the matrix H. Complex conjugate pairs of
values must be stored in consecutive elements of the
arrays. If eigsrc ='Q', the arrays must be exactly as
returned by ?hseqr.

ldvl INTEGER. The first dimension of vl.
If job ='L' or 'B', ldvl ≥ max(1,n).
If job ='R', ldvl ≥ 1.

ldvr INTEGER. The first dimension of vr.
If job ='R' or 'B', ldvr ≥ max(1,n).
If job ='L', ldvr ≥ 1.

mm INTEGER. The number of columns in vl and/or vr.
Must be at least m, the actual number of columns
required (see Output Parameters below).
For real flavors, m is obtained by counting 1 for each
selected real eigenvector and 2 for each selected
complex eigenvector (see select).
For complex flavors, m is the number of selected
eigenvectors (see select). Constraint: 0 ≤ mm ≤ n.

rwork REAL for chsein
DOUBLE PRECISION for zhsein.
Array, DIMENSION at least max (1, n).

Output Parameters

select Overwritten for real flavors only. If a complex
eigenvector was selected as specified above, then
select(j) is set to .TRUE. and select(j+1)
to .FALSE.

w The real parts of some elements of w may be modified,
as close eigenvalues are perturbed slightly in searching
for independent eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-203

wr Some elements of wr may be modified, as close
eigenvalues are perturbed slightly in searching for
independent eigenvectors.

vl, vr If job ='L' or 'B', vl contains the computed left
eigenvectors (as specified by select).
If job ='R' or 'B', vr contains the computed right
eigenvectors (as specified by select).

The eigenvectors are stored consecutively in the
columns of the array, in the same order as their
eigenvalues.
For real flavors: a real eigenvector corresponding to a
selected real eigenvalue occupies one column;
a complex eigenvector corresponding to a selected
complex eigenvalue occupies two columns: the first
column holds the real part and the second column holds
the imaginary part.

m INTEGER. For real flavors: the number of columns of vl
and/or vr required to store the selected eigenvectors.
For complex flavors: the number of selected
eigenvectors.

ifaill,ifailr INTEGER.
Arrays, DIMENSION at least max(1, mm) each.
ifaill(i) = 0 if the ith column of vl converged;
ifaill(i) = j > 0 if the eigenvector stored in the ith
column of vl (corresponding to the jth eigenvalue)
failed to converge.
ifailr(i) = 0 if the ith column of vr converged;
ifailr(i) = j > 0 if the eigenvector stored in the ith
column of vr (corresponding to the jth eigenvalue)
failed to converge.
For real flavors: if the ith and (i+1)th columns of vl
contain a selected complex eigenvector, then
ifaill(i) and ifaill(i+1) are set to the same
value. A similar rule holds for vr and ifailr.

The array ifaill is not referenced if job ='R'.
The array ifailr is not referenced if job ='L'.

5-204

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info > 0, then i eigenvectors (as indicated by the
parameters ifaill and/or ifailr above) failed to
converge. The corresponding columns of vl and/or vr
contain no useful information.

Application Notes

Each computed right eigenvector xi is the exact eigenvector of a nearby
matrix A + Ei, such that | | Ei| | < O(ε)| | A| | . Hence the residual is small:
| | Axi − λixi| | = O(ε)| | A| | .

However, eigenvectors corresponding to close or coincident eigenvalues
may not accurately span the relevant subspaces.

Similar remarks apply to computed left eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-205

?trevc
Computes selected eigenvectors of an
upper (quasi-) triangular matrix
computed by ?hseqr.

call strevc (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, info)

call dtrevc (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, info)

call ctrevc (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, rwork, info)

call ztrevc (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, rwork, info)

Discussion

This routine computes some or all of the right and/or left eigenvectors of an
upper triangular matrix T (or, for real flavors, an upper quasi-triangular
matrix T). Matrices of this type are produced by the Schur factorization of a
general matrix: A = Q T QH, as computed by ?hseqr (see page 5-195).

The right eigenvector x and the left eigenvector y of T corresponding to an
eigenvalue w, are defined by:

T x = w x , yHT = w yH

where yH denotes the conjugate transpose of y.

The eigenvalues are not input to this routine, but are read directly from the
diagonal blocks of T.

This routine returns the matrices X and/or Y of right and left eigenvectors of
T, or the products Q X and/or Q Y, where Q is an input matrix.
If Q is the orthogonal/unitary factor that reduces a matrix A to Schur form T,
then Q X and Q Y are the matrices of right and left eigenvectors of A.

5-206

5 Intel® Math Kernel Library Reference Manual

Input Parameters

side CHARACTER*1. Must be 'R' or 'L' or 'B'.
If side ='R', then only right eigenvectors are
computed.
If side ='L', then only left eigenvectors are computed.
If side ='B', then all eigenvectors are computed.

howmny CHARACTER*1. Must be 'A' or 'B' or 'S'.
If howmny ='A', then all eigenvectors (as specified by
side) are computed.
If howmny ='B', then all eigenvectors (as specified by
side) are computed and backtransformed by the
matrices supplied in vl and vr .
If howmny ='S', then selected eigenvectors (as
specified by side and select) are computed.

select LOGICAL.
Array, DIMENSION at least max (1, n).
If howmny='S', select specifies which eigenvectors
are to be computed.
If howmny= 'A'or 'B', select is not referenced.
For real flavors:
If ωj is a real eigenvalue, the corresponding real
eigenvector is computed if select(j) is .TRUE..
If ωj and ωj+1 are the real and imaginary parts of a
complex eigenvalue, the corresponding complex
eigenvector is computed if either select(j) or
select(j+1) is .TRUE. , and on exit select(j) is set to
.TRUE.and select(j+1) is set to .FALSE..
For complex flavors:
The eigenvector corresponding to the j-th eigenvalue is
computed if select(j) is .TRUE..

n INTEGER. The order of the matrix T (n ≥ 0).

t,vl,vr,work REAL for strevc
DOUBLE PRECISION for dtrevc
COMPLEX for ctrevc
DOUBLE COMPLEX for ztrevc.
Arrays:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-207

t(ldt,*) contains the n by n matrix T in Schur
canonical form.
The second dimension of t must be at least max(1, n).

vl(ldvl,*)

If howmny ='B' and side ='L' or 'B', then vl must
contain an n by n matrix Q (usually the matrix of Schur
vectors returned by ?hseqr).
If howmny ='A' or 'S', then vl need not be set.
The second dimension of vl must be at least max(1, mm)
if side ='L' or 'B' and at least 1 if side ='R'.
The array vl is not referenced if side ='R'.

vr (ldvr,*)
If howmny ='B' and side ='R' or 'B', then vr must
contain an n by n matrix Q (usually the matrix of Schur
vectors returned by ?hseqr). .
If howmny ='A' or 'S', then vr need not be set.
The second dimension of vr must be at least max(1, mm)
if side ='R' or 'B' and at least 1 if side ='L'.
The array vr is not referenced if side ='L'.

work(*) is a workspace array.
DIMENSION at least max (1, 3*n) for real flavors and
at least max (1, 2*n) for complex flavors.

ldt INTEGER. The first dimension of t; at least max(1, n).

ldvl INTEGER. The first dimension of vl.
If side ='L' or 'B', ldvl ≥ max(1,n).
If side ='R', ldvl ≥ 1.

ldvr INTEGER. The first dimension of vr.
If side ='R' or 'B', ldvr ≥ max(1,n).
If side ='L', ldvr ≥ 1.

mm INTEGER. The number of columns in the arrays vl
and/or vr. Must be at least m (the precise number of
columns required). If howmny ='A' or 'B', m = n.
If howmny ='S': for real flavors, m is obtained by
counting 1 for each selected real eigenvector and 2 for
each selected complex eigenvector;

5-208

5 Intel® Math Kernel Library Reference Manual

for complex flavors, m is the number of selected
eigenvectors (see select). Constraint: 0 ≤ m ≤ n.

rwork REAL for ctrevc
DOUBLE PRECISION for ztrevc.
Workspace array, DIMENSION at least max (1, n).

Output Parameters

select If a complex eigenvector of a real matrix was selected as
specified above, then select(j) is set to .TRUE. and
select(j+1) to .FALSE.

vl,vr If side ='L' or 'B', vl contains the computed left
eigenvectors (as specified by howmny and select).
If side ='R' or 'B', vr contains the computed right
eigenvectors (as specified by howmny and select).

The eigenvectors are stored consecutively in the
columns of the array, in the same order as their
eigenvalues.
For real flavors: corresponding to each real eigenvalue
is a real eigenvector, occupying one column;
corresponding to each complex conjugate pair of
eigenvalues is a complex eigenvector, occupying two
columns; the first column holds the real part and the
second column holds the imaginary part.

m INTEGER.
For complex flavors: the number of selected
eigenvectors. If howmny ='A' or 'B', m is set to n.
For real flavors: the number of columns of vl and/or vr
actually used to store the selected eigenvectors.
If howmny ='A' or 'B', m is set to n.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-209

Application Notes

If xi is an exact right eigenvector and yi is the corresponding computed
eigenvector, then the angle θ(yi,xi) between them is bounded as follows:
θ(yi,xi) ≤ (c(n)ε| | T| | 2) /sepi where sepi is the reciprocal condition number
of xi. The condition number sepi may be computed by calling ?trsna.

5-210

5 Intel® Math Kernel Library Reference Manual

?trsna
Estimates condition numbers for specified
eigenvalues and right eigenvectors of an
upper (quasi-) triangular matrix.

call strsna (job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, iwork, info)

call dtrsna (job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, iwork, info)

call ctrsna (job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, rwork, info)

call ztrsna (job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, rwork, info)

Discussion

This routine estimates condition numbers for specified eigenvalues and/or
right eigenvectors of an upper triangular matrix T (or, for real flavors, upper
quasi-triangular matrix T in canonical Schur form). These are the same as
the condition numbers of the eigenvalues and right eigenvectors of an
original matrix A = ZTZH (with unitary or, for real flavors, orthogonal Z),
from which T may have been derived.

The routine computes the reciprocal of the condition number of an
eigenvalueλ ias si= | vHu| /(| | u| | E| | v| | E),whereuandvare the right and left
eigenvectors of T, respectively, corresponding to λ i. This reciprocal
condition number always lies between zero (ill-conditioned) and one
(well-conditioned).

An approximate error estimate for a computed eigenvalue λ i is then given
by ε| | T| | /si, where ε is the machine precision.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-211

To estimate the reciprocal of the condition number of the right eigenvector
corresponding to λ i, the routine first calls ?trexc (see page 5-215) to
reorder the eigenvalues so that λ i is in the leading position:

The reciprocal condition number of the eigenvector is then estimated as
sepi, the smallest singular value of the matrix T22 − λiI. This number ranges
from zero (ill-conditioned) to very large (well-conditioned).

An approximate error estimate for a computed right eigenvector u
corresponding to λ i is then given by ε | |T| | /sepi.

Input Parameters

job CHARACTER*1. Must be 'E' or 'V' or 'B'.
If job ='E', then condition numbers for eigenvalues
only are computed.
If job ='V', then condition numbers for eigenvectors
only are computed.
If job ='B', then condition numbers for both
eigenvalues and eigenvectors are computed.

howmny CHARACTER*1. Must be 'A' or 'S'.
If howmny ='A', then the condition numbers for all
eigenpairs are computed.
If howmny ='S', then condition numbers for selected
eigenpairs (as specified by select) are computed.

select LOGICAL.
Array, DIMENSION at least max (1, n) if howmny ='S'
and at least 1 otherwise.
Specifies the eigenpairs for which condition numbers
are to be computed if howmny= 'S'.
For real flavors:
To select condition numbers for the eigenpair
corresponding to the real eigenvalue λ j, select(j) must
be set .TRUE.; to select condition numbers for the

T Q λ i C
H

0 T22

Q
H

=

5-212

5 Intel® Math Kernel Library Reference Manual

eigenpair corresponding to a complex conjugate pair of
eigenvalues λ j and λ j+1, select(j) and/or select(j+1)
must be set .TRUE.
For complex flavors:
To select condition numbers for the eigenpair
corresponding to the eigenvalue λ j, select(j) must be
set .TRUE.
select is not referenced if howmny ='A'.

n INTEGER. The order of the matrix T (n ≥ 0).

t,vl,vr,work REAL for strsna
DOUBLE PRECISION for dtrsna
COMPLEX for ctrsna
DOUBLE COMPLEX for ztrsna.
Arrays:
t(ldt,*) contains the n by n matrix T .
The second dimension of t must be at least max(1, n).

vl(ldvl,*)

If job ='E' or 'B', then vl must contain the left
eigenvectors of T (or of any matrix QTQH with Q
unitary or orthogonal) corresponding to the eigenpairs
specified by howmny and select. The eigenvectors
must be stored in consecutive columns of vl, as returned
by ?trevc or ?hsein.
The second dimension of vl must be at least max(1, mm)
if job ='E' or 'B' and at least 1 if job ='V'.
The array vl is not referenced if job ='V'.

vr(ldvr,*)

If job ='E' or 'B', then vr must contain the right
eigenvectors of T (or of any matrix QTQH with Q
unitary or orthogonal) corresponding to the eigenpairs
specified by howmny and select. The eigenvectors
must be stored in consecutive columns of vr, as returned
by ?trevc or ?hsein.
The second dimension of vr must be at least max(1, mm)
if job ='E' or 'B' and at least 1 if job ='V'.
The array vr is not referenced if job ='V'.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-213

work(ldwork,*) is a workspace array.
The second dimension of work must be
at least max(1, n+1) for complex flavors and
at least max(1, n+6) for real flavors if job ='V' or 'B';
at least 1 if job ='E'.
The array work is not referenced if job ='E'.

ldt INTEGER. The first dimension of t; at least max(1, n).

ldvl INTEGER. The first dimension of vl.
If job ='E' or 'B', ldvl≥max(1,n).
If job ='V', ldvl≥1.

ldvr INTEGER. The first dimension of vr.
If job ='E' or'B', ldvr≥max(1,n).
If job ='R', ldvr≥1.

mm INTEGER. The number of elements in the arrays s and
sep, and the number of columns in vl and vr (if used).
Must be at least m (the precise number required).
If howmny ='A', m = n;
if howmny ='S', for real flavors m is obtained by
counting 1 for each selected real eigenvalue and 2 for
each selected complex conjugate pair of eigenvalues.
for complex flavors m is the number of selected
eigenpairs (see select). Constraint: 0 ≤ m ≤ n.

ldwork INTEGER. The first dimension of work.
If job ='V' or 'B', ldwork ≥ max(1,n).
If job ='E', ldwork ≥ 1.

rwork REAL for ctrsna, ztrsna.
Array, DIMENSION at least max (1, n).

iwork INTEGER for strsna, dtrsna.
Array, DIMENSION at least max (1, n).

Output Parameters

s REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, mm) if job ='E' or
'B' and at least 1 if job ='V'.

5-214

5 Intel® Math Kernel Library Reference Manual

Contains the reciprocal condition numbers of the
selected eigenvalues if job ='E' or 'B', stored in
consecutive elements of the array. Thus s(j), sep(j) and
the jth columns of vl and vr all correspond to the same
eigenpair (but not in general the jth eigenpair unless all
eigenpairs have been selected). For real flavors: For a
complex conjugate pair of eigenvalues, two consecutive
elements of S are set to the same value.
The array s is not referenced if job ='V'.

sep REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, mm)
if job ='V' or 'B' and at least 1 if job ='E'.
Contains the estimated reciprocal condition numbers of
the selected right eigenvectors if job ='V' or 'B',
stored in consecutive elements of the array.
For real flavors: for a complex eigenvector, two
consecutive elements of sep are set to the same value; if
the eigenvalues cannot be reordered to compute sep(j),
then sep(j) is set to zero; this can only occur when the
true value would be very small anyway.
The array sep is not referenced if job ='E'.

m INTEGER.
For complex flavors: the number of selected eigenpairs.
If howmny ='A', m is set to n.
For real flavors: the number of elements of s and/or sep
actually used to store the estimated condition numbers.
If howmny ='A', m is set to n.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed values sepi may overestimate the true value, but seldom by a
factor of more than 3.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-215

?trexc
Reorders the Schur factorization of a
general matrix.

call strexc (compq, n, t, ldt, q, ldq, ifst, ilst, work, info)

call dtrexc (compq, n, t, ldt, q, ldq, ifst, ilst, work, info)

call ctrexc (compq, n, t, ldt, q, ldq, ifst, ilst, info)

call ztrexc (compq, n, t, ldt, q, ldq, ifst, ilst, info)

Discussion

This routine reorders the Schur factorization of a general matrix A= QTQH,
so that the diagonal element or block of T with row index ifst is moved to
row ilst.

The reordered Schur form S is computed by an unitary (or, for real flavors,
orthogonal) similarity transformation: S = ZHTZ. Optionally the updated
matrix P of Schur vectors is computed as P = QZ, giving A=PSPH.

Input Parameters

compq CHARACTER*1. Must be 'V' or 'N'.
If compq ='V', then the Schur vectors (Q) are updated.
If compq ='N', then no Schur vectors are updated.

n INTEGER. The order of the matrix T (n ≥ 0).

t, q REAL for strexc
DOUBLE PRECISION for dtrexc
COMPLEX for ctrexc
DOUBLE COMPLEX for ztrexc.
Arrays:
t(ldt,*) contains the n by n matrix T.
The second dimension of t must be at least max(1, n).

q(ldq,*)

If compq ='V', then q must contain Q (Schur vectors).
If compq ='N', then q is not referenced.

5-216

5 Intel® Math Kernel Library Reference Manual

The second dimension of q must be at least max(1, n)
if compq ='V' and at least 1 if compq ='N'.

ldt INTEGER. The first dimension of t; at least max(1, n).

ldq INTEGER. The first dimension of q;
If compq ='N', then ldq≥1.
If compq ='V', then ldq≥max(1,n).

ifst, ilst INTEGER. 1 ≤ ifst ≤ n; 1 ≤ ilst ≤ n.
Must specify the reordering of the diagonal elements (or
blocks, which is possible for real flavors) of the matrix
T. The element (or block) with row index ifst is moved
to row ilst by a sequence of exchanges between
adjacent elements (or blocks).

work REAL for strexc
DOUBLE PRECISION for dtrexc.
Array, DIMENSION at least max (1, n).

Output Parameters

t Overwritten by the updated matrix S.

q If compq ='V', q contains the updated matrix of Schur
vectors.

ifst, ilst Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on
entry, it is changed to point to the first row; ilst always
points to the first row of the block in its final position
(which may differ from its input value by ±1).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix S is exactly similar to a matrix T + E, where
| | E| | 2 = O(ε) | | T| | 2, and ε is the machine precision.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-217

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its
off-diagonal elements are in general changed; the diagonal elements and the
eigenvalues of the block are unchanged unless the block is sufficiently
ill-conditioned, in which case they may be noticeably altered. It is possible
for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of
complex eigenvalues to become purely real.

The values of eigenvalues however are never changed by the re-ordering.

The approximate number of floating-point operations is

for real flavors: 6n(ifst−ilst) if compq ='N';
12n(ifst−ilst) if compq ='V';

for complex flavors: 20n(ifst−ilst) if compq ='N';
40n(ifst−ilst) if compq ='V'.

?trsen
Reorders the Schur factorization of a matrix
and (optionally) computes the reciprocal
condition numbers and invariant subspace for
the selected cluster of eigenvalues.

call strsen (job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
sep, work, lwork, iwork, liwork, info)

call dtrsen (job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
sep, work, lwork, iwork, liwork, info)

call ctrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s,
sep, work, lwork, info)

call ztrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s,
sep, work, lwork, info)

Discussion

This routine reorders the Schur factorization of a general matrix A = QTQH

so that a selected cluster of eigenvalues appears in the leading diagonal
elements (or, for real flavors, diagonal blocks) of the Schur form.

5-218

5 Intel® Math Kernel Library Reference Manual

The reordered Schur form R is computed by an unitary(orthogonal)
similarity transformation: R = ZHTZ. Optionally the updated matrix P of
Schur vectors is computed as P = QZ, giving A =PRPH.

Let

where the selected eigenvalues are precisely the eigenvalues of the leading m
by m submatrix T11. Let P be correspondingly partitioned as (Q1 Q2) where
Q1 consists of the first m columns of Q. Then AQ1 = Q1T11, and so the m
columns of Q1 form an orthonormal basis for the invariant subspace
corresponding to the selected cluster of eigenvalues.

Optionally the routine also computes estimates of the reciprocal condition
numbers of the average of the cluster of eigenvalues and of the invariant
subspace.

Input Parameters

job CHARACTER*1. Must be 'N' or 'E' or 'V' or 'B'.
If job ='N', then no condition numbers are required.
If job ='E', then only the condition number for the
cluster of eigenvalues is computed.
If job ='V', then only the condition number for the
invariant subspace is computed.
If job ='B', then condition numbers for both the cluster
and the invariant subspace are computed.

compq CHARACTER*1. Must be 'V' or 'N'.
If compq ='V', then Q of the Schur vectors is updated.
If compq ='N', then no Schur vectors are updated.

select LOGICAL.
Array, DIMENSION at least max (1, n).
Specifies the eigenvalues in the selected cluster.
To select an eigenvalue λ j, select(j) must be .TRUE.
For real flavors: to select a complex conjugate pair of
eigenvalues λ j and λ j+1(corresponding 2 by 2 diagonal

R
T11 T12

0 T13

=

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-219

block), select(j) and/or select(j+1) must be
.TRUE.; the complex conjugate λ j and λ j+1 must be
either both included in the cluster or both excluded.

n INTEGER. The order of the matrix T (n ≥ 0).

t, q, work REAL for strsen
DOUBLE PRECISION for dtrsen
COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Arrays:
t (ldt,*) The n by n T.
The second dimension of t must be at least max(1, n).

q (ldq,*)
If compq ='V', then q must contain Q of Schur vectors.
If compq ='N', then q is not referenced.
The second dimension of q must be at least max(1, n) if
compq ='V' and at least 1 if compq ='N'.

work (lwork) is a workspace array.
For complex flavors: the array work is not referenced if
job ='N'.
The actual amount of workspace required cannot exceed
n2/4 if job ='E' or n2/2 if job ='V' or 'B'.

ldt INTEGER. The first dimension of t; at least max(1, n).

ldq INTEGER. The first dimension of q;
If compq ='N', then ldq ≥ 1.
If compq ='V', then ldq ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
If job ='V' or 'B', lwork ≥ max(1,2m(n−m)).
If job ='E', then lwork ≥ max(1,m(n−m))
If job ='N', then lwork ≥ 1 for complex flavors and
lwork ≥ max(1,n) for real flavors.

iwork INTEGER.
iwork(liwork) is a workspace array.
The array iwork is not referenced if job ='N'or 'E'.
The actual amount of workspace required cannot exceed
n2/2 if job ='V' or 'B'.

5-220

5 Intel® Math Kernel Library Reference Manual

liwork INTEGER.
The dimension of the array iwork.
If job ='V' or 'B', liwork ≥ max(1,2m(n−m)).
If job ='E' or 'E', liwork ≥ 1.

Output Parameters

t Overwritten by the updated matrix R.

q If compq ='V', q contains the updated matrix of Schur
vectors; the first m columns of the Q form an orthogonal
basis for the specified invariant subspace.

w COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Array, DIMENSION at least max(1,n).
The recorded eigenvalues of R. The eigenvalues are
stored in the same order as on the diagonal of R.

wr, wi REAL for strsen
DOUBLE PRECISION for dtrsen
Arrays, DIMENSION at least max(1,n).
Contain the real and imaginary parts, respectively, of the
reordered eigenvalues of R. The eigenvalues are stored
in the same order as on the diagonal of R. Note that if a
complex eigenvalue is sufficiently ill-conditioned, then
its value may differ significantly from its value before
reordering.

m INTEGER.
For complex flavors: the number of the specified
invariant subspaces, which is the same as the number of
selected eigenvalues (see select).
For real flavors: the dimension of the specified invariant
subspace. The value of m is obtained by counting 1 for
each selected real eigenvalue and 2 for each selected
complex conjugate pair of eigenvalues (see select).

Constraint: 0 ≤ m ≤ n.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-221

s REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
If job ='E' or 'B', s is a lower bound on the reciprocal
condition number of the average of the selected cluster
of eigenvalues. If m = 0 or n, then s = 1.
For real flavors: if info = 1, then s is set to zero.
s is not referenced if job ='N' or 'V'.

sep REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
If job ='V' or 'B', sep is the estimated reciprocal
condition number of the specified invariant subspace.
If m = 0 or n, then sep = | | T| | .
For real flavors: if info = 1, then sep is set to zero.
sep is not referenced if job ='N' or 'E'.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed matrix R is exactly similar to a matrix T + E, where
| | E| | 2 = O(ε)| | T| | 2, and ε is the machine precision.
The computed s cannot underestimate the true reciprocal condition number
by more than a factor of (min(m, n-m))1/2; sep may differ from the true
value by (m*n-m2)1/2. The angle between the computed invariant subspace
and the true subspace is O(ε) | | A| | 2/sep.
Note that if a 2 by 2 diagonal block is involved in the re-ordering, its
off-diagonal elements are in general changed; the diagonal elements and the
eigenvalues of the block are unchanged unless the block is sufficiently
ill-conditioned, in which case they may be noticeably altered. It is possible
for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of
complex eigenvalues to become purely real. The values of eigenvalues
however are never changed by the re-ordering.

5-222

5 Intel® Math Kernel Library Reference Manual

?trsyl
Solves Sylvester’s equation for real
quasi-triangular or complex triangular
matrices.

call strsyl (trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info)

call dtrsyl (trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info)

call ctrsyl (trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info)

call ztrsyl (trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info)

Discussion

This routine solves the Sylvester matrix equation op(A)X ± Xop(B) = αC,
where op(A) = A or AH, and the matrices A and B are upper triangular (or,
for real flavors, upper quasi-triangular in canonical Schur form); α ≤ 1 is a
scale factor determined by the routine to avoid overflow in X; A is m by m, B
is n by n, and C and X are both m by n. The matrix X is obtained by a
straightforward process of back substitution.

The equation has a unique solution if and only if αi ± βi ≠ 0, where {αi} and
{βi} are the eigenvalues of A and B, respectively, and the sign (+ or −) is the
same as that used in the equation to be solved.

Input Parameters

trana CHARACTER*1. Must be 'N' or 'T' or 'C'.
If trana = 'N', then op(A) = A.
If trana = 'T', then op(A) = AT (real flavors only).
If trana = 'C' then op(A) = AH.

tranb CHARACTER*1. Must be 'N' or 'T' or 'C'.
If tranb = 'N', then op(B) = B.
If tranb = 'T', then op(B) = BT (real flavors only).
If tranb = 'C', then op(B) = BH.

isgn INTEGER. Indicates the form of the Sylvester equation.
If isgn = +1, op(A)X + Xop(B) = αC.
If isgn = −1, op(A)X − Xop(B) = αC.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-223

m INTEGER. The order of A, and the number of rows in X
and C (m ≥ 0).

n INTEGER. The order of B, and the number of columns
in X and C (n ≥ 0).

a, b, c REAL for strsyl
DOUBLE PRECISION for dtrsyl
COMPLEX for ctrsyl
DOUBLE COMPLEX for ztrsyl.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, n).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldc INTEGER. The first dimension of c; at least max(1, n).

Output Parameters

c Overwritten by the solution matrix X.

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The value of the scale factor α.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

If info = 1, A and B have common or close eigenvalues
perturbed values were used to solve the equation.

Application Notes

Let X be the exact, Y the corresponding computed solution, and R the
residual matrix: R = C − (AY ± YB). Then the residual is always small:

5-224

5 Intel® Math Kernel Library Reference Manual

| | R| | F = O(ε) (| | A| | F + | | B| | F) | | Y| | F .

However, Y is not necessarily the exact solution of a slightly perturbed
equation; in other words, the solution is not backwards stable.

For the forward error, the following bound holds:

 | |Y − X| | F ≤ | | R| | F/ sep(A, B)
but this may be a considerable overestimate. See [Golub96] for a definition
of sep(A, B).

The approximate number of floating-point operations for real flavors is
m*n*(m + n). For complex flavors it is 4 times greater.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-225

Generalized Nonsymmetric Eigenvalue Problems

This section describes LAPACK routines for solving generalized
nonsymmetric eigenvalue problems, reordering the generalized Schur
factorization of a pair of matrices, as well as performing a number of related
computational tasks.

A generalized nonsymmetric eigenvalue problem is as follows: given a pair
of nonsymmetric (or non-Hermitian) n-by-n matrices A and B, find the
generalized eigenvalues λ and the corresponding generalized eigenvectors x
and y that satisfy the equations

Ax = λBx (right generalized eigenvectors x)

and

yHA = λyHB (left generalized eigenvectors y).

Table 5-6 lists LAPACK routines used to solve the generalized
nonsymmetric eigenvalue problems and the generalized Sylvester
equation.

Table 5-6 Computational Routines for Solving Generalized Nonsymmetric
Eigenvalue Problems

Routine
name

Operation performed

?gghrd Reduces a pair of matrices to generalized upper Hessenberg form using
orthogonal/unitary transformations.

?ggbal Balances a pair of general real or complex matrices.

?ggbak Forms the right or left eigenvectors of a generalized eigenvalue problem.

?hgeqz Implements the QZ method for finding the generalized eigenvalues of the matrix
pair (H,T).

?tgevc Computes some or all of the right and/or left generalized eigenvectors of a pair
of upper triangular matrices

?tgexc Reorders the generalized Schur decomposition of a pair of matrices (A,B) so
that one diagonal block of (A,B) moves to another row index.

?tgsen Reorders the generalized Schur decomposition of a pair of matrices (A,B) so that
a selected cluster of eigenvalues appears in the leading diagonal blocks of (A,B).

?tgsyl Solves the generalized Sylvester equation.

?tgsna Estimates reciprocal condition numbers for specified eigenvalues and/or
eigenvectors of a pair of matrices in generalized real Schur canonical form.

5-226

5 Intel® Math Kernel Library Reference Manual

?gghrd
Reduces a pair of matrices to generalized
upper Hessenberg form using
orthogonal/unitary transformations.

call sgghrd (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info)

call dgghrd (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info)

call cgghrd (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info)

call zgghrd (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info)

Discussion

This routine reduces a pair of real/complex matrices (A,B) to generalized
upper Hessenberg form using orthogonal/unitary transformations, where A
is a general matrix and B is upper triangular. The form of the generalized
eigenvalue problem is Ax = λBx, and B is typically made upper triangular
by computing its QR factorization and moving the orthogonal matrix Q to
the left side of the equation.
This routine simultaneously reduces A to a Hessenberg matrix H:

QH A Z = H
and transforms B to another upper triangular matrix T:

QH B Z = T
in order to reduce the problem to its standard form Hy = λTy where
y = ZH x .

The orthogonal/unitary matrices Q and Z are determined as products of
Givens rotations. They may either be formed explicitly, or they may be
postmultiplied into input matrices Q1 and Z1, so that

Q1 A Z1
H = (Q1Q) H (Z1Z)H

Q1 B Z1
H = (Q1Q) T (Z1Z)H

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-227

If Q1 is the orthogonal matrix from the QR factorization of B in the original
equation Ax = λBx , then ?gghrd reduces the original problem to
generalized Hessenberg form.

Input Parameters
compq CHARACTER*1. Must be 'N', 'I', or 'V'.

If compq = 'N', matrix Q is not computed.
If compq = 'I', Q is initialized to the unit matrix, and
the orthogonal/unitary matrix Q is returned;
If compq = 'V', Q must contain an orthogonal/unitary
matrix Q1 on entry, and the product Q1Q is returned.

compz CHARACTER*1. Must be 'N', 'I', or 'V'.
If compz = 'N', matrix Z is not computed.
If compz = 'I', Z is initialized to the unit matrix, and
the orthogonal/unitary matrix Z is returned;
If compz = 'V', Z must contain an orthogonal/unitary
matrix Z1 on entry, and the product Z1Z is returned.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ilo, ihi INTEGER. ilo and ihi mark the rows and columns of
A which are to be reduced. It is assumed that A is already
upper triangular in rows and columns 1:ilo-1 and
ihi+1:n. Values of ilo and ihi are normally set by a
previous call to ?ggbal; otherwise they should be set to
1 and n respectively. Constraint:
If n >0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.

a, b, q, z REAL for sgghrd
DOUBLE PRECISION for dgghrd
COMPLEX for cgghrd
DOUBLE COMPLEX for zgghrd.
Arrays:
a(lda,*) contains the n-by-n general matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the n-by-n upper triangular matrix
B.
The second dimension of b must be at least max(1, n).

5-228

5 Intel® Math Kernel Library Reference Manual

q (ldq,*)
If compq ='N', then q is not referenced.
If compq ='I', then, on entry, q need not be set.
If compq ='V', then q must contain the
orthogonal/unitary matrix Q1, typically from the QR
factorization of B.
The second dimension of q must be at least max(1, n).

z (ldz,*)
If compq ='N', then z is not referenced.
If compq ='I', then, on entry, z need not be set.
If compq ='V', then z must contain the
orthogonal/unitary matrix Z1.
The second dimension of z must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldq INTEGER. The first dimension of q;
If compq ='N', then ldq ≥ 1.
If compq ='I'or 'V', then ldq ≥ max(1,n).

ldz INTEGER. The first dimension of z;
If compq ='N', then ldz ≥ 1.
If compq ='I'or 'V', then ldz ≥ max(1,n).

Output Parameters

a On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and
the rest is set to zero.

b On exit, overwritten by the upper triangular matrix
T = QH B Z. The elements below the diagonal are set to
zero.

q If compq ='I', then q contains the orthogonal/unitary
matrix Q, where QH is the product of the Givens
transformations which are applied to A and B on the
left;
If compq ='V', then q is overwritten by the
product Q1Q.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-229

z If compq ='I', then z contains the orthogonal/unitary
matrix Z, which is the product of the Givens
transformations which are applied to A and B on the
right;
If compq ='V', then z is overwritten by the
product Z1Z.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

5-230

5 Intel® Math Kernel Library Reference Manual

?ggbal
Balances a pair of general real or
complex matrices.

call sggbal (job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info)

call dggbal (job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info)

call cggbal (job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info)

call zggbal (job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info)

Discussion

This routine balances a pair of general real/complex matrices (A,B). This
involves, first, permuting A and B by similarity transformations to isolate
eigenvalues in the first 1 to ilo-1 and last ihi+1 to n elements on the
diagonal; and second, applying a diagonal similarity transformation to rows
and columns ilo to ihi to make the rows and columns as close in norm as
possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrices, and improve the accuracy
of the computed eigenvalues and/or eigenvectors in the generalized
eigenvalue problem Ax = λBx.

Input Parameters

job CHARACTER*1. Specifies the operations to be performed
on A and B. Must be 'N' or 'P' or 'S' or 'B'.
If job ='N', then no operations are done; simply set
ilo=1, ihi=n, lscale(i) =1.0 and rscale(i)=1.0 for
i = 1,...,n.
If job ='P', then permute only.
If job ='S', then scale only.
If job ='B', then both permute and scale.

n INTEGER. The order of the matrices A and B (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-231

a, b REAL for sggbal
DOUBLE PRECISION for dggbal
COMPLEX for cggbal
DOUBLE COMPLEX for zggbal.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

work REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1, 6n).

Output Parameters

a, b Overwritten by the balanced matrices A and B,
respectively. If job ='N', a and b are not referenced.

ilo, ihi INTEGER. ilo and ihi are set to integers such that on
exit a(i,j)=0 and b(i,j)=0 if i>j and j=1,...,ilo-1
or i=ihi+1,...,n.

If job ='N'or 'S', then ilo = 1 and ihi = n.

lscale,rscale REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n).

lscale contains details of the permutations and
scaling factors applied to the left side of A and B.
If Pj is the index of the row interchanged with row j,
and Dj is the scaling factor applied to row j, then

lscale(j) = Pj , for j = 1,..., ilo-1
= Dj , for j = ilo,...,ihi
= Pj , for j = ihi+1,..., n.

rscale contains details of the permutations and
scaling factors applied to the right side of A and B.

5-232

5 Intel® Math Kernel Library Reference Manual

If Pj is the index of the column interchanged with
column j, and Dj is the scaling factor applied to
column j, then

rscale(j) = Pj , for j = 1,..., ilo-1
= Dj , for j = ilo,...,ihi
= Pj , for j = ihi+1,..., n

The order in which the interchanges are made is n to
ihi+1, then 1 to ilo-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-233

?ggbak
Forms the right or left eigenvectors of a
generalized eigenvalue problem.

call sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call cggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call zggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

Discussion

This routine forms the right or left eigenvectors of a real/complex generalized
eigenvalue problem

Ax = λBx
by backward transformation on the computed eigenvectors of the balanced
pair of matrices output by ?ggbal.

Input Parameters

job CHARACTER*1. Specifies the type of backward
transformation required. Must be 'N', 'P', 'S', or
'B'.
If job ='N', then no operations are done; return.
If job ='P', then do backward transformation for
permutation only.
If job ='S', then do backward transformation for
scaling only.
If job ='B', then do backward transformation for both
permutation and scaling.
This argument must be the same as the argument job
supplied to ?ggbal.

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then v contains left eigenvectors .
If side = 'R', then v contains right eigenvectors .

n INTEGER. The number of rows of the matrix V (n ≥ 0).

5-234

5 Intel® Math Kernel Library Reference Manual

ilo, ihi INTEGER. The integers ilo and ihi determined by
?gebal. Constraint:
If n >0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.

lscale,rscale REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n).

The array lscale contains details of the permutations
and/or scaling factors applied to the left side of A and B,
as returned by ?ggbal.

The array rscale contains details of the permutations
and/or scaling factors applied to the right side of A and
B, as returned by ?ggbal.

m INTEGER. The number of columns of the matrix V
(m ≥ 0).

v REAL for sggbak
DOUBLE PRECISION for dggbak
COMPLEX for cggbak
DOUBLE COMPLEX for zggbak.
Array v(ldv,*). Contains the matrix of right or left
eigenvectors to be transformed, as returned by ?tgevc.
The second dimension of v must be at least max(1, m).

ldv INTEGER. The first dimension of v; at least max(1, n).

Output Parameters

v Overwritten by the transformed eigenvectors

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-235

?hgeqz
Implements the QZ method for finding
the generalized eigenvalues of the
matrix pair (H,T).

call shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
alphai, beta, q, ldq, z, ldz, work, lwork, info)

call dhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
alphai, beta, q, ldq, z, ldz, work, lwork, info)

call chgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
beta, q, ldq, z, ldz, work, lwork, rwork, info)

call zhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
beta, q, ldq, z, ldz, work, lwork, rwork, info)

Discussion

This routine computes the eigenvalues of a real/complex matrix pair (H,T),
where H is an upper Hessenberg matrix and T is upper triangular, using the
double-shift version (for real flavors) or single-shift version (for complex
flavors) of the QZ method.
Matrix pairs of this type are produced by the reduction to generalized upper
Hessenberg form of a real/complex matrix pair (A,B):

A = Q1 H Z1
H , B = Q1 T Z1

H ,

as computed by ?gghrd.

For real flavors:
If job ='S', then the Hessenberg-triangular pair (H,T) is also reduced to
generalized Schur form,

H = Q S ZT , T = Q P ZT ,

where Q and Z are orthogonal matrices, P is an upper triangular matrix, and
S is a quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks.
The 1-by-1 blocks correspond to real eigenvalues of the matrix pair (H,T)
and the 2-by-2 blocks correspond to complex conjugate pairs of
eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks of P

5-236

5 Intel® Math Kernel Library Reference Manual

corresponding to 2-by-2 blocks of S are reduced to positive diagonal form,
that is, if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0, P(j,j) > 0, and
P(j+1,j+1) > 0.

For complex flavors:
If job ='S', then the Hessenberg-triangular pair (H,T) is also reduced to
generalized Schur form,

H = Q S ZH , T = Q P ZH ,

where Q and Z are unitary matrices, and S and P are upper triangular.

For all function flavors:
Optionally, the orthogonal/unitary matrix Q from the generalized Schur
factorization may be postmultiplied into an input matrix Q1, and the
orthogonal/unitary matrix Z may be postmultiplied into an input matrix Z1.
If Q1 and Z1 are the orthogonal/unitary matrices from ?gghrd that reduced
the matrix pair (A,B) to generalized upper Hessenberg form, then the output
matrices Q1Q and Z1Z are the orthogonal/unitary factors from the
generalized Schur factorization of (A,B):

A = (Q1Q) S (Z1Z)H , B = (Q1Q) P (Z1Z)H .

To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, of
(A,B)) are computed as a pair of values (alpha,beta). For chgeqz/zhgeqz,
alpha and beta are complex, and for shgeqz/dhgeqz, alpha is complex
and beta real. If beta is nonzero, λ = alpha / beta is an eigenvalue of the
generalized nonsymmetric eigenvalue problem (GNEP)

Ax = λBx
and if alpha is nonzero, µ = beta / alpha is an eigenvalue of the alternate
form of the GNEP
 µAy = By .
Real eigenvalues (for real flavors) or the values of alpha and beta for the
i-th eigenvalue (for complex flavors) can be read directly from the
generalized Schur form:

alpha = S(i,i), beta = P(i,i).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-237

Input Parameters

job CHARACTER*1. Specifies the operations to be
performed. Must be 'E' or 'S' .
If job ='E', then compute eigenvalues only;
If job ='S', then compute eigenvalues and the Schur
form.

compq CHARACTER*1. Must be 'N', 'I', or 'V'.
If compq = 'N', left Schur vectors (q) are not
computed;
If compq = 'I', q is initialized to the unit matrix and
the matrix of left Schur vectors of (H,T) is returned;
If compq = 'V', q must contain an orthogonal/unitary
matrix Q1 on entry and the product Q1Q is returned.

compz CHARACTER*1. Must be 'N', 'I', or 'V'.
If compz = 'N', left Schur vectors (q) are not
computed;
If compz = 'I', z is initialized to the unit matrix and
the matrix of right Schur vectors of (H,T) is returned;
If compz = 'V', z must contain an orthogonal/unitary
matrix Z1 on entry and the product Z1Z is returned.

n INTEGER. The order of the matrices H, T, Q, and Z
(n ≥ 0).

ilo, ihi INTEGER. ilo and ihi mark the rows and columns of
H which are in Hessenberg form. It is assumed that H is
already upper triangular in rows and columns 1:ilo-1
and ihi+1:n. Constraint:
If n >0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.

h,t,q,z,work REAL for shgeqz
DOUBLE PRECISION for dhgeqz
COMPLEX for chgeqz
DOUBLE COMPLEX for zhgeqz.
Arrays:
On entry, h(ldh,*) contains the n-by-n upper
Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

5-238

5 Intel® Math Kernel Library Reference Manual

On entry, t(ldt,*) contains the n-by-n upper
triangular matrix T.
The second dimension of t must be at least max(1, n).

q (ldq,*):
On entry, if compq ='V', this array contains the
orthogonal/unitary matrix Q1 used in the reduction of
(A,B) to generalized Hessenberg form.
If compq ='N', then q is not referenced.
The second dimension of q must be at least max(1, n).

z (ldz,*):
On entry, if compz ='V', this array contains the
orthogonal/unitary matrix Z1 used in the reduction of
(A,B) to generalized Hessenberg form.
If compz ='N', then z is not referenced.
The second dimension of z must be at least max(1, n).

work(lwork) is a workspace array.

ldh INTEGER. The first dimension of h; at least max(1, n).

ldt INTEGER. The first dimension of t; at least max(1, n).

ldq INTEGER. The first dimension of q;
If compq ='N', then ldq ≥ 1.
If compq ='I'or 'V', then ldq ≥ max(1,n).

ldz INTEGER. The first dimension of z;
If compq ='N', then ldz ≥ 1.
If compq ='I'or 'V', then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
lwork ≥ max(1,n).

rwork REAL for chgeqz
DOUBLE PRECISION for zhgeqz.
Workspace array, DIMENSION at least max(1, n). Used
in complex flavors only.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-239

Output Parameters

h For real flavors:
If job ='S', then, on exit, h contains the upper
quasi-triangular matrix S from the generalized Schur
factorization; 2-by-2 diagonal blocks (corresponding to
complex conjugate pairs of eigenvalues) are returned in
standard form, with h(i,i) = h(i+1, i+1) and
h(i+1, i)* h(i, i+1) < 0.
If job ='E', then on exit the diagonal blocks of h match
those of S, but the rest of h is unspecified.

For complex flavors:
If job ='S', then, on exit, h contains the upper
triangular matrix S from the generalized Schur
factorization.
If job ='E', then on exit the diagonal of h matches that
of S, but the rest of h is unspecified.

t If job ='S', then, on exit, t contains the upper
triangular matrix P from the generalized Schur
factorization.
For real flavors:
2-by-2 diagonal blocks of P corresponding to 2-by-2
blocks of S are reduced to positive diagonal form, that
is, if h(j+1,j) is non-zero, then t(j+1,j)=t(j,j+1)=0 and
t(j,j) and t(j+1,j+1) will be positive.

If job ='E', then on exit the diagonal blocks of t match
those of P, but the rest of t is unspecified.

For complex flavors:
If job ='E', then on exit the diagonal of t matches that
of P, but the rest of t is unspecified.

alphar,alphai REAL for shgeqz;
DOUBLE PRECISION for dhgeqz.
Arrays, DIMENSION at least max(1,n).
The real and imaginary parts, respectively, of each scalar
alpha defining an eigenvalue of GNEP.

5-240

5 Intel® Math Kernel Library Reference Manual

If alphai(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-th eigenvalues are a
complex conjugate pair, with
alphai(j+1) = -alphai(j).

alpha COMPLEX for chgeqz;
DOUBLE COMPLEX for zhgeqz.
Array, DIMENSION at least max(1,n).
The complex scalars alpha that define the eigenvalues of
GNEP. alphai(i) = S(i,i) in the generalized Schur
factorization.

beta REAL for shgeqz
DOUBLE PRECISION for dhgeqz
COMPLEX for chgeqz
DOUBLE COMPLEX for zhgeqz.
Array, DIMENSION at least max(1,n).
For real flavors:
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (alphar(j), alphai(j))
and beta = beta(j) represent the j-th eigenvalue of the
matrix pair (A,B), in one of the forms λ = alpha/beta
or µ = beta/alpha . Since either λ or µ may overflow,
they should not, in general, be computed.

For complex flavors:
The real non-negative scalars beta that define the
eigenvalues of GNEP. beta(i) = P(i,i) in the
generalized Schur factorization.
Together, the quantities alpha = alpha(j) and beta =
beta(j) represent the j-th eigenvalue of the matrix pair
(A,B), in one of the forms λ = alpha/beta or
µ = beta/alpha . Since either λ or µ may overflow, they
should not, in general, be computed.

q On exit, if compq ='I', q is overwritten by the
orthogonal/unitary matrix of left Schur vectors of the
pair (H,T), and if compq ='V', q is overwritten by the
orthogonal/unitary matrix of left Schur vectors of (A,B).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-241

z On exit, if compz ='I', z is overwritten by the
orthogonal/unitary matrix of right Schur vectors of the
pair (H,T), and if compz ='V', z is overwritten by the
orthogonal/unitary matrix of right Schur vectors of
(A,B).

work(1) If info ≥ 0, on exit, work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1,...,n, the QZ iteration did not converge.
(H,T) is not in Schur form, but alphar(i), alphai(i)
(for real flavors), alpha(i) (for complex flavors), and
beta(i), i=info+1,...,n should be correct.

If info = n+1,...,2n, the shift calculation failed.
(H,T) is not in Schur form, but alphar(i), alphai(i)
(for real flavors), alpha(i) (for complex flavors), and
beta(i), i =info-n+1,...,n should be correct.

5-242

5 Intel® Math Kernel Library Reference Manual

?tgevc
Computes some or all of the right
and/or left generalized eigenvectors of a
pair of upper triangular matrices.

call stgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, info)

call dtgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, info)

call ctgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, rwork, info)

call ztgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, rwork, info)

Discussion

This routine computes some or all of the right and/or left eigenvectors of a
pair of real/complex matrices (S,P), where S is quasi-triangular (for real
flavors) or upper triangular (for complex flavors) and P is upper triangular.

Matrix pairs of this type are produced by the generalized Schur factorization
of a real/complex matrix pair (A,B):

A = Q S ZH , B = Q P ZH

as computed by ?gghrd plus ?hgeqz.

The right eigenvector x and the left eigenvector y of (S,P) corresponding to
an eigenvalue w are defined by:

S x = w P x , yH S = w yHP

The eigenvalues are not input to this routine, but are computed directly from
the diagonal blocks or diagonal elements of S and P.

This routine returns the matrices X and/or Y of right and left eigenvectors of
(S,P), or the products Z X and/or Q Y, where Z and Q are input matrices.
If Q and Z are the orthogonal/unitary factors from the generalized Schur
factorization of a matrix pair (A,B), then Z X and Q Y are the matrices of
right and left eigenvectors of (A,B).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-243

Input Parameters

side CHARACTER*1. Must be 'R', 'L', or 'B'.
If side = 'R', compute right eigenvectors only.
If side = 'L', compute left eigenvectors only.
If side = 'B', compute both right and left eigenvectors.

howmny CHARACTER*1. Must be 'A' , 'B', or 'S'.
If howmny ='A', compute all right and/or left
eigenvectors.
If howmny ='B', compute all right and/or left
eigenvectors, backtransformed by the matrices in vr

and/or vl.
If howmny ='S', compute selected right and/or left
eigenvectors, specified by the logical array select.

select LOGICAL.
Array, DIMENSION at least max (1, n).
If howmny ='S' , select specifies the eigenvectors to
be computed.
If howmny= 'A'or 'B', select is not referenced.
For real flavors:
If ωj is a real eigenvalue, the corresponding real
eigenvector is computed if select(j) is .TRUE..
If ωj and ωj+1 are the real and imaginary parts of a
complex eigenvalue, the corresponding complex
eigenvector is computed if either select(j) or
select(j+1) is .TRUE. , and on exit select(j) is set to
.TRUE.and select(j+1) is set to .FALSE..
For complex flavors:
The eigenvector corresponding to the j-th eigenvalue is
computed if select(j) is .TRUE..

n INTEGER. The order of the matrices A and B (n ≥ 0).

s,p,vl,vr,workREAL for stgevc
DOUBLE PRECISION for dtgevc
COMPLEX for ctgevc
DOUBLE COMPLEX for ztgevc.
Arrays:

5-244

5 Intel® Math Kernel Library Reference Manual

s(lds,*) contains the matrix S from a generalized
Schur factorization as computed by ?hgeqz. This
matrix is upper quasi-triangular for real flavors, and
upper triangular for complex flavors.
The second dimension of s must be at least max(1, n).

p(ldp,*) contains the upper triangular matrix P from a
generalized Schur factorization as computed by
?hgeqz.
For real flavors, 2-by-2 diagonal blocks of P
corresponding to 2-by-2 blocks of S must be in positive
diagonal form.
For complex flavors, P must have real diagonal
elements.
The second dimension of p must be at least max(1, n).

If side ='L' or 'B' and howmny ='B',
vl(ldvl,*) must contain an n-by-n matrix Q (usually
the orthogonal/unitary matrix Q of left Schur vectors
returned by ?hgeqz). The second dimension of vl must
be at least max(1, mm). If side ='R' , vl is not
referenced.

If side ='R' or 'B' and howmny ='B',
vr(ldvr,*) must contain an n-by-n matrix Z (usually
the orthogonal/unitary matrix Z of right Schur vectors
returned by ?hgeqz). The second dimension of vr must
be at least max(1, mm). If side ='L' , vr is not
referenced.

work(*) is a workspace array.
DIMENSION at least max (1, 6*n) for real flavors and
at least max (1, 2*n) for complex flavors.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldvl INTEGER. The first dimension of vl;
If side ='L'or 'B', then ldvl ≥ max(1,n).
If side ='R', then ldvl ≥ 1.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-245

ldvr INTEGER. The first dimension of vr;
If side ='R'or 'B', then ldvr ≥ max(1,n).
If side ='L', then ldvr ≥ 1.

mm INTEGER. The number of columns in the arrays vl
and/or vr (mm ≥ m).

rwork REAL for ctgevc
DOUBLE PRECISION for ztgevc.
Workspace array, DIMENSION at least max (1, 2*n).
Used in complex flavors only.

Output Parameters

vl On exit, if side ='L'or 'B', vl contains:
if howmny ='A', the matrix Y of left eigenvectors of
(S,P);
if howmny ='B', the matrix QY;
if howmny ='S', the left eigenvectors of (S,P) specified
by select, stored consecutively in the columns of vl,
in the same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex
eigenvalue is stored in two consecutive columns, the
first holding the real part, and the second the imaginary
part.

vr On exit, if side ='R'or 'B', vr contains:
if howmny ='A', the matrix X of right eigenvectors of
(S,P);
if howmny ='B', the matrix ZX;
if howmny ='S', the right eigenvectors of (S,P)
specified by select, stored consecutively in the
columns of vr, in the same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex
eigenvalue is stored in two consecutive columns, the
first holding the real part, and the second the imaginary
part.

5-246

5 Intel® Math Kernel Library Reference Manual

m INTEGER. The number of columns in the arrays vl
and/or vr actually used to store the eigenvectors.
If howmny ='A' or 'B', m is set to n.
For real flavors:
Each selected real eigenvector occupies one column and
each selected complex eigenvector occupies two
columns.
For complex flavors:
Each selected eigenvector occupies one column.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
For real flavors:
If info = i>0, the 2-by-2 block (i:i+1) does not have a
complex eigenvalue.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-247

?tgexc
Reorders the generalized Schur
decomposition of a pair of matrices (A,B)
so that one diagonal block of (A,B) moves
to another row index.

call stgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, work, lwork, info)

call dtgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, work, lwork, info)

call ctgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, info)

call ztgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, info)

Discussion

This routine reorders the generalized real-Schur/Schur decomposition of a
real/complex matrix pair (A,B) using an orthogonal/unitary equivalence
transformation

(A, B) = Q (A, B) ZH,

so that the diagonal block of (A, B) with row index ifst is moved to row
ilst.
Matrix pair (A, B) must be in generalized real-Schur/Schur canonical form
(as returned by ?gges), i.e. A is block upper triangular with 1-by-1 and
2-by-2 diagonal blocks and B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are updated.

Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'

Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'.

Input Parameters

wantq, wantz LOGICAL.
If wantq =.TRUE., update the left transformation
matrix Q;

5-248

5 Intel® Math Kernel Library Reference Manual

If wantq =.FALSE., do not update Q;
If wantz =.TRUE., update the right transformation
matrix Z;
If wantz =.FALSE., do not update Z.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, q, z REAL for stgexc
DOUBLE PRECISION for dtgexc
COMPLEX for ctgexc
DOUBLE COMPLEX for ztgexc.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, n).

q (ldq,*)
If wantq =.FALSE., then q is not referenced.
If wantq =.TRUE., then q must contain the
orthogonal/unitary matrix Q.
The second dimension of q must be at least max(1, n).

z (ldz,*)
If wantz =.FALSE., then z is not referenced.
If wantz =.TRUE., then z must contain the
orthogonal/unitary matrix Z.
The second dimension of z must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldq INTEGER. The first dimension of q;
If wantq =.FALSE., then ldq ≥ 1.
If wantq =.TRUE., then ldq ≥ max(1,n).

ldz INTEGER. The first dimension of z;
If wantz =.FALSE., then ldz ≥ 1.
If wantz =.TRUE., then ldz ≥ max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-249

ifst, ilst INTEGER. Specify the reordering of the diagonal blocks
of (A, B). The block with row index ifst is moved to
row ilst, by a sequence of swapping between adjacent
blocks. Constraint: 1 ≤ ifst , ilst ≤ n.

work REAL for stgexc;
DOUBLE PRECISION for dtgexc.
Workspace array, DIMENSION (lwork). Used in real
flavors only.

lwork INTEGER. The dimension of work; must be at least
4n +16.

Output Parameters

a, b Overwritten by the updated matrices A and B.

ifst, ilst Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on
entry, it is changed to point to the first row; ilst always
points to the first row of the block in its final position
(which may differ from its input value by ±1).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the transformed matrix pair (A, B) would be
too far from generalized Schur form; the problem is
ill-conditioned. (A, B) may have been partially
reordered, and ilst points to the first row of the current
position of the block being moved.

5-250

5 Intel® Math Kernel Library Reference Manual

?tgsen
Reorders the generalized Schur
decomposition of a pair of matrices (A,B)
so that a selected cluster of eigenvalues
appears in the leading diagonal blocks
of (A,B).

call stgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info)

call dtgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info)

call ctgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info)

call ztgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info)

Discussion

This routine reorders the generalized real-Schur/Schur decomposition of a
real/complex matrix pair (A, B) (in terms of an orthogonal/unitary
equivalence transformation Q' * (A, B) * Z), so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the pair (A, B).
The leading columns of Q and Z form orthonormal/unitary bases of the
corresponding left and right eigenspaces (deflating subspaces).
(A, B) must be in generalized real-Schur/Schur canonical form (as returned
by ?gges), that is, A and B are both upper triangular.
?tgsen also computes the generalized eigenvalues

ωj = (alphar(j) + alphai(j)*i)/beta(j) (for real flavors)
ωj = alpha(j)/beta(j) (for complex flavors)
of the reordered matrix pair (A, B).

Optionally, the routine computes the estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are
Difu[(A11, B11), (A22, B22)] and Difl[(A11, B11), (A22, B22)], that is, the
separation(s) between the matrix pairs (A11, B11) and (A22, B22) that

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-251

correspond to the selected cluster and the eigenvalues outside the cluster,
respectively, and norms of "projections" onto left and right eigenspaces with
respect to the selected cluster in the (1,1)-block.

Input Parameters

ijob INTEGER. Specifies whether condition numbers are
required for the cluster of eigenvalues (pl and pr) or the
deflating subspaces Difu and Difl.
If ijob =0, only reorder with respect to select;
If ijob =1, reciprocal of norms of "projections" onto
left and right eigenspaces with respect to the selected
cluster (pl and pr);
If ijob =2, compute upper bounds on Difu and Difl,
using F-norm-based estimate (dif (1:2));
If ijob =3, compute estimate of Difu and Difl, using
1-norm-based estimate (dif (1:2)). This option is
about 5 times as expensive as ijob =2;
If ijob =4, compute pl, pr and dif (i.e., options 0, 1
and 2 above). This is an economic version to get it all;
If ijob =5, compute pl, pr and dif (i.e., options 0, 1
and 3 above).

wantq, wantz LOGICAL.
If wantq =.TRUE., update the left transformation
matrix Q;
If wantq =.FALSE., do not update Q;
If wantz =.TRUE., update the right transformation
matrix Z;
If wantz =.FALSE., do not update Z.

select LOGICAL.
Array, DIMENSION at least max (1, n).
Specifies the eigenvalues in the selected cluster.
To select an eigenvalue ωj, select(j) must be .TRUE.
For real flavors: to select a complex conjugate pair of
eigenvalues ωj and ωj+1(corresponding 2 by 2 diagonal

5-252

5 Intel® Math Kernel Library Reference Manual

block), select(j) and/or select(j+1) must be set to
.TRUE.; the complex conjugate ωj and ωj+1 must be
either both included in the cluster or both excluded.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a,b,q,z,work REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Arrays:
a(lda,*) contains the matrix A.
For real flavors: A is upper quasi-triangular, with (A, B)
in generalized real Schur canonical form.
For complex flavors: A is upper triangular, in
generalized Schur canonical form.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B.
For real flavors: B is upper triangular, with (A, B) in
generalized real Schur canonical form.
For complex flavors: B is upper triangular, in
generalized Schur canonical form.
The second dimension of b must be at least max(1, n).

q (ldq,*)
If wantq =.TRUE., then q is an n-by-n matrix;
If wantq =.FALSE., then q is not referenced.
The second dimension of q must be at least max(1, n).

z (ldz,*)
If wantz =.TRUE., then z is an n-by-n matrix;
If wantz =.FALSE., then z is not referenced.
The second dimension of z must be at least max(1, n).

work(lwork) is a workspace array. If ijob=0, work is
not referenced.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-253

ldq INTEGER. The first dimension of q; ldq ≥ 1.
If wantq =.TRUE., then ldq ≥ max(1,n).

ldz INTEGER. The first dimension of z; ldz ≥ 1.
If wantz =.TRUE., then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
For real flavors:
If ijob = 1, 2, or 4, lwork ≥ max(4n+16, 2m(n−m)).
If ijob = 3 or 5, lwork ≥ max(4n+16, 4m(n−m)).
For complex flavors:
If ijob = 1, 2, or 4, lwork ≥ max(1, 2m(n−m)).
If ijob = 3 or 5, lwork ≥ max(1, 4m(n−m)).

iwork INTEGER. Workspace array, DIMENSION (liwork).
If ijob=0, iwork is not referenced.

liwork INTEGER. The dimension of the array iwork.
For real flavors:
If ijob = 1, 2, or 4, liwork ≥ n+6.
If ijob = 3 or 5, liwork ≥ max(n+6, 2m(n−m)).
For complex flavors:
If ijob = 1, 2, or 4, liwork ≥ n+2.
If ijob = 3 or 5, liwork ≥ max(n+2, 2m(n−m)).

Output Parameters

a, b Overwritten by the reordered matrices A and B,
respectively.

alphar,alphai REAL for stgsen;
DOUBLE PRECISION for dtgsen.
Arrays, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in real flavors.
See beta.

alpha COMPLEX for ctgsen;
DOUBLE COMPLEX for ztgsen.
Array, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in complex flavors.
See beta.

5-254

5 Intel® Math Kernel Library Reference Manual

beta REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n,
will be the generalized eigenvalues.
alphar(j) + alphai(j)*i and beta(j), j=1,...,n are the
diagonals of the complex Schur form (S,T) that would
result if the 2-by-2 diagonal blocks of the real
generalized Schur form of (A,B) were further reduced to
triangular form using complex unitary transformations.
If alphai(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
The diagonal elements of A and B, respectively, when
the pair (A,B) has been reduced to generalized Schur
form. alpha(i)/beta(i), i=1,...,n are the generalized
eigenvalues.

q If wantq =.TRUE., then, on exit, Q has been
postmultiplied by the left orthogonal transformation
matrix which reorder (A, B). The leading m columns of
Q form orthonormal bases for the specified pair of left
eigenspaces (deflating subspaces).

z If wantz =.TRUE., then, on exit, Z has been
postmultiplied by the left orthogonal transformation
matrix which reorder (A, B). The leading m columns of Z
form orthonormal bases for the specified pair of left
eigenspaces (deflating subspaces).

m INTEGER. The dimension of the specified pair of left
and right eigen-spaces (deflating subspaces); 0 ≤ m ≤ n.

pl, pr REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If ijob = 1, 4, or 5, pl and pr are lower bounds on the

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-255

reciprocal of the norm of "projections" onto left and
right eigenspaces with respect to the selected cluster.
0 < pl, pr ≤1. If m = 0 or m = n, pl = pr = 1.
If ijob = 0, 2 or 3, pl and pr are not referenced

dif REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (2).
If ijob ≥ 2, dif(1:2) store the estimates of Difu and
Difl.
If ijob = 2 or 4, dif(1:2) are F-norm-based upper
bounds on Difu and Difl.
If ijob = 3 or 5, dif(1:2) are 1-norm-based estimates
of Difu and Difl. If m = 0 or n,
dif(1:2) = F-norm([A, B]).
If ijob = 0 or 1, dif is not referenced.

work(1) If ijob is not 0 and info = 0, on exit, work(1)
contains the minimum value of lwork required for
optimum performance. Use this lwork for subsequent
runs.

iwork(1) If ijob is not 0 and info = 0, on exit, iwork(1)
contains the minimum value of liwork required for
optimum performance. Use this liwork for subsequent
runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, Reordering of (A, B) failed because the
transformed matrix pair (A, B) would be too far from
generalized Schur form; the problem is very
ill-conditioned. (A, B) may have been partially
reordered. If requested, 0 is returned in dif(*), pl and
pr.

5-256

5 Intel® Math Kernel Library Reference Manual

?tgsyl
Solves the generalized Sylvester
equation.

call stgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info)

call dtgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info)

call ctgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info)

call ztgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info)

Discussion

This routine solves the generalized Sylvester equation:

A R - L B = scale * C

D R - L E = scale * F

where R and L are unknown m-by-n matrices, (A, D), (B, E) and (C, F) are
given matrix pairs of size m-by-m, n-by-n and m-by-n, respectively, with
real/complex entries. (A, D) and (B, E) must be in generalized
real-Schur/Schur canonical form, that is, A, B are upper
quasi-triangular/triangular and D, E are upper triangular.

The solution (R, L) overwrites (C, F). The factor scale, 0 ≤scale ≤1,
is an output scaling factor chosen to avoid overflow.

In matrix notation the above equation is equivalent to the following:
solve Zx = scale* b, where Z is defined as

Z
kron In A,() k– ron B ′ Im,()

kron In D,() k– ron E ′ Im,()

=

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-257

Here Ik is the identity matrix of size k and X' is the
transpose/conjugate-transpose of X. kron(X, Y) is the Kronecker product
between the matrices X and Y.
If trans = 'T'(for real flavors), or trans = 'C'(for complex flavors), the
routine ?tgsyl solves the transposed/conjugate-transposed system
Z' y = scale * b, which is equivalent to solve for R and L in

A' R + D' L = scale * C

R B' + L E' = scale * (-F)

This case (trans = 'T' for stgsyl/dtgsyl or trans = 'C' for
ctgsyl/ztgsyl) is used to compute an one-norm-based estimate of
Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)and (B,E),
using slacon/clacon.

If ijob ≥ 1, ?tgsyl computes a Frobenius norm-based estimate of
Dif[(A,D), (B,E)]. That is, the reciprocal of a lower bound on the reciprocal
of the smallest singular value of Z. This is a level 3 BLAS algorithm.

Input Parameters

trans CHARACTER*1. Must be 'N', 'T', or 'C'.
If trans = 'N', solve the generalized Sylvester
equation.
If trans = 'T', solve the 'transposed' system (for real
flavors only).
If trans = 'C', solve the ' conjugate transposed' system
(for complex flavors only).

ijob INTEGER. Specifies what kind of functionality to be
performed:
If ijob =0, solve the generalized Sylvester equation
only ;
If ijob =1, perform the functionality of ijob =0
and ijob =3;
If ijob =2, perform the functionality of ijob =0
and ijob =4;
If ijob =3, only an estimate of Dif[(A,D), (B,E)] is
computed (look ahead strategy is used);

5-258

5 Intel® Math Kernel Library Reference Manual

If ijob =4, only an estimate of Dif[(A,D), (B,E)] is
computed (?gecon on sub-systems is used).
If trans = 'T'or 'C', ijob is not referenced.

m INTEGER.
The order of the matrices A and D, and the row
dimension of the matrices C, F, R and L.

n INTEGER.
The order of the matrices B and E, and the column
dimension of the matrices C, F, R and L.

a,b,c,d,e,f,work REAL for stgsyl
DOUBLE PRECISION for dtgsyl
COMPLEX for ctgsyl
DOUBLE COMPLEX for ztgsyl.

Arrays:
a(lda,*) contains the upper quasi-triangular (for real
flavors) or upper triangular (for complex flavors)
matrix A.
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the upper quasi-triangular (for real
flavors) or upper triangular (for complex flavors)
matrix B.
The second dimension of b must be at least max(1, n).

c (ldc,*) contains the right-hand-side of the first
matrix equation in the generalized Sylvester equation (as
defined by trans)
The second dimension of c must be at least max(1, n).

d (ldd,*) contains the upper triangular matrix D.
The second dimension of d must be at least max(1, m).

e (lde,*) contains the upper triangular matrix E.
The second dimension of e must be at least max(1, n).

f (ldf,*) contains the right-hand-side of the second
matrix equation in the generalized Sylvester equation (as
defined by trans)
The second dimension of f must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-259

work(lwork) is a workspace array. If ijob=0, work is
not referenced.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldc INTEGER. The first dimension of c; at least max(1, m).

ldd INTEGER. The first dimension of d; at least max(1, m).

lde INTEGER. The first dimension of e; at least max(1, n).

ldf INTEGER. The first dimension of f; at least max(1, m).

lwork INTEGER. The dimension of the array work . lwork ≥ 1.
If ijob = 1 or 2 and trans = 'N', lwork ≥ 2mn.

iwork INTEGER. Workspace array, DIMENSION at least
(m+n+6) for real flavors, and at least (m+n+2) for
complex flavors.
If ijob=0, iwork is not referenced.

Output Parameters

c If ijob=0, 1, or 2, overwritten by the solution R.
If ijob=3 or 4 and trans = 'N', c holds R, the
solution achieved during the computation of the
Dif-estimate.

f If ijob=0, 1, or 2, overwritten by the solution L.
If ijob=3 or 4 and trans = 'N', f holds L, the
solution achieved during the computation of the
Dif-estimate.

dif REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
On exit, dif is the reciprocal of a lower bound of the
reciprocal of the Dif-function, i.e. dif is an upper
bound of Dif[(A,D), (B,E)] = sigma_min(Z),
where Z as in (2).
If ijob = 0, or trans = 'T'(for real flavors), or trans
= 'C'(for complex flavors), dif is not touched.

5-260

5 Intel® Math Kernel Library Reference Manual

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
On exit, scale is the scaling factor in the generalized
Sylvester equation. If 0 < scale < 1, c and f hold the
solutions R and L, respectively, to a slightly perturbed
system but the input matrices A, B, D and E have not
been changed. If scale = 0, c and f hold the solutions
R and L, respectively, to the homogeneous system with
C = F = 0. Normally, scale = 1.

work(1) If ijob is not 0 and info = 0, on exit, work(1)
contains the minimum value of lwork required for
optimum performance. Use this lwork for subsequent
runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info > 0, (A, D) and (B, E) have common or close
eigenvalues.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-261

?tgsna
Estimates reciprocal condition numbers
for specified eigenvalues and/or
eigenvectors of a pair of matrices in
generalized real Schur canonical form.

call stgsna (job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info)

call dtgsna (job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info)

call ctgsna (job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info)

call ztgsna (job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info)

Discussion

The real flavors stgsna/dtgsna of this routine estimate reciprocal
condition numbers for specified eigenvalues and/or eigenvectors of a matrix
pair (A, B) in generalized real Schur canonical form (or of any matrix pair
(Q A ZT, Q B ZT) with orthogonal matrices Q and Z.
(A, B) must be in generalized real Schur form (as returned by
sgges/dgges), that is, A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.

The complex flavors ctgsna/ztgsna estimate reciprocal condition
numbers for specified eigenvalues and/or eigenvectors of a matrix
pair (A, B). (A, B) must be in generalized Schur canonical form , that is,
A and B are both upper triangular.

Input Parameters

job CHARACTER*1. Specifies whether condition numbers
are required for eigenvalues or eigenvectors .
Must be 'E' or 'V' or 'B'.
If job ='E', for eigenvalues only (compute s).

5-262

5 Intel® Math Kernel Library Reference Manual

If job ='V', for eigenvectors only (compute dif).
If job ='B', for both eigenvalues and eigenvectors
(compute both s and dif).

howmny CHARACTER*1. Must be 'A' or 'S'.
If howmny ='A', compute condition numbers for all
eigenpairs.
If howmny ='S', compute condition numbers for
selected eigenpairs specified by the logical array
select.

select LOGICAL.
Array, DIMENSION at least max (1, n).
If howmny ='S' , select specifies the eigenpairs for
which condition numbers are required.
If howmny= 'A', select is not referenced.
For real flavors:
To select condition numbers for the eigenpair
corresponding to a real eigenvalue ωj, select(j) must
be set to .TRUE.; to select condition numbers
corresponding to a complex conjugate pair of
eigenvalues ωj and ωj+1, either select(j) or
select(j+1) must be set to .TRUE.

For complex flavors:
To select condition numbers for the corresponding j-th
eigenvalue and/or eigenvector, select(j) must be set to
.TRUE..

n INTEGER. The order of the square matrix pair (A, B)
(n ≥ 0).

a,b,vl,vr,workREAL for stgsna
DOUBLE PRECISION for dtgsna
COMPLEX for ctgsna
DOUBLE COMPLEX for ztgsna.
Arrays:
a(lda,*) contains the upper quasi-triangular (for real
flavors) or upper triangular (for complex flavors)
matrix A in the pair (A, B) .
The second dimension of a must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-263

b(ldb,*) contains the upper triangular matrix B in the
pair (A, B) .
The second dimension of b must be at least max(1, n).

If job ='E' or 'B',
vl(ldvl,*) must contain left eigenvectors of (A, B),
corresponding to the eigenpairs specified by howmny

and select. The eigenvectors must be stored in
consecutive columns of vl, as returned by ?tgevc.
If job ='V', vl is not referenced.
The second dimension of vl must be at least max(1, m).

If job ='E' or 'B',
vr(ldvr,*) must contain right eigenvectors of (A, B),
corresponding to the eigenpairs specified by howmny

and select. The eigenvectors must be stored in
consecutive columns of vr, as returned by ?tgevc.
If job ='V', vr is not referenced.
The second dimension of vr must be at least max(1, m).

work(lwork) is a workspace array. If job ='E', work
is not referenced.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldvl INTEGER. The first dimension of vl; ldvl ≥ 1.
If job ='E'or 'B', then ldvl ≥ max(1,n).

ldvr INTEGER. The first dimension of vr; ldvr ≥ 1.
If job ='E'or 'B', then ldvr ≥ max(1,n).

mm INTEGER. The number of elements in the arrays s and
dif (mm ≥ m).

lwork INTEGER. The dimension of the array work.
For real flavors:
lwork ≥ n.
If job ='V' or 'B', lwork ≥ 2n(n+2)+16.
For complex flavors:
lwork ≥ 1.
If job ='V' or 'B', lwork ≥ 2n2.

5-264

5 Intel® Math Kernel Library Reference Manual

iwork INTEGER. Workspace array, DIMENSION at least (n+6)
for real flavors, and at least (n+2) for complex flavors.
If ijob ='E', iwork is not referenced.

Output Parameters

s REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm).
If job ='E' or 'B', contains the reciprocal condition
numbers of the selected eigenvalues, stored in
consecutive elements of the array.
If job ='V', s is not referenced.
For real flavors:
For a complex conjugate pair of eigenvalues two
consecutive elements of s are set to the same value.
Thus, s(j), dif(j), and the j-th columns of vl and vr all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).

dif REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm).
If job ='V' or 'B', contains the estimated reciprocal
condition numbers of the selected eigenvectors, stored in
consecutive elements of the array. If the eigenvalues
cannot be reordered to compute dif(j), dif(j) is set to
0; this can only occur when the true value would be very
small anyway.
If job ='E', dif is not referenced.
For real flavors:
For a complex eigenvector, two consecutive elements of
dif are set to the same value.
For complex flavors:
For each eigenvalue/vector specified by select, dif
stores a Frobenius norm-based estimate of Difl.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-265

m INTEGER. The number of elements in the arrays s and
dif used to store the specified condition numbers; for
each selected eigenvalue one element is used.
If howmny ='A', m is set to n.

work(1) work(1)If job is not 'E' and info = 0, on exit,
work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for
subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

5-266

5 Intel® Math Kernel Library Reference Manual

Generalized Singular Value Decomposition

This section describes LAPACK computational routines used for finding
the generalized singular value decomposition (GSVD) of two matrices A
and B as

UHAQ = D1 * (0 R),

VHBQ = D2 * (0 R),

where U, V, and Q are orthogonal/unitary matrices, R is a nonsingular upper
triangular matrix, and D1 , D2 are “diagonal” matrices of the structure
detailed in the routines description section.

You can use routines listed in the above table as well as the driver routine
?ggsvd to find the GSVD of a pair of general rectangular matrices.

Table 5-7 Computational Routines for Generalized Singular Value
Decomposition

Routine name Operation performed

?ggsvp Computes the preprocessing
decomposition for the generalized SVD

?tgsja Computes the generalized SVD of two
upper triangular or trapezoidal matrices

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-267

?ggsvp
Computes the preprocessing
decomposition for the generalized SVD.

call sggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)

call dggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)

call cggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)

call zggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)

Discussion

This routine computes orthogonal matrices U, V and Q such that

, if m-k-l ≥ 0

= , if m-k-l < 0

n k– l– k l

U
H

A Q

k

l

m k– l–

0 A12 A13

0 0 A23

0 0 0

=

n k– l– k l

k

m k–

0 A12 A13

0 0 A23

n k– l– k l

V
H

B Q
l

p l–

0 0 B13

0 0 0
 =

5-268

5 Intel® Math Kernel Library Reference Manual

where the k-by-k matrix A12 and l-by-l matrix B13 are nonsingular upper
triangular; A23 is l-by-l upper triangular if m-k-l ≥ 0, otherwise A23 is
(m-k)-by-l upper trapezoidal. The sum k+l is equal to the effective
numerical rank of the (m+p)-by-n matrix (AH,BH)H.

This decomposition is the preprocessing step for computing the Generalized
Singular Value Decomposition (GSVD), see subroutine ?ggsvd.

Input Parameters

jobu CHARACTER*1. Must be 'U' or 'N'.
If jobu ='U', orthogonal/unitary matrix U is computed.
If jobu ='N', U is not computed.

jobv CHARACTER*1. Must be 'V' or 'N'.
If jobv ='V', orthogonal/unitary matrix V is computed.
If jobv ='N', V is not computed.

jobq CHARACTER*1. Must be 'Q' or 'N'.
If jobq ='Q', orthogonal/unitary matrix Q is computed.
If jobq ='N', Q is not computed.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

p INTEGER. The number of rows of the matrix B (p ≥ 0).

n INTEGER. The number of columns of the matrices A
and B (n ≥ 0).

a,b,tau,work REAL for sggsvp
DOUBLE PRECISION for dggsvp
COMPLEX for cggsvp
DOUBLE COMPLEX for zggsvp.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

tau(*) is a workspace array. The dimension of tau
must be at least max(1, n).

work(*) is a workspace array. The dimension of work
must be at least max(1, 3n, m, p).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-269

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

tola, tolb REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the thresholds to determine the
effective numerical rank of matrix B and a subblock of
A. Generally, they are set to
tola = max(m, n)*| | A| |*MACHEPS,
tolb = max(p, n)*| | B| |*MACHEPS.

The size of tola and tolb may affect the size of
backward errors of the decomposition.

ldu INTEGER. The first dimension of the output array u.
ldu ≥ max(1, m) if jobu ='U'; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the output array v.
ldv ≥ max(1, p) if jobv ='V'; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the output array q.
ldq ≥ max(1, n) if jobq ='Q'; ldq ≥ 1 otherwise.

iwork INTEGER. Workspace array, DIMENSION at least
max(1, n) .

rwork REAL for cggsvp
DOUBLE PRECISION for zggsvp.
Workspace array, DIMENSION at least max(1, 2n). Used
in complex flavors only.

Output Parameters

a Overwritten by the triangular (or trapezoidal) matrix
described in the Discussion section.

b Overwritten by the triangular matrix described in the
Discussion section.

k, l INTEGER.
On exit, k and l specify the dimension of subblocks.
The sum k +l is equal to effective numerical rank of
(AH, BH)H.

5-270

5 Intel® Math Kernel Library Reference Manual

u, v, q REAL for sggsvp
DOUBLE PRECISION for dggsvp
COMPLEX for cggsvp
DOUBLE COMPLEX for zggsvp.
Arrays:
If jobu ='U', u(ldu,*) contains the
orthogonal/unitary matrix U.
The second dimension of u must be at least max(1, m).
If jobu ='N', u is not referenced.

If jobv ='V', v(ldv,*) contains the
orthogonal/unitary matrix V.
The second dimension of v must be at least max(1, m).
If jobv ='N', v is not referenced.

If jobq ='Q', q(ldq,*) contains the
orthogonal/unitary matrix Q.
The second dimension of q must be at least max(1, n).
If jobq ='N', q is not referenced.

info INTEGER.
If info = 0, the execution is successful.
‘If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-271

?tgsja
Computes the generalized SVD of two
upper triangular or trapezoidal
matrices.

call stgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call dtgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call ctgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call ztgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

Discussion

This routine computes the generalized singular value decomposition
(GSVD) of two real/complex upper triangular (or trapezoidal) matrices A
and B. On entry, it is assumed that matrices A and B have the following
forms, which may be obtained by the preprocessing subroutine?ggsvp
from a general m-by-n matrix A and p-by-n matrix B:

, if m-k-l ≥ 0

= , if m-k-l < 0

n k– l– k l

A

k

l

m k– l–

0 A12 A13

0 0 A23

0 0 0

=

n k– l– k l

k

m k–

0 A12 A13

0 0 A23

5-272

5 Intel® Math Kernel Library Reference Manual

where the k-by-k matrix A12 and l-by-l matrix B13 are nonsingular upper
triangular; A23 is l-by-l upper triangular if m-k-l ≥ 0, otherwise A23 is
(m-k)-by-l upper trapezoidal.

On exit,

UH A Q = D1*(0 R), VH B Q = D2*(0 R),
where U, V and Q are orthogonal/unitary matrices, R is a nonsingular upper
triangular matrix, and D1 and D2 are “diagonal'' matrices, which are of the
following structures:

If m-k-l ≥ 0,

where

C = diag (alpha(k+1),...,alpha(k+l))
S = diag (beta(k+1),...,beta(k+l))
C2 + S2 = I
R is stored in a(1:k+l, n-k-l+1:n) on exit.

n k– l– k l

B
l

p l–

0 0 B13

0 0 0
 =

D1

k

l

m k– l–

I
k

0
l

0 C

0 0

=

D2
l

p l–

0
k

S
l

0 0
 =

n k– l– k l

0 R()
k

l

0 R11 R12

0 0 R22

=

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-273

If m-k-l < 0,

where

C = diag (alpha(k+1),...,alpha(m)),
S = diag (beta(k+1),...,beta(m)),
C2 + S2 = I

On exit, is stored in a(1:m, n-k-l+1:n) and R33 is stored

in b(m-k+1:l, n+m-k-l+1:n).

The computation of the orthogonal/unitary transformation matrices U, V or
Q is optional. These matrices may either be formed explicitly, or they may
be postmultiplied into input matrices U1, V1, or Q1.

k m k– k l m–+

D1
k

m k–

I 0 0

0 C 0
 =

k m k– k l m–+

D2

m k–

k l m–+

p l–

0 S 0

0 0 I

0 0 0

=

n k– l– k m k– k l m–+

0 R()
k

m k–

k l m–+

0 R11 R12 R13

0 0 R22 R23

0 0 0 R33

=

R11

0

R12

R22

R13

R23

5-274

5 Intel® Math Kernel Library Reference Manual

Input Parameters

jobu CHARACTER*1. Must be 'U', 'I', or 'N'.
If jobu ='U', u must contain an orthogonal/unitary
matrix U1 on entry.
If jobu ='I', u is initialized to the unit matrix.
If jobu ='N', u is not computed.

jobv CHARACTER*1. Must be 'V', 'I', or 'N'.
If jobv ='V', v must contain an orthogonal/unitary
matrix V1 on entry.
If jobv ='I', v is initialized to the unit matrix.
If jobv ='N', v is not computed.

jobq CHARACTER*1. Must be 'Q', 'I', or 'N'.
If jobq ='Q', q must contain an orthogonal/unitary
matrix Q1 on entry.
If jobq ='I', q is initialized to the unit matrix.
If jobq ='N', q is not computed.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

p INTEGER. The number of rows of the matrix B (p ≥ 0).

n INTEGER. The number of columns of the matrices A
and B (n ≥ 0).

k, l INTEGER. Specify the subblocks in the input matrices
A and B, whose GSVD is going to be computed by
?tgsja.

a,b,u,v,q,workREAL for stgsja
DOUBLE PRECISION for dtgsja
COMPLEX for ctgsja
DOUBLE COMPLEX for ztgsja.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-275

If jobu ='U', u(ldu,*) must contain a matrix U1
(usually the orthogonal/unitary matrix returned by
?ggsvp).
The second dimension of u must be at least max(1, m).

If jobv ='V', v(ldv,*) must contain a matrix V1
(usually the orthogonal/unitary matrix returned by
?ggsvp).
The second dimension of v must be at least max(1, p).

If jobq ='Q', q(ldq,*) must contain a matrix Q1
(usually the orthogonal/unitary matrix returned by
?ggsvp).
The second dimension of q must be at least max(1, n).

work(*) is a workspace array. The dimension of work
must be at least max(1, 2n).

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

ldu INTEGER. The first dimension of the array u.
ldu ≥ max(1, m) if jobu ='U'; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the array v.
ldv ≥ max(1, p) if jobv ='V'; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the array q.
ldq ≥ max(1, n) if jobq ='Q'; ldq ≥ 1 otherwise.

tola, tolb REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the convergence criteria for the
Jacobi-Kogbetliantz iteration procedure. Generally, they
are the same as used in ?ggsvp :
tola = max(m, n)*| | A| |*MACHEPS,
tolb = max(p, n)*| | B| |*MACHEPS.

Output Parameters

a On exit, a(n-k+1:n, 1:min(k+l, m)) contains the
triangular matrix R or part of R.

5-276

5 Intel® Math Kernel Library Reference Manual

b On exit, if necessary, b(m-k+1: l, n+m-k-l+1: n))
contains a part of R.

alpha, beta REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1,n).
Contain the generalized singular value pairs of A and B:

alpha(1:k) = 1,
beta(1:k) = 0,

and if m-k-l ≥ 0,
alpha(k+1:k+l) = diag(C),
beta(k+1:k+l) = diag(S),

or if m-k-l < 0,
alpha(k+1:m)= C, alpha(m+1:k+l)= 0
beta(k+1:m) = S, beta(m+1:k+l) = 1.

Furthermore, if k+l < n,
alpha(k+l+1:n) = 0 and
beta(k+l+1:n) = 0.

u If jobu ='I', u contains the orthogonal/unitary
matrix U.
If jobu ='U', u contains the product U1U.
If jobu ='N', u is not referenced.

v If jobv ='I', v contains the orthogonal/unitary
matrix U.
If jobv ='V', v contains the product V1V.
If jobv ='N', v is not referenced.

q If jobq ='I', q contains the orthogonal/unitary
matrix U.
If jobq ='Q', q contains the product Q1Q.
If jobq ='N', q is not referenced.

ncycle INTEGER. The number of cycles required for
convergence.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-277

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the procedure does not converge after
MAXIT cycles.

5-278

5 Intel® Math Kernel Library Reference Manual

Driver Routines
Each of the LAPACK driver routines solves a complete problem.
To arrive at the solution, driver routines typically call a sequence of
appropriate computational routines.
Driver routines are described in the following sections:

Linear Least Squares (LLS) Problems
Generalized LLS Problems
Symmetric Eigenproblems
Nonsymmetric Eigenproblems
Singular Value Decomposition
Generalized Symmetric Definite Eigenproblems
Generalized Nonsymmetric Eigenproblems

Linear Least Squares (LLS) Problems

This section describes LAPACK driver routines used for solving linear
least-squares problems. Table 5-8 lists routines described in more detail
below.

Table 5-8 Driver Routines for Solving LLS Problems

Routine Name Operation performed

?gels Uses QR or LQ factorization to solve a overdetermined or underdetermined
linear system with full rank matrix.

?gelsy Computes the minimum-norm solution to a linear least squares problem
using a complete orthogonal factorization of A.

?gelss Computes the minimum-norm solution to a linear least squares problem
using the singular value decomposition of A.

?gelsd Computes the minimum-norm solution to a linear least squares problem
using the singular value decomposition of A and a divide and conquer
method.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-279

?gels
Uses QR or LQ factorization to solve a
overdetermined or underdetermined
linear system with full rank matrix.

call sgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call dgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call cgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call zgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

Discussion

This routine solves overdetermined or underdetermined real/ complex linear
systems involving an m-by-n matrix A, or its transpose/ conjugate-transpose,
using a QR or LQ factorization of A. It is assumed that A has full rank.

The following options are provided:

1. If trans = 'N' and m ≥ n: find the least squares solution of an
overdetermined system, that is, solve the least squares problem

minimize || b - A x ||2
2. If trans = 'N' and m < n: find the minimum norm solution of an
underdetermined system A X = B.

3. If trans = 'T' or 'C' and m ≥ n: find the minimum norm solution of an
undetermined system AH X = B.

4. If trans = 'T' or 'C' and m < n: find the least squares solution of an
overdetermined system, that is, solve the least squares problem

minimize || b - AH x ||2
Several right hand side vectors b and solution vectors x can be handled in a
single call; they are stored as the columns of the m-by-nrhs right hand side
matrix B and the n-by-nrh solution matrix X.

5-280

5 Intel® Math Kernel Library Reference Manual

Input Parameters

trans CHARACTER*1. Must be 'N', 'T', or 'C'.
If trans = 'N', the linear system involves matrix A;
If trans = 'T', the linear system involves the
transposed matrix AT (for real flavors only);
If trans = 'C', the linear system involves the
conjugate-transposed matrix AH (for complex flavors
only).

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

a, b, work REAL for sgels
DOUBLE PRECISION for dgels
COMPLEX for cgels
DOUBLE COMPLEX for zgels.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B of right hand side
vectors, stored columnwise; B is m-by-nrhs if trans =
'N', or n-by-nrhs if trans = 'T'or 'C'.
The second dimension of b must be at least
max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; must be at least
max(1, m, n).

lwork INTEGER. The size of the work array; must be at least
min (m, n) +max(1, m, n, nrhs).
See Application notes for the suggested value of lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-281

Output Parameters

a On exit, overwritten by the factorization data as follows:

if m ≥ n, array a contains the details of the QR
factorization of the matrix A as returned by ?geqrf;
if m < n, array a contains the details of the LQ
factorization of the matrix A as returned by ?gelqf.

b Overwritten by the solution vectors, stored columnwise:
If trans = 'N' and m ≥ n, rows 1 to n of b contain the
least squares solution vectors; the residual sum of
squares for the solution in each column is given by the
sum of squares of elements n+1 to m in that column;
If trans = 'N' and m < n, rows 1 to n of b contain the
minimum norm solution vectors;
if trans = 'T'or 'C' and m ≥ n, rows 1 to m of b
contain the minimum norm solution vectors;
if trans = 'T'or 'C' and m < n, rows 1 to m of b

contain the least squares solution vectors; the residual
sum of squares for the solution in each column is given
by the sum of squares of elements m+1 to n in that
column.

work(1) If info = 0, on exit work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

For better performance, try using
lwork =min (m, n) +max(1, m, n, nrhs)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

5-282

5 Intel® Math Kernel Library Reference Manual

?gelsy
Computes the minimum-norm solution to
a linear least squares problem using a
complete orthogonal factorization of A.

call sgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, info)

call dgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, info)

call cgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, rwork, info)

call zgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, rwork, info)

Discussion

This routine computes the minimum-norm solution to a real/complex linear
least squares problem:

minimize || b - A x ||2
using a complete orthogonal factorization of A. A is an m-by-n matrix
which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be handled in a
single call; they are stored as the columns of the m-by-nrhs right hand side
matrix B and the n-by-nrhs solution matrix X.

The routine first computes a QR factorization with column pivoting:

with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/rcond. The order of R11, rank, is the
effective rank of A.

AP Q
R11R12
0 R22

 =

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-283

Then, R22 is considered to be negligible, and R12 is annihilated by
orthogonal/unitary transformations from the right, arriving at the complete
orthogonal factorization:

The minimum-norm solution is then

where Q1 consists of the first rank columns of Q. This routine is basically
identical to the original ?gelsx except three differences:

• The call to the subroutine ?geqpf has been substituted by the call to
the subroutine ?geqp3. This subroutine is a BLAS-3 version of the QR
factorization with column pivoting.

• Matrix B (the right hand side) is updated with BLAS-3.
• The permutation of matrix B (the right hand side) is faster and more

simple.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

a, b, work REAL for sgelsy
DOUBLE PRECISION for dgelsy
COMPLEX for cgelsy
DOUBLE COMPLEX for zgelsy.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

AP Q
T110
0 0

 Z=

x PZ
H T11

1–
Q1

H
b

0

=

5-284

5 Intel® Math Kernel Library Reference Manual

b(ldb,*) contains the m-by-nrhs right hand side
matrix B .
The second dimension of b must be at least
max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; must be at least
max(1, m, n).

jpvt INTEGER. Array, DIMENSION at least max(1, n).

On entry, if jpvt(i)≠ 0, the ith column of A is
permuted to the front of AP, otherwise the ith column of
A is a free column.

rcond REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

rcond is used to determine the effective rank of A,
which is defined as the order of the largest leading
triangular submatrix R11 in the QR factorization with
pivoting of A, whose estimated condition number <
1/rcond.

lwork INTEGER. The size of the work array. See Application
notes for the suggested value of lwork.

rwork REAL for cgelsy
DOUBLE PRECISION for zgelsy.
Workspace array, DIMENSION at least max(1, 2n). Used
in complex flavors only.

Output Parameters

a On exit, overwritten by the details of the complete
orthogonal factorization of A.

b Overwritten by the n-by-nrhs solution matrix X.

jpvt On exit, if jpvt(i)= k, then the ith column of AP
was the kth column of A.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-285

rank INTEGER.
The effective rank of A, that is, the order of the
submatrix R11. This is the same as the order of the
submatrix T11 in the complete orthogonal factorization
of A.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Application Notes

For real flavors:

The unblocked strategy requires that:
lwork ≥ max(mn+3n+1, 2*mn + nrhs),

where mn = min(m, n).

The block algorithm requires that:
lwork ≥ max(mn+2n+nb*(n+1), 2*mn+nb*nrhs),

where nb is an upper bound on the blocksize returned by ilaenv for the
routines sgeqp3/dgeqp3, stzrzf/dtzrzf, stzrqf/dtzrqf,
sormqr/dormqr, and sormrz/dormrz.

For complex flavors:

The unblocked strategy requires that:
lwork ≥ mn + max(2*mn, n+1, mn + nrhs),

where mn = min(m, n).

The block algorithm requires that:
lwork ≥ mn + max(2*mn, nb*(n+1), mn+mn*nb, mn+nb*nrhs),
where nb is an upper bound on the blocksize returned by ilaenv for the
routines cgeqp3/zgeqp3, ctzrzf/ztzrzf, ctzrqf/ztzrqf,
cunmqr/zunmqr, and cunmrz/zunmrz.

5-286

5 Intel® Math Kernel Library Reference Manual

?gelss
Computes the minimum-norm solution to
a linear least squares problem using the
singular value decomposition of A.

call sgelss (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, info)

call dgelss (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, info)

call cgelss (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, info)

call zgelss (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, info)

Discussion

This routine computes the minimum norm solution to a real linear least
squares problem:

minimize || b - A x ||2
using the singular value decomposition (SVD) of A. A is an m-by-n matrix
which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be handled in a
single call; they are stored as the columns of the m-by-nrhs right hand side
matrix B and the n-by-nrhs solution matrix X.
The effective rank of A is determined by treating as zero those singular
values which are less than rcond times the largest singular value.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-287

a, b, work REAL for sgelss
DOUBLE PRECISION for dgelss
COMPLEX for cgelss
DOUBLE COMPLEX for zgelss.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the m-by-nrhs right hand side
matrix B .
The second dimension of b must be at least
max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; must be at least
max(1, m, n).

rcond REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

rcond is used to determine the effective rank of A.
Singular values s(i) ≤ rcond *s(1) are treated as zero.
If rcond < 0, machine precision is used instead.

lwork INTEGER. The size of the work array; lwork ≥ 1. See
Application notes for the suggested value of lwork.

rwork REAL for cgelss
DOUBLE PRECISION for zgelss.
Workspace array used in complex flavors only.
DIMENSION at least max(1, 5*min(m, n)).

Output Parameters

a On exit, the first min(m, n) rows of A are overwritten
with its right singular vectors, stored row-wise.

b Overwritten by the n-by-nrhs solution matrix X.

If m ≥ n and rank = n, the residual sum-of-squares for
the solution in the i-th column is given by the sum of
squares of elements n+1:m in that column.

5-288

5 Intel® Math Kernel Library Reference Manual

s REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m, n)). The
singular values of A in decreasing order. The condition
number of A in the 2-norm is

k2(A) = s(1) / s(min(m, n)) .

rank INTEGER.
The effective rank of A, that is, the number of singular
values which are greater than rcond *s(1).

work(1) If info = 0, on exit, work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm for computing the SVD
failed to converge; i indicates the number of
off-diagonal elements of an intermediate bidiagonal
form which did not converge to zero.

Application Notes

For real flavors:

lwork ≥ 3*min(m, n) + max(2*min(m, n), max(m, n), nrhs)

For complex flavors:

lwork ≥ 2*min(m, n) + max(m, n , nrhs)

For good performance, lwork should generally be larger. If you are in
doubt how much workspace to supply, use a generous value of lwork for
the first run. On exit, examine work(1) and use this value for subsequent
runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-289

?gelsd
Computes the minimum-norm solution to
a linear least squares problem using the
singular value decomposition of A and a
divide and conquer method.

call sgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, iwork, info)

call dgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, iwork, info)

call cgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, iwork, info)

call zgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, iwork, info)

Discussion

This routine computes the minimum-norm solution to a real linear least
squares problem:

minimize || b - A x ||2
using the singular value decomposition (SVD) of A. A is an m-by-n matrix
which may be rank-deficient.

Several right hand side vectors b and solution vectors x can be handled in a
single call; they are stored as the columns of the m-by-nrhs right hand side
matrix B and the n-by-nrhs solution matrix X.

The problem is solved in three steps:

1. Reduce the coefficient matrix A to bidiagonal form with
Householder transformations, reducing the original problem into a
"bidiagonal least squares problem" (BLS).

2. Solve the BLS using a divide and conquer approach.
3. Apply back all the Householder transformations to solve the

original least squares problem.

The effective rank of A is determined by treating as zero those singular
values which are less than rcond times the largest singular value.

5-290

5 Intel® Math Kernel Library Reference Manual

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns in B (nrhs ≥ 0).

a, b, work REAL for sgelsd
DOUBLE PRECISION for dgelsd
COMPLEX for cgelsd
DOUBLE COMPLEX for zgelsd.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the m-by-nrhs right hand side
matrix B .
The second dimension of b must be at least
max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; must be at least
max(1, m, n).

rcond REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

rcond is used to determine the effective rank of A.
Singular values s(i) ≤ rcond *s(1) are treated as zero.
If rcond < 0, machine precision is used instead.

lwork INTEGER. The size of the work array; lwork ≥ 1. See
Application notes for the suggested value of lwork.

iwork INTEGER. Workspace array. See Application notes for
the suggested dimension of iwork.

rwork REAL for cgelsd
DOUBLE PRECISION for zgelsd .

Workspace array, used in complex flavors only. See

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-291

Application notes for the suggested dimension of
rwork.

Output Parameters

a On exit, A has been overwritten.

b Overwritten by the n-by-nrhs solution matrix X.

If m ≥ n and rank = n, the residual sum-of-squares for
the solution in the i-th column is given by the sum of
squares of elements n+1:m in that column.

s REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m, n)). The
singular values of A in decreasing order. The condition
number of A in the 2-norm is

k2(A) = s(1) / s(min(m, n)) .

rank INTEGER.
The effective rank of A, that is, the number of singular
values which are greater than rcond *s(1).

work(1) If info = 0, on exit, work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm for computing the SVD
failed to converge; i indicates the number of
off-diagonal elements of an intermediate bidiagonal
form which did not converge to zero.

Application Notes

The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard digit in
add/subtract. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.

5-292

5 Intel® Math Kernel Library Reference Manual

The exact minimum amount of workspace needed depends on m, n and
nrhs. The size lwork of the workspace array work must be as given
below.

For real flavors:

If m ≥ n,
lwork ≥ 12n + 2n*smlsiz + 8n*nlvl + n*nrhs + (smlsiz+1)2;

If m < n,
lwork ≥ 12m + 2m*smlsiz + 8m*nlvl + m*nrhs + (smlsiz+1)2;

For complex flavors:

If m ≥ n,
lwork ≥ 2n + n*nrhs ;

If m < n,
lwork ≥ 2m + m*nrhs ;

where smlsiz is returned by ilaenv and is equal to the maximum size of the
subproblems at the bottom of the computation tree (usually about 25), and
nlvl = INT(log2(min(m, n)/(smlsiz+1))) + 1 .

For good performance, lwork should generally be larger. If you are in
doubt how much workspace to supply, use a generous value of lwork for
the first run. On exit, examine work(1) and use this value for subsequent
runs.

The dimension of the workspace array iwork must be at least
3*min(m, n)*nlvl + 11*min(m, n).

The dimension lrwork of the workspace array rwork (for complex
flavors) must be at least:
If m ≥ n,
lrwork ≥ 10n + 2n*smlsiz + 8n*nlvl + 3*smlsiz*nrhs + (smlsiz+1)2;

If m < n,
lrwork ≥ 10m + 2m*smlsiz + 8m*nlvl + 3*smlsiz*nrhs + (smlsiz+1)2.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-293

Generalized LLS Problems

This section describes LAPACK driver routines used for solving
generalized linear least-squares problems. Table 5-9 lists routines described
in more detail below.

?gglse
Solves the linear equality-constrained
least squares problem using a
generalized RQ factorization.

call sgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call dgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call cgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call zgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

Discussion

This routine solves the linear equality-constrained least squares (LSE)
problem:

minimize || c - A x ||2 subject to B x = d

where A is an m-by-n matrix, B is a p-by-n matrix, c is a given m-vector, and
d is a given p-vector.
It is assumed that p ≤n ≤m+p, and

rank(B) = p and rank = n .

Table 5-9 Driver Routines for Solving Generalized LLS Problems

Routine Name Operation performed

?gglse Solves the linear equality-constrained least squares problem using a
generalized RQ factorization.

?ggglm Solves a general Gauss-Markov linear model problem using a generalized
QR factorization.

A
B

5-294

5 Intel® Math Kernel Library Reference Manual

These conditions ensure that the LSE problem has a unique solution, which
is obtained using a generalized RQ factorization of the matrices B and A.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrices A
and B (n ≥ 0).

p INTEGER. The number of rows of the matrix B
(0 ≤p ≤n ≤m+p).

a,b,c,d,work REAL for sgglse
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.

Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B .
The second dimension of b must be at least max(1, n).

c(*), dimension at least max(1, m), contains the right
hand side vector for the least squares part of the LSE
problem.
d(*), dimension at least max(1, p), contains the right
hand side vector for the constrained equation.
work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

lwork INTEGER. The size of the work array;
lwork ≥ max(1, m+n+p). See Application notes for the
suggested value of lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-295

Output Parameters

x REAL for sgglse
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.
Array, DIMENSION at least max(1, n).
On exit, contains the solution of the LSE problem.

a,b,d On exit, these arrays are overwritten.

c On exit, the residual sum-of-squares for the solution is
given by the sum of squares of elements n-p+1 to m of
vector c.

work(1) If info = 0, on exit, work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For optimum performance use
lwork ≥ p+min(m, n)+max(m, n)*nb,

where nb is an upper bound for the optimal blocksizes for ?geqrf,
?gerqf, ?ormqr/?unmqr and ?ormrq/?unmrq.

5-296

5 Intel® Math Kernel Library Reference Manual

?ggglm
Solves a general Gauss-Markov linear
model problem using a generalized QR
factorization.

call sggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call dggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call cggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call zggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

Discussion

This routine solves a general Gauss-Markov linear model (GLM) problem:
minimizex || y ||2 subject to d = Ax + By

where A is an n-by-m matrix, B is an n-by-p matrix, and d is a given
n-vector.
It is assumed that m ≤n ≤m+p, and

rank(A) = m and rank(A B) = n .
Under these assumptions, the constrained equation is always consistent, and
there is a unique solution x and a minimal 2-norm solution y, which is
obtained using a generalized QR factorization of A and B.
In particular, if matrix B is square nonsingular, then the problem GLM is
equivalent to the following weighted linear least squares problem

minimizex || B-1(d-Ax) ||2 .

Input Parameters

n INTEGER. The number of rows of the matrices A and B
(n ≥ 0).

m INTEGER. The number of columns in A (m ≥ 0).

p INTEGER. The number of columns in B (p ≥ n - m).

a,b,d,work REAL for sggglm
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for zggglm.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-297

Arrays:
a(lda,*) contains the n-by-m matrix A.
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the n-by-p matrix B .
The second dimension of b must be at least max(1, p).

d(*), dimension at least max(1, n), contains the left
hand side of the GLM equation.
work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The size of the work array;
lwork ≥ max(1, n+m+p). See Application notes for the
suggested value of lwork.

Output Parameters

x, y REAL for sggglm
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for zggglm.
Arrays x(*), y(*). DIMENSION at least max(1, m) for x
and at least max(1, p) for y.
On exit, x and y are the solutions of the GLM problem.

a,b,d On exit, these arrays are overwritten.

work(1) If info = 0, on exit, work(1) contains the minimum
value of lwork required for optimum performance.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

For optimum performance use
lwork ≥ m+min(n, p)+max(n, p)*nb,

where nb is an upper bound for the optimal blocksizes for ?geqrf,
?gerqf, ?ormqr/?unmqr and ?ormrq/?unmrq.

5-298

5 Intel® Math Kernel Library Reference Manual

Symmetric Eigenproblems

This section describes LAPACK driver routines used for solving symmetric
eigenvalue problems. See also computational routines that can be called to
solve these problems.
Table 5-10 lists routines described in more detail below.

Table 5-10 Driver Routines for Solving Symmetric Eigenproblems

Routine Name Operation performed

?syev/?heev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /
Hermitian matrix.

?syevd/?heevd Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric / Hermitian matrix using divide and conquer algorithm.

?syevx/?heevx Computes selected eigenvalues and, optionally, eigenvectors of a
symmetric / Hermitian matrix.

?syevr/?heevr Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian matrix using the Relatively Robust Representations.

?spev/?hpev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /
Hermitian matrix in packed storage.

?spevd/?hpevd Uses divide and conquer algorithm to compute all eigenvalues and
(optionally) all eigenvectors of a real symmetric / Hermitian matrix held in
packed storage.

?spevx/?hpevx Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian matrix in packed storage.

?sbev /?hbev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
/ Hermitian band matrix.

?sbevd/?hbevd Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric / Hermitian band matrix using divide and conquer algorithm.

?sbevx/?hbevx Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian band matrix.

?stev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix.

?stevd Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric tridiagonal matrix using divide and conquer algorithm.

?stevx Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix.

?stevr Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix using the Relatively Robust Representations.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-299

?syev
Computes all eigenvalues and,
optionally, eigenvectors of a real
symmetric matrix.

call ssyev (jobz, uplo, n, a, lda, w, work, lwork, info)

call dsyev (jobz, uplo, n, a, lda, w, work, lwork, info)

Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for ssyev
DOUBLE PRECISION for dsyev
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the symmetric matrix A, as specified
by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

5-300

5 Intel® Math Kernel Library Reference Manual

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 3n-1). See Application
notes for the suggested value of lwork.

Output Parameters

a On exit, if jobz ='V', then if info = 0, array a

contains the orthonormal eigenvectors of the matrix A.
If jobz ='N', then on exit the lower triangle
(if uplo = 'L') or the upper triangle (if uplo = 'U') of
A, including the diagonal, is overwritten.

w REAL for ssyev
DOUBLE PRECISION for dsyev
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in
ascending order.

work(1) On exit, if lwork > 0, then work(1) returns the
required minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

Application Notes

For optimum performance use
lwork ≥ (nb+2)*n,

where nb is the blocksize for ?sytrd returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-301

?heev
Computes all eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix.

call cheev (jobz, uplo, n, a, lda, w, work, lwork, rwork, info)

call zheev (jobz, uplo, n, a, lda, w, work, lwork, rwork, info)

Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work COMPLEX for cheev
DOUBLE COMPLEX for zheev
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

5-302

5 Intel® Math Kernel Library Reference Manual

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 2n-1). See Application
notes for the suggested value of lwork.

rwork REAL for cheev
DOUBLE PRECISION for zheev .
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

a On exit, if jobz ='V', then if info = 0, array a

contains the orthonormal eigenvectors of the matrix A.
If jobz ='N', then on exit the lower triangle
(if uplo = 'L') or the upper triangle (if uplo = 'U') of
A, including the diagonal, is overwritten.

w REAL for cheev
DOUBLE PRECISION for zheev
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in
ascending order.

work(1) On exit, if lwork > 0, then work(1) returns the
required minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

Application Notes

For optimum performance use
lwork ≥ (nb+1)*n,

where nb is the blocksize for ?hetrd returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-303

?syevd
Computes all eigenvalues and
(optionally) all eigenvectors of a real
symmetric matrix using divide and
conquer algorithm.

call ssyevd (job,uplo,n,a,lda,w,work,lwork,iwork,liwork,info)

call dsyevd (job,uplo,n,a,lda,w,work,lwork,iwork,liwork,info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a real symmetric matrix A. In other words, it can compute
the spectral factorization of A as: A = ZΛ ZT.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ i,
and Z is the orthogonal matrix whose columns are the eigenvectors zi. Thus,

Azi = λ izi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QR algorithm.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a REAL for ssyevd
DOUBLE PRECISION for dsyevd
Array, DIMENSION (lda, *) .

5-304

5 Intel® Math Kernel Library Reference Manual

a(lda,*) is an array containing either upper or lower
triangular part of the symmetric matrix A, as specified
by uplo.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

work REAL for ssyevd
DOUBLE PRECISION for dsyevd.
Workspace array, DIMENSION at least lwork.

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
if job ='N' and n > 1, then lwork ≥ 2n+1;
if job ='V' and n > 1, then
lwork ≥ 3n2+(5+2k)*n+1, where k is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
Constraints:
if n ≤ 1, then liwork ≥ 1;
if job ='N' and n > 1, then liwork ≥ 1;
if job ='V' and n > 1, then liwork ≥ 5n+2.

Output Parameters

w REAL for ssyevd
DOUBLE PRECISION for dsyevd
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in
ascending order.
See also info.

a If job ='V', then on exit this array is overwritten by
the orthogonal matrix Z which contains the eigenvectors
of A.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-305

work(1) On exit, if lwork > 0, then work(1) returns the
required minimal size of lwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that | | E| | 2 = O(ε) | | T| | 2, where ε is the machine precision.

The complex analogue of this routine is ?heevd.

5-306

5 Intel® Math Kernel Library Reference Manual

?heevd
Computes all eigenvalues and
(optionally) all eigenvectors of a
complex Hermitian matrix using divide
and conquer algorithm.

call cheevd (job, uplo, n, a, lda, w, work, lwork, rwork, lrwork,
iwork, liwork, info)

call zheevd (job, uplo, n, a, lda, w, work, lwork, rwork, lrwork,
iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a complex Hermitian matrix A. In other words, it can
compute the spectral factorization of A as: A = ZΛ ZH .
Here Λ is a real diagonal matrix whose diagonal elements are the
eigenvalues λ i, and Z is the (complex) unitary matrix whose columns are the
eigenvectors zi. Thus,

Azi = λ izi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QR algorithm.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-307

a COMPLEX for cheevd
DOUBLE COMPLEX for zheevd
Array, DIMENSION (lda, *) .
a(lda,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

work COMPLEX for cheevd
DOUBLE COMPLEX for zheevd.
Workspace array, DIMENSION at least lwork.

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
if job ='N' and n > 1, then lwork ≥ n+1;
if job ='V' and n > 1, then lwork ≥ n2+2n

rwork REAL for cheevd
DOUBLE PRECISION for zheevd
Workspace array, DIMENSION at least lrwork.

lrwork INTEGER. The dimension of the array rwork.
Constraints:
if n ≤ 1, then lrwork ≥ 1;
if job ='N' and n > 1, then lrwork ≥ n;
if job ='V' and n > 1, then
lrwork ≥ 3n2+(4+2k)*n+1, where k is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
Constraints:
if n ≤ 1, then liwork ≥ 1;
if job ='N' and n > 1, then liwork ≥ 1;
if job ='V' and n > 1, then liwork ≥ 5n+2.

5-308

5 Intel® Math Kernel Library Reference Manual

Output Parameters

w REAL for cheevd
DOUBLE PRECISION for zheevd
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in
ascending order.
See also info.

a If job ='V', then on exit this array is overwritten by
the unitary matrix Z which contains the eigenvectors
of A.

work(1) On exit, if lwork > 0, then the real part of work(1)
returns the required minimal size of lwork.

rwork(1) On exit, if lrwork > 0, then rwork(1) returns the
required minimal size of lrwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix A + E
such that | | E| | 2 = O(ε) | | A| | 2, where ε is the machine precision.

The real analogue of this routine is ?syevd.
See also ?hpevd for matrices held in packed storage, and ?hbevd for banded
matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-309

?syevx
Computes selected eigenvalues and,
optionally, eigenvectors of a symmetric
matrix.

call ssyevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, iwork, ifail, info)

call dsyevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric matrix A. Eigenvalues and eigenvectors can be selected by
specifying either a range of values or a range of indices for the desired
eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A', 'V', or 'I'.
If range ='A', all eigenvalues will be found.
If range ='V', all eigenvalues in the half-open interval

(vl, vu] will be found.
If range ='I', the eigenvalues with indices il
through iu will be found.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

5-310

5 Intel® Math Kernel Library Reference Manual

a, work REAL for ssyevx
DOUBLE PRECISION for dsyevx.
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the symmetric matrix A, as specified
by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

vl, vu REAL for ssyevx
DOUBLE PRECISION for dsyevx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues; vl ≤vu .
Not referenced if range ='A'or 'I'.

il, iu INTEGER. If range ='I', the indices of the smallest
and largest eigenvalues to be returned.
Constraints: 1 ≤il ≤iu ≤ n , if n > 0;
il = 1 and iu = 0 , if n = 0.
Not referenced if range ='A'or 'V'.

abstol REAL for ssyevx
DOUBLE PRECISION for dsyevx.
The absolute error tolerance for the eigenvalues .
See Application notes for more information.

ldz INTEGER. The first dimension of the output array z;
ldz ≥ 1. If jobz ='V', then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 8n). See Application notes
for the suggested value of lwork.

iwork INTEGER. Workspace array, DIMENSION at least
max(1, 5n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-311

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

m INTEGER. The total number of eigenvalues found;
0 ≤m ≤n . If range ='A', m = n , and if
range ='I', m = iu-il+1 .

w REAL for ssyevx
DOUBLE PRECISION for dsyevx
Array, DIMENSION at least max(1, n) .
The first m elements contain the selected eigenvalues of
the matrix A in ascending order.

z REAL for ssyevx
DOUBLE PRECISION for dsyevx.
Array z(ldz,*) contains eigenvectors.
The second dimension of z must be at least max(1, m).

If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that column
of z contains the latest approximation to the eigenvector,
and the index of the eigenvector is returned in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

work(1) On exit, if lwork > 0, then work(1) returns the
required minimal size of lwork.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, then ifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='V', then ifail is not referenced.

5-312

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge;
their indices are stored in the array ifail.

Application Notes

For optimum performance use lwork ≥ (nb+3)*n, where nb is the
maximum of the blocksize for ?sytrd and ?ormtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*|T| will be used in its place, where |T| is
the 1-norm of the tridiagonal matrix obtained by reducing A to tridiagonal
form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*slamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*slamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-313

?heevx
Computes selected eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix.

call cheevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

call zheevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a complex Hermitian matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A', 'V', or 'I'.
If range ='A', all eigenvalues will be found.
If range ='V', all eigenvalues in the half-open interval

(vl, vu] will be found.
If range ='I', the eigenvalues with indices il
through iu will be found.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

5-314

5 Intel® Math Kernel Library Reference Manual

a, work COMPLEX for cheevx
DOUBLE COMPLEX for zheevx.
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

vl, vu REAL for cheevx
DOUBLE PRECISION for zheevx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues; vl ≤vu .
Not referenced if range ='A'or 'I'.

il, iu INTEGER. If range ='I', the indices of the smallest
and largest eigenvalues to be returned.
Constraints: 1 ≤il ≤iu ≤ n , if n > 0;
il = 1 and iu = 0 , if n = 0.
Not referenced if range ='A'or 'V'.

abstol REAL for cheevx
DOUBLE PRECISION for zheevx.
The absolute error tolerance for the eigenvalues .
See Application notes for more information.

ldz INTEGER. The first dimension of the output array z;
ldz ≥ 1. If jobz ='V', then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 2n-1). See Application
notes for the suggested value of lwork.

rwork REAL for cheevx
DOUBLE PRECISION for zheevx.
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER. Workspace array, DIMENSION at least
max(1, 5n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-315

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

m INTEGER. The total number of eigenvalues found;
0 ≤m ≤n . If range ='A', m = n , and if
range ='I', m = iu-il+1 .

w REAL for cheevx
DOUBLE PRECISION for zheevx
Array, DIMENSION at least max(1, n) .
The first m elements contain the selected eigenvalues of
the matrix A in ascending order.

z COMPLEX for cheevx
DOUBLE COMPLEX for zheevx.
Array z(ldz,*) contains eigenvectors.
The second dimension of z must be at least max(1, m).

If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that column
of z contains the latest approximation to the eigenvector,
and the index of the eigenvector is returned in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

work(1) On exit, if lwork > 0, then work(1) returns the
required minimal size of lwork.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, then ifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='V', then ifail is not referenced.

5-316

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge;
their indices are stored in the array ifail.

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the
maximum of the blocksize for ?hetrd and ?unmtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*|T| will be used in its place, where |T| is
the 1-norm of the tridiagonal matrix obtained by reducing A to tridiagonal
form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*slamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*slamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-317

?syevr
Computes selected eigenvalues and,
optionally, eigenvectors of a real
symmetric matrix using the Relatively
Robust Representations.

call ssyevr (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)

call dsyevr (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric matrix T. Eigenvalues and eigenvectors can be selected by
specifying either a range of values or a range of indices for the desired
eigenvalues.

Whenever possible, ?syevr calls sstegr/dstegr to compute the
eigenspectrum using Relatively Robust Representations. ?stegr computes
eigenvalues by the dqds algorithm, while orthogonal eigenvectors are
computed from various “good'' LDLT representations (also known as
Relatively Robust Representations). Gram-Schmidt orthogonalization is
avoided as far as possible. More specifically, the various steps of the
algorithm are as follows. For the i-th unreduced block of T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively
robust representation;
(b) Compute the eigenvalues, λ j, of Li Di Li

T to high relative accuracy
by the dqds algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the
cluster, and go to step (a);
(d) Given the approximate eigenvalue λ j of Li Di Li

T, compute the
corresponding eigenvector by forming a rank-revealing twisted
factorization.

5-318

5 Intel® Math Kernel Library Reference Manual

The desired accuracy of the output can be specified by the input parameter
abstol.

The routine ?syevr calls sstegr/dstegr when the full spectrum is
requested on machines which conform to the IEEE-754 floating point
standard. ?syevr calls sstebz/dstebz and sstein/dstein on
non-IEEE machines and when partial spectrum requests are made.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

For range ='V'or 'I' and iu-il < n-1,
sstebz/dstebz and sstein/dstein are called.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for ssyevr
DOUBLE PRECISION for dsyevr.
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the symmetric matrix A, as specified
by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-319

vl, vu REAL for ssyevr
DOUBLE PRECISION for dsyevr.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for ssyevr
DOUBLE PRECISION for dsyevr.
The absolute error tolerance to which each
eigenvalue/eigenvector is required.
If jobz = 'V', the eigenvalues and eigenvectors output
have residual norms bounded by abstol, and the dot
products between different eigenvectors are bounded by
abstol.Ifabstol<nε| | T| | 1,thennε| | T| | 1willbeused
in its place, where ε is the machine precision. The
eigenvalues are computed to an accuracy of ε| | T| | 1
irrespective of abstol. If high relative accuracy is
important, set abstol to ?lamch('S').

ldz INTEGER. The leading dimension of the output array z.
Constraints:
ldz ≥ 1 if jobz ='N';
ldz ≥ max(1, n) if jobz ='V'.

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 26n). See Application notes
for the suggested value of lwork.

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork,
lwork ≥ max(1, 10n).

5-320

5 Intel® Math Kernel Library Reference Manual

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z REAL for ssyevr
DOUBLE PRECISION for dsyevr.
Arrays:
w(*), DIMENSION at least max(1, n), contains the
selected eigenvalues in ascending order, stored in w(1)

to w(m);

z(ldz, *), the second dimension of z must be at least
max(1, m).
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i).
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

isuppz INTEGER.
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices
indicating the nonzero elements in z. The i-th
eigenvector is nonzero only in elements isuppz(2i-1)
through isuppz(2i).
Implemented only for range ='A' or 'I' and
iu-il = n-1.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-321

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, an internal error has occurred.

Application Notes

For optimum performance use lwork ≥ (nb+6)*n, where nb is the
maximum of the blocksize for ?sytrd and ?ormtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

Normal execution of ?stegr may create NaNs and infinities and hence
may abort due to a floating point exception in environments which do not
handle NaNs and infinities in the IEEE standard default manner.

5-322

5 Intel® Math Kernel Library Reference Manual

?heevr
Computes selected eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix using the Relatively Robust
Representations.

call cheevr (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, rwork, lrwork,
iwork, liwork, info)

call zheevr (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, rwork, lrwork,
iwork, liwork, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a complex Hermitian matrix T. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Whenever possible, ?heevr calls cstegr/zstegr to compute the
eigenspectrum using Relatively Robust Representations. ?stegr computes
eigenvalues by the dqds algorithm, while orthogonal eigenvectors are
computed from various “good'' LDLT representations (also known as
Relatively Robust Representations). Gram-Schmidt orthogonalization is
avoided as far as possible. More specifically, the various steps of the
algorithm are as follows. For the i-th unreduced block of T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively
robust representation;
(b) Compute the eigenvalues, λ j, of Li Di Li

T to high relative accuracy
by the dqds algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the
cluster, and go to step (a);
(d) Given the approximate eigenvalue λ j of Li Di Li

T, compute the
corresponding eigenvector by forming a rank-revealing twisted
factorization.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-323

The desired accuracy of the output can be specified by the input parameter
abstol.

The routine ?heevr calls cstegr/zstegr when the full spectrum is
requested on machines which conform to the IEEE-754 floating point
standard. ?heevr calls sstebz/dstebz and cstein/zstein on
non-IEEE machines and when partial spectrum requests are made.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

For range ='V'or 'I', sstebz/dstebz and
cstein/zstein are called.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work COMPLEX for cheevr
DOUBLE COMPLEX for zheevr.
Arrays:
a(lda,*) is an array containing either upper or lower
triangular part of the Hermitian matrix A, as specified by
uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

5-324

5 Intel® Math Kernel Library Reference Manual

vl, vu REAL for cheevr
DOUBLE PRECISION for zheevr.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for cheevr
DOUBLE PRECISION for zheevr.
The absolute error tolerance to which each
eigenvalue/eigenvector is required.
If jobz = 'V', the eigenvalues and eigenvectors output
have residual norms bounded by abstol, and the dot
products between different eigenvectors are bounded by
abstol.Ifabstol<nε| | T| | 1,thennε| | T| | 1willbeused
in its place, where ε is the machine precision. The
eigenvalues are computed to an accuracy of ε| | T| | 1
irrespective of abstol. If high relative accuracy is
important, set abstol to ?lamch('S').

ldz INTEGER. The leading dimension of the output array z.
Constraints:
ldz ≥ 1 if jobz ='N';
ldz ≥ max(1, n) if jobz ='V'.

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 2n). See Application notes
for the suggested value of lwork.

rwork REAL for cheevr
DOUBLE PRECISION for zheevr.
Workspace array, DIMENSION (lrwork).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-325

lrwork INTEGER. The dimension of the array rwork;
lwork ≥ max(1, 24n). .

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork,
lwork ≥ max(1, 10n).

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for cheevr
DOUBLE PRECISION for zheevr.
Array, DIMENSION at least max(1, n), contains the
selected eigenvalues in ascending order, stored in w(1)

to w(m).

z COMPLEX for cheevr
DOUBLE COMPLEX for zheevr.
Array z(ldz, *); the second dimension of z must be at
least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i).
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

isuppz INTEGER.
Array, DIMENSION at least 2*max(1, m).

5-326

5 Intel® Math Kernel Library Reference Manual

The support of the eigenvectors in z, i.e., the indices
indicating the nonzero elements in z. The i-th
eigenvector is nonzero only in elements isuppz(2i-1)
through isuppz(2i).

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the
required minimal size of lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, an internal error has occurred.

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the
maximum of the blocksize for ?hetrd and ?unmtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for
subsequent runs.

Normal execution of ?stegr may create NaNs and infinities and hence
may abort due to a floating point exception in environments which do not
handle NaNs and infinities in the IEEE standard default manner.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-327

?spev
Computes all eigenvalues and,
optionally, eigenvectors of a real
symmetric matrix in packed storage.

call sspev (jobz, uplo, n, ap, w, z, ldz, work, info)

call dspev (jobz, uplo, n, ap, w, z, ldz, work, info)

Discussion

This routine computes all the eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A in packed storage.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular
part of A.
If uplo = 'L', ap stores the packed lower triangular
part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

ap,work REAL for sspev
DOUBLE PRECISION for dspev
Arrays:
ap(*) contains the packed upper or lower triangle of
symmetric matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least
max(1, 3n).

5-328

5 Intel® Math Kernel Library Reference Manual

ldz INTEGER. The leading dimension of the output array z.
Constraints:
if jobz ='N', then ldz ≥ 1;
if jobz ='V', then ldz ≥ max(1, n) .

Output Parameters

w,z REAL for sspev
DOUBLE PRECISION for dspev
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, w contains the eigenvalues of the matrix A
in ascending order.
z(ldz,*) . The second dimension of z must be at least
max(1, n) .
If jobz ='V', then if info = 0, z contains the
orthonormal eigenvectors of the matrix A, with the i-th
column of z holding the eigenvector associated with
w(i).
If jobz ='N', then z is not referenced.

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-329

?hpev
Computes all eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix in packed storage.

call chpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

call zhpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

Discussion

This routine computes all the eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix A in packed storage.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular
part of A.
If uplo = 'L', ap stores the packed lower triangular
part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

ap,work COMPLEX for chpev
DOUBLE COMPLEX for zhpev .
Arrays:
ap(*) contains the packed upper or lower triangle of
Hermitian matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least
max(1, 2n-1).

5-330

5 Intel® Math Kernel Library Reference Manual

ldz INTEGER. The leading dimension of the output array z.
Constraints:
if jobz ='N', then ldz ≥ 1;
if jobz ='V', then ldz ≥ max(1, n) .

rwork REAL for chpev
DOUBLE PRECISION for zhpev.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

w REAL for chpev
DOUBLE PRECISION for zhpev.
Array, DIMENSION at least max(1, n).
If info = 0, w contains the eigenvalues of the matrix A
in ascending order.

z COMPLEX for chpev
DOUBLE COMPLEX for zhpev .
Array z(ldz,*). The second dimension of z must be at
least max(1, n) .
If jobz ='V', then if info = 0, z contains the
orthonormal eigenvectors of the matrix A, with the i-th
column of z holding the eigenvector associated with
w(i).
If jobz ='N', then z is not referenced.

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-331

?spevd
Uses divide and conquer algorithm to
compute all eigenvalues and (optionally)
all eigenvectors of a real symmetric
matrix held in packed storage.

call sspevd (job,uplo,n,ap,w,z,ldz,work,lwork,iwork,liwork,info)

call dspevd (job,uplo,n,ap,w,z,ldz,work,lwork,iwork,liwork,info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a real symmetric matrix A (held in packed storage). In other
words, it can compute the spectral factorization of A as: A = ZΛ ZT.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ i,
and Z is the orthogonal matrix whose columns are the eigenvectors zi. Thus,

Azi = λ izi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QR algorithm.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular
part of A.
If uplo = 'L', ap stores the packed lower triangular
part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

5-332

5 Intel® Math Kernel Library Reference Manual

ap,work REAL for sspevd
DOUBLE PRECISION for dspevd
Arrays:
ap(*) contains the packed upper or lower triangle of
symmetric matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2)
work(*) is a workspace array, DIMENSION at least
lwork.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
if job ='N', then ldz ≥ 1;
if job ='V', then ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
if job ='N' and n > 1, then lwork ≥ 2n;
if job ='V' and n > 1, then
lwork ≥ 2n2+(5+2k)*n+1, where k is the smallest
integer which satisfies 2k ≥ n.
If lwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the work
array, returns this value as the first entry of the work
array, and no error message related to lwork is issued
by xerbla.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
Constraints:
if n ≤ 1, then liwork ≥ 1;
if job ='N' and n > 1, then liwork ≥ 1;
if job ='V' and n > 1, then liwork ≥ 5n+3.

If liwork = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the iwork
array, returns this value as the first entry of the iwork
array, and no error message related to liwork is issued
by xerbla.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-333

Output Parameters

w,z REAL for sspevd
DOUBLE PRECISION for dspevd
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.
z(ldz,*) . The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n) if job ='V'.
If job ='V', then this array is overwritten by the
orthogonal matrix Z which contains the eigenvectors of
A. If job ='N', then z is not referenced.

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

work(1) On exit, if info = 0, then work(1) returns the optimal
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the
optimal liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that | | E| | 2 = O(ε) | | T| | 2, where ε is the machine precision.

The complex analogue of this routine is ?hpevd.

See also ?syevd for matrices held in full storage, and ?sbevd for banded
matrices.

5-334

5 Intel® Math Kernel Library Reference Manual

?hpevd
Uses divide and conquer algorithm to
compute all eigenvalues and (optionally)
all eigenvectors of a complex Hermitian
matrix held in packed storage.

call chpevd (job, uplo, n, ap, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)

call zhpevd (job, uplo, n, ap, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a complex Hermitian matrix A (held in packed storage). In
other words, it can compute the spectral factorization of A as: A = ZΛ ZH.
Here Λ is a real diagonal matrix whose diagonal elements are the
eigenvalues λ i, and Z is the (complex) unitary matrix whose columns are the
eigenvectors zi. Thus,

Azi = λ izi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QR algorithm.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-335

If uplo = 'U', ap stores the packed upper triangular
part of A.
If uplo = 'L', ap stores the packed lower triangular
part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

ap,work COMPLEX for chpevd
DOUBLE COMPLEX for zhpevd
Arrays:
ap(*) contains the packed upper or lower triangle of
Hermitian matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2)
work(*) is a workspace array, DIMENSION at least
lwork.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
if job ='N', then ldz ≥ 1;
if job ='V', then ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
if job ='N' and n > 1, then lwork ≥ n;
if job ='V' and n > 1, then lwork ≥ 2n

rwork REAL for chpevd
DOUBLE PRECISION for zhpevd
Workspace array, DIMENSION at least lrwork.

lrwork INTEGER. The dimension of the array rwork.
Constraints:
if n ≤ 1, then lrwork ≥ 1;
if job ='N' and n > 1, then lrwork ≥ n;
if job ='V' and n > 1, then
lrwork ≥ 3n2+(4+2k)*n+1, where k is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

5-336

5 Intel® Math Kernel Library Reference Manual

liwork INTEGER. The dimension of the array iwork.
Constraints:
if n ≤ 1, then liwork ≥ 1;
if job ='N' and n > 1, then liwork ≥ 1;
if job ='V' and n > 1, then liwork ≥ 5n+2.

Output Parameters

w REAL for chpevd
DOUBLE PRECISION for zhpevd
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.

z COMPLEX for chpevd
DOUBLE COMPLEX for zhpevd
Array, DIMENSION (ldz,*) . The second dimension
of z must be:
at least 1 if job ='N';
at least max(1, n) if job ='V'.
If job ='V', then this array is overwritten by the
unitary matrix Z which contains the eigenvectors of A. If
job ='N', then z is not referenced.

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

work(1) On exit, if lwork > 0, then the real part of work(1)

returns the required minimal size of lwork.

rwork(1) On exit, if lrwork > 0, then rwork(1) returns the
required minimal size of lrwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-337

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that | | E| | 2 = O(ε) | | T| | 2, where ε is the machine precision.

The real analogue of this routine is ?spevd.

See also ?heevd for matrices held in full storage, and ?hbevd for banded
matrices.

5-338

5 Intel® Math Kernel Library Reference Manual

?spevx
Computes selected eigenvalues and,
optionally, eigenvectors of a real
symmetric matrix in packed storage.

call sspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)

call dspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric matrix A in packed storage. Eigenvalues and eigenvectors
can be selected by specifying either a range of values or a range of indices
for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular
part of A.
If uplo = 'L', ap stores the packed lower triangular
part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-339

ap, work REAL for sspevx
DOUBLE PRECISION for dspevx
Arrays:
ap(*) contains the packed upper or lower triangle of
the symmetric matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least
max(1, 8n).

vl, vu REAL for sspevx
DOUBLE PRECISION for dspevx
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sspevx
DOUBLE PRECISION for dspevx
The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error
tolerance.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
if jobz ='N', then ldz ≥ 1;
if jobz ='V', then ldz ≥ max(1, n) .

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

5-340

5 Intel® Math Kernel Library Reference Manual

Output Parameters

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w,z REAL for sspevx
DOUBLE PRECISION for dspevx
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the selected eigenvalues of the
matrix A in ascending order.
z(ldz,*) . The second dimension of z must be at least
max(1, m) .
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that
column of z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the
indices the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-341

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge;
their indices are stored in the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||T||1 will be used in its place, where T
is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

5-342

5 Intel® Math Kernel Library Reference Manual

?hpevx
Computes selected eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix in packed storage.

call chpevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhpevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a complex Hermitian matrix A in packed storage. Eigenvalues and
eigenvectors can be selected by specifying either a range of values or a
range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular
part of A.
If uplo = 'L', ap stores the packed lower triangular
part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-343

ap, work COMPLEX for chpevx
DOUBLE COMPLEX for zhpevx
Arrays:
ap(*) contains the packed upper or lower triangle of
the Hermitian matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least
max(1, 2n).

vl, vu REAL for chpevx
DOUBLE PRECISION for zhpevx
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chpevx
DOUBLE PRECISION for zhpevx
The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error
tolerance.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
if jobz ='N', then ldz ≥ 1;
if jobz ='V', then ldz ≥ max(1, n) .

rwork REAL for chpevx
DOUBLE PRECISION for zhpevx
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

5-344

5 Intel® Math Kernel Library Reference Manual

Output Parameters

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for chpevx
DOUBLE PRECISION for zhpevx
Array, DIMENSION at least max(1, n). If info = 0,
contains the selected eigenvalues of the matrix A in
ascending order.

z COMPLEX for chpevx
DOUBLE COMPLEX for zhpevx
Array z(ldz,*) . The second dimension of z must be
at least max(1, m) .
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that
column of z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the
indices the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-345

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge;
their indices are stored in the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||T||1 will be used in its place, where T
is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

5-346

5 Intel® Math Kernel Library Reference Manual

?sbev
Computes all eigenvalues and,
optionally, eigenvectors of a real
symmetric band matrix.

call ssbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

call dsbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a real
symmetric band matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work REAL for ssbev
DOUBLE PRECISION for dsbev.
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the symmetric matrix A (as
specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, 3n-2).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-347

ldab INTEGER. The leading dimension of ab; must be at
least kd +1.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
if jobz ='N', then ldz ≥ 1;
if jobz ='V', then ldz ≥ max(1, n) .

Output Parameters

w,z REAL for ssbev
DOUBLE PRECISION for dsbev
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in
ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, n).
If jobz ='V', then if info = 0, z contains the
orthonormal eigenvectors of the matrix A, with the i-th
column of z holding the eigenvector associated with
w(i).
If jobz ='N', then z is not referenced.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. If uplo = 'U',
the first superdiagonal and the diagonal of the
tridiagonal matrix T are returned in rows kd and kd+1 of
ab, and if uplo = 'L', the diagonal and first
subdiagonal of T are returned in the first two rows of ab.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge;
i indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

5-348

5 Intel® Math Kernel Library Reference Manual

?hbev
Computes all eigenvalues and,
optionally, eigenvectors of a Hermitian
band matrix.

call chbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork,info)

call zhbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork,info)

Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a
complex Hermitian band matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work COMPLEX for chbev
DOUBLE COMPLEX for zhbev.
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the Hermitian matrix A (as
specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-349

ldab INTEGER. The leading dimension of ab; must be at
least kd +1.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
if jobz ='N', then ldz ≥ 1;
if jobz ='V', then ldz ≥ max(1, n) .

rwork REAL for chbev
DOUBLE PRECISION for zhbev
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

w REAL for chbev
DOUBLE PRECISION for zhbev
Array, DIMENSION at least max(1, n). If info = 0,
contains the eigenvalues in ascending order.

z COMPLEX for chbev
DOUBLE COMPLEX for zhbev.
Array z(ldz,*) . The second dimension of zmust be at
least max(1, n). If jobz ='V', then if info = 0, z
contains the orthonormal eigenvectors of the matrix A,
with the i-th column of z holding the eigenvector
associated with w(i). If jobz ='N', then z is not
referenced.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. If uplo = 'U',
the first superdiagonal and the diagonal of the
tridiagonal matrix T are returned in rows kd and kd+1 of
ab, and if uplo = 'L', the diagonal and first
subdiagonal of T are returned in the first two rows of ab.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge;
i indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

5-350

5 Intel® Math Kernel Library Reference Manual

?sbevd
Computes all eigenvalues and
(optionally) all eigenvectors of a real
symmetric band matrix using divide and
conquer algorithm.

call ssbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
iwork, liwork, info)

call dsbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a real symmetric band matrix A . In other words, it can
compute the spectral factorization of A as:

A = ZΛ ZT

Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ i,
and Z is the orthogonal matrix whose columns are the eigenvectors zi.
Thus,

Azi = λ izi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QR algorithm.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-351

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work REAL for ssbevd
DOUBLE PRECISION for dsbevd.
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the symmetric matrix A (as
specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least lwork.

ldab INTEGER. The leading dimension of ab; must be at
least kd+1.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
if job ='N', then ldz ≥ 1;
if job ='V', then ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
if job ='N' and n > 1, then lwork ≥ 2n;
if job ='V' and n > 1, then
lwork ≥ 3n2+(4+2k)*n+1, where k is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
Constraints:
if n ≤ 1, then liwork ≥ 1;
if job ='N' and n > 1, then liwork ≥ 1;
if job ='V' and n > 1, then liwork ≥ 5n+2.

5-352

5 Intel® Math Kernel Library Reference Manual

Output Parameters

w,z REAL for ssbevd
DOUBLE PRECISION for dsbevd
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.
z(ldz,*) . The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n) if job ='V'.
If job ='V', then this array is overwritten by the
orthogonal matrix Z which contains the eigenvectors of
A. The ith column of Z contains the eigenvector which
corresponds to the eigenvalue w(i).
If job ='N', then z is not referenced.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form.

work(1) On exit, if lwork > 0, then work(1) returns the
required minimal size of lwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that | | E| | 2 = O(ε) | | T| | 2, where ε is the machine precision.

The complex analogue of this routine is ?hbevd.

See also ?syevd for matrices held in full storage, and ?spevd for matrices
held in packed storage.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-353

?hbevd
Computes all eigenvalues and
(optionally) all eigenvectors of a
complex Hermitian band matrix using
divide and conquer algorithm.

call chbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

call zhbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a complex Hermitian band matrix A . In other words, it can
compute the spectral factorization of A as: A = ZΛ ZH.
Here Λ is a real diagonal matrix whose diagonal elements are the
eigenvalues λ i, and Z is the (complex) unitary matrix whose columns are the
eigenvectors zi. Thus,

Azi = λ izi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QR algorithm.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

5-354

5 Intel® Math Kernel Library Reference Manual

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work COMPLEX for chbevd
DOUBLE COMPLEX for zhbevd.
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the Hermitian matrix A (as
specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least lwork.

ldab INTEGER. The leading dimension of ab; must be at
least kd+1.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
if job ='N', then ldz ≥ 1;
if job ='V', then ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
if job ='N' and n > 1, then lwork ≥ n;
if job ='V' and n > 1, then lwork ≥ 2n2

rwork REAL for chbevd
DOUBLE PRECISION for zhbevd
Workspace array, DIMENSION at least lrwork.

lrwork INTEGER. The dimension of the array rwork.
Constraints:
if n ≤ 1, then lrwork ≥ 1;
if job ='N' and n > 1, then lrwork ≥ n;
if job ='V' and n > 1, then
lrwork ≥ 3n2+(4+2k)*n+1, where k is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-355

liwork INTEGER. The dimension of the array iwork.
Constraints:
if job ='N' or n ≤ 1, then liwork ≥ 1;
if job ='V' and n > 1, then liwork ≥ 5n+2.

Output Parameters

w REAL for chbevd
DOUBLE PRECISION for zhbevd
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.

z COMPLEX for chbevd
DOUBLE COMPLEX for zhbevd
Array, DIMENSION (ldz,*) . The second dimension
of z must be:
at least 1 if job ='N';
at least max(1, n) if job ='V'.
If job ='V', then this array is overwritten by the
unitary matrix Z which contains the eigenvectors of A.
The ith column of Z contains the eigenvector which
corresponds to the eigenvalue w(i).
If job ='N', then z is not referenced.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form.

work(1) On exit, if lwork > 0, then the real part of work(1)

returns the required minimal size of lwork.

rwork(1) On exit, if lrwork > 0, then rwork(1) returns the
required minimal size of lrwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i

5-356

5 Intel® Math Kernel Library Reference Manual

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that | | E| | 2 = O(ε) | | T| | 2, where ε is the machine precision.

The real analogue of this routine is ?sbevd.

See also ?heevd for matrices held in full storage, and ?hpevd for matrices
held in packed storage.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-357

?sbevx
Computes selected eigenvalues and,
optionally, eigenvectors of a real
symmetric band matrix.

call ssbevx (jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

call dsbevx (jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

5-358

5 Intel® Math Kernel Library Reference Manual

ab, work REAL for ssbevx
DOUBLE PRECISION for dsbevx.
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the symmetric matrix A (as
specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, 7n).

ldab INTEGER. The leading dimension of ab; must be at
least kd +1.

vl, vu REAL for ssbevx
DOUBLE PRECISION for dsbevx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chpevx
DOUBLE PRECISION for zhpevx
The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error
tolerance.

ldq, ldz INTEGER. The leading dimensions of the output arrays q
and z, respectively. Constraints:
ldq ≥ 1, ldz ≥ 1;
If jobz ='V', then ldq ≥ max(1, n) and ldz ≥ max(1,
n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-359

Output Parameters

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w,z REAL for ssbevx
DOUBLE PRECISION for dsbevx
Arrays:
w(*), DIMENSION at least max(1, n) .
The first m elements of w contain the selected
eigenvalues of the matrix A in ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, m).
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that
column of z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. If uplo = 'U',
the first superdiagonal and the diagonal of the
tridiagonal matrix T are returned in rows kd and kd+1 of
ab, and if uplo = 'L', the diagonal and first
subdiagonal of T are returned in the first two rows of ab.

ifail INTEGER.
Array, DIMENSION at least max(1, n).

If jobz ='V', then if info = 0, the first m elements of

5-360

5 Intel® Math Kernel Library Reference Manual

ifail are zero; if info > 0, the ifail contains the
indices the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge;
their indices are stored in the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||T||1 will be used in its place, where T
is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-361

?hbevx
Computes selected eigenvalues and,
optionally, eigenvectors of a Hermitian
band matrix.

call chbevx (jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhbevx (jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a complex Hermitian band matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

5-362

5 Intel® Math Kernel Library Reference Manual

ab, work COMPLEX for chbevx
DOUBLE COMPLEX for zhbevx.
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the Hermitian matrix A (as
specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

ldab INTEGER. The leading dimension of ab; must be at
least kd +1.

vl, vu REAL for chbevx
DOUBLE PRECISION for zhbevx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chbevx
DOUBLE PRECISION for zhbevx.
The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error
tolerance.

ldq, ldz INTEGER. The leading dimensions of the output arrays q
and z, respectively. Constraints:
ldq ≥ 1, ldz ≥ 1;
If jobz ='V', then ldq ≥ max(1, n) and ldz ≥ max(1,
n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-363

rwork REAL for chbevx
DOUBLE PRECISION for zhbevx
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for chbevx
DOUBLE PRECISION for zhbevx
Array, DIMENSION at least max(1, n) .
The first m elements contain the selected eigenvalues of
the matrix A in ascending order.

z COMPLEX for chbevx
DOUBLE COMPLEX for zhbevx.
Array z(ldz,*) . The second dimension of z must be
at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that
column of z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. If uplo = 'U',
the first superdiagonal and the diagonal of the

5-364

5 Intel® Math Kernel Library Reference Manual

tridiagonal matrix T are returned in rows kd and kd+1 of
ab, and if uplo = 'L', the diagonal and first
subdiagonal of T are returned in the first two rows of ab.

ifail INTEGER.
Array, DIMENSION at least max(1, n).

If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge;
their indices are stored in the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||T||1 will be used in its place, where T
is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-365

?stev
Computes all eigenvalues and,
optionally, eigenvectors of a real
symmetric tridiagonal matrix.

call sstev (jobz, n, d, e, z, ldz, work, info)

call dstev (jobz, n, d, e, z, ldz, work, info)

Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

n INTEGER. The order of the matrix A (n ≥ 0).

d, e, work REAL for sstev
DOUBLE PRECISION for dstev.
Arrays:
d(*) contains the n diagonal elements of the
tridiagonal matrix A.
The dimension of d must be at least max(1, n).

e(*) contains the n-1 subdiagonal elements of the
tridiagonal matrix A.
The dimension of e must be at least max(1, n). The nth
element of this array is used as workspace.

work(*) is a workspace array.
The dimension of work must be at least max(1, 2n-2).
If jobz ='N', work is not referenced.

5-366

5 Intel® Math Kernel Library Reference Manual

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V' then ldz ≥ max(1, n).

Output Parameters

d On exit, if info = 0, contains the eigenvalues of the
matrix A in ascending order.

z REAL for sstev
DOUBLE PRECISION for dstev
Array, DIMENSION (ldz, *) .
The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the
orthonormal eigenvectors of the matrix A, with the i-th
column of z holding the eigenvector associated with the
eigenvalue returned in d(i).
If job ='N', then z is not referenced.

e On exit, this array is overwritten with intermediate
results.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge;
i elements of e did not converge to zero.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-367

?stevd
Computes all eigenvalues and
(optionally) all eigenvectors of a real
symmetric tridiagonal matrix using
divide and conquer algorithm.

call sstevd (job, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

call dstevd (job, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a real symmetric tridiagonal matrix T. In other words, the
routine can compute the spectral factorization of T as: T = ZΛ ZT.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ i,
and Z is the orthogonal matrix whose columns are the eigenvectors zi. Thus,

Tzi = λ izi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QR algorithm.

There is no complex analogue of this routine.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

n INTEGER. The order of the matrix T (n ≥ 0).

d, e, work REAL for sstevd
DOUBLE PRECISION for dstevd.
Arrays:

5-368

5 Intel® Math Kernel Library Reference Manual

d(*) contains the n diagonal elements of the
tridiagonal matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the n-1 off-diagonal elements of T.
The dimension of e must be at least max(1, n). The nth
element of this array is used as workspace.

work(*) is a workspace array.
The dimension of work must be at least lwork.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
ldz ≥ 1 if job ='N';
ldz ≥ max(1, n) if job ='V'.

lwork INTEGER. The dimension of the array work.
Constraints:
if job ='N' or n ≤ 1, then lwork ≥ 1;
if job ='V' and n > 1, then
lwork ≥ 2n2+(3+2k)*n+1, where k is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
Constraints:
if job ='N' or n ≤ 1, then liwork ≥ 1;
if job ='V' and n > 1, then liwork ≥ 5n+2.

Output Parameters

d On exit, if info = 0, contains the eigenvalues of the
matrix T in ascending order.
See also info.

z REAL for sstevd
DOUBLE PRECISION for dstevd
Array, DIMENSION (ldz, *) .
The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n) if job ='V'.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-369

If job ='V', then this array is overwritten by the
orthogonal matrix Z which contains the eigenvectors
of T. If job ='N', then z is not referenced.

e On exit, this array is overwritten with intermediate
results.

work(1) On exit, if lwork > 0, then work(1) returns the
required minimal size of lwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i
indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that | | E| | 2 = O(ε) | | T| | 2, where ε is the machine precision.

If λ i is an exact eigenvalue, and µi is the corresponding computed value,
then

 | µi - λi| ≤c(n)ε | |T| | 2

where c(n) is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and wi is the corresponding
computed vector, then the angle θ(zi, wi) between them is bounded as
follows:
 θ(zi, wi) ≤c(n)ε | |T| | 2 / mini≠j| λi - λj| .
Thus the accuracy of a computed eigenvector depends on the gap between
its eigenvalue and all the other eigenvalues.

5-370

5 Intel® Math Kernel Library Reference Manual

?stevx
Computes selected eigenvalues and
eigenvectors of a real symmetric
tridiagonal matrix.

call sstevx (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)

call dstevx (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric tridiagonal matrix A. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

n INTEGER. The order of the matrix A (n ≥ 0).

d, e, work REAL for sstevx
DOUBLE PRECISION for dstevx.
Arrays:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-371

d(*) contains the n diagonal elements of the
tridiagonal matrix A.
The dimension of d must be at least max(1, n).

e(*) contains the n-1 subdiagonal elements of A.
The dimension of e must be at least max(1, n). The nth
element of this array is used as workspace.

work(*) is a workspace array.
The dimension of work must be at least max(1, 5n).

vl, vu REAL for sstevx
DOUBLE PRECISION for dstevx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sstevx
DOUBLE PRECISION for dstevx.
The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error
tolerance.

ldz INTEGER. The leading dimensions of the output array z;
ldz ≥ 1. If jobz ='V', then ldz ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

5-372

5 Intel® Math Kernel Library Reference Manual

Output Parameters

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z REAL for sstevx
DOUBLE PRECISION for dstevx.
Arrays:
w(*), DIMENSION at least max(1, n) .
The first m elements of w contain the selected
eigenvalues of the matrix A in ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, m).
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that
column of z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

d, e On exit, these arrays may be multiplied by a constant
factor chosen to avoid overflow or underflow in
computing the eigenvalues.

ifail INTEGER.
Array, DIMENSION at least max(1, n).

If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-373

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge;
their indices are stored in the array ifail.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||A||1 will be used in its place.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

5-374

5 Intel® Math Kernel Library Reference Manual

?stevr
Computes selected eigenvalues and,
optionally, eigenvectors of a real
symmetric tridiagonal matrix using the
Relatively Robust Representations.

call sstevr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call dstevr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric tridiagonal matrix T. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Whenever possible, ?stevr calls sstegr/dstegr to compute the
eigenspectrum using Relatively Robust Representations. ?stegr computes
eigenvalues by the dqds algorithm, while orthogonal eigenvectors are
computed from various “good'' LDLT representations (also known as
Relatively Robust Representations). Gram-Schmidt orthogonalization is
avoided as far as possible. More specifically, the various steps of the
algorithm are as follows. For the i-th unreduced block of T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively
robust representation;
(b) Compute the eigenvalues, λ j, of Li Di Li

T to high relative accuracy
by the dqds algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the
cluster, and go to step (a);
(d) Given the approximate eigenvalue λ j of Li Di Li

T, compute the
corresponding eigenvector by forming a rank-revealing twisted
factorization.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-375

The desired accuracy of the output can be specified by the input parameter
abstol.

The routine ?stevr calls sstegr/dstegr when the full spectrum is
requested on machines which conform to the IEEE-754 floating point
standard. ?stevr calls sstebz/dstebz and sstein/dstein on
non-IEEE machines and when partial spectrum requests are made.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

For range ='V'or 'I' and iu-il < n-1,
sstebz/dstebz and sstein/dstein are called.

n INTEGER. The order of the matrix T (n ≥ 0).

d, e, work REAL for sstevr
DOUBLE PRECISION for dstevr.
Arrays:
d(*) contains the n diagonal elements of the
tridiagonal matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the n-1 subdiagonal elements of A.
The dimension of e must be at least max(1, n). The nth
element of this array is used as workspace.

work(lwork) is a workspace array.

5-376

5 Intel® Math Kernel Library Reference Manual

vl, vu REAL for sstevr
DOUBLE PRECISION for dstevr.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for ssyevr
DOUBLE PRECISION for dsyevr.
The absolute error tolerance to which each
eigenvalue/eigenvector is required.
If jobz = 'V', the eigenvalues and eigenvectors output
have residual norms bounded by abstol, and the dot
products between different eigenvectors are bounded by
abstol.Ifabstol<nε| | T| | 1,thennε| | T| | 1willbeused
in its place, where ε is the machine precision. The
eigenvalues are computed to an accuracy of ε| | T| | 1
irrespective of abstol. If high relative accuracy is
important, set abstol to ?lamch('S').

ldz INTEGER. The leading dimension of the output array z.
Constraints:
ldz ≥ 1 if jobz ='N';
ldz ≥ max(1, n) if jobz ='V'.

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 20n).

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork,
lwork ≥ max(1, 10n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-377

Output Parameters

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z REAL for sstevr
DOUBLE PRECISION for dstevr.
Arrays:
w(*), DIMENSION at least max(1, n) .
The first m elements of w contain the selected
eigenvalues of the matrix T in ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, m).
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i).
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

d, e On exit, these arrays may be multiplied by a constant
factor chosen to avoid overflow or underflow in
computing the eigenvalues.

isuppz INTEGER.
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices
indicating the nonzero elements in z. The i-th
eigenvector is nonzero only in elements isuppz(2i-1)
through isuppz(2i).
Implemented only for range ='A' or 'I' and
iu-il = n-1.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

5-378

5 Intel® Math Kernel Library Reference Manual

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, an internal error has occurred.

Application Notes

Normal execution of the routine ?stegr may create NaNs and infinities
and hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the IEEE standard default
manner.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-379

Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving
nonsymmetric eigenproblems. See also computational routines that can be
called to solve these problems.
Table 5-12 lists routines described in more detail below.

?gees
Computes the eigenvalues and Schur
factorization of a general matrix, and orders
the factorization so that selected eigenvalues
are at the top left of the Schur form.

call sgees (jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs,
work, lwork, bwork, info)

call dgees (jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs,
work, lwork, bwork, info)

call cgees (jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs,
work, lwork, rwork, bwork, info)

call zgees (jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs,
work, lwork, rwork, bwork, info)

Table 5-11 Driver Routines for Solving Nonsymmetric Eigenproblems

Routine Name Operation performed

?gees Computes the eigenvalues and Schur factorization of a general matrix, and
orders the factorization so that selected eigenvalues are at the top left of the
Schur form.

?geesx Computes the eigenvalues and Schur factorization of a general matrix,
orders the factorization and computes reciprocal condition numbers.

?geev Computes the eigenvalues and left and right eigenvectors of a general
matrix.

?geevx Computes the eigenvalues and left and right eigenvectors of a general
matrix, with preliminary matrix balancing, and computes reciprocal condition
numbers for the eigenvalues and right eigenvectors.

5-380

5 Intel® Math Kernel Library Reference Manual

Discussion

This routine computes for an n-by-n real/complex nonsymmetric matrix A,
the eigenvalues, the real Schur form T, and, optionally, the matrix of Schur
vectors Z. This gives the Schur factorization A = Z T ZH.

Optionally, it also orders the eigenvalues on the diagonal of the
real-Schur/Schur form so that selected eigenvalues are at the top left. The
leading columns of Z then form an orthonormal basis for the invariant
subspace corresponding to the selected eigenvalues.

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1
and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form

where b*c < 0. The eigenvalues of such a block are .

A complex matrix is in Schur form if it is upper triangular.

Input Parameters

jobvs CHARACTER*1. Must be 'N' or 'V'.
If jobvs ='N', then Schur vectors are not computed.
If jobvs ='V', then Schur vectors are computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.

If sort ='N', then eigenvalues are not ordered.
If sort ='S', eigenvalues are ordered (see select).

select LOGICAL FUNCTION of two REAL arguments
for real flavors.
LOGICAL FUNCTION of one COMPLEX argument
for complex flavors.

select must be declared EXTERNAL in the calling
subroutine.
If sort ='S', select is used to select eigenvalues to
sort to the top left of the Schur form.
If sort ='N', select is not referenced.

a
c

b
a

a bc±

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-381

For real flavors:
An eigenvalue wr(j)+ *wi(j) is selected if
select(wr(j), wi(j)) is true; that is, if either one of a
complex conjugate pair of eigenvalues is selected, then
both complex eigenvalues are selected. Note that a
selected complex eigenvalue may no longer satisfy
select(wr(j), wi(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case info may be set to n+2 (see info below).
For complex flavors:
An eigenvalue w(j) is selected if select(w(j)) is true.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgees
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

ldvs INTEGER. The leading dimension of the output array vs.
Constraints:
ldvs ≥ 1 ;
ldvs ≥ max(1, n) if jobvs ='V'.

lwork INTEGER. The dimension of the array work.
Constraint:
lwork ≥ max(1, 3n) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.

rwork REAL for cgees
DOUBLE PRECISION for zgees
Workspace array, DIMENSION at least max(1, n). Used
in complex flavors only.

1–

5-382

5 Intel® Math Kernel Library Reference Manual

bwork LOGICAL.
Workspace array, DIMENSION at least max(1, n). Not
referenced if sort ='N'.

Output Parameters

a On exit, this array is overwritten by the real-Schur/Schur
form T .

sdim INTEGER.
If sort ='N', sdim= 0.
If sort ='S', sdim is equal to the number of
eigenvalues (after sorting) for which select is true.
Note that for real flavors complex conjugate pairs for
which select is true for either eigenvalue count as 2.

wr, wi REAL for sgees
DOUBLE PRECISION for dgees
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues, in the same order that they
appear on the diagonal of the output real-Schur form T.
Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having positive
imaginary part first.

w COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues. The eigenvalues are
stored in the same order as they appear on the diagonal
of the output Schur form T.

vs REAL for sgees
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array vs(ldvs,*); the second dimension of vs must
be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-383

If jobvs ='V', vs contains the orthogonal/unitary
matrix Z of Schur vectors.
If jobvs ='N', vs is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

If info = i, and
i ≤n :

the QR algorithm failed to compute all the
eigenvalues; elements 1:ilo-1 and i+1:n of wr and
wi (for real flavors) or w (for complex flavors)
contain those eigenvalues which have converged; if
jobvs ='V', vs contains the matrix which reduces
A to its partially converged Schur form;

i = n+1 :

the eigenvalues could not be reordered because
some eigenvalues were too close to separate (the
problem is very ill-conditioned);

i = n+2 :

after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfy select = .TRUE..
This could also be caused by underflow due to
scaling.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

5-384

5 Intel® Math Kernel Library Reference Manual

?geesx
Computes the eigenvalues and Schur
factorization of a general matrix, orders the
factorization and computes reciprocal
condition numbers.

call sgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs,
ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call dgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs,
ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call cgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs,
ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)

call zgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs,
ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)

Discussion

This routine computes for an n-by-n real/complex nonsymmetric matrix A,
the eigenvalues, the real-Schur/Schur form T, and, optionally, the matrix of
Schur vectors Z. This gives the Schur factorization A = Z T ZH.

Optionally, it also orders the eigenvalues on the diagonal of the
real-Schur/Schur form so that selected eigenvalues are at the top left;
computes a reciprocal condition number for the average of the selected
eigenvalues (rconde); and computes a reciprocal condition number for the
right invariant subspace corresponding to the selected eigenvalues
(rcondv). The leading columns of Z form an orthonormal basis for this
invariant subspace.

For further explanation of the reciprocal condition numbers rconde and
rcondv, see [LUG], Section 4.10 (where these quantities are called s and
sep respectively).

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1
and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form

a
c

b
a

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-385

where b*c < 0. The eigenvalues of such a block are .

A complex matrix is in Schur form if it is upper triangular.

Input Parameters

jobvs CHARACTER*1. Must be 'N' or 'V'.
If jobvs ='N', then Schur vectors are not computed.
If jobvs ='V', then Schur vectors are computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.

If sort ='N', then eigenvalues are not ordered.
If sort ='S', eigenvalues are ordered (see select).

select LOGICAL FUNCTION of two REAL arguments
for real flavors.
LOGICAL FUNCTION of one COMPLEX argument
for complex flavors.

select must be declared EXTERNAL in the calling
subroutine.
If sort ='S', select is used to select eigenvalues to
sort to the top left of the Schur form.
If sort ='N', select is not referenced.
For real flavors:
An eigenvalue wr(j)+ *wi(j) is selected if
select(wr(j), wi(j)) is true; that is, if either one of a
complex conjugate pair of eigenvalues is selected, then
both complex eigenvalues are selected. Note that a
selected complex eigenvalue may no longer satisfy
select(wr(j), wi(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case info may be set to n+2 (see info below).
For complex flavors:
An eigenvalue w(j) is selected if select(w(j)) is true.

a bc±

1–

5-386

5 Intel® Math Kernel Library Reference Manual

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are
computed.

If sense ='N', none are computed;
If sense ='E', computed for average of selected
eigenvalues only;
If sense ='V', computed for selected right invariant
subspace only;
If sense ='B', computed for both.

If sense is 'E', 'V', or 'B', then sort must equal
'S'.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgeesx
DOUBLE PRECISION for dgeesx
COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

ldvs INTEGER. The leading dimension of the output array vs.
Constraints:
ldvs ≥ 1 ;
ldvs ≥ max(1, n) if jobvs ='V'.

lwork INTEGER. The dimension of the array work.
Constraint:
lwork ≥ max(1, 3n) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.

Also, if sense = 'E', 'V', or 'B', then
lwork ≥ n+2*sdim*(n-sdim) for real flavors;
lwork ≥ 2*sdim*(n-sdim) for complex flavors;

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-387

where sdim is the number of selected eigenvalues
computed by this routine. Note that
2*sdim*(n-sdim) ≤ n*n/2 .

For good performance, lwork must generally be larger.

iwork INTEGER.
Workspace array, DIMENSION (liwork). Used in real
flavors only. Not referenced if sense = 'N' or 'E'.

liwork INTEGER. The dimension of the array iwork. Used in
real flavors only. Constraint:
liwork ≥ 1;
if sense = 'V' or 'B', liwork ≥ sdim*(n-sdim).

rwork REAL for cgeesx
DOUBLE PRECISION for zgeesx
Workspace array, DIMENSION at least max(1, n). Used
in complex flavors only.

bwork LOGICAL.
Workspace array, DIMENSION at least max(1, n). Not
referenced if sort ='N'.

Output Parameters

a On exit, this array is overwritten by the real-Schur/Schur
form T .

sdim INTEGER.
If sort ='N', sdim= 0.
If sort ='S', sdim is equal to the number of
eigenvalues (after sorting) for which select is true.
Note that for real flavors complex conjugate pairs for
which select is true for either eigenvalue count as 2.

wr, wi REAL for sgeesx
DOUBLE PRECISION for dgeesx
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues, in the same order that they
appear on the diagonal of the output real-Schur form T.

5-388

5 Intel® Math Kernel Library Reference Manual

Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having positive
imaginary part first.

w COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues. The eigenvalues are
stored in the same order as they appear on the diagonal
of the output Schur form T.

vs REAL for sgeesx
DOUBLE PRECISION for dgeesx
COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Array vs(ldvs,*); the second dimension of vs must
be at least max(1, n).

If jobvs ='V', vs contains the orthogonal/unitary
matrix Z of Schur vectors.
If jobvs ='N', vs is not referenced.

rconde,rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If sense = 'E' or 'B', rconde contains the
reciprocal condition number for the average of the
selected eigenvalues. If sense = 'N' or 'V', rconde
is not referenced.

If sense = 'V' or 'B', rcondv contains the
reciprocal condition number for the selected right
invariant subspace. If sense = 'N' or 'E', rcondv is
not referenced.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-389

If info = i, and
i ≤n :

the QR algorithm failed to compute all the
eigenvalues; elements 1:ilo-1 and i+1:n of wr and
wi (for real flavors) or w (for complex flavors)
contain those eigenvalues which have converged; if
jobvs ='V', vs contains the transformation which
reduces A to its partially converged Schur form;

i = n+1 :

the eigenvalues could not be reordered because
some eigenvalues were too close to separate (the
problem is very ill-conditioned);

i = n+2 :

after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfy select = .TRUE..
This could also be caused by underflow due to
scaling.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

5-390

5 Intel® Math Kernel Library Reference Manual

?geev
Computes the eigenvalues and left and
right eigenvectors of a general matrix.

call sgeev (jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
work, lwork, info)

call dgeev (jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
work, lwork, info)

call cgeev (jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)

call zgeev (jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)

Discussion

This routine computes for an n-by-n real/complex nonsymmetric matrix A,
the eigenvalues and, optionally, the left and/or right eigenvectors. The right
eigenvector v(j) of A satisfies

A*v(j) = λ(j)*v(j)

where λ(j) is its eigenvalue.

The left eigenvector u(j) of A satisfies

u(j)H*A = λ(j)*u(j)H

where u(j)H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal
to 1 and largest component real.

Input Parameters

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', then left eigenvectors of A are not
computed.
If jobvl ='V', then left eigenvectors of A are
computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-391

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', then right eigenvectors of A are not
computed.
If jobvr ='V', then right eigenvectors of A are
computed.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

ldvl, ldvr INTEGER. The leading dimensions of the output arrays
vl and vr, respectively. Constraints:
ldvl ≥ 1 ; ldvr ≥ 1.
If jobvl ='V', ldvl ≥ max(1, n) ;
If jobvr ='V', ldvr ≥ max(1, n).

lwork INTEGER. The dimension of the array work.
Constraint:
lwork ≥ max(1, 3n) , and if jobvl ='V' or
jobvr ='V', lwork ≥ max(1, 4n) (for real flavors);
lwork ≥ max(1, 2n) (for complex flavors).
For good performance, lwork must generally be larger.

rwork REAL for cgeev
DOUBLE PRECISION for zgeev
Workspace array, DIMENSION at least max(1, 2n). Used
in complex flavors only.

5-392

5 Intel® Math Kernel Library Reference Manual

Output Parameters

a On exit, this array is overwritten by intermediate results.

wr, wi REAL for sgeev
DOUBLE PRECISION for dgeev
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues. Complex conjugate pairs of
eigenvalues appear consecutively with the eigenvalue
having positive imaginary part first.

w COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues.

vl, vr REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Arrays:
vl(ldvl,*); the second dimension of vl must be at
least max(1, n).

If jobvl ='V', the left eigenvectors u(j) are stored one
after another in the columns of vl, in the same order as
their eigenvalues. If jobvl ='N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th
column of vl. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then u(j) = vl(:,j) + i*vl(:,j+1)
and u(j+1) = vl(:,j) - i*vl(:,j+1), where i= .

For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at
least max(1, n).

If jobvr ='V', the right eigenvectors v(j) are stored one
after another in the columns of vr, in the same order as
their eigenvalues. If jobvr ='N', vr is not referenced.

1–

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-393

For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th
column of vr. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then v(j) = vr(:,j) + i*vr(:,j+1)
and v(j+1) = vr(:,j) - i*vr(:,j+1), where i= .

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors have been computed;
elements i+1:n of wr and wi (for real flavors) or w (for
complex flavors) contain those eigenvalues which have
converged.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

1–

5-394

5 Intel® Math Kernel Library Reference Manual

?geevx
Computes the eigenvalues and left and right
eigenvectors of a general matrix, with
preliminary matrix balancing, and
computes reciprocal condition numbers for
the eigenvalues and right eigenvectors.

call sgeevx (balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl,
ldvl, vr, ldvr, ilo, ihi, scale, abnrm, rconde,
rcondv, work, lwork, iwork, info)

call dgeevx (balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl,
ldvl, vr, ldvr, ilo, ihi, scale, abnrm, rconde,
rcondv, work, lwork, iwork, info)

call cgeevx (balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl,
vr, ldvr, ilo, ihi, scale, abnrm, rconde, rcondv,
work, lwork, rwork, info)

call zgeevx (balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl,
vr, ldvr, ilo, ihi, scale, abnrm, rconde, rcondv,
work, lwork, rwork, info)

Discussion

This routine computes for an n-by-n real/complex nonsymmetric matrix A,
the eigenvalues and, optionally, the left and/or right eigenvectors.

Optionally also, it computes a balancing transformation to improve the
conditioning of the eigenvalues and eigenvectors (ilo, ihi, scale, and
abnrm), reciprocal condition numbers for the eigenvalues (rconde), and
reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvector v(j) of A satisfies

A*v(j) = λ(j)*v(j)

where λ(j) is its eigenvalue.

The left eigenvector u(j) of A satisfies

u(j)H*A = λ(j)*u(j)H

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-395

where u(j)H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal
to 1 and largest component real.

Balancing a matrix means permuting the rows and columns to make it more
nearly upper triangular, and applying a diagonal similarity transformation
D A D-1, where D is a diagonal matrix, to make its rows and columns closer
in norm and the condition numbers of its eigenvalues and eigenvectors
smaller. The computed reciprocal condition numbers correspond to the
balanced matrix.
Permuting rows and columns will not change the condition numbers in
exact arithmetic) but diagonal scaling will. For further explanation of
balancing, see [LUG], Section 4.10.

Input Parameters

balanc CHARACTER*1. Must be 'N', 'P', 'S', or 'B'.
Indicates how the input matrix should be diagonally
scaled and/or permuted to improve the conditioning of
its eigenvalues.

If balanc ='N', do not diagonally scale or permute;
If balanc ='P', perform permutations to make the
matrix more nearly upper triangular. Do not diagonally
scale;
If balanc ='S', Diagonally scale the matrix, i.e.
replace A by D A D-1, where D is a diagonal matrix
chosen to make the rows and columns of A more equal
in norm. Do not permute;
If balanc ='B', both diagonally scale and permute A.

Computed reciprocal condition numbers will be for the
matrix after balancing and/or permuting. Permuting
does not change condition numbers (in exact
arithmetic), but balancing does.

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', left eigenvectors of A are not computed;
If jobvl ='V', left eigenvectors of A are computed.
If sense ='E'or 'B', then jobvl must be 'V'.

5-396

5 Intel® Math Kernel Library Reference Manual

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', right eigenvectors of A are not
computed;
If jobvr ='V', right eigenvectors of A are computed.
If sense ='E'or 'B', then jobvr must be 'V'.

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are
computed.

If sense ='N', none are computed;
If sense ='E', computed for eigenvalues only;
If sense ='V', computed for right eigenvectors only;
If sense ='B', computed for eigenvalues and right
eigenvectors.

If sense is 'E' or 'B', both left and right eigenvectors
must also be computed (jobvl ='V'and jobvr ='V').

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgeevx
DOUBLE PRECISION for dgeevx
COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

ldvl, ldvr INTEGER. The leading dimensions of the output arrays
vl and vr, respectively. Constraints:
ldvl ≥ 1 ; ldvr ≥ 1.
If jobvl ='V', ldvl ≥ max(1, n) ;
If jobvr ='V', ldvr ≥ max(1, n).

lwork INTEGER. The dimension of the array work.
For real flavors:
If sense ='N'or 'E', lwork ≥ max(1, 2n) , and

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-397

if jobvl ='V' or jobvr ='V', lwork ≥ 3n ;
If sense ='V'or 'B', lwork ≥ n(n+6).
For good performance, lwork must generally be larger.

For complex flavors:
If sense ='N'or 'E', lwork ≥ max(1, 2n) ;
If sense ='V'or 'B', lwork ≥ n2+2n.
For good performance, lwork must generally be larger.

rwork REAL for cgeevx
DOUBLE PRECISION for zgeevx
Workspace array, DIMENSION at least max(1, 2n). Used
in complex flavors only.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 2n-2).
Used in real flavors only. Not referenced if sense =
'N' or 'E'.

Output Parameters

a On exit, this array is overwritten. If jobvl ='V' or
jobvr ='V', it contains the real-Schur/Schur form of
the balanced version of the input matrix A.

wr, wi REAL for sgeevx
DOUBLE PRECISION for dgeevx
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues. Complex conjugate pairs of
eigenvalues appear consecutively with the eigenvalue
having positive imaginary part first.

w COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues.

vl, vr REAL for sgeevx
DOUBLE PRECISION for dgeevx
COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.

5-398

5 Intel® Math Kernel Library Reference Manual

Arrays:
vl(ldvl,*); the second dimension of vl must be at
least max(1, n).

If jobvl ='V', the left eigenvectors u(j) are stored one
after another in the columns of vl, in the same order as
their eigenvalues. If jobvl ='N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th
column of vl. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then u(j) = vl(:,j) + i*vl(:,j+1)
and u(j+1) = vl(:,j) - i*vl(:,j+1), where i= .

For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at
least max(1, n).

If jobvr ='V', the right eigenvectors v(j) are stored one
after another in the columns of vr, in the same order as
their eigenvalues. If jobvr ='N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th
column of vr. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then v(j) = vr(:,j) + i*vr(:,j+1)
and v(j+1) = vr(:,j) - i*vr(:,j+1), where i= .

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

ilo, ihi INTEGER.
ilo and ihi are integer values determined when A was
balanced.
The balanced A(i,j) = 0 if i > j and j = 1,..., ilo-1 or
i = ihi+1,..., n.
If balanc ='N'or 'S', ilo = 1 and ihi = n.

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, n) .
Details of the permutations and scaling factors applied

1–

1–

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-399

when balancing A. If P(j) is the index of the row and
column interchanged with row and column j, and D(j) is
the scaling factor applied to row and column j, then

scale(j) = P(j), for j = 1,...,ilo-1

= D(j), for j = ilo,...,ihi

= P(j) for j = ihi+1,...,n.

The order in which the interchanges are made is n to
ihi+1, then 1 to ilo-1.

abnrm REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

The one-norm of the balanced matrix (the maximum of
the sum of absolute values of elements of any column).

rconde,rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n) each.
rconde(j) is the reciprocal condition number of the
j-th eigenvalue.

rcondv(j) is the reciprocal condition number of the
j-th right eigenvector.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors or condition numbers
have been computed; elements 1:ilo-1 and i+1:n of wr
and wi (for real flavors) or w (for complex flavors)
contain eigenvalues which have converged.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

5-400

5 Intel® Math Kernel Library Reference Manual

Singular Value Decomposition

This section describes LAPACK driver routines used for solving singular
value problems. See also computational routines that can be called to solve
these problems.
Table 5-12 lists routines described in more detail below.

?gesvd
Computes the singular value
decomposition of a general rectangular
matrix.

call sgesvd (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, info)

call dgesvd (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, info)

call cgesvd (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, info)

call zgesvd (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, info)

Discussion

This routine computes the singular value decomposition (SVD) of a
real/complex m-by-n matrix A, optionally computing the left and/or right
singular vectors. The SVD is written

A = U Σ VH

Table 5-12 Driver Routines for Singular Value Decomposition

Routine Name Operation performed

?gesvd Computes the singular value decomposition of a general rectangular matrix.

?gesdd Computes the singular value decomposition of a general rectangular matrix
using a divide and conquer method.

?ggsvd Computes the generalized singular value decomposition of a pair of general
rectangular matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-401

where Σ is an m-by-n matrix which is zero except for its min(m,n) diagonal
elements, U is an m-by-m orthogonal/unitary matrix, and V is an n-by-n
orthogonal/unitary matrix. The diagonal elements of Σ are the singular
values of A; they are real and non-negative, and are returned in descending
order. The first min(m,n) columns of U and V are the left and right singular
vectors of A.
Note that the routine returns VH, not V.

Input Parameters

jobu CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the
matrix U.

If jobu ='A', all m columns of U are returned in the
array u;
if jobu ='S', the first min(m,n) columns of U (the left
singular vectors) are returned in the array u;
if jobu ='O', the first min(m,n) columns of U (the left
singular vectors) are overwritten on the array a;
if jobu ='N', no columns of U (no left singular vectors)
are computed.

jobvt CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the
matrix VH.

If jobvt ='A', all n rows of VH are returned in the
array vt;
if jobvt ='S', the first min(m,n) rows of VH (the right
singular vectors) are returned in the array vt;
if jobvt ='O', the first min(m,n) rows of VH (the right
singular vectors) are overwritten on the array a;
if jobvt ='N', no rows of VH (no right singular vectors)
are computed.

jobvt and jobu cannot both be 'O'.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

5-402

5 Intel® Math Kernel Library Reference Manual

a, work REAL for sgesvd
DOUBLE PRECISION for dgesvd
COMPLEX for cgesvd
DOUBLE COMPLEX for zgesvd.
Arrays:
a(lda,*) is an array containing the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, m) .

ldu, ldvt INTEGER. The leading dimensions of the output arrays u
and vt, respectively. Constraints:
ldu ≥ 1 ; ldvt ≥ 1.
If jobu ='S' or 'A', ldu ≥ m ;
If jobvt ='A', ldvt ≥ n;
If jobvt ='S', ldvt ≥ min(m, n).

lwork INTEGER. The dimension of the array work; lwork ≥ 1.
Constraints:
lwork ≥ max(3*min(m,n)+max(m,n), 5*min(m,n)) (for
real flavors);
lwork ≥ 2*min(m,n)+max(m,n) (for complex flavors).
For good performance, lwork must generally be larger.

rwork REAL for cgesvd
DOUBLE PRECISION for zgesvd
Workspace array, DIMENSION at least
max(1, 5*min(m,n)). Used in complex flavors only.

Output Parameters

a On exit,
If jobu ='O', a is overwritten with the first min(m,n)
columns of U (the left singular vectors, stored
columnwise);
If jobvt ='O', a is overwritten with the first min(m,n)

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-403

rows of VH (the right singular vectors, stored rowwise);
If jobu ≠'O' and jobvt ≠'O', the contents of a are
destroyed.

s REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m,n)).
Contains the singular values of A sorted so that
s(i) ≥ s(i+1).

u, vt REAL for sgesvd
DOUBLE PRECISION for dgesvd
COMPLEX for cgesvd
DOUBLE COMPLEX for zgesvd.
Arrays:
u(ldu,*); the second dimension of u must be at least
max(1, m) if jobu ='A', and at least max(1, min(m,n)) if
jobu ='S'.

If jobu ='A', u contains the m-by-m orthogonal/unitary
matrix U.
If jobu ='S', u contains the first min(m,n) columns of
U (the left singular vectors, stored columnwise).
If jobu ='N'or 'O', u is not referenced.

vt(ldvt,*); the second dimension of vt must be at
least max(1, n).

If jobvt ='A', vt contains the n-by-n
orthogonal/unitary matrix VH.
If jobvt ='S', vt contains the first min(m,n) rows of
VH (the right singular vectors, stored rowwise).
If jobvt ='N'or 'O', vt is not referenced.

work On exit, if info = 0, then work(1) returns the required
minimal size of lwork.
For real flavors:
If info > 0, work(2:min(m,n)) contains the
unconverged superdiagonal elements of an upper
bidiagonal matrix B whose diagonal is in s (not

5-404

5 Intel® Math Kernel Library Reference Manual

necessarily sorted). B satisfies A = u * B * vt, so it has
the same singular values as A, and singular vectors
related by u and vt.

rwork On exit (for complex flavors), if info > 0,
rwork(1:min(m,n)-1) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix B
whose diagonal is in s (not necessarily sorted). B
satisfies A = u * B * vt, so it has the same singular
values as A, and singular vectors related by u and vt.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then if ?bdsqr did not converge, i
specifies how many superdiagonals of the intermediate
bidiagonal form B did not converge to zero.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-405

?gesdd
Computes the singular value
decomposition of a general rectangular
matrix using a divide and conquer
method.

call sgesdd (jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)

call dgesdd (jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)

call cgesdd (jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)

call zgesdd (jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)

Discussion

This routine computes the singular value decomposition (SVD) of a
real/complex m-by-n matrix A, optionally computing the left and/or right
singular vectors. If singular vectors are desired, it uses a divide and conquer
algorithm.
The SVD is written

A = U Σ VH

where Σ is an m-by-n matrix which is zero except for its min(m,n) diagonal
elements, U is an m-by-m orthogonal/unitary matrix, and V is an n-by-n
orthogonal/unitary matrix. The diagonal elements of Σ are the singular
values of A; they are real and non-negative, and are returned in descending
order. The first min(m,n) columns of U and V are the left and right singular
vectors of A.
Note that the routine returns VH, not V.

Input Parameters

jobz CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the
matrix U.

5-406

5 Intel® Math Kernel Library Reference Manual

If jobz ='A', all m columns of U and all n rows of VT

are returned in the arrays u and vt;
if jobz ='S', the first min(m,n) columns of U and the
first min(m,n) rows of VT are returned in the arrays u and
vt;
if jobz ='O', then

if m ≥ n, the first n columns of U are overwritten
on the array a and all rows of VT are returned in the
array vt;
if m < n, all columns of U are returned in the array u
and the first m rows of VT are overwritten in the array
vt;

if jobz ='N', no columns of U or rows of VTare
computed.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.
Arrays:
a(lda,*) is an array containing the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, m) .

ldu, ldvt INTEGER. The leading dimensions of the output arrays u
and vt, respectively. Constraints:
ldu ≥ 1 ; ldvt ≥ 1.
If jobz ='S' or 'A', or jobz ='O' and m < n,
then ldu ≥ m ;
If jobz ='A' or jobz ='O' and m ≥ n,
then ldvt ≥ n;
If jobz ='S', ldvt ≥ min(m, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-407

lwork INTEGER. The dimension of the array work; lwork ≥ 1.
See Application Notes for the suggested value of lwork.

rwork REAL for cgesdd
DOUBLE PRECISION for zgesdd
Workspace array, DIMENSION at least
max(1, 5*min(m,n)) if jobz ='N'. Otherwise, the
dimension of rwork must be at least 5*(min(m,n))2 +
7*min(m,n). This array is used in complex flavors only.

iwork INTEGER. Workspace array, DIMENSION at least
max(1, 8*min(m,n)).

Output Parameters

a On exit:
If jobz ='O', then if m ≥ n, a is overwritten with the
first n columns of U (the left singular vectors, stored
columnwise). If m < n, a is overwritten with the first m
rows of VT (the right singular vectors, stored rowwise);
If jobz ≠'O', the contents of a are destroyed.

s REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m,n)).
Contains the singular values of A sorted so that
s(i) ≥ s(i+1).

u, vt REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.
Arrays:
u(ldu,*); the second dimension of u must be at least
max(1, m) if jobz ='A'or jobz ='O' and m < n.
If jobz ='S', the second dimension of u must be at
least max(1, min(m,n)) .

If jobz ='A'or jobz ='O' and m < n, u contains the
m-by-m orthogonal/unitary matrix U.
If jobz ='S', u contains the first min(m,n) columns of

5-408

5 Intel® Math Kernel Library Reference Manual

U (the left singular vectors, stored columnwise).
If jobz ='O' and m ≥ n, or jobz ='N', u is not
referenced.

vt(ldvt,*); the second dimension of vt must be at
least max(1, n).

If jobz ='A'or jobz ='O' and m ≥ n, vt contains the
n-by-n orthogonal/unitary matrix VT.
If jobz ='S', vt contains the first min(m,n) rows of VT

(the right singular vectors, stored rowwise).
If jobz ='O' and m < n, or jobz ='N', vt is not
referenced.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then ?bdsdc did not converge, updating
process failed.

Application Notes

For real flavors:
If jobz ='N' , lwork ≥ 3*min(m,n) + max (max(m,n), 6*min(m,n));
If jobz ='O' , lwork ≥ 3*(min(m,n))2 +

max (max(m,n), 5*(min(m,n))2 + 4*min(m,n));
If jobz ='S' or 'A', lwork ≥ 3*(min(m,n))2 +

max (max(m,n), 4*(min(m,n))2 + 4*min(m,n)).

For complex flavors:
If jobz ='N' , lwork ≥ 2*min(m,n) + max(m,n) ;
If jobz ='O' , lwork ≥ 2*(min(m,n))2 + max(m,n) + 2*min(m,n);
If jobz ='S' or 'A', lwork ≥ (min(m,n))2 + max(m,n) + 2*min(m,n);

For good performance, lwork should generally be larger.
If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-409

?ggsvd
Computes the generalized singular
value decomposition of a pair of general
rectangular matrices.

call sggsvd (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, iwork, info)

call dggsvd (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, iwork, info)

call cggsvd (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)

call zggsvd (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)

Discussion

This routine computes the generalized singular value decomposition
(GSVD) of an m-by-n real/complex matrix A and p-by-n real/complex
matrix B:

UH A Q = D1*(0 R), VH B Q = D2*(0 R),
where U, V and Q are orthogonal/unitary matrices.

Let k+l = the effective numerical rank of the matrix (AH, BH)H, then R is a
(k+l)-by-(k+l) nonsingular upper triangular matrix, D1 and D2 are
m-by-(k+l) and p-by-(k+l) "diagonal" matrices and of the following
structures, respectively:

If m-k-l ≥ 0,

D1

k

l

m k– l–

I
k

0
l

0 C

0 0

=

D2
l

p l–

0
k

S
l

0 0
 =

5-410

5 Intel® Math Kernel Library Reference Manual

where

C = diag (alpha(k+1),...,alpha(k+l))
S = diag (beta(k+1),...,beta(k+l))
C2 + S2 = I

R is stored in a(1:k+l, n-k-l+1:n) on exit.

If m-k-l < 0,

where

C = diag (alpha(k+1),...,alpha(m)),
S = diag (beta(k+1),...,beta(m)),
C2 + S2 = I

n k– l– k l

0 R()
k

l

0 R11 R12

0 0 R22

=

k m k– k l m–+

D1
k

m k–

I 0 0

0 C 0
 =

k m k– k l m–+

D2

m k–

k l m–+

p l–

0 S 0

0 0 I

0 0 0

=

n k– l– k m k– k l m–+

0 R()
k

m k–

k l m–+

0 R11 R12 R13

0 0 R22 R23

0 0 0 R33

=

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-411

On exit, is stored in a(1:m, n-k-l+1:n) and R33 is stored

in b(m-k+1:l, n+m-k-l+1:n).

The routine computes C, S, R, and optionally the orthogonal/unitary
transformation matrices U, V and Q.
In particular, if B is an n-by-n nonsingular matrix, then the GSVD of A and
B implicitly gives the SVD of AB -1:

AB -1 = U (D1 D2
-1) VH.

If (AH, BH)H has orthonormal columns, then the GSVD of A and B is also
equal to the CS decomposition of A and B. Furthermore, the GSVD can be
used to derive the solution of the eigenvalue problem:

AHA x = λ BHB x.

Input Parameters

jobu CHARACTER*1. Must be 'U' or 'N'.
If jobu ='U', orthogonal/unitary matrix U is computed.
If jobu ='N', U is not computed.

jobv CHARACTER*1. Must be 'V' or 'N'.
If jobv ='V', orthogonal/unitary matrix V is computed.
If jobv ='N', V is not computed.

jobq CHARACTER*1. Must be 'Q' or 'N'.
If jobq ='Q', orthogonal/unitary matrix Q is computed.
If jobq ='N', Q is not computed.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrices A
and B (n ≥ 0).

p INTEGER. The number of rows of the matrix B (p ≥ 0).

a, b, work REAL for sggsvd
DOUBLE PRECISION for dggsvd
COMPLEX for cggsvd
DOUBLE COMPLEX for zggsvd.

R11

0

R12

R22

R13

R23

5-412

5 Intel® Math Kernel Library Reference Manual

Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

work(*) is a workspace array. The dimension of work
must be at least max(3n, m, p)+n.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

ldu INTEGER. The first dimension of the array u.
ldu ≥ max(1, m) if jobu ='U'; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the array v.
ldv ≥ max(1, p) if jobv ='V'; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the array q.
ldq ≥ max(1, n) if jobq ='Q'; ldq ≥ 1 otherwise.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cggsvd
DOUBLE PRECISION for zggsvd.
Workspace array, DIMENSION at least max(1, 2n).
Used in complex flavors only.

Output Parameters

k, l INTEGER. On exit, k and l specify the dimension of
the subblocks. The sum k+l is equal to the effective
numerical rank of (AH, BH)H.

a On exit, a contains the triangular matrix R or part of R.

b On exit, b contains part of the triangular matrix R
if m-k-l < 0.

alpha, beta REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1,n) each.
Contain the generalized singular value pairs of A and B:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-413

alpha(1:k) = 1,
beta(1:k) = 0,

and if m-k-l ≥ 0,
alpha(k+1:k+l) = C,
beta(k+1:k+l) = S,

or if m-k-l < 0,
alpha(k+1:m)= C, alpha(m+1:k+l)= 0
beta(k+1:m) = S, beta(m+1:k+l) = 1

and
alpha(k+l+1:n) = 0
beta(k+l+1:n) = 0.

u, v, q REAL for sggsvd
DOUBLE PRECISION for dggsvd
COMPLEX for cggsvd
DOUBLE COMPLEX for zggsvd.
Arrays:
u(ldu,*); the second dimension of u must be at least
max(1, m).
If jobu ='U', u contains the m-by-m orthogonal/unitary
matrix U.
If jobu ='N', u is not referenced.
v(ldv,*); the second dimension of v must be at least
max(1, p).
If jobv ='V', v contains the p-by-p orthogonal/unitary
matrix V.
If jobv ='N', v is not referenced.
q(ldq,*); the second dimension of q must be at least
max(1, n).
If jobq ='Q', q contains the n-by-n orthogonal/unitary
matrix Q.
If jobq ='N', q is not referenced.

iwork On exit, iwork stores the sorting information.

5-414

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine ?tgsja.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-415

Generalized Symmetric Definite Eigenproblems

This section describes LAPACK driver routines used for solving
generalized symmetric definite eigenproblems. See also computational
routines that can be called to solve these problems.
Table 5-13 lists routines described in more detail below.

Table 5-13 Driver Routines for Solving Generalized Symmetric Definite
Eigenproblems

Routine Name Operation performed

?sygv /?hegv Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem.

?sygvd/?hegvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem. If eigenvectors are
desired, it uses a divide and conquer method.

?sygvx /?hegvx Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem.

?spgv/?hpgv Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with matrices in
packed storage.

?spgvd /?hpgvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with matrices in
packed storage. If eigenvectors are desired, it uses a divide and conquer
method.

?spgvx/?hpgvx Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem with
matrices in packed storage.

?sbgv /?hbgv Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with banded
matrices.

?sbgvd/?hbgvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with banded
matrices. If eigenvectors are desired, it uses a divide and conquer method.

?sbgvx/?hbgvx Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem with
banded matrices.

5-416

5 Intel® Math Kernel Library Reference Manual

?sygv
Computes all eigenvalues and,
optionally, eigenvectors of a real
generalized symmetric definite
eigenproblem.

call ssygv (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, info)

call dsygv (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric and B is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles
of A and B;
If uplo = 'L', arrays a and b store the lower triangles
of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-417

a, b, work REAL for ssygv
DOUBLE PRECISION for dsygv.
Arrays:
a(lda,*) contains the upper or lower triangle of the
symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the
symmetric positive definite matrix B, as specified by
uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work;
lwork ≥ max(1, 3n-1).
See Application Notes for the suggested value of lwork.

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are
normalized as follows:
if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo =
'U') or the lower triangle (if uplo = 'L') of A,
including the diagonal, is destroyed.

b On exit, if info ≤n, the part of b containing the matrix
is overwritten by the triangular factor U or L from the
Cholesky factorization B = UTU or B = L LT.

w REAL for ssygv
DOUBLE PRECISION for dsygv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

5-418

5 Intel® Math Kernel Library Reference Manual

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyev/dsyev

returned an error code:

If info = i ≤n, ssyev/dsyev failed to converge,
and i off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

For optimum performance use lwork ≥ (nb+2)*n, where nb is the
blocksize for ssytrd/dsytrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-419

?hegv
Computes all eigenvalues and,
optionally, eigenvectors of a complex
generalized Hermitian definite
eigenproblem.

call chegv (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, info)

call zhegv (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be Hermitian and B is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles
of A and B;
If uplo = 'L', arrays a and b store the lower triangles
of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

5-420

5 Intel® Math Kernel Library Reference Manual

a, b, work COMPLEX for chegv
DOUBLE COMPLEX for zhegv.
Arrays:
a(lda,*) contains the upper or lower triangle of the
Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the
Hermitian positive definite matrix B, as specified by
uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work;
lwork ≥ max(1, 2n-1).
See Application Notes for the suggested value of lwork.

rwork REAL for chegv
DOUBLE PRECISION for zhegv.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are
normalized as follows:
if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo =
'U') or the lower triangle (if uplo = 'L') of A,
including the diagonal, is destroyed.

b On exit, if info ≤n, the part of b containing the matrix
is overwritten by the triangular factor U or L from the
Cholesky factorization B = UHU or B = L LH.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-421

w REAL for chegv
DOUBLE PRECISION for zhegv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheev/zheev

returned an error code:

If info = i ≤n, cheev/zheev failed to converge,
and i off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the
blocksize for chetrd/zhetrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

5-422

5 Intel® Math Kernel Library Reference Manual

?sygvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized
symmetric definite eigenproblem. If
eigenvectors are desired, it uses a divide
and conquer method.

call ssygvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, iwork, liwork, info)

call dsygvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric and B is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-423

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles
of A and B;
If uplo = 'L', arrays a and b store the lower triangles
of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, work REAL for ssygvd
DOUBLE PRECISION for dsygvd.
Arrays:
a(lda,*) contains the upper or lower triangle of the
symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the
symmetric positive definite matrix B, as specified by
uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ 2n+1;
If jobz ='V'and n>1, lwork ≥ 2n2+6n+1 .

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

5-424

5 Intel® Math Kernel Library Reference Manual

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are
normalized as follows:
if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo =
'U') or the lower triangle (if uplo = 'L') of A,
including the diagonal, is destroyed.

b On exit, if info ≤n, the part of b containing the matrix
is overwritten by the triangular factor U or L from the
Cholesky factorization B = UTU or B = L LT.

w REAL for ssygvd
DOUBLE PRECISION for dsygvd.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyev/dsyev

returned an error code:

If info = i ≤n, ssyev/dsyev failed to converge,
and i off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-425

?hegvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized
Hermitian definite eigenproblem. If
eigenvectors are desired, it uses a divide
and conquer method.

call chegvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, lrwork, iwork, liwork, info)

call zhegvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, lrwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be Hermitian and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

5-426

5 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles
of A and B;
If uplo = 'L', arrays a and b store the lower triangles
of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, work COMPLEX for chegvd
DOUBLE COMPLEX for zhegvd.
Arrays:
a(lda,*) contains the upper or lower triangle of the
Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the
Hermitian positive definite matrix B, as specified by
uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ n+1;
If jobz ='V'and n>1, lwork ≥ n2+2n .

rwork REAL for chegvd
DOUBLE PRECISION for zhegvd.
Workspace array, DIMENSION (lrwork).

lrwork INTEGER. The dimension of the array rwork.
Constraints:
If n ≤1, lrwork ≥ 1;
If jobz ='N'and n>1, lrwork ≥ n;
If jobz ='V'and n>1, lrwork ≥ 2n2+5n+1 .

iwork INTEGER.
Workspace array, DIMENSION (liwork). .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-427

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are
normalized as follows:
if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo =
'U') or the lower triangle (if uplo = 'L') of A,
including the diagonal, is destroyed.

b On exit, if info ≤n, the part of b containing the matrix
is overwritten by the triangular factor U or L from the
Cholesky factorization B = UHU or B = L LH.

w REAL for chegvd
DOUBLE PRECISION for zhegvd.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the
required minimal size of lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheev/zheev

returned an error code:

5-428

5 Intel® Math Kernel Library Reference Manual

If info = i ≤n, cheev/zheev failed to converge,
and i off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-429

?sygvx
Computes selected eigenvalues and,
optionally, eigenvectors of a real
generalized symmetric definite
eigenproblem.

call ssygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il,
iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)

call dsygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il,
iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

5-430

5 Intel® Math Kernel Library Reference Manual

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles
of A and B;
If uplo = 'L', arrays a and b store the lower triangles
of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, work REAL for ssygvx
DOUBLE PRECISION for dsygvx.
Arrays:
a(lda,*) contains the upper or lower triangle of the
symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the
symmetric positive definite matrix B, as specified by
uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

vl, vu REAL for ssygvx
DOUBLE PRECISION for dsygvx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-431

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for ssygvx
DOUBLE PRECISION for dsygvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
ldz ≥ 1; if jobz ='V', ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work;
lwork ≥ max(1, 8n).
See Application Notes for the suggested value of lwork.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

a On exit, the upper triangle (if uplo = 'U') or the lower
triangle (if uplo = 'L') of A, including the diagonal, is
overwritten.

b On exit, if info ≤n, the part of b containing the matrix
is overwritten by the triangular factor U or L from the
Cholesky factorization B = UTU or B = L LT.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z REAL for ssygvx
DOUBLE PRECISION for dsygvx.
Arrays:

5-432

5 Intel® Math Kernel Library Reference Manual

w(*), DIMENSION at least max(1, n) .
The first m elements of w contain the selected
eigenvalues in ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, m).
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). The eigenvectors are normalized as follows:

if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N', then z is not referenced.
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

ifail INTEGER.
Array, DIMENSION at least max(1, n).

If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyevx/dsyevx

returned an error code:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-433

If info = i ≤n, ssyevx/dsyevx failed to
converge, and i eigenvectors failed to converge. Their
indices are stored in the array ifail;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||T||1 will be used in its place, where T
is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

For optimum performance use lwork ≥ (nb+3)*n, where nb is the
blocksize for ssytrd/dsytrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

5-434

5 Intel® Math Kernel Library Reference Manual

?hegvx
Computes selected eigenvalues and,
optionally, eigenvectors of a complex
generalized Hermitian definite
eigenproblem.

call chegvx (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu,
il, iu, abstol, m, w, z, ldz, work, lwork, rwork,
iwork, ifail, info)

call zhegvx (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu,
il, iu, abstol, m, w, z, ldz, work, lwork, rwork,
iwork, ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be Hermitian and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-435

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles
of A and B;
If uplo = 'L', arrays a and b store the lower triangles
of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, work COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx.
Arrays:
a(lda,*) contains the upper or lower triangle of the
Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the
Hermitian positive definite matrix B, as specified by
uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

vl, vu REAL for chegvx
DOUBLE PRECISION for zhegvx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

5-436

5 Intel® Math Kernel Library Reference Manual

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chegvx
DOUBLE PRECISION for zhegvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
ldz ≥ 1; if jobz ='V', ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work;
lwork ≥ max(1, 2n-1).
See Application Notes for the suggested value of lwork.

rwork REAL for chegvx
DOUBLE PRECISION for zhegvx.
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

a On exit, the upper triangle (if uplo = 'U') or the lower
triangle (if uplo = 'L') of A, including the diagonal, is
overwritten.

b On exit, if info ≤n, the part of b containing the matrix
is overwritten by the triangular factor U or L from the
Cholesky factorization B = UHU or B = L LH.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-437

w REAL for chegvx
DOUBLE PRECISION for zhegvx.
Array, DIMENSION at least max(1, n) .
The first m elements of w contain the selected
eigenvalues in ascending order.

z COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx.
Array z(ldz,*) . The second dimension ofzmust be at
least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). The eigenvectors are normalized as follows:

if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N', then z is not referenced.
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

ifail INTEGER.
Array, DIMENSION at least max(1, n).

If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

5-438

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheevx/zheevx

returned an error code:

If info = i ≤n, cheevx/zheevx failed to
converge, and i eigenvectors failed to converge. Their
indices are stored in the array ifail;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||T||1 will be used in its place, where T
is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

For optimum performance use lwork ≥ (nb+1)*n, where nb is the
blocksize for chetrd/zhetrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-439

?spgv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized
symmetric definite eigenproblem with
matrices in packed storage.

call sspgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)

call dspgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric, stored in packed format, and B
is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper
triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

5-440

5 Intel® Math Kernel Library Reference Manual

ap, bp, work REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
ap(*) contains the packed upper or lower triangle of
the symmetric matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of
the symmetric matrix B, as specified by uplo. The
dimension of bp must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least
max(1, 3n).

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the
Cholesky factorization B = UTU or B = L LT, in the same
storage format as B.

w, z REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z
of eigenvectors. The eigenvectors are normalized as
follows:

if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N', then z is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-441

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spptrf/dpptrf and sspev/dspev

returned an error code:

If info = i ≤n, sspev/dspev failed to converge,
and i off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

5-442

5 Intel® Math Kernel Library Reference Manual

?hpgv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized
Hermitian definite eigenproblem with
matrices in packed storage.

call chpgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork,
info)

call zhpgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork,
info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be Hermitian, stored in packed format, and B
is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper
triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower
triangles of A and B.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-443

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp, work COMPLEX for chpgv
DOUBLE COMPLEX for zhpgv.
Arrays:
ap(*) contains the packed upper or lower triangle of
the Hermitian matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of
the Hermitian matrix B, as specified by uplo. The
dimension of bp must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least
max(1, 2n-1).

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

rwork REAL for chpgv
DOUBLE PRECISION for zhpgv.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the
Cholesky factorization B = UHU or B = L LH, in the
same storage format as B.

w REAL for chpgv
DOUBLE PRECISION for zhpgv.
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chpgv
DOUBLE COMPLEX for zhpgv.
Array z(ldz,*) . The second dimension ofzmust be at
least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z
of eigenvectors. The eigenvectors are normalized as

5-444

5 Intel® Math Kernel Library Reference Manual

follows:
if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N', then z is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpev/zhpev

returned an error code:

If info = i ≤n, chpev/zhpev failed to converge,
and i off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-445

?spgvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem with matrices in packed
storage. If eigenvectors are desired, it uses a
divide and conquer method.

call sspgvd (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
iwork, liwork, info)

call dspgvd (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric, stored in packed format, and B
is also positive definite. If eigenvectors are desired, it uses a divide and
conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

5-446

5 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper
triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp, work REAL for sspgvd
DOUBLE PRECISION for dspgvd.
Arrays:
ap(*) contains the packed upper or lower triangle of
the symmetric matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of
the symmetric matrix B, as specified by uplo. The
dimension of bp must be at least max(1, n*(n+1)/2).

work(lwork) is a workspace array.

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ 2n;
If jobz ='V'and n>1, lwork ≥ 2n2+6n+1 .

iwork INTEGER.
Workspace array, DIMENSION (liwork). .

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

Output Parameters

ap On exit, the contents of ap are overwritten.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-447

bp On exit, contains the triangular factor U or L from the
Cholesky factorization B = UTU or B = L LT, in the same
storage format as B.

w, z REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z
of eigenvectors. The eigenvectors are normalized as
follows:

if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spptrf/dpptrf and sspevd/dspevd

returned an error code:

If info = i ≤n, sspevd/dspevd failed to
converge, and i off-diagonal elements of an
intermediate tridiagonal did not converge to zero;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

5-448

5 Intel® Math Kernel Library Reference Manual

?hpgvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized
Hermitian definite eigenproblem with
matrices in packed storage. If eigenvectors
are desired, it uses a divide and conquer
method.

call chpgvd (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

call zhpgvd (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be Hermitian, stored in packed format, and B
is also positive definite. If eigenvectors are desired, it uses a divide and
conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-449

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper
triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp, work COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Arrays:
ap(*) contains the packed upper or lower triangle of
the Hermitian matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of
the Hermitian matrix B, as specified by uplo. The
dimension of bp must be at least max(1, n*(n+1)/2).

work(lwork) is a workspace array.

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ n;
If jobz ='V'and n>1, lwork ≥ 2n .

rwork REAL for chpgvd
DOUBLE PRECISION for zhpgvd.
Workspace array, DIMENSION (lrwork).

lrwork INTEGER. The dimension of the array rwork.
Constraints:
If n ≤1, lrwork ≥ 1;
If jobz ='N'and n>1, lrwork ≥ n;
If jobz ='V'and n>1, lrwork ≥ 2n2+5n+1 .

iwork INTEGER.
Workspace array, DIMENSION (liwork). .

5-450

5 Intel® Math Kernel Library Reference Manual

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the
Cholesky factorization B = UHU or B = L LH, in the
same storage format as B.

w REAL for chpgvd
DOUBLE PRECISION for zhpgvd.
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Array z(ldz,*) . The second dimension ofzmust be at
least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z
of eigenvectors. The eigenvectors are normalized as
follows:

if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the
required minimal size of lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-451

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevd/zhpevd

returned an error code:

If info = i ≤n, chpevd/zhpevd failed to
converge, and i off-diagonal elements of an
intermediate tridiagonal did not converge to zero;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

5-452

5 Intel® Math Kernel Library Reference Manual

?spgvx
Computes selected eigenvalues and,
optionally, eigenvectors of a real generalized
symmetric definite eigenproblem with
matrices in packed storage.

call sspgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, iwork, ifail, info)

call dspgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric, stored in packed format, and B
is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-453

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper
triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp, work REAL for sspgvx
DOUBLE PRECISION for dspgvx.
Arrays:
ap(*) contains the packed upper or lower triangle of
the symmetric matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of
the symmetric matrix B, as specified by uplo. The
dimension of bp must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least
max(1, 8n).

vl, vu REAL for sspgvx
DOUBLE PRECISION for dspgvx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

5-454

5 Intel® Math Kernel Library Reference Manual

abstol REAL for sspgvx
DOUBLE PRECISION for dspgvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
ldz ≥ 1; if jobz ='V', ldz ≥ max(1, n) .

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the
Cholesky factorization B = UTU or B = L LT, in the same
storage format as B.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z REAL for sspgvx
DOUBLE PRECISION for dspgvx.
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, n).
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). The eigenvectors are normalized as follows:

if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N', then z is not referenced.
If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-455

the index of the eigenvector is returned in ifail.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

ifail INTEGER.
Array, DIMENSION at least max(1, n).

If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spptrf/dpptrf and sspevx/dspevx

returned an error code:

If info = i ≤n, sspevx/dspevx failed to
converge, and i eigenvectors failed to converge. Their
indices are stored in the array ifail;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||T||1 will be used in its place, where T
is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

5-456

5 Intel® Math Kernel Library Reference Manual

?hpgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a generalized Hermitian definite
eigenproblem with matrices in packed storage.

call chpgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhpgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx = λ x, or B Ax = λ x .
Here A and B are assumed to be Hermitian, stored in packed format, and B
is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-457

If range ='I', the routine computes eigenvalues with
indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper
triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp, work COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx.
Arrays:
ap(*) contains the packed upper or lower triangle of
the Hermitian matrix A, as specified by uplo. The
dimension of ap must be at least max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of
the Hermitian matrix B, as specified by uplo. The
dimension of bp must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least
max(1, 2n).

vl, vu REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
The absolute error tolerance for the eigenvalues.

5-458

5 Intel® Math Kernel Library Reference Manual

See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

rwork REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the
Cholesky factorization B = UHU or B = L LH, in the
same storage format as B.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx.
Array z(ldz,*) . The second dimension of zmust be at
least max(1, n).
If jobz ='V', then if info = 0, the first m columns of z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of z holding the eigenvector associated with
w(i). The eigenvectors are normalized as follows:

if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N', then z is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-459

If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail.
Note: you must ensure that at least max(1,m) columns
are supplied in the array z ; if range ='V', the exact
value of m is not known in advance and an upper bound
must be used.

ifail INTEGER.
Array, DIMENSION at least max(1, n).

If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevx/zhpevx

returned an error code:

If info = i ≤n, chpevx/zhpevx failed to
converge, and i eigenvectors failed to converge. Their
indices are stored in the array ifail;
If info = n + i, for 1 ≤i ≤n, then the leading minor
of order i of B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||T||1 will be used in its place, where T
is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

5-460

5 Intel® Math Kernel Library Reference Manual

?sbgv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized
symmetric definite eigenproblem with
banded matrices.

call ssbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, info)

call dsbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of the form
Ax = λ Bx . Here A and B are assumed to be symmetric and banded, and B

is also positive definite.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper
triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-461

ab,bb,work REAL for ssbgv
DOUBLE PRECISION for dsbgv
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the symmetric matrix A (as
specified by uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).

bb (ldbb,*) is an array containing either upper or
lower triangular part of the symmetric matrix B (as
specified by uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).
work(*) is a workspace array, DIMENSION at least
max(1, 3n)

ldab INTEGER. The first dimension of the array ab; must be
at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be
at least kb+1.

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky
factorization B = STS , as returned by spbstf/dpbstf.

w, z REAL for ssbgv
DOUBLE PRECISION for dsbgv
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z
of eigenvectors , with the i-th column of z holding the

5-462

5 Intel® Math Kernel Library Reference Manual

eigenvector associated with w(i). The eigenvectors are
normalized so that ZTB Z = I.
If jobz ='N', then z is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤n, the algorithm failed to converge, and i

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i, for 1 ≤i ≤n, then spbstf/dpbstf

returned info = i and B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-463

?hbgv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized
Hermitian definite eigenproblem with
banded matrices.

call chbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, rwork, info)

call zhbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, rwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite banded eigenproblem, of the
form Ax = λ Bx . Here A and B are assumed to be Hermitian and banded,
and B is also positive definite.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper
triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

5-464

5 Intel® Math Kernel Library Reference Manual

ab,bb,work COMPLEX for chbgv
DOUBLE COMPLEX for zhbgv
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the Hermitian matrix A (as
specified by uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).

bb (ldbb,*) is an array containing either upper or
lower triangular part of the Hermitian matrix B (as
specified by uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).
work(*) is a workspace array, DIMENSION at least
max(1, n) .

ldab INTEGER. The first dimension of the array ab; must be
at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be
at least kb+1.

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

rwork REAL for chbgv
DOUBLE PRECISION for zhbgv.
Workspace array, DIMENSION at least max(1, 3n).

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky
factorization B = SHS , as returned by cpbstf/zpbstf.

w REAL for chbgv
DOUBLE PRECISION for zhbgv.
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-465

z COMPLEX for chbgv
DOUBLE COMPLEX for zhbgv
Array z(ldz,*) . The second dimension of z must be
at least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z
of eigenvectors , with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are
normalized so that ZHB Z = I.
If jobz ='N', then z is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤n, the algorithm failed to converge, and i

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i, for 1 ≤i ≤n, then cpbstf/zpbstf

returned info = i and B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

5-466

5 Intel® Math Kernel Library Reference Manual

?sbgvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem with banded matrices.
If eigenvectors are desired, it uses a divide
and conquer method.

call ssbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, iwork, liwork, info)

call dsbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of the form
Ax = λ Bx . Here A and B are assumed to be symmetric and banded, and B

is also positive definite. If eigenvectors are desired, it uses a divide and
conquer algorithm.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper
triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-467

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

ab,bb,work REAL for ssbgvd
DOUBLE PRECISION for dsbgvd
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the symmetric matrix A (as
specified by uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).

bb (ldbb,*) is an array containing either upper or
lower triangular part of the symmetric matrix B (as
specified by uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).

work(lwork) is a workspace array.

ldab INTEGER. The first dimension of the array ab; must be
at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be
at least kb+1.

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ 3n;
If jobz ='V'and n>1, lwork ≥ 2n2+5n+1 .

iwork INTEGER.
Workspace array, DIMENSION (liwork). .

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

5-468

5 Intel® Math Kernel Library Reference Manual

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky
factorization B = STS , as returned by spbstf/dpbstf.

w, z REAL for ssbgvd
DOUBLE PRECISION for dsbgvd
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z
of eigenvectors , with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are
normalized so that ZTB Z = I.
If jobz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤n, the algorithm failed to converge, and i

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i, for 1 ≤i ≤n, then spbstf/dpbstf

returned info = i and B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-469

?hbgvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized
Hermitian definite eigenproblem with banded
matrices. If eigenvectors are desired, it uses a
divide and conquer method.

call chbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, rwork, lrwork, iwork, liwork, info)

call zhbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, rwork, lrwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite banded eigenproblem, of the
form Ax = λ Bx . Here A and B are assumed to be Hermitian and banded,
and B is also positive definite. If eigenvectors are desired, it uses a divide
and conquer algorithm.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper
triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

5-470

5 Intel® Math Kernel Library Reference Manual

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

ab,bb,work COMPLEX for chbgvd
DOUBLE COMPLEX for zhbgvd
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the Hermitian matrix A (as
specified by uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).

bb (ldbb,*) is an array containing either upper or
lower triangular part of the Hermitian matrix B (as
specified by uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).

work(lwork) is a workspace array.

ldab INTEGER. The first dimension of the array ab; must be
at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be
at least kb+1.

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ n;
If jobz ='V'and n>1, lwork ≥ 2n2 .

rwork REAL for chbgvd
DOUBLE PRECISION for zhbgvd.
Workspace array, DIMENSION (lrwork).

lrwork INTEGER. The dimension of the array rwork.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-471

Constraints:
If n ≤1, lrwork ≥ 1;
If jobz ='N'and n>1, lrwork ≥ n;
If jobz ='V'and n>1, lrwork ≥ 2n2+5n +1 .

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3 .

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky
factorization B = SHS , as returned by cpbstf/zpbstf.

w REAL for chbgvd
DOUBLE PRECISION for zhbgvd.
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chbgvd
DOUBLE COMPLEX for zhbgvd
Array z(ldz,*) . The second dimension of z must be
at least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z
of eigenvectors , with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are
normalized so that ZHB Z = I.
If jobz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the
required minimal size of lrwork.

5-472

5 Intel® Math Kernel Library Reference Manual

iwork(1) On exit, if info = 0, then iwork(1) returns the
required minimal size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤n, the algorithm failed to converge, and i

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i, for 1 ≤i ≤n, then cpbstf/zpbstf

returned info = i and B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-473

?sbgvx
Computes selected eigenvalues and,
optionally, eigenvectors of a real
generalized symmetric definite
eigenproblem with banded matrices.

call ssbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)

call dsbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of the form
Ax = λ Bx . Here A and B are assumed to be symmetric and banded, and B is
also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all
eigenvalues, a range of values or a range of indices for the desired
eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.

5-474

5 Intel® Math Kernel Library Reference Manual

If uplo = 'U', arrays ab and bb store the upper
triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

ab,bb,work REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the symmetric matrix A (as
specified by uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).

bb (ldbb,*) is an array containing either upper or
lower triangular part of the symmetric matrix B (as
specified by uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).

work(*) is a workspace array, DIMENSION at least
max(1, 7n).

ldab INTEGER. The first dimension of the array ab; must be
at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be
at least kb+1.

vl, vu REAL for ssbgvx
DOUBLE PRECISION for dsbgvx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-475

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for ssbgvx
DOUBLE PRECISION for dsbgvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

ldq INTEGER. The leading dimension of the output array q;
ldq ≥ 1. If jobz ='V', ldq ≥ max(1, n) .

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky
factorization B = STS , as returned by spbstf/dpbstf.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z, q REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension of z must be at least
max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z
of eigenvectors , with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are

5-476

5 Intel® Math Kernel Library Reference Manual

normalized so that ZTB Z = I.
If jobz ='N', then z is not referenced.
q(ldq,*) . The second dimension of q must be at least
max(1, n).
If jobz ='V', then q contains the n-by-n matrix used in
the reduction of Ax = λ Bx to standard form, that is,
Cx = λ x and consequently C to tridiagonal form.
If jobz ='N', then q is not referenced.

ifail INTEGER.
Array, DIMENSION at least max(1, n).

If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤n, the algorithm failed to converge, and i

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i, for 1 ≤i ≤n, then spbstf/dpbstf

returned info = i and B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||T||1 will be used in its place, where T
is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-477

?hbgvx
Computes selected eigenvalues and,
optionally, eigenvectors of a complex
generalized Hermitian definite
eigenproblem with banded matrices.

call chbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,
iwork, ifail, info)

call zhbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,
iwork, ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite banded eigenproblem, of the
form Ax = λ Bx . Here A and B are assumed to be Hermitian and banded,
and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all
eigenvalues, a range of values or a range of indices for the desired
eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λ i in
the half-open interval: vl< λi ≤vu.
If range ='I', the routine computes eigenvalues with
indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.

5-478

5 Intel® Math Kernel Library Reference Manual

If uplo = 'U', arrays ab and bb store the upper
triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower
triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

ab,bb,work COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
ab (ldab,*) is an array containing either upper or
lower triangular part of the Hermitian matrix A (as
specified by uplo) in band storage format.
The second dimension of the array ab must be at least
max(1, n).

bb (ldbb,*) is an array containing either upper or
lower triangular part of the Hermitian matrix B (as
specified by uplo) in band storage format.
The second dimension of the array bb must be at least
max(1, n).

work(*) is a workspace array, DIMENSION at least
max(1, n).

ldab INTEGER. The first dimension of the array ab; must be
at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be
at least kb+1.

vl, vu REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-479

il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il ≤iu ≤n, if n >0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z;
ldz ≥ 1. If jobz ='V', ldz ≥ max(1, n) .

ldq INTEGER. The leading dimension of the output array q;
ldq ≥ 1. If jobz ='V', ldq ≥ max(1, n) .

rwork REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky
factorization B = SHS , as returned by cpbstf/zpbstf.

m INTEGER. The total number of eigenvalues found,
0 ≤m ≤n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Array w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z, q COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:

5-480

5 Intel® Math Kernel Library Reference Manual

z(ldz,*) . The second dimension of z must be at least
max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z
of eigenvectors , with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are
normalized so that ZHB Z = I.
If jobz ='N', then z is not referenced.
q(ldq,*) . The second dimension of q must be at least
max(1, n).
If jobz ='V', then q contains the n-by-n matrix used in
the reduction of Ax = λ Bx to standard form, that is,
Cx = λ x and consequently C to tridiagonal form.
If jobz ='N', then q is not referenced.

ifail INTEGER.
Array, DIMENSION at least max(1, n).

If jobz ='V', then if info = 0, the first m elements of
ifail are zero; if info > 0, the ifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤n, the algorithm failed to converge, and i

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i, for 1 ≤i ≤n, then cpbstf/zpbstf

returned info = i and B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol
is less than or equal to zero, then ε*||T||1 will be used in its place, where T

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-481

is the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice
the underflow threshold 2*?lamch('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2*?lamch('S').

5-482

5 Intel® Math Kernel Library Reference Manual

Generalized Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving
generalized nonsymmetric eigenproblems. See also computational routines
that can be called to solve these problems.
Table 5-14 lists routines described in more detail below.

?gges
Computes the generalized eigenvalues,
Schur form, and the left and/or right
Schur vectors for a pair of
nonsymmetric matrices.

call sgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work,
lwork, bwork, info)

call dgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work,
lwork, bwork, info)

call cgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork,
bwork, info)

Table 5-14 Driver Routines for Solving Generalized Nonsymmetric
Eigenproblems

Routine Name Operation performed

?gges Computes the generalized eigenvalues, Schur form, and the left and/or right
Schur vectors for a pair of nonsymmetric matrices.

?ggesx Computes the generalized eigenvalues, Schur form, and, optionally, the left
and/or right matrices of Schur vectors .

?ggev Computes the generalized eigenvalues, and the left and/or right
generalized eigenvectors for a pair of nonsymmetric matrices.

?ggevx Computes the generalized eigenvalues, and, optionally, the left and/or right
generalized eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-483

call zgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork,
bwork, info)

Discussion

This routine computes for a pair of n-by-n real/complex nonsymmetric
matrices (A,B), the generalized eigenvalues, the generalized real/complex
Schur form (S,T), optionally, the left and/or right matrices of Schur vectors
(vsl and vsr). This gives the generalized Schur factorization

(A,B) = (vsl*S *vsrH, vsl*T*vsrH)

Optionally, it also orders the eigenvalues so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix S and the upper triangular matrix T. The leading
columns of vsl and vsr then form an orthonormal/unitary basis for the
corresponding left and right eigenspaces (deflating subspaces).
(If only the generalized eigenvalues are needed, use the driver ?ggev
instead, which is faster.)
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio
alpha / beta = w, such that A - w*B is singular. It is usually represented as
the pair (alpha, beta), as there is a reasonable interpretation for beta=0 or
for both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is upper
triangular with non-negative diagonal and S is block upper triangular with
1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized
eigenvalues, while 2-by-2 blocks of S will be “standardized" by making the
corresponding elements of T have the form:

and the pair of corresponding 2-by-2 blocks in S and T will have a complex
conjugate pair of generalized eigenvalues.
A pair of matrices (S,T) is in generalized complex Schur form if S and T are
upper triangular and, in addition, the diagonal of T are non-negative real
numbers.

a

0

0

b

5-484

5 Intel® Math Kernel Library Reference Manual

Input Parameters

jobvsl CHARACTER*1. Must be 'N' or 'V'.
If jobvsl ='N', then the left Schur vectors are not
computed.
If jobvsl ='V', then the left Schur vectors are
computed.

jobvsr CHARACTER*1. Must be 'N' or 'V'.
If jobvsr ='N', then the right Schur vectors are not
computed.
If jobvsr ='V', then the right Schur vectors are
computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.

If sort ='N', then eigenvalues are not ordered.
If sort ='S', eigenvalues are ordered (see selctg).

selctg LOGICAL FUNCTION of three REAL arguments
for real flavors.
LOGICAL FUNCTION of two COMPLEX arguments
for complex flavors.

selctg must be declared EXTERNAL in the calling
subroutine.
If sort ='S', selctg is used to select eigenvalues to
sort to the top left of the Schur form.
If sort ='N', selctg is not referenced.

For real flavors:
An eigenvalue (alphar(j) + alphai(j))/beta(j) is
selected if selctg(alphar(j), alphai(j), beta(j)) is
true; that is, if either one of a complex conjugate pair of
eigenvalues is selected, then both complex eigenvalues
are selected.
Note that in the ill-conditioned case, a selected complex
eigenvalue may no longer satisfy
selctg(alphar(j), alphai(j), beta(j)) = .TRUE.

after ordering. In this case info is set to n+2 .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-485

For complex flavors:
An eigenvalue alpha(j) / beta(j) is selected if
selctg(alpha(j), beta(j)) is true.
Note that a selected complex eigenvalue may no longer
satisfy selctg(alpha(j), beta(j)) = .TRUE. after
ordering, since ordering may change the value of
complex eigenvalues (especially if the eigenvalue is
ill-conditioned); in this case info is set to n+2 (see
info below).

n INTEGER. The order of the matrices A, B, vsl, and vsr
(n ≥ 0).

a, b, work REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A
(first of the pair of matrices).
The second dimension of a must be at least max(1, n).

b(ldb,*) is an array containing the n-by-n matrix B
(second of the pair of matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

ldb INTEGER. The first dimension of the array b.
Must be at least max(1, n) .

ldvsl,ldvsr INTEGER. The first dimensions of the output matrices
vsl and vsr, respectively. Constraints:
ldvsl ≥ 1. If jobvsl ='V', ldvsl ≥ max(1, n) .
ldvsr ≥ 1. If jobvsr ='V', ldvsr ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.

5-486

5 Intel® Math Kernel Library Reference Manual

lwork ≥ max(1, 8n+16) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.
For good performance, lwork must generally be larger.

rwork REAL for cgges
DOUBLE PRECISION for zgges
Workspace array, DIMENSION at least max(1, 8n).
This array is used in complex flavors only.

bwork LOGICAL.
Workspace array, DIMENSION at least max(1, n).
Not referenced if sort ='N'.

Output Parameters

a On exit, this array has been overwritten by its
generalized Schur form S .

b On exit, this array has been overwritten by its
generalized Schur form T .

sdim INTEGER.
If sort ='N', sdim= 0.
If sort ='S', sdim is equal to the number of
eigenvalues (after sorting) for which selctg is true.
Note that for real flavors complex conjugate pairs for
which selctg is true for either eigenvalue count as 2.

alphar,alphai REAL for sgges;
DOUBLE PRECISION for dgges.
Arrays, DIMENSION at least max(1,n) each. Contain
values that form generalized eigenvalues in real flavors.
See beta.

alpha COMPLEX for cgges;
DOUBLE COMPLEX for zgges.
Array, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in complex flavors.
See beta.

beta REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-487

DOUBLE COMPLEX for zgges.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n,
will be the generalized eigenvalues.
alphar(j) + alphai(j)*i and beta(j), j=1,...,n are the
diagonals of the complex Schur form (S,T) that would
result if the 2-by-2 diagonal blocks of the real
generalized Schur form of (A,B) were further reduced to
triangular form using complex unitary transformations.
If alphai(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the
generalized eigenvalues. alpha(j), j=1,...,n, and
beta(j), j=1,...,n, are the diagonals of the complex
Schur form (S,T) output by cgges/zgges. The beta(j)
will be non-negative real.

See also Application Notes below.

vsl, vsr REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Arrays:
vsl(ldvsl,*), the second dimension of vsl must be
at least max(1, n).
If jobvsl ='V', this array will contain the left Schur
vectors.
If jobvsl ='N', vsl is not referenced.

vsr(ldvsr,*), the second dimension of vsr must be
at least max(1, n).
If jobvsr ='V', this array will contain the right Schur
vectors.
If jobvsr ='N', vsr is not referenced.

5-488

5 Intel® Math Kernel Library Reference Manual

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤n :

the QZ iteration failed. (A,B) is not in Schur form, but
alphar(j), alphai(j) (for real flavors), or alpha(j) (for
complex flavors), and beta(j), j=info+1,...,n should be
correct.

i >n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

i = n+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading eigenvalues
in the generalized Schur form no longer satisfy
selctg = .TRUE.. This could also be caused due to
scaling;

i = n+3: reordering failed in ?tgsen.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over-
or underflow, and beta(j) may even be zero. Thus, you should avoid simply
computing the ratio. However, alphar and alphai will be always less than
and usually comparable with norm(A) in magnitude, and beta always less
than and usually comparable with norm(B).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-489

?ggesx
Computes the generalized eigenvalues,
Schur form, and, optionally, the left
and/or right matrices of Schur vectors .

call sggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call dggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call cggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv,
work, lwork, rwork, iwork, liwork, bwork, info)

call zggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv,
work, lwork, rwork, iwork, liwork, bwork, info)

Discussion

This routine computes for a pair of n-by-n real/complex nonsymmetric
matrices (A,B), the generalized eigenvalues, the generalized real/complex
Schur form (S,T), optionally, the left and/or right matrices of Schur vectors
(vsl and vsr). This gives the generalized Schur factorization

(A,B) = (vsl*S *vsrH, vsl*T*vsrH)

Optionally, it also orders the eigenvalues so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix S and the upper triangular matrix T;
computes a reciprocal condition number for the average of the selected
eigenvalues (rconde); and computes a reciprocal condition number for the
right and left deflating subspaces corresponding to the selected eigenvalues
(rcondv). The leading columns of vsl and vsr then form an
orthonormal/unitary basis for the corresponding left and right eigenspaces
(deflating subspaces).

5-490

5 Intel® Math Kernel Library Reference Manual

A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio
alpha / beta = w, such that A - w*B is singular. It is usually represented as
the pair (alpha, beta), as there is a reasonable interpretation for beta=0 or
for both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is upper
triangular with non-negative diagonal and S is block upper triangular with
1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized
eigenvalues, while 2-by-2 blocks of S will be “standardized" by making the
corresponding elements of T have the form:

and the pair of corresponding 2-by-2 blocks in S and T will have a complex
conjugate pair of generalized eigenvalues.
A pair of matrices (S,T) is in generalized complex Schur form if S and T are
upper triangular and, in addition, the diagonal of T are non-negative real
numbers.

Input Parameters

jobvsl CHARACTER*1. Must be 'N' or 'V'.
If jobvsl ='N', then the left Schur vectors are not
computed.
If jobvsl ='V', then the left Schur vectors are
computed.

jobvsr CHARACTER*1. Must be 'N' or 'V'.
If jobvsr ='N', then the right Schur vectors are not
computed.
If jobvsr ='V', then the right Schur vectors are
computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.

If sort ='N', then eigenvalues are not ordered.
If sort ='S', eigenvalues are ordered (see selctg).

a

0

0

b

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-491

selctg LOGICAL FUNCTION of three REAL arguments
for real flavors.
LOGICAL FUNCTION of two COMPLEX arguments
for complex flavors.

selctg must be declared EXTERNAL in the calling
subroutine.
If sort ='S', selctg is used to select eigenvalues to
sort to the top left of the Schur form.
If sort ='N', selctg is not referenced.

For real flavors:
An eigenvalue (alphar(j) + alphai(j))/beta(j) is
selected if selctg(alphar(j), alphai(j), beta(j)) is
true; that is, if either one of a complex conjugate pair of
eigenvalues is selected, then both complex eigenvalues
are selected.
Note that in the ill-conditioned case, a selected complex
eigenvalue may no longer satisfy
selctg(alphar(j), alphai(j), beta(j)) = .TRUE.

after ordering. In this case info is set to n+2 .

For complex flavors:
An eigenvalue alpha(j) / beta(j) is selected if
selctg(alpha(j), beta(j)) is true.
Note that a selected complex eigenvalue may no longer
satisfy selctg(alpha(j), beta(j)) = .TRUE. after
ordering, since ordering may change the value of
complex eigenvalues (especially if the eigenvalue is
ill-conditioned); in this case info is set to n+2 (see
info below).

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are
computed.

If sense ='N', none are computed;
If sense ='E', computed for average of selected
eigenvalues only;
If sense ='V', computed for selected deflating
subspaces only;

5-492

5 Intel® Math Kernel Library Reference Manual

If sense ='B', computed for both.
If sense is 'E', 'V', or 'B', then sort must equal
'S'.

n INTEGER. The order of the matrices A, B, vsl, and vsr
(n ≥ 0).

a, b, work REAL for sggesx
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A
(first of the pair of matrices).
The second dimension of a must be at least max(1, n).

b(ldb,*) is an array containing the n-by-n matrix B
(second of the pair of matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

ldb INTEGER. The first dimension of the array b.
Must be at least max(1, n) .

ldvsl,ldvsr INTEGER. The first dimensions of the output matrices
vsl and vsr, respectively. Constraints:
ldvsl ≥ 1. If jobvsl ='V', ldvsl ≥ max(1, n) .
ldvsr ≥ 1. If jobvsr ='V', ldvsr ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.
For real flavors:
lwork ≥ max(1, 8(n+1)+16);
if sense = 'E', 'V', or 'B', then
lwork ≥ max(8(n+1)+16) , 2*sdim*(n-sdim)) .
For complex flavors:
lwork ≥ max(1, 2n);
if sense = 'E', 'V', or 'B', then
lwork ≥ max(2n , 2*sdim*(n-sdim)) .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-493

For good performance, lwork must generally be larger.

rwork REAL for cggesx
DOUBLE PRECISION for zggesx
Workspace array, DIMENSION at least max(1, 8n).
This array is used in complex flavors only.

iwork INTEGER.
Workspace array, DIMENSION (liwork) . Not
referenced if sense = 'N'.

liwork INTEGER. The dimension of the array iwork.

liwork ≥ n+6 for real flavors;
liwork ≥ n+2 for complex flavors.

bwork LOGICAL.
Workspace array, DIMENSION at least max(1, n).
Not referenced if sort ='N'.

Output Parameters

a On exit, this array has been overwritten by its
generalized Schur form S .

b On exit, this array has been overwritten by its
generalized Schur form T .

sdim INTEGER.
If sort ='N', sdim= 0.
If sort ='S', sdim is equal to the number of
eigenvalues (after sorting) for which selctg is true.
Note that for real flavors complex conjugate pairs for
which selctg is true for either eigenvalue count as 2.

alphar,alphai REAL for sggesx;
DOUBLE PRECISION for dggesx.
Arrays, DIMENSION at least max(1,n) each. Contain
values that form generalized eigenvalues in real flavors.
See beta.

5-494

5 Intel® Math Kernel Library Reference Manual

alpha COMPLEX for cggesx;
DOUBLE COMPLEX for zggesx.
Array, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in complex flavors.
See beta.

beta REAL for sggesx
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n,
will be the generalized eigenvalues.
alphar(j) + alphai(j)*i and beta(j), j=1,...,n are the
diagonals of the complex Schur form (S,T) that would
result if the 2-by-2 diagonal blocks of the real
generalized Schur form of (A,B) were further reduced to
triangular form using complex unitary transformations.
If alphai(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the
generalized eigenvalues. alpha(j), j=1,...,n, and
beta(j), j=1,...,n, are the diagonals of the complex
Schur form (S,T) output by cggesx/zggesx. The
beta(j) will be non-negative real.

See also Application Notes below.

vsl, vsr REAL for sggesx
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Arrays:
vsl(ldvsl,*), the second dimension of vsl must be
at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-495

If jobvsl ='V', this array will contain the left Schur
vectors.
If jobvsl ='N', vsl is not referenced.

vsr(ldvsr,*), the second dimension of vsr must be
at least max(1, n).
If jobvsr ='V', this array will contain the right Schur
vectors.
If jobvsr ='N', vsr is not referenced.

rconde,rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION (2) each

If sense = 'E' or 'B' , rconde(1) and rconde(2)
contain the reciprocal condition numbers for the average
of the selected eigenvalues.
Not referenced if sense = 'N' or 'V'.

If sense = 'V' or 'B' , rcondv(1) and rcondv(2)
contain the reciprocal condition numbers for the
selected deflating subspaces.
Not referenced if sense = 'N' or 'E'.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤n :

the QZ iteration failed. (A,B) is not in Schur form, but
alphar(j), alphai(j) (for real flavors), or alpha(j) (for
complex flavors), and beta(j), j=info+1,...,n should be
correct.

i >n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

5-496

5 Intel® Math Kernel Library Reference Manual

i = n+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading eigenvalues
in the generalized Schur form no longer satisfy
selctg = .TRUE.. This could also be caused due to
scaling;

i = n+3: reordering failed in ?tgsen.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over-
or underflow, and beta(j) may even be zero. Thus, you should avoid simply
computing the ratio. However, alphar and alphai will be always less than
and usually comparable with norm(A) in magnitude, and beta always less
than and usually comparable with norm(B).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-497

?ggev
Computes the generalized eigenvalues,
and the left and/or right generalized
eigenvectors for a pair of nonsymmetric
matrices.

call sggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta,
vl, ldvl, vr, ldvr, work, lwork, info)

call dggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta,
vl, ldvl, vr, ldvr, work, lwork, info)

call cggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta,
vl, ldvl, vr, ldvr, work, lwork, rwork, info)

call zggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta,
vl, ldvl, vr, ldvr, work, lwork, rwork, info)

Discussion

This routine computes for a pair of n-by-n real/complex nonsymmetric
matrices (A,B), the generalized eigenvalues, and optionally, the left and/or
right generalized eigenvectors.

A generalized eigenvalue for a pair of matrices (A,B) is a scalar λ or a ratio
alpha / beta = λ , such that A - λ*B is singular. It is usually represented as
the pair (alpha, beta), as there is a reasonable interpretation for beta=0 and
even for both being zero.
The right generalized eigenvector v(j) corresponding to the generalized
eigenvalue λ(j) of (A,B) satisfies

A*v(j) = λ(j)*B*v(j) .

The left generalized eigenvector u(j) corresponding to the generalized
eigenvalue λ(j) of (A,B) satisfies

u(j)H*A = λ(j)*u(j)H*B

where u(j)H denotes the conjugate transpose of u(j).

5-498

5 Intel® Math Kernel Library Reference Manual

Input Parameters

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', the left generalized eigenvectors are not
computed;
If jobvl ='V', the left generalized eigenvectors are
computed.

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', the right generalized eigenvectors are
not computed;
If jobvr ='V', the right generalized eigenvectors are
computed.

n INTEGER. The order of the matrices A, B, vl, and vr

(n ≥ 0).

a, b, work REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A
(first of the pair of matrices).
The second dimension of a must be at least max(1, n).

b(ldb,*) is an array containing the n-by-n matrix B
(second of the pair of matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

ldb INTEGER. The first dimension of the array b.
Must be at least max(1, n) .

ldvl,ldvr INTEGER. The first dimensions of the output matrices
vl and vr, respectively. Constraints:
ldvl ≥ 1. If jobvl ='V', ldvl ≥ max(1, n) .
ldvr ≥ 1. If jobvr ='V', ldvr ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-499

lwork ≥ max(1, 8n+16) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.
For good performance, lwork must generally be larger.

rwork REAL for cggev
DOUBLE PRECISION for zggev
Workspace array, DIMENSION at least max(1, 8n).
This array is used in complex flavors only.

Output Parameters

a, b On exit, these arrays have been overwritten.

alphar,alphai REAL for sggev;
DOUBLE PRECISION for dggev.
Arrays, DIMENSION at least max(1,n) each. Contain
values that form generalized eigenvalues in real flavors.
See beta.

alpha COMPLEX for cggev;
DOUBLE COMPLEX for zggev.
Array, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in complex flavors.
See beta.

beta REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n,
will be the generalized eigenvalues.
If alphai(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the
generalized eigenvalues.

See also Application Notes below.

5-500

5 Intel® Math Kernel Library Reference Manual

vl, vr REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Arrays:
vl(ldvl,*); the second dimension of vl must be at
least max(1, n).

If jobvl ='V', the left generalized eigenvectors u(j) are
stored one after another in the columns of vl, in the
same order as their eigenvalues. Each eigenvector will
be scaled so the largest component have abs(Re) +
abs(Im) = 1. If jobvl ='N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th
column of vl. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then u(j) = vl(:,j) + i*vl(:,j+1)
and u(j+1) = vl(:,j) - i*vl(:,j+1), where i= .

For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at
least max(1, n).

If jobvr ='V', the right generalized eigenvectors v(j)
are stored one after another in the columns of vr, in the
same order as their eigenvalues. Each eigenvector will
be scaled so the largest component have abs(Re) +
abs(Im) = 1. If jobvr ='N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th
column of vr. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then v(j) = vr(:,j) + i*vr(:,j+1)
and v(j+1) = vr(:,j) - i*vr(:,j+1).

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

1–

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-501

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤n :

the QZ iteration failed. No eigenvectors have been
calculated, but alphar(j), alphai(j) (for real flavors),
or alpha(j) (for complex flavors), and beta(j),
j=info+1,...,n should be correct.

i >n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

i = n+2: error return from ?tgevc.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over-
or underflow, and beta(j) may even be zero. Thus, you should avoid simply
computing the ratio. However, alphar and alphai (for real flavors) or
alpha (for complex flavors) will be always less than and usually
comparable with norm(A) in magnitude, and beta always less than and
usually comparable with norm(B).

5-502

5 Intel® Math Kernel Library Reference Manual

?ggevx
Computes the generalized eigenvalues,
and, optionally, the left and/or right
generalized eigenvectors.

call sggevx (balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alphar, alphai, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, iwork, bwork, info)

call dggevx (balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alphar, alphai, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, iwork, bwork, info)

call cggevx (balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alpha, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, rwork, iwork, bwork, info)

call zggevx (balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alpha, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, rwork, iwork, bwork, info)

Discussion

This routine computes for a pair of n-by-n real/complex nonsymmetric
matrices (A,B), the generalized eigenvalues, and optionally, the left and/or
right generalized eigenvectors.

Optionally also, it computes a balancing transformation to improve the
conditioning of the eigenvalues and eigenvectors (ilo, ihi, lscale,
rscale, abnrm, and bbnrm), reciprocal condition numbers for the
eigenvalues (rconde), and reciprocal condition numbers for the right
eigenvectors (rcondv).

A generalized eigenvalue for a pair of matrices (A,B) is a scalar λ or a ratio
alpha / beta = λ , such that A - λ*B is singular. It is usually represented as
the pair (alpha, beta), as there is a reasonable interpretation for beta=0 and

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-503

even for both being zero.
The right generalized eigenvector v(j) corresponding to the generalized
eigenvalue λ(j) of (A,B) satisfies

A*v(j) = λ(j)*B*v(j) .

The left generalized eigenvector u(j) corresponding to the generalized
eigenvalue λ(j) of (A,B) satisfies

u(j)H*A = λ(j)*u(j)H*B

where u(j)H denotes the conjugate transpose of u(j).

Input Parameters

balanc CHARACTER*1. Must be 'N', 'P', 'S', or 'B'.
Specifies the balance option to be performed.

If balanc ='N', do not diagonally scale or permute;
If balanc ='P', permute only;
If balanc ='S', scale only;
If balanc ='B', both permute and scale.

Computed reciprocal condition numbers will be for the
matrices after balancing and/or permuting. Permuting
does not change condition numbers (in exact
arithmetic), but balancing does.

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', the left generalized eigenvectors are not
computed;
If jobvl ='V', the left generalized eigenvectors are
computed.

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', the right generalized eigenvectors are
not computed;
If jobvr ='V', the right generalized eigenvectors are
computed.

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are
computed.

5-504

5 Intel® Math Kernel Library Reference Manual

If sense ='N', none are computed;
If sense ='E', computed for eigenvalues only;
If sense ='V', computed for eigenvectors only;
If sense ='B', computed for eigenvalues and
eigenvectors.

n INTEGER. The order of the matrices A, B, vl, and vr

(n ≥ 0).

a, b, work REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A
(first of the pair of matrices).
The second dimension of a must be at least max(1, n).

b(ldb,*) is an array containing the n-by-n matrix B
(second of the pair of matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n) .

ldb INTEGER. The first dimension of the array b.
Must be at least max(1, n) .

ldvl,ldvr INTEGER. The first dimensions of the output matrices
vl and vr, respectively. Constraints:
ldvl ≥ 1. If jobvl ='V', ldvl ≥ max(1, n) .
ldvr ≥ 1. If jobvr ='V', ldvr ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.
For real flavors:
lwork ≥ max(1, 6n);
if sense = 'E', lwork ≥ 12n ;
if sense = 'V', or 'B', lwork ≥ 2n2+ 12n+16 .
For complex flavors:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-505

lwork ≥ max(1, 2n);
if sense ='N', or 'E', lwork ≥ 2n ;
if sense = 'V', or 'B', lwork ≥ 2n2+ 2n .

rwork REAL for cggevx
DOUBLE PRECISION for zggevx
Workspace array, DIMENSION at least max(1, 6n).
This array is used in complex flavors only.

iwork INTEGER.
Workspace array, DIMENSION at least (n+6) for real
flavors and at least (n+2) for complex flavors.
Not referenced if sense = 'E'.

bwork LOGICAL.
Workspace array, DIMENSION at least max(1, n).
Not referenced if sense ='N'.

Output Parameters

a, b On exit, these arrays have been overwritten.

If jobvl ='V' or jobvr ='V' or both, then a contains
the first part of the real Schur form of the "balanced"
versions of the input A and B, and b contains its second
part.

alphar,alphai REAL for sggevx;
DOUBLE PRECISION for dggevx.
Arrays, DIMENSION at least max(1,n) each. Contain
values that form generalized eigenvalues in real flavors.
See beta.

alpha COMPLEX for cggevx;
DOUBLE COMPLEX for zggevx.
Array, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in complex flavors.
See beta.

beta REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.

5-506

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n,
will be the generalized eigenvalues.
If alphai(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the
generalized eigenvalues.

See also Application Notes below.

vl, vr REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Arrays:
vl(ldvl,*); the second dimension of vl must be at
least max(1, n).

If jobvl ='V', the left generalized eigenvectors u(j) are
stored one after another in the columns of vl, in the
same order as their eigenvalues. Each eigenvector will
be scaled so the largest component have abs(Re) +
abs(Im) = 1. If jobvl ='N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th
column of vl. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then u(j) = vl(:,j) + i*vl(:,j+1)
and u(j+1) = vl(:,j) - i*vl(:,j+1), where i= .

For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at
least max(1, n).

If jobvr ='V', the right generalized eigenvectors v(j)
are stored one after another in the columns of vr, in the
same order as their eigenvalues. Each eigenvector will

1–

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-507

be scaled so the largest component have abs(Re) +
abs(Im) = 1. If jobvr ='N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th
column of vr. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then v(j) = vr(:,j) + i*vr(:,j+1)
and v(j+1) = vr(:,j) - i*vr(:,j+1).

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

ilo, ihi INTEGER.
ilo and ihi are integer values such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and j = 1,..., ilo-1 or

i = ihi+1,..., n.
If balanc ='N'or 'S', ilo = 1 and ihi = n.

lscale,rscale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1, n) each.
lscale contains details of the permutations and
scaling factors applied to the left side of A and B.
If PL(j) is the index of the row interchanged with row j,
and DL(j) is the scaling factor applied to row j, then

lscale(j) = PL(j), for j = 1,...,ilo-1

= DL(j), for j = ilo,...,ihi

= PL(j) for j = ihi+1,...,n.

The order in which the interchanges are made is n to
ihi+1, then 1 to ilo-1.

rscale contains details of the permutations and
scaling factors applied to the right side of A and B.
If PR(j) is the index of the column interchanged with
column j, and DR(j) is the scaling factor applied to
column j, then

rscale(j) = PR(j), for j = 1,...,ilo-1

= DR(j), for j = ilo,...,ihi

= PR(j) for j = ihi+1,...,n.

5-508

5 Intel® Math Kernel Library Reference Manual

The order in which the interchanges are made is n to
ihi+1, then 1 to ilo-1.

abnrm,bbnrm REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

The one-norms of the balanced matrices A and B,
respectively.

rconde,rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n) each.

If sense ='E', or 'B', rconde contains the reciprocal
condition numbers of the selected eigenvalues, stored in
consecutive elements of the array. For a complex
conjugate pair of eigenvalues two consecutive elements
of rconde are set to the same value. Thus rconde(j),
rcondv(j), and the j-th columns of vl and vr all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If sense ='V', rconde is not referenced.

If sense ='V', or 'B', rcondv contains the estimated
reciprocal condition numbers of the selected
eigenvectors, stored in consecutive elements of the
array. For a complex eigenvector two consecutive
elements of rcondv are set to the same value. If the
eigenvalues cannot be reordered to compute rcondv(j),
rcondv(j) is set to 0; this can only occur when the true
value would be very small anyway.
If sense ='E', rcondv is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required
minimal size of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤n :

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-509

the QZ iteration failed. No eigenvectors have been
calculated, but alphar(j), alphai(j) (for real flavors),
or alpha(j) (for complex flavors), and beta(j),
j=info+1,...,n should be correct.

i >n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

i = n+2: error return from ?tgevc.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a
generous value of lwork for the first run. On exit, examine work(1) and
use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over-
or underflow, and beta(j) may even be zero. Thus, you should avoid simply
computing the ratio. However, alphar and alphai (for real flavors) or
alpha (for complex flavors) will be always less than and usually
comparable with norm(A) in magnitude, and beta always less than and
usually comparable with norm(B).

References

[LUG] E. Anderson, Z. Bai et al. LAPACK User’s Guide. Third
edition, SIAM, Philadelphia, 1999.

[Golub96] G.Golub, C. Van Loan. Matrix Computations. Johns
Hopkins University Press, Baltimore, third edition,
1996.

6-1

LAPACK Auxiliary
Routines 6

This chapter describes the Intel® Math Kernel Library implementation of
LAPACK auxiliary routines. The library includes auxiliary routines for both
real and complex data.

Routine naming conventions, mathematical notation, and matrix storage
schemes used for LAPACK auxiliary routines are the same as for the driver
and computational routines described in previous chapters.

Routines are listed in alphabetical order of the routine or function group
name (which always begins with -?).

?lacgv
Conjugates a complex vector.

call clacgv (n, x, incx)

call zlacgv (n, x, incx)

Discussion

This routine conjugates a complex vector x of length n and increment incx
(see Vector Arguments in BLAS in Appendix A).

Input Parameters

n INTEGER. The length of the vector x (n ≥ 0).

x COMPLEX for clacgv
COMPLEX*16 for zlacgv.
Array, dimension (1+(n-1)* |incx|).
Contains the vector of length n to be conjugated.

6-2

6 Intel® Math Kernel Library Reference Manual

incx INTEGER. The spacing between successive elements
of x.

Output Parameters

x On exit, overwritten with conjg(x).

?lacrm
Multiplies a complex matrix by a square
real matrix.

call clacrm (m, n, a, lda, b, ldb, c, ldc, rwork)

call zlacrm (m, n, a, lda, b, ldb, c, ldc, rwork)

Discussion

This routine performs a simple matrix-matrix multiplication of the form

C = A * B ,
where A is m-by-n and complex, B is n-by-n and real, C is m-by-n and
complex.

Input Parameters

m INTEGER. The number of rows of the matrix A and of
the matrix C (m ≥ 0).

n INTEGER. The number of columns and rows of the
matrix B and the number of columns of the matrix C
(n ≥ 0).

a COMPLEX for clacrm
COMPLEX*16 for zlacrm

Array, DIMENSION (lda, n). Contains the m-by-n
matrix A.

lda INTEGER. The leading dimension of the array a,
lda ≥ max(1, m).

LAPACK Auxiliary Routines6

6-3

b REAL for clacrm
DOUBLE PRECISION for zlacrm

Array, DIMENSION (ldb, n). Contains the n-by-n
matrix B.

ldb INTEGER. The leading dimension of the array b,
ldb ≥ max(1, n).

ldc INTEGER. The leading dimension of the output array c,
ldc ≥ max(1, n).

rwork REAL for clacrm
DOUBLE PRECISION for zlacrm

Workspace array, DIMENSION (2*m*n).

Output Parameters

c COMPLEX for clacrm
COMPLEX*16 for zlacrm

Array, DIMENSION (ldc, n). Contains the m-by-n
matrix C.

?lacrt
Performs a linear transformation of a
pair of complex vectors.

call clacrt (n, cx, incx, cy, incy, c, s)

call zlacrt (n, cx, incx, cy, incy, c, s)

Discussion

This routine performs the following transformation

,

where c, s are complex scalars and x, y are complex vectors.

c s

s– c

 x

y
 x

y
 ⇒

6-4

6 Intel® Math Kernel Library Reference Manual

Input Parameters

n INTEGER. The number of elements in the vectors cx

and cy (n ≥ 0).

cx, cy COMPLEX for clacrt
COMPLEX*16 for zlacrt

Arrays, dimension (n).
Contain input vectors x and y, respectively.

incx INTEGER. The increment between successive elements
of cx.

incy INTEGER. The increment between successive elements
of cy.

c, s COMPLEX for clacrt
COMPLEX*16 for zlacrt

Complex scalars that define the transform matrix

Output Parameters

cx On exit, overwritten with c*x + s*y .

cy On exit, overwritten with -s*x + c*y .

?laesy
Computes the eigenvalues and eigenvectors of
a 2-by-2 complex symmetric matrix, and
checks that the norm of the matrix of
eigenvectors is larger than a threshold value.

call claesy (a, b, c, rt1, rt2, evscal, cs1, sn1)

call zlaesy (a, b, c, rt1, rt2, evscal, cs1, sn1)

c s

-s c

LAPACK Auxiliary Routines6

6-5

Discussion

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix

,

provided the norm of the matrix of eigenvectors is larger than some
threshold value.

rt1 is the eigenvalue of larger absolute value, and rt2 of smaller absolute
value. If the eigenvectors are computed, then on return (cs1, sn1) is the
unit eigenvector for rt1, hence

Input Parameters

a, b, c COMPLEX for claesy
COMPLEX*16 for zlaesy

Elements of the input matrix.

Output Parameters

rt1, rt2 COMPLEX for claesy
COMPLEX*16 for zlaesy

Eigenvalues of larger and smaller modulus, respectively.

evscal COMPLEX for claesy
COMPLEX*16 for zlaesy

The complex value by which the eigenvector matrix was
scaled to make it orthonormal. If evscal is zero, the
eigenvectors were not computed. This means one of two
things: the 2-by-2 matrix could not be diagonalized, or
the norm of the matrix of eigenvectors before scaling
was larger than the threshold value thresh (set to
0.1E0).

a b

b c

cs1 sn1

sn1– cs1

a b

b c
cs1 sn1–

sn1 cs1
⋅ ⋅ rt1 0

0 rt2
=

6-6

6 Intel® Math Kernel Library Reference Manual

cs1, sn1 COMPLEX for claesy
COMPLEX*16 for zlaesy

If evscal is not zero, then (cs1, sn1) is the unit right
eigenvector for rt1.

?rot
Applies a plane rotation with real cosine
and complex sine to a pair of complex
vectors.

call crot (n, cx, incx, cy, incy, c, s)

call zrot (n, cx, incx, cy, incy, c, s)

Discussion

This routine applies a plane rotation, where the cosine (c) is real and the
sine (s) is complex, and the vectors cx and cy are complex. This routine has
its real equivalents in BLAS (see ?rot in Chapter 2).

Input Parameters

n INTEGER. The number of elements in the vectors cx

and cy.

cx, cy COMPLEX for crot
COMPLEX*16 for zrot
Arrays of dimension (n), contain input vectors x and y,
respectively.

incx INTEGER. The increment between successive elements
of cx.

incy INTEGER. The increment between successive elements
of cy.

c REAL for crot
DOUBLE PRECISION for zrot

LAPACK Auxiliary Routines6

6-7

s COMPLEX for crot
COMPLEX*16 for zrot
Values that define a rotation

where c*c + s*conjg(s) = 1.0 .

Output Parameters

cx On exit, overwritten with c*x + s*y .

cy On exit, overwritten with -conjg(s)*x + c*y .

?spmv
Computes a matrix-vector product for
complex vectors using a complex
symmetric packed matrix.

call cspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

call zspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

Discussion

These routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are complex scalars,

x and y are n-element complex vectors

a is an n-by-n complex symmetric matrix, supplied in packed form.

These routines have their real equivalents in BLAS (see ?spmv in
Chapter 2).

c s

conjg s()– c

6-8

6 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix a is supplied in the packed
array ap, as follows:

If uplo = 'U' or 'u', the upper triangular part of the
matrix a is supplied in the array ap .
If uplo = 'L' or 'l', the lower triangular part of the
matrix a is supplied in the array ap .

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha, beta COMPLEX for cspmv
COMPLEX*16 for zspmv

Specify complex scalars alpha and beta. When beta

is supplied as zero, then y need not be set on input.

ap COMPLEX for cspmv
COMPLEX*16 for zspmv

Array, DIMENSION at least ((n*(n + 1))/2). Before
entry, with uplo = 'U' or 'u', the array ap must
contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that
ap(1) contains a(1, 1), ap(2) and ap(3) contain
a(1, 2) and a(2, 2) respectively, and so on. Before
entry, with uplo = 'L' or 'l', the array ap must
contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so that ap(1)
contains a(1, 1), ap(2) and ap(3) contain a(2, 1)

and a(3, 1) respectively, and so on.

x COMPLEX for cspmv
COMPLEX*16 for zspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

LAPACK Auxiliary Routines6

6-9

y COMPLEX for cspmv
COMPLEX*16 for zspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?spr
Performs the symmetrical rank-1 update
of a complex symmetric packed matrix.

call cspr(uplo, n, alpha, x, incx, ap)

call zspr(uplo, n, alpha, x, incx, ap)

Discussion

The ?spr routines perform a matrix-vector operation defined as

a:= alpha*x*conjg(x') + a,

where:

alpha is a complex scalar

x is an n-element complex vector

a is an n-by-n complex symmetric matrix, supplied in packed form.

These routines have their real equivalents in BLAS (see ?spr in Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrix a is supplied in the packed
array ap, as follows:

6-10

6 Intel® Math Kernel Library Reference Manual

If uplo = 'U' or 'u', the upper triangular part of the
matrix a is supplied in the array ap .
If uplo = 'L' or 'l', the lower triangular part of the
matrix a is supplied in the array ap .

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha COMPLEX for cspr
COMPLEX*16 for zspr

Specifies the scalar alpha.

x COMPLEX for cspr
COMPLEX*16 for zspr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

ap COMPLEX for cspr
COMPLEX*16 for zspr

Array, DIMENSION at least ((n*(n + 1))/2). Before
entry, with uplo = 'U' or 'u', the array ap must
contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that
ap(1) contains a(1,1), ap(2) and ap(3) contain
a(1, 2) and a(2,2) respectively, and so on.

Before entry, with uplo = 'L' or 'l', the array ap

must contain the lower triangular part of the symmetric
matrix packed sequentially, column-by-column, so that
ap(1) contains a(1,1), ap(2)and ap(3)contain
a(2,1) and a(3,1) respectively, and so on.

Note that the imaginary parts of the diagonal elements
need not be set, they are assumed to be zero, and on exit
they are set to zero.

LAPACK Auxiliary Routines6

6-11

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper
triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower
triangular part of the updated matrix.

?symv
Computes a matrix-vector product for a
complex symmetric matrix.

call csymv (uplo, n, alpha, a, lda, x, incx, beta, y, incy)

call zsymv (uplo, n, alpha, a, lda, x, incx, beta, y, incy)

Discussion

These routines perform the matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are complex scalars

x and y are n-element complex vectors

a is an n-by-n symmetric complex matrix.

These routines have their real equivalents in BLAS (see ?symv in
Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as
follows:

6-12

6 Intel® Math Kernel Library Reference Manual

If uplo = 'U' or 'u', the upper triangular part of the
array a is to be referenced .
If uplo = 'L' or 'l', the lower triangular part of the
array a is to be referenced.

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha, beta COMPLEX for csymv
COMPLEX*16 for zsymv

Specify the scalars alpha and beta. When beta is
supplied as zero, then y need not be set on input.

a COMPLEX for csymv
COMPLEX*16 for zsymv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular
part of the array a must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of a is not referenced. Before entry with
uplo = 'L' or 'l', the leading n-by-n lower triangular
part of the array a must contain the lower triangular part
of the symmetric matrix and the strictly upper triangular
part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1,n).

x COMPLEX for csymv
COMPLEX*16 for zsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

y COMPLEX for csymv
COMPLEX*16 for zsymv

LAPACK Auxiliary Routines6

6-13

Array, DIMENSION at least (1 + (n - 1)*abs(incy)).
Before entry, the incremented array y must contain the
n-element vector y.

incy INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?syr
Performs the symmetric rank-1 update
of a complex symmetric matrix.

call csyr(uplo, n, alpha, x, incx, a, lda)

call zsyr(uplo, n, alpha, x, incx, a, lda)

Discussion

These routines perform the symmetric rank 1 operation defined as

a := alpha*x*x' + a,

where:

alpha is a complex scalar

x is an n-element complex vector

a is an n-by-n complex symmetric matrix.

These routines have their real equivalents in BLAS (see ?syr in Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the array a is to be referenced, as
follows:

6-14

6 Intel® Math Kernel Library Reference Manual

If uplo = 'U' or 'u', the upper triangular part of the
array a is to be referenced .
If uplo = 'L' or 'l', the lower triangular part of the
array a is to be referenced.

n INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.

alpha COMPLEX for csyr
COMPLEX*16 for zsyr

Specifies the scalar alpha.

x COMPLEX for csyr
COMPLEX*16 for zsyr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)).
Before entry, the incremented array x must contain the
n-element vector x.

incx INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

a COMPLEX for csyr
COMPLEX*16 for zsyr

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular
part of the array a must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading
n-by-n lower triangular part of the array a must contain
the lower triangular part of the symmetric matrix and the
strictly upper triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared
in the calling (sub)program. The value of lda must be at
least max(1,n).

LAPACK Auxiliary Routines6

6-15

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the
array a is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the
array a is overwritten by the lower triangular part of the
updated matrix.

i?max1
Finds the index of the vector element
whose real part has maximum absolute
value.

index = icmax1 (n, cx, incx)

index = izmax1 (n, cx, incx)

Discussion

Given a complex vector cx, the i?max1 functions return the index of the
vector element whose real part has maximum absolute value. These
functions are based on the BLAS functions icamax/izamax, but using the
absolute value of the real part. They are designed for use with
clacon/zlacon.

Input Parameters

n INTEGER. Specifies the number of elements in the
vector cx.

cx COMPLEX for icmax1
COMPLEX*16 for izmax1

Array, DIMENSION at least (1+(n-1)*abs(incx)).

Contains the input vector.

6-16

6 Intel® Math Kernel Library Reference Manual

incx INTEGER. Specifies the spacing between successive
elements of cx.

Output Parameters

index INTEGER. Contains the index of the vector element
whose real part has maximum absolute value.

ilaenv
Environmental enquiry function which
returns values for tuning algorithmic
performance.

value = ilaenv (ispec, name, opts, n1, n2, n3, n4)

Discussion

Enquiry function ilaenv is called from the LAPACK routines to choose
problem-dependent parameters for the local environment. See ispec for a
description of the parameters.

This version provides a set of parameters which should give good, but not
optimal, performance on many of the currently available computers. Users
are encouraged to modify this subroutine to set the tuning parameters for
their particular machine using the option and problem size information in
the arguments.

This routine will not function correctly if it is converted to all lower case.
Converting it to all upper case is allowed.

Input Parameters

ispec INTEGER. Specifies the parameter to be returned as the
value of ilaenv:

= 1: the optimal blocksize; if this value is 1, an
unblocked algorithm will give the best performance.

LAPACK Auxiliary Routines6

6-17

= 2: the minimum block size for which the block routine
should be used; if the usable block size is less than this
value, an unblocked routine should be used.

= 3: the crossover point (in a block routine, for N less
than this value, an unblocked routine should be used)

= 4: the number of shifts, used in the nonsymmetric
eigenvalue routines

= 5: the minimum column dimension for blocking to be
used; rectangular blocks must have dimension at least k
by m, where k is given by ilaenv(2,...) and m by
ilaenv(5,...)

= 6: the crossover point for the SVD (when reducing an
m by n matrix to bidiagonal form, if max(m,n)/min(m,n)
exceeds this value, a QR factorization is used first to
reduce the matrix to a triangular form.)

= 7: the number of processors

= 8: the crossover point for the multishift QR and QZ
methods for nonsymmetric eigenvalue problems.

= 9: maximum size of the subproblems at the bottom of
the computation tree in the divide-and-conquer
algorithm (used by ?gelsd and ?gesdd)

=10: IEEE NaN arithmetic can be trusted not to trap

=11: infinity arithmetic can be trusted not to trap

name CHARACTER*(*).The name of the calling subroutine, in
either upper case or lower case.

opts CHARACTER*(*). The character options to the
subroutine name, concatenated into a single character
string. For example, uplo = 'U', trans = 'T', and
diag = 'N' for a triangular routine would be specified
as opts = 'UTN'.

n1,n2,n3,n4 INTEGER. Problem dimensions for the subroutine
name; these may not all be required.

6-18

6 Intel® Math Kernel Library Reference Manual

Output Parameters

value INTEGER.
Ifvalue≥ 0:thevalueoftheparameterspecifiedbyispec;
If value = -k < 0: the k-th argument had an illegal
value.

Application Notes

The following conventions have been used when calling ilaenv from the
LAPACK routines:

1) opts is a concatenation of all of the character options to subroutine
name, in the same order that they appear in the argument list for name, even
if they are not used in determining the value of the parameter specified by
ispec.

2) The problem dimensions n1,n2,n3,n4 are specified in the order that
they appear in the argument list for name. n1 is used first, n2 second, and
so on, and unused problem dimensions are passed a value of -1.

3) The parameter value returned by ilaenv is checked for validity in the
calling subroutine. For example, ilaenv is used to retrieve the optimal
blocksize for strtri as follows:

nb = ilaenv(1, 'strtri', uplo // diag, n, -1, -1, -1)

if(nb.le.1) nb = max(1, n)

lsame
Tests two characters for equality
regardless of case.

val = lsame (ca, cb)

Discussion

This logical function returns .TRUE. if ca is the same letter as cb
regardless of case.

LAPACK Auxiliary Routines6

6-19

Input Parameters

ca, cb CHARACTER*1. Specify the single characters to be
compared.

Output Parameters

val LOGICAL. Result of the comparison.

lsamen
Tests two character strings for equality
regardless of case.

val = lsamen (n, ca, cb)

Discussion

This logical function tests if the first n letters of the string ca are the same
as the first n letters of cb, regardless of case. The function lsamen returns
.TRUE. if ca and cb are equivalent except for case and .FALSE.

otherwise. lsamen also returns .FALSE. if len(ca) or len(cb) is less
than n.

Input Parameters

n INTEGER. The number of characters in ca and cb to be
compared.

ca, cb CHARACTER*(*). Specify two character strings of
length at least n to be compared. Only the first n
characters of each string will be accessed.

Output Parameters

val LOGICAL. Result of the comparison.

6-20

6 Intel® Math Kernel Library Reference Manual

?sum1
Forms the 1-norm of the complex vector
using the true absolute value.

res = scsum1 (n, cx, incx)

res = dzsum1 (n, cx, incx)

Discussion

Given a complex vector cx, scsum1/dzsum1 functions take the sum of the
absolute values of vector elements and return a single/double precision
result, respectively. These functions are based on scasum/dzasum from
Level 1 BLAS, but use the true absolute value and were designed for use
with clacon/zlacon.

Input Parameters

n INTEGER. Specifies the number of elements in the
vector cx.

cx COMPLEX for scsum1
COMPLEX*16 for dzsum1

Array, DIMENSION at least (1+(n-1)*abs(incx)).

Contains the input vector whose elements will be
summed.

incx INTEGER. Specifies the spacing between successive
elements of cx (incx > 0).

Output Parameters

res REAL for scsum1
DOUBLE PRECISION for dzsum1

Contains the sum of absolute values.

LAPACK Auxiliary Routines6

6-21

?gbtf2
Computes the LU factorization of a
general band matrix using the
unblocked version of the algorithm.

call sgbtf2 (m, n, kl, ku, ab, ldab, ipiv, info)

call dgbtf2 (m, n, kl, ku, ab, ldab, ipiv, info)

call cgbtf2 (m, n, kl, ku, ab, ldab, ipiv, info)

call zgbtf2 (m, n, kl, ku, ab, ldab, ipiv, info)

Discussion

The routine forms the LU factorization of a general real/complex m by n

band matrix A with kl sub-diagonals and ku super-diagonals. The routine
uses partial pivoting with row interchanges and implements the unblocked
version of the algorithm, calling Level 2 BLAS. See also ?gbtrf.

Input Parameters
m INTEGER. The number of rows of the matrix A (m ≥ 0).
n INTEGER. The number of columns in A (n ≥ 0).
kl INTEGER. The number of sub-diagonals within the

band of A (kl ≥ 0).
ku INTEGER. The number of super-diagonals within the

band of A (ku ≥ 0).
ab REAL for sgbtf2

DOUBLE PRECISION for dgbtf2
COMPLEX for cgbtf2
COMPLEX*16 for zgbtf2.
Array, DIMENSION (ldab,*).
The array ab contains the matrix A in band storage
(see Matrix Arguments).
The second dimension of ab must be at least max(1, n).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ 2kl + ku +1)

6-22

6 Intel® Math Kernel Library Reference Manual

Output Parameters

ab Overwritten by details of the factorization. The
diagonal and kl + ku super-diagonals of U are stored in
the first 1 + kl + ku rows of ab. The multipliers used
during the factorization are stored in the next kl rows.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row
ipiv(i).

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been
completed, but U is exactly singular. Division by 0 will
occur if you use the factor U for solving a system of
linear equations.

LAPACK Auxiliary Routines6

6-23

?gebd2
Reduces a general matrix to bidiagonal
form using an unblocked algorithm.

call sgebd2 (m, n, a, lda, d, e, tauq, taup, work, info)

call dgebd2 (m, n, a, lda, d, e, tauq, taup, work, info)

call cgebd2 (m, n, a, lda, d, e, tauq, taup, work, info)

call zgebd2 (m, n, a, lda, d, e, tauq, taup, work, info)

Discussion

The routine reduces a general m-by-n matrix A to upper or lower bidiagonal
form B by an orthogonal (unitary) transformation: Q′ A P = B

If m ≥ n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

The routine does not form the matrices Q and P explicitly, but represents
them as products of elementary reflectors. If m ≥ n,

Q = H(1)H(2)...H(n) and P = G(1)G(2)...G(n-1)

If m < n,

Q = H(1)H(2)...H(m-1) and P = G(1)G(2)...G(m)

Each H(i) and G(i) has the form

H(i) = I - tauq*v*v′ and G(i) = I - taup*u*u′
where tauq and taup are scalars (real for sgebd2/dgebd2, complex for
cgebd2/zgebd2), and v and u are vectors (real for sgebd2/dgebd2,
complex for cgebd2/zgebd2).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgebd2
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2
COMPLEX*16 for zgebd2.

6-24

6 Intel® Math Kernel Library Reference Manual

Arrays:
a(lda,*) contains the m-by-n general matrix A to be
reduced. The second dimension of a must be at least
max(1, n).

work(*) is a workspace array, the dimension of work
must be at least max(1, m, n).

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a If m ≥ n, the diagonal and first super-diagonal of a are
overwritten with the upper bidiagonal matrix B.
Elements below the diagonal, with the array tauq,
represent the orthogonal/unitary matrix Q as a product
of elementary reflectors, and elements above the first
superdiagonal, with the array taup, represent the
orthogonal/unitary matrix P as a product of elementary
reflectors.

If m < n, the diagonal and first sub-diagonal of a are
overwritten by the lower bidiagonal matrix B. Elements
below the first subdiagonal, with the array tauq,
represent the orthogonal/unitary matrix Q as a product
of elementary reflectors, and elements above the
diagonal, with the array taup, represent the
orthogonal/unitary matrix P as a product of elementary
reflectors.

d REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n)).
Contains the diagonal elements of the bidiagonal
matrix B: d(i) = a(i, i).

e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m, n) −1).
Contains the off-diagonal elements of the bidiagonal
matrix B:

LAPACK Auxiliary Routines6

6-25

If m ≥ n, e(i) = a(i, i+1) for i = 1,2,..., n-1;
If m < n, e(i) = a(i+1, i) for i = 1,2,..., m-1.

tauq,taup REAL for sgebd2
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2
COMPLEX*16 for zgebd2.
Arrays, DIMENSION at least max (1, min(m, n)).
Contain scalar factors of the elementary reflectors which
represent orthogonal/unitary matrices Q and P,
respectively.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

6-26

6 Intel® Math Kernel Library Reference Manual

?gehd2
Reduces a general square matrix to
upper Hessenberg form using an
unblocked algorithm.

call sgehd2 (n, ilo, ihi, a, lda, tau, work, info)

call dgehd2 (n, ilo, ihi, a, lda, tau, work, info)

call cgehd2 (n, ilo, ihi, a, lda, tau, work, info)

call zgehd2 (n, ilo, ihi, a, lda, tau, work, info)

Discussion

The routine reduces a real/complex general matrix A to upper Hessenberg
form H by an orthogonal or unitary similarity transformation Q′ A Q = H.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of elementary reflectors.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

ilo, ihi INTEGER. It is assumed that A is already upper
triangular in rows and columns 1:ilo -1 and ihi+1:n .
If A has been output by ?gebal, then
ilo and ihi must contain the values returned by that
routine. Otherwise they should be set to ilo = 1 and
ihi = n. Constraint: 1 ≤ ilo ≤ ihi ≤ max(1, n) .

a, work REAL for sgehd2
DOUBLE PRECISION for dgehd2
COMPLEX for cgehd2
COMPLEX*16 for zgehd2.
Arrays:
a (lda,*) contains the n-by-n matrix A to be reduced.
The second dimension of a must be at least max(1, n).

work (n) is a workspace array.

LAPACK Auxiliary Routines6

6-27

lda INTEGER. The first dimension of a; at least max(1, n).

Output Parameters

a On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H and
the elements below the first subdiagonal, with the array
tau, represent the orthogonal/unitary matrix Q as a
product of elementary reflectors. See Application Notes
below.

tau REAL for sgehd2
DOUBLE PRECISION for dgehd2
COMPLEX for cgehd2
COMPLEX*16 for zgehd2.
Array, DIMENSION at least max (1, n-1).
Contains the scalar factors of elementary reflectors. See
Application Notes below.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The matrix Q is represented as a product of (ihi -ilo) elementary
reflectors

Q = H(ilo) H(ilo +1) ... H(ihi -1)

Each H(i) has the form

H(i) = I - tau *v *v′
where tau is a real/complex scalar, and v is a real/complex vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0 .

On exit, v(i+2:ihi) is stored in a(i+2:ihi, i) and tau in tau(i).

The contents of a are illustrated by the following example, with n = 7,
ilo = 2 and ihi = 6:

6-28

6 Intel® Math Kernel Library Reference Manual

on entry on exit

where a denotes an element of the original matrix A, h denotes a modified
element of the upper Hessenberg matrix H, and vi denotes an element of the
vector defining H(i).

a a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a

a a h h h h a

a h h h h a

h h h h h h

v2 h h h h h

v2 v3 h h h h

v2 v3 v4 h h h

a

LAPACK Auxiliary Routines6

6-29

?gelq2
Computes the LQ factorization of a
general rectangular matrix using an
unblocked algorithm.

call sgelq2 (m, n, a, lda, tau, work, info)

call dgelq2 (m, n, a, lda, tau, work, info)

call cgelq2 (m, n, a, lda, tau, work, info)

call zgelq2 (m, n, a, lda, tau, work, info)

Discussion

The routine computes an LQ factorization of a real/complex m by n matrix A
as A = L Q.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of min(m, n) elementary reflectors :

Q = H(k) ... H(2) H(1) (or Q = H(k)′ ... H(2)′ H(1)′ for complex flavors),
where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′
where tau is a real/complex scalar stored in tau(i), and v is a real/complex
vector with v(1:i-1) = 0 and v(i) = 1.

On exit, v(i+1:n) is stored in a(i, i+1:n).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgelq2
DOUBLE PRECISION for dgelq2
COMPLEX for cgelq2
COMPLEX*16 for zgelq2.

6-30

6 Intel® Math Kernel Library Reference Manual

Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(m) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, the elements on and below the diagonal of the
array a contain the m-by-min(n,m) lower trapezoidal
matrix L (L is lower triangular if n ≥ m); the elements
above the diagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of min(n,m)
elementary reflectors.

tau REAL for sgelq2
DOUBLE PRECISION for dgelq2
COMPLEX for cgelq2
COMPLEX*16 for zgelq2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Auxiliary Routines6

6-31

?geql2
Computes the QL factorization of a
general rectangular matrix using an
unblocked algorithm.

call sgeql2 (m, n, a, lda, tau, work, info)

call dgeql2 (m, n, a, lda, tau, work, info)

call cgeql2 (m, n, a, lda, tau, work, info)

call zgeql2 (m, n, a, lda, tau, work, info)

Discussion

The routine computes a QL factorization of a real/complex m by n matrix A
as A = Q L.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of min(m, n) elementary reflectors :

Q = H(k) ... H(2) H(1) , where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′
where tau is a real/complex scalar stored in tau(i), and v is a real/complex
vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1.

On exit, v(1:m-k+i-1) is stored in a(1:m-k+i-1, n-k+i).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeql2
DOUBLE PRECISION for dgeql2
COMPLEX for cgeql2
COMPLEX*16 for zgeql2.

6-32

6 Intel® Math Kernel Library Reference Manual

Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(m) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, if m ≥ n, the lower triangle of the subarray
a(m-n+1:m, 1:n) contains the n-by-n lower triangular
matrix L;
if m < n, the elements on and below the (n-m)th
superdiagonal contain the m-by-n lower trapezoidal
matrix L; the remaining elements, with the array tau,
represent the orthogonal/unitary matrix Q as a product
of elementary reflectors.

tau REAL for sgeql2
DOUBLE PRECISION for dgeql2
COMPLEX for cgeql2
COMPLEX*16 for zgeql2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Auxiliary Routines6

6-33

?geqr2
Computes the QR factorization of a
general rectangular matrix using an
unblocked algorithm.

call sgeqr2 (m, n, a, lda, tau, work, info)

call dgeqr2 (m, n, a, lda, tau, work, info)

call cgeqr2 (m, n, a, lda, tau, work, info)

call zgeqr2 (m, n, a, lda, tau, work, info)

Discussion

The routine computes a QR factorization of a real/complex m by n matrix A
as A = Q R.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of min(m, n) elementary reflectors :

Q = H(1)H(2) ... H(k) , where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′
where tau is a real/complex scalar stored in tau(i), and v is a real/complex
vector with v(1:i-1) = 0 and v(i) = 1.

On exit, v(i+1:m) is stored in a(i+1:m, i).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeqr2
DOUBLE PRECISION for dgeqr2
COMPLEX for cgeqr2
COMPLEX*16 for zgeqr2.

6-34

6 Intel® Math Kernel Library Reference Manual

Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(n) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, the elements on and above the diagonal of the
array a contain the min(n,m)-by-n upper trapezoidal
matrix R (R is upper triangular if m ≥ n); the elements
below the diagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors.

tau REAL for sgeqr2
DOUBLE PRECISION for dgeqr2
COMPLEX for cgeqr2
COMPLEX*16 for zgeqr2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Auxiliary Routines6

6-35

?gerq2
Computes the RQ factorization of a
general rectangular matrix using an
unblocked algorithm.

call sgerq2 (m, n, a, lda, tau, work, info)

call dgerq2 (m, n, a, lda, tau, work, info)

call cgerq2 (m, n, a, lda, tau, work, info)

call zgerq2 (m, n, a, lda, tau, work, info)

Discussion

The routine computes a RQ factorization of a real/complex m by n matrix A
as A = R Q.

The routine does not form the matrix Q explicitly. Instead, Q is represented
as a product of min(m, n) elementary reflectors :

Q = H(1)H(2) ... H(k) , where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′
where tau is a real/complex scalar stored in tau(i), and v is a real/complex
vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1.

On exit, v(1:n-k+i-1) is stored in a(m-k+i, 1:n-k+i-1).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgerq2
DOUBLE PRECISION for dgerq2
COMPLEX for cgerq2
COMPLEX*16 for zgerq2.

6-36

6 Intel® Math Kernel Library Reference Manual

Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(m) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, if m ≤n, the upper triangle of the subarray
a(1:m, n-m+1:n) contains the m-by-m upper triangular
matrix R;
if m >n, the elements on and above the (m-n)th
subdiagonal contain the m-by-n upper trapezoidal
matrix R; the remaining elements, with the array tau,
represent the orthogonal/unitary matrix Q as a product
of elementary reflectors.

tau REAL for sgerq2
DOUBLE PRECISION for dgerq2
COMPLEX for cgerq2
COMPLEX*16 for zgerq2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Auxiliary Routines6

6-37

?gesc2
Solves a system of linear equations using
the LU factorization with complete
pivoting computed by ?getc2.

call sgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)

call dgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)

call cgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)

call zgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)

Discussion

This routine solves a system of linear equations

AX = scale * RHS

with a general n-by-n matrix A using the LU factorization with complete
pivoting computed by ?getc2.

Input Parameters

n INTEGER. The order of the matrix A.

a, rhs REAL for sgesc2
DOUBLE PRECISION for dgesc2
COMPLEX for cgesc2
COMPLEX*16 for zgesc2.
Arrays:
a(lda,*) contains the LU part of the factorization of
the n-by-n matrix A computed by ?getc2:
A = P L U Q.
The second dimension of a must be at least max(1, n);

rhs(n) contains on entry the right hand side vector for
the system of equations.

lda INTEGER. The first dimension of a; at least max(1, n).

6-38

6 Intel® Math Kernel Library Reference Manual

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: for 1 ≤ i ≤n , row i of the matrix has
been interchanged with row ipiv(i).

jpiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: for 1 ≤ j ≤n , column j of the matrix
has been interchanged with column jpiv(j).

Output Parameters

rhs On exit, overwritten with the solution vector X.

scale REAL for sgesc2/cgesc2

DOUBLE PRECISION for dgesc2/zgesc2
Contains the scale factor. scale is chosen in the range
0 ≤ scale ≤1 to prevent overflow in the solution.

LAPACK Auxiliary Routines6

6-39

?getc2
Computes the LU factorization with
complete pivoting of the general n-by-n
matrix.

call sgetc2 (n, a, lda, ipiv, jpiv, info)

call dgetc2 (n, a, lda, ipiv, jpiv, info)

call cgetc2 (n, a, lda, ipiv, jpiv, info)

call zgetc2 (n, a, lda, ipiv, jpiv, info)

Discussion

This routine computes an LU factorization with complete pivoting of the
n-by-n matrix A. The factorization has the form A = P * L * U * Q, where P
and Q are permutation matrices, L is lower triangular with unit diagonal
elements and U is upper triangular.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

a REAL for sgetc2
DOUBLE PRECISION for dgetc2
COMPLEX for cgetc2
COMPLEX*16 for zgetc2.
Array a(lda,*) contains the n-by-n matrix A to be
factored.
The second dimension of a must be at least max(1, n);

lda INTEGER. The first dimension of a; at least max(1, n).

Output Parameters

a On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not
stored. If U(k, k) appears to be less than smin, U(k, k) is
given the value of smin, i.e., giving a nonsingular
perturbed system.

6-40

6 Intel® Math Kernel Library Reference Manual

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: for 1 ≤ i ≤n , row i of the matrix has
been interchanged with row ipiv(i).

jpiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: for 1 ≤ j ≤n , column j of the matrix
has been interchanged with column jpiv(j).

info INTEGER.
If info = 0, the execution is successful.
If info = k > 0, U(k, k) is likely to produce overflow if
we try to solve for x in Ax = b. So U is perturbed to
avoid the overflow.

?getf2
Computes the LU factorization of a
general m by n matrix using partial
pivoting with row interchanges
(unblocked algorithm).

call sgetf2 (m, n, a, lda, ipiv, info)

call dgetf2 (m, n, a, lda, ipiv, info)

call cgetf2 (m, n, a, lda, ipiv, info)

call zgetf2 (m, n, a, lda, ipiv, info)

Discussion

The routine computes the LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges. The factorization has the form

A PLU=

LAPACK Auxiliary Routines6

6-41

where P is a permutation matrix, L is lower triangular with unit diagonal
elements (lower trapezoidal if m > n) and U is upper triangular (upper
trapezoidal if m < n).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a REAL for sgetf2
DOUBLE PRECISION for dgetf2
COMPLEX for cgetf2
COMPLEX*16 for zgetf2.
Array, DIMENSION (lda,*). Contains the matrix A to be
factored. The second dimension of a must be at least
max(1, n).

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by L and U. The unit diagonal elements of L
are not stored.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: for 1 ≤ i ≤n , row i was interchanged
with row ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i > 0, uii is 0. The factorization has been
completed, but U is exactly singular. Division by 0 will
occur if you use the factor U for solving a system of
linear equations.

6-42

6 Intel® Math Kernel Library Reference Manual

?gtts2
Solves a system of linear equations with
a tridiagonal matrix using the LU
factorization computed by ?gttrf.

call sgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call dgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call cgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call zgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

Discussion

This routine solves for X one of the following systems of linear equations
with multiple right hand sides:

AX = B ATX = B or AHX = B (for complex matrices only),
with a tridiagonal matrix A using the LU factorization computed

by ?gttrf.

Input Parameters
itrans INTEGER. Must be 0, 1, or 2.

Indicates the form of the equations being solved:
If itrans = 0, then AX = B (no transpose).
If itrans = 1, then ATX = B (transpose).
If itrans = 2, then AHX = B (conjugate transpose).

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides, i.e., the
number of columns in B (nrhs ≥ 0).

dl,d,du,du2,b REAL for sgtts2
DOUBLE PRECISION for dgtts2
COMPLEX for cgtts2
COMPLEX*16 for zgtts2.
Arrays: dl(n - 1), d(n), du(n - 1), du2(n - 2),
b(ldb,nrhs).
The array dl contains the (n - 1) multipliers that define

LAPACK Auxiliary Routines6

6-43

the matrix L from the LU factorization of A.
The array d contains the n diagonal elements of the
upper triangular matrix U from the LU factorization of
A.
The array du contains the (n - 1) elements of the first
super-diagonal of U.
The array du2 contains the (n - 2) elements of the
second super-diagonal of U.
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.

ldb INTEGER. The leading dimension of b; must be
ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION (n).
The pivot indices array, as returned by ?gttrf.

Output Parameters

b Overwritten by the solution matrix X.

?labad
Returns the square root of the underflow
and overflow thresholds if the
exponent-range is very large.

call slabad (small, large)

call dlabad (small, large)

Discussion

This routine takes as input the values computed by slamch/dlamch for
underflow and overflow, and returns the square root of each of these values
if the log of large is sufficiently large. This subroutine is intended to
identify machines with a large exponent range, such as the Crays, and

6-44

6 Intel® Math Kernel Library Reference Manual

redefine the underflow and overflow limits to be the square roots of the
values computed by ?lamch. This subroutine is needed because ?lamch
does not compensate for poor arithmetic in the upper half of the exponent
range, as is found on a Cray.

Input Parameters

small REAL for slabad
DOUBLE PRECISION for dlabad.
The underflow threshold as computed by ?lamch.

large REAL for slabad
DOUBLE PRECISION for dlabad.
The overflow threshold as computed by ?lamch.

Output Parameters

small On exit, if log10(large) is sufficiently large, the square
root of small, otherwise unchanged.

large On exit, if log10(large) is sufficiently large, the square
root of large, otherwise unchanged.

LAPACK Auxiliary Routines6

6-45

?labrd
Reduces the first nb rows and columns of
a general matrix to a bidiagonal form.

call slabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

call dlabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

call clabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

call zlabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

Discussion

The routine reduces the first nb rows and columns of a general m-by-n
matrix A to upper or lower bidiagonal form by an orthogonal/unitary
transformation Q′ A P, and returns the matrices X and Y which are needed
to apply the transformation to the unreduced part of A.

If m ≥ n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal
form.

The matrices Q and P are represented as products of elementary reflectors:
Q = H(1) H(2) ... H(nb) and P = G(1) G(2) ... G(nb)

Each H(i) and G(i) has the form

H(i) = I - tauq*v*v′ and G(i) = I - taup*u*u′
where tauq and taup are scalars, and v and u are vectors.

The elements of the vectors v and u together form the m-by-nb matrix V and
the nb-by-n matrix U′ which are needed, with X and Y, to apply the
transformation to the unreduced part of the matrix, using a block update of
the form: A := A - V*Y′ - X*U′ .

This is an auxiliary routine called by ?gebrd.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

6-46

6 Intel® Math Kernel Library Reference Manual

nb INTEGER. The number of leading rows and columns of
A to be reduced.

a REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.

Array a(lda,*) contains the matrix A to be reduced.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, m).

ldx INTEGER. The first dimension of the output array x;
must beat least max(1, m).

ldy INTEGER. The first dimension of the output array y;
must beat least max(1, n).

Output Parameters

a On exit, the first nb rows and columns of the matrix are
overwritten; the rest of the array is unchanged.

If m ≥ n, elements on and below the diagonal in the first
nb columns, with the array tauq, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors; and elements above the diagonal in the first
nb rows, with the array taup, represent the
orthogonal/unitary matrix P as a product of elementary
reflectors.

If m < n, elements below the diagonal in the first nb
columns, with the array tauq, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors, and elements on and above the diagonal in the
first nb rows, with the array taup, represent the
orthogonal/unitary matrix P as a product of elementary
reflectors.

d, e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION (nb) each.

LAPACK Auxiliary Routines6

6-47

The array d contains the diagonal elements of the first
nb rows and columns of the reduced matrix:
d(i) = a(i,i).
The array e contains the off-diagonal elements of the
first nb rows and columns of the reduced matrix.

tauq,taup REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.

Arrays, DIMENSION (nb) each.
Contain scalar factors of the elementary reflectors which
represent the orthogonal/unitary matrices Q and P,
respectively.

x, y REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.

Arrays, dimension x(ldx, nb), y(ldy, nb).
The array x contains the m-by-nb matrix X required to
update the unreduced part of A.

The array y contains the n-by-nb matrix Y required to
update the unreduced part of A.

Application Notes

If m ≥ n, then for the elementary reflectors H(i) and G(i),

v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in a(i:m, i) ;
u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in a(i, i+1:n) ;
tauq is stored in tauq(i) and taup in taup(i).

If m < n,

v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in a(i+2:m, i) ;
u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in a(i, i+1:n) ;
tauq is stored in tauq(i) and taup in taup(i).

The contents of a on exit are illustrated by the following examples with
nb = 2:

6-48

6 Intel® Math Kernel Library Reference Manual

m =6 , n =5 (m >n) m =5 , n =6 (m < n)

where a denotes an element of the original matrix which is unchanged, vi
denotes an element of the vector defining H(i), and ui an element of the
vector defining G(i).

?lacon
Estimates the 1-norm of a square
matrix, using reverse communication
for evaluating matrix-vector products.

call slacon (n, v, x, isgn, est, kase)

call dlacon (n, v, x, isgn, est, kase)

call clacon (n, v, x, est, kase)

call zlacon (n, v, x, est, kase)

Discussion

This routine estimates the 1-norm of a square, real/complex matrix A.
Reverse communication is used for evaluating matrix-vector products.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 1).

1 1 u1 u1 u1

v1 1 1 u2 u2

v1 v2 a a a

v1 v2 a a a

v1 v2 a a a

v1 v2 a a a

1 u1 u1 u1 u1 u1

1 1 u2 u2 u2 u2

v1 1 a a a a

v1 v2 a a a a

v1 v2 a a a a

LAPACK Auxiliary Routines6

6-49

v, x REAL for slacon
DOUBLE PRECISION for dlacon
COMPLEX for clacon
COMPLEX*16 for zlacon.

Arrays, DIMENSION (n) each.
v is a workspace array.
x is used as input after an intermediate return.

isgn INTEGER. Workspace array, DIMENSION (n) , used with
real flavors only.

kase INTEGER.
On the initial call to ?lacon, kase should be 0.

Output Parameters

est REAL for slacon/clacon
DOUBLE PRECISION for dlacon/zlacon
An estimate (a lower bound) for norm(A).

kase On an intermediate return, kase will be 1 or 2,
indicating whether x should be overwritten by A *x or
A′ *x. On the final return from ?lacon, kase will
again be 0.

v On the final return, v = A*w, where est =
norm(v)/norm(w) (w is not returned).

x On an intermediate return, x should be overwritten by
A *x , if kase = 1,
A′ *x , if kase = 2,
(where for complex flavors A′ is the conjugate
transpose of A), and ?lacon must be re-called with all
the other parameters unchanged.

6-50

6 Intel® Math Kernel Library Reference Manual

?lacpy
Copies all or part of one
two-dimensional array to another.

call slacpy (uplo, m, n, a, lda, b, ldb)

call dlacpy (uplo, m, n, a, lda, b, ldb)

call clacpy (uplo, m, n, a, lda, b, ldb)

call zlacpy (uplo, m, n, a, lda, b, ldb)

Discussion

This routine copies all or part of a two-dimensional matrix A to another
matrix B.

Input Parameters
uplo CHARACTER*1.

Specifies the part of the matrix A to be copied to B.
If uplo = 'U', the upper triangular part of A is copied.
If uplo = 'L', the lower triangular part of A is copied.
Otherwise, all of the matrix A is copied.

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a REAL for slacpy
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
COMPLEX*16 for zlacpy.
Array a(lda,*), contains the m-by-n matrix A.
The second dimension of a must be at least max(1,n).
If uplo = 'U', only the upper triangle or trapezoid is
accessed; if uplo = 'L', only the lower triangle or
trapezoid is accessed.

lda INTEGER. The first dimension of a; lda ≥ max(1, m).

LAPACK Auxiliary Routines6

6-51

ldb INTEGER. The first dimension of the output array b;
ldb ≥ max(1, m).

Output Parameters

b REAL for slacpy
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
COMPLEX*16 for zlacpy.
Array b(ldb,*), contains the m-by-n matrix B.
The second dimension of b must be at least max(1,n).
On exit, B = A in the locations specified by uplo .

?ladiv
Performs complex division in real
arithmetic, avoiding unnecessary
overflow.

call sladiv (a, b, c, d, p, q)

call dladiv (a, b, c, d, p, q)

res = cladiv (x, y)

res = zladiv (x, y)

Discussion

The routines sladiv/dladiv perform complex division in real arithmetic
as

Complex functions cladiv/zladiv compute the result as

,

where x and y are complex. The computation of x / y will not overflow on
an intermediary step unless the results overflows.

p iq+
a ib+
c id+
--------------=

res x y⁄=

6-52

6 Intel® Math Kernel Library Reference Manual

Input Parameters

a, b, c, d REAL for sladiv
DOUBLE PRECISION for dladiv
The scalars a, b, c, and d in the above expression (for
real flavors only).

x, y COMPLEX for cladiv
COMPLEX*16 for zladiv
The complex scalars x and y (for complex flavors only).

Output Parameters

p, q REAL for sladiv
DOUBLE PRECISION for dladiv
The scalars p and q in the above expression (for real
flavors only).

res COMPLEX for cladiv
DOUBLE COMPLEX for zladiv
Contains the result of division x / y .

?lae2
Computes the eigenvalues of a
2-by-2 symmetric matrix.

call slae2 (a, b, c, rt1, rt2)

call dlae2 (a, b, c, rt1, rt2)

Discussion

The routines sla2/dlae2 compute the eigenvalues of a 2-by-2 symmetric
matrix

a b

b c

LAPACK Auxiliary Routines6

6-53

On return, rt1 is the eigenvalue of larger absolute value, and rt1 is the
eigenvalue of smaller absolute value.

Input Parameters

a, b, c REAL for slae2
DOUBLE PRECISION for dlae2
The elements a, b, and c of the 2-by-2 matrix above.

Output Parameters

rt1, rt2 REAL for slae2
DOUBLE PRECISION for dlae2
The computed eigenvalues of larger and smaller
absolute value, respectively.

Application Notes

rt1 is accurate to a few ulps barring over/underflow. rt2 may be inaccurate
if there is massive cancellation in the determinant a*c-b*b; higher
precision or correctly rounded or correctly truncated arithmetic would be
needed to compute rt2 accurately in all cases.

Overflow is possible only if rt1 is within a factor of 5 of overflow.
Underflow is harmless if the input data is 0 or exceeds
underflow_threshold / macheps.

6-54

6 Intel® Math Kernel Library Reference Manual

?laebz
Computes the number of eigenvalues of a real
symmetric tridiagonal matrix which are less
than or equal to a given value, and performs
other tasks required by the routine ?stebz.

call slaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol,
reltol, pivmin, d, e, e2, nval, ab, c, mout, nab,
work, iwork, info)

call dlaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol,
reltol, pivmin, d, e, e2, nval, ab, c, mout, nab,
work, iwork, info)

Discussion

The routine ?laebz contains the iteration loops which compute and use the
function N(w), which is the count of eigenvalues of a symmetric tridiagonal
matrix T less than or equal to its argument w. It performs a choice of two
types of loops:

ijob =1, followed by

ijob =2: It takes as input a list of intervals and returns a list of sufficiently
small intervals whose union contains the same eigenvalues as the
union of the original intervals. The input intervals are
(ab(j,1),ab(j,2)], j=1,...,minp. The output interval
(ab(j,1),ab(j,2)] will contain eigenvalues nab(j,1)+1,...,nab(j,2),
where 1 ≤j ≤mout.

ijob =3: It performs a binary search in each input interval
(ab(j,1),ab(j,2)] for a point w(j) such that N(w(j))=nval(j), and
uses c(j) as the starting point of the search. If such a w(j) is
found, then on output ab(j,1)=ab(j,2)=w. If no such w(j) is
found, then on output (ab(j,1),ab(j,2)] will be a small interval
containing the point where N(w) jumps through nval(j), unless
that point lies outside the initial interval.

LAPACK Auxiliary Routines6

6-55

Note that the intervals are in all cases half-open intervals, that is, of the form
(a,b] , which includes b but not a .

To avoid underflow, the matrix should be scaled so that its largest element is
no greater than overflow**(1/2) * underflow**(1/4) in absolute value. To
assure the most accurate computation of small eigenvalues, the matrix
should be scaled to be not much smaller than that, either.

Note: the arguments are, in general, not checked for unreasonable values.

Input Parameters

ijob INTEGER. Specifies what is to be done:
= 1: Compute nab for the initial intervals.
= 2: Perform bisection iteration to find eigenvalues of T.
= 3: Perform bisection iteration to invert N(w), i.e., to
find a point which has a specified number of eigenvalues
of T to its left.
Other values will cause ?laebz to return with info=-1.

nitmax INTEGER.
The maximum number of "levels" of bisection to be
performed, i.e., an interval of width W will not be made
smaller than 2^(-nitmax) * W. If not all intervals have
converged after nitmax iterations, then info is set to
the number of non-converged intervals.

n INTEGER.
The dimension n of the tridiagonal matrix T. It must be
at least 1.

mmax INTEGER.
The maximum number of intervals. If more than mmax

intervals are generated, then ?laebz will quit with
info=mmax+1.

minp INTEGER.
The initial number of intervals. It may not be greater
than mmax.

6-56

6 Intel® Math Kernel Library Reference Manual

nbmin INTEGER.
The smallest number of intervals that should be
processed using a vector loop. If zero, then only the
scalar loop will be used.

abstol REAL for slaebz
DOUBLE PRECISION for dlaebz.
The minimum (absolute) width of an interval. When an
interval is narrower than abstol, or than reltol times
the larger (in magnitude) endpoint, then it is considered
to be sufficiently small, i.e., converged. This must be at
least zero.

reltol REAL for slaebz
DOUBLE PRECISION for dlaebz.
The minimum relative width of an interval. When an
interval is narrower than abstol, or than reltol times
the larger (in magnitude) endpoint, then it is considered
to be sufficiently small, i.e., converged. Note: this
should always be at least radix*machine epsilon.

pivmin REAL for slaebz
DOUBLE PRECISION for dlaebz.
The minimum absolute value of a "pivot" in the Sturm
sequence loop. This must be at least
max |e(j)**2| * safe_min and at least safe_min, where
safe_min is at least the smallest number that can divide
one without overflow.

d, e, e2 REAL for slaebz
DOUBLE PRECISION for dlaebz.
Arrays, dimension (n) each.
The array d contains the diagonal elements of the
tridiagonal matrix T.

The array e contains the off-diagonal elements of the
tridiagonal matrix T in positions 1 through n-1. e(n) is
arbitrary.

The array e2 contains the squares of the off-diagonal
elements of the tridiagonal matrix T. e2(n) is ignored.

LAPACK Auxiliary Routines6

6-57

nval INTEGER.
Array, dimension (minp).
If ijob=1 or 2, not referenced.
If ijob=3, the desired values of N(w).

ab REAL for slaebz
DOUBLE PRECISION for dlaebz.
Array, dimension (mmax,2)
The endpoints of the intervals. ab(j,1) is a(j), the left
endpoint of the j-th interval, and ab(j,2) is b(j), the right
endpoint of the j-th interval.

c REAL for slaebz
DOUBLE PRECISION for dlaebz.
Array, dimension (mmax)
If ijob=1, ignored.
If ijob=2, workspace.
If ijob=3, then on input c(j) should be initialized to the
first search point in the binary search.

nab INTEGER.
Array, dimension (mmax,2)
If ijob=2, then on input, nab(i,j) should be set. It must
satisfy the condition:
N(ab(i,1)) ≤nab(i,1) ≤nab(i,2) ≤N(ab(i,2)), which means
that in interval i only eigenvalues
nab(i,1)+1,...,nab(i,2) will be considered. Usually,
nab(i,j)=N(ab(i,j)), from a previous call to ?laebz with
ijob=1.

If ijob=3, normally, nab should be set to some
distinctive value(s) before ?laebz is called.

work REAL for slaebz
DOUBLE PRECISION for dlaebz.
Workspace array, dimension (mmax).

iwork INTEGER.
Workspace array, dimension (mmax).

6-58

6 Intel® Math Kernel Library Reference Manual

Output Parameters

nval The elements of nval will be reordered to correspond
with the intervals in ab. Thus, nval(j) on output will
not, in general be the same as nval(j) on input, but it
will correspond with the interval (ab(j,1),ab(j,2)] on
output.

ab The input intervals will, in general, be modified, split,
and reordered by the calculation.

mout INTEGER.
If ijob=1, the number of eigenvalues in the intervals.
If ijob=2 or 3, the number of intervals output.
If ijob=3, mout will equal minp.

nab If ijob=1, then on output nab(i,j) will be set to
N(ab(i,j)).
If ijob=2, then on output, nab(i,j) will contain
max(na(k),min(nb(k),N(ab(i,j)))), where k is the index
of the input interval that the output interval
(ab(j,1),ab(j,2)] came from, and na(k) and nb(k) are the
the input values of nab(k,1) and nab(k,2).
If ijob=3, then on output, nab(i,j) contains N(ab(i,j)),
unless N(w) > nval(i) for all search points w , in which
case nab(i,1) will not be modified, i.e., the output value
will be the same as the input value (modulo reorderings,
see nval and ab), or unless N(w) < nval(i) for all
search points w , in which case nab(i,2) will not be
modified.

info INTEGER.

0: All intervals converged.
1--mmax: The last info intervals did not converge.
mmax+1: More than mmax intervals were generated.

Application Notes

This routine is intended to be called only by other LAPACK routines, thus
the interface is less user-friendly. It is intended for two purposes:

LAPACK Auxiliary Routines6

6-59

(a) finding eigenvalues. In this case, ?laebz should have one or more
initial intervals set up in ab, and ?laebz should be called with ijob=1.
This sets up nab, and also counts the eigenvalues. Intervals with no
eigenvalues would usually be thrown out at this point. Also, if not all the
eigenvalues in an interval i are desired, nab(i,1) can be increased or
nab(i,2) decreased. For example, set nab(i,1)=nab(i,2)-1 to get the largest
eigenvalue. ?laebz is then called with ijob=2 and mmax no smaller than
the value of mout returned by the call with ijob=1. After this (ijob=2)
call, eigenvalues nab(i,1)+1 through nab(i,2) are approximately ab(i,1) (or
ab(i,2)) to the tolerance specified by abstol and reltol.

(b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). In this
case, start with a Gershgorin interval (a,b). Set up ab to contain 2 search
intervals, both initially (a,b). One nval element should contain f-1 and
the other should contain l, while c should contain a and b, respectively.
nab(i,1) should be -1 and nab(i,2) should be n+1, to flag an error if the
desired interval does not lie in (a,b). ?laebz is then called with ijob=3.
On exit, if w(f-1) < w(f), then one of the intervals -- j -- will have
ab(j,1)=ab(j,2) and nab(j,1)=nab(j,2)=f-1, while if, to the specified
tolerance, w(f-k)=...=w(f+r), k > 0 and r ≥ 0, then the interval will have
N(ab(j,1))=nab(j,1)=f-k and N(ab(j,2))=nab(j,2)=f+r. The cases w(l) <
w(l+1) and w(l-r)=...=w(l+k) are handled similarly.

6-60

6 Intel® Math Kernel Library Reference Manual

?laed0
Used by ?stedc. Computes all eigenvalues
and corresponding eigenvectors of an
unreduced symmetric tridiagonal matrix
using the divide and conquer method.

call slaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs,
work, iwork, info)

call dlaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs,
work, iwork, info)

call claed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork,
iwork, info)

call zlaed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork,
iwork, info)

Discussion

Real flavors of this routine compute all eigenvalues and (optionally)
corresponding eigenvectors of a symmetric tridiagonal matrix using the
divide and conquer method.

Complex flavors claed0/zlaed0 compute all eigenvalues of a symmetric
tridiagonal matrix which is one diagonal block of those from reducing a
dense or band Hermitian matrix and corresponding eigenvectors of the
dense or band matrix.

Input Parameters
icompq INTEGER. Used with real flavors only.

If icompq = 0, compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense
symmetric matrix also. On entry, the array q must
contain the orthogonal matrix used to reduce the original
matrix to tridiagonal form.
If icompq = 2, compute eigenvalues and eigenvectors
of the tridiagonal matrix.

qsiz INTEGER.

LAPACK Auxiliary Routines6

6-61

The dimension of the orthogonal/unitary matrix used to
reduce the full matrix to tridiagonal form; qsiz ≥ n

(for real flavors, qsiz ≥ n if icompq = 1).

n INTEGER. The dimension of the symmetric tridiagonal
matrix (n ≥ 0).

d, e, rwork REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the main diagonal of the tridiagonal
matrix. The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of the
tridiagonal matrix. The dimension of e must be at least
max(1, n-1).

rwork(*) is a workspace array used in complex flavors
only. The dimension of rwork must be at least
(1 +3n+2nlg(n)+3n2), where lg(n) = smallest integer k
such that 2k ≥ n.

q, qstore REAL for slaed0
DOUBLE PRECISION for dlaed0
COMPLEX for claed0
COMPLEX*16 for zlaed0.
Arrays: q(ldq, *), qstore(ldqs, *). The second
dimension of these arrays must be at least max(1, n).
For real flavors:
If icompq = 0, array q is not referenced.
If icompq = 1, on entry, q is a subset of the columns of
the orthogonal matrix used to reduce the full matrix to
tridiagonal form corresponding to the subset of the full
matrix which is being decomposed at this time.
If icompq = 2, on entry, q will be the identity matrix.
The array qstore is a workspace array referenced only
when icompq = 1. Used to store parts of the eigenvector
matrix when the updating matrix multiplies take place.

6-62

6 Intel® Math Kernel Library Reference Manual

For complex flavors:
On entry, q must contain an qsiz-by-n matrix whose
columns are unitarily orthonormal. It is a part of the
unitary matrix that reduces the full dense Hermitian
matrix to a (reducible) symmetric tridiagonal matrix.
The array qstore is a workspace array used to store
parts of the eigenvector matrix when the updating matrix
multiplies take place.

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

ldqs INTEGER. The first dimension of the array qstore;
ldqs ≥ max(1, n).

work REAL for slaed0

DOUBLE PRECISION for dlaed0.
Workspace array, used in real flavors only.
If icompq = 0 or 1, the dimension of work must be at
least (1 +3n+2nlg(n)+2n2), where lg(n) = smallest
integer k such that 2k ≥ n.
If icompq = 2, the dimension of work must be at least
(4n+n2).

iwork INTEGER.
Workspace array.
For real flavors, if icompq = 0 or 1, and for complex
flavors, the dimension of iwork must be at least
(6 +6n+5nlg(n)),
For real flavors, If icompq = 2, the dimension of iwork
must be at least (3+5n).

Output Parameters

d On exit, contains eigenvalues in ascending order.

e On exit, the array has been destroyed.

q If icompq = 2, on exit, q contains the eigenvectors of
the tridiagonal matrix.

LAPACK Auxiliary Routines6

6-63

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i > 0, the algorithm failed to compute an
eigenvalue while working on the submatrix lying in
rows and columns i/(n+1) through mod(i, n+1).

6-64

6 Intel® Math Kernel Library Reference Manual

?laed1
Used by sstedc/dstedc. Computes the
updated eigensystem of a diagonal matrix
after modification by a rank-one symmetric
matrix. Used when the original matrix is
tridiagonal.

call slaed1(n, d, q, ldq, indxq, rho, cutpnt, work,
iwork, info)

call dlaed1(n, d, q, ldq, indxq, rho, cutpnt, work,
iwork, info)

Discussion

The routine ?laed1 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This routine is
used only for the eigenproblem which requires all eigenvalues and
eigenvectors of a tridiagonal matrix. ?laed7 handles the case in which
eigenvalues only or eigenvalues and eigenvectors of a full symmetric matrix
(which was reduced to tridiagonal form) are desired.

T = Q(in) (D(in) + rho * z*z') Q'(in) = Q(out) * D(out) * Q'(out)

where z = Q'u, u is a vector of length n with ones in the cutpnt and
(cutpnt + 1) -th elements and zeros elsewhere. The eigenvectors of the
original matrix are stored in Q, and the eigenvalues are in D. The algorithm
consists of three stages:

The first stage consists of deflating the size of the problem when there are
multiple eigenvalues or if there is a zero in the z vector. For each such
occurrence the dimension of the secular equation problem is reduced by
one. This stage is performed by the routine ?laed2.

The second stage consists of calculating the updated eigenvalues. This is
done by finding the roots of the secular equation via the routine ?laed4 (as
called by ?laed3). This routine also calculates the eigenvectors of the
current problem.

LAPACK Auxiliary Routines6

6-65

The final stage consists of computing the updated eigenvectors directly
using the updated eigenvalues. The eigenvectors for the current problem are
multiplied with the eigenvectors from the overall problem.

Input Parameters

n INTEGER. The dimension of the symmetric tridiagonal
matrix (n ≥ 0).

d, q, work REAL for slaed1
DOUBLE PRECISION for dlaed1.
Arrays:
d(*) contains the eigenvalues of the rank-1-perturbed
matrix. The dimension of d must be at least max(1, n).

q(ldq, *) contains the eigenvectors of the
rank-1-perturbed matrix. The second dimension of q
must be at least max(1, n).

work(*) is a workspace array, dimension at least
(4n+n2).

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

indxq INTEGER. Array, dimension (n).
On entry, the permutation which separately sorts the two
subproblems in d into ascending order.

rho REAL for slaed1
DOUBLE PRECISION for dlaed1.
The subdiagonal entry used to create the rank-1
modification.

cutpnt INTEGER.
The location of the last eigenvalue in the leading
sub-matrix. min(1,n) ≤cutpnt ≤n/2.

iwork INTEGER. Workspace array, dimension (4n).

Output Parameters

d On exit, contains the eigenvalues of the repaired matrix.

6-66

6 Intel® Math Kernel Library Reference Manual

q On exit, q contains the eigenvectors of the repaired
tridiagonal matrix.

indxq On exit, contains the permutation which will reintegrate
the subproblems back into sorted order, that is,
d(indxq(i = 1, n)) will be in ascending order.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, an eigenvalue did not converge.

LAPACK Auxiliary Routines6

6-67

?laed2
Used by sstedc/dstedc. Merges
eigenvalues and deflates secular equation.
Used when the original matrix is tridiagonal.

call slaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda,
w, q2, indx, indxc, indxp, coltyp, info)

call dlaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda,
w, q2, indx, indxc, indxp, coltyp, info)

Discussion

The routine ?laed2 merges the two sets of eigenvalues together into a
single sorted set. Then it tries to deflate the size of the problem. There are
two ways in which deflation can occur: when two or more eigenvalues are
close together or if there is a tiny entry in the z vector. For each such
occurrence the order of the related secular equation problem is reduced by
one.

Input Parameters

k INTEGER. The number of non-deflated eigenvalues, and
the order of the related secular equation (0 ≤k ≤n).

n INTEGER. The dimension of the symmetric tridiagonal
matrix (n ≥ 0).

n1 INTEGER. The location of the last eigenvalue in the
leading sub-matrix; min(1,n) ≤n1 ≤n/2.

d, q, z REAL for slaed2
DOUBLE PRECISION for dlaed2.
Arrays:
d(*) contains the eigenvalues of the two submatrices to
be combined. The dimension of d must be at least
max(1, n).

6-68

6 Intel® Math Kernel Library Reference Manual

q(ldq, *) contains the eigenvectors of the two
submatrices in the two square blocks with corners at
(1,1), (n1,n1) and (n1+1,n1+1), (n,n). The second
dimension of q must be at least max(1, n).
z(*) contains the updating vector (the last row of the
first sub-eigenvector matrix and the first row of the
second sub-eigenvector matrix).

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

indxq INTEGER. Array, dimension (n).
On entry, the permutation which separately sorts the two
subproblems in d into ascending order. Note that
elements in the second half of this permutation must
first have n1 added to their values.

rho REAL for slaed2
DOUBLE PRECISION for dlaed2.
On entry, the off-diagonal element associated with the
rank-1 cut which originally split the two submatrices
which are now being recombined.

indx, indxp INTEGER.

Workspace arrays, dimension (n) each.
Array indx contains the permutation used to sort the
contents of dlamda into ascending order.

Array indxp contains the permutation used to place
deflated values of d at the end of the array.
indxp(1:k) points to the nondeflated d-values and
indxp(k+1:n) points to the deflated eigenvalues.

coltyp INTEGER. Workspace array, dimension (n).
During execution, a label which will indicate which of
the following types a column in the q2 matrix is:
1 : non-zero in the upper half only;
2 : dense;
3 : non-zero in the lower half only;
4 : deflated.

LAPACK Auxiliary Routines6

6-69

Output Parameters

d On exit, d contains the trailing (n-k) updated
eigenvalues (those which were deflated) sorted into
increasing order.

q On exit, q contains the trailing (n-k) updated
eigenvectors (those which were deflated) in its last n-k
columns.

indxq Destroyed on exit.

rho On exit, rho has been modified to the value required by
?laed3.

dlamda, w, q2 REAL for slaed2
DOUBLE PRECISION for dlaed2.
Arrays: dlamda(n), w(n), q2(n12+(n-n1)2).

The array dlamda contains a copy of the first k
eigenvalues which will be used by ?laed3 to form the
secular equation.

The array w contains the first k values of the final
deflation-altered z-vector which will be passed to
?laed3.

The array q2 contains a copy of the first k eigenvectors
which will be used by ?laed3 in a matrix multiply
(sgemm/dgemm) to solve for the new eigenvectors.

indxc INTEGER. Array, dimension (n).
The permutation used to arrange the columns of the
deflated q matrix into three groups: the first group
contains non-zero elements only at and above n1, the
second contains non-zero elements only below n1, and
the third is dense.

coltyp On exit, coltyp(i) is the number of columns of type i,
for i=1 to 4 only (see the definition of types in the
description of coltyp in Input Parameters).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

6-70

6 Intel® Math Kernel Library Reference Manual

?laed3
Used by sstedc/dstedc. Finds the roots of
the secular equation and updates the
eigenvectors. Used when the original matrix
is tridiagonal.

call slaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx,
ctot, w, s, info)

call dlaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx,
ctot, w, s, info)

Discussion

The routine ?laed3 finds the roots of the secular equation, as defined by
the values in d, w, and rho, between 1 and k. It makes the appropriate calls
to ?laed4 and then updates the eigenvectors by multiplying the matrix of
eigenvectors of the pair of eigensystems being combined by the matrix of
eigenvectors of the k-by-k system which is solved here.

This code makes very mild assumptions about floating point arithmetic. It
will work on machines with a guard digit in add/subtract, or on those binary
machines without guard digits which subtract like the Cray X-MP, Cray
Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or
decimal machines without guard digits, but none are known.

Input Parameters

k INTEGER. The number of terms in the rational function
to be solved by ?laed4 (k ≥ 0).

n INTEGER. The number of rows and columns in the q
matrix. n ≥ k (deflation may result in n >k).

n1 INTEGER. The location of the last eigenvalue in the
leading sub-matrix; min(1,n) ≤n1 ≤n/2.

q REAL for slaed3
DOUBLE PRECISION for dlaed3.
Array q(ldq, *). The second dimension of q must be

LAPACK Auxiliary Routines6

6-71

at least max(1, n).
Initially, the first k columns of this array are used as
workspace.

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

rho REAL for slaed3
DOUBLE PRECISION for dlaed3.
The value of the parameter in the rank one update
equation. rho ≥ 0 required.

dlamda, q2, w REAL for slaed3
DOUBLE PRECISION for dlaed3.
Arrays: dlamda(k), q2(ldq2, *), w(k).

The first k elements of the array dlamda contain the
old roots of the deflated updating problem. These are
the poles of the secular equation.

The first k columns of the array q2 contain the
non-deflated eigenvectors for the split problem. The
second dimension of q2 must be at least max(1, n).

The first k elements of the array w contain the
components of the deflation-adjusted updating vector.

indx INTEGER. Array, dimension (n).
The permutation used to arrange the columns of the
deflated q matrix into three groups (see ?laed2). The
rows of the eigenvectors found by ?laed4 must be
likewise permuted before the matrix multiply can take
place.

ctot INTEGER. Array, dimension (4).
A count of the total number of the various types of
columns in q , as described in indx. The fourth column
type is any column which has been deflated.

s REAL for slaed3
DOUBLE PRECISION for dlaed3.
Workspace array, dimension (n1+1)*k .

6-72

6 Intel® Math Kernel Library Reference Manual

Will contain the eigenvectors of the repaired matrix
which will be multiplied by the previously accumulated
eigenvectors to update the system.

Output Parameters

d REAL for slaed3
DOUBLE PRECISION for dlaed3.
Array, dimension at least max(1, n).
d(i) contains the updated eigenvalues for 1 ≤ i ≤ k.

q On exit, the columns 1 to k of q contain the updated
eigenvectors.

dlamda May be changed on output by having lowest order bit set
to zero on Cray X-MP, Cray Y-MP, Cray-2, or Cray
C-90, as described above.

w Destroyed on exit.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, an eigenvalue did not converge.

LAPACK Auxiliary Routines6

6-73

?laed4
Used by sstedc/dstedc. Finds a
single root of the secular equation.

call slaed4 (n, i, d, z, delta, rho, dlam, info)

call dlaed4 (n, i, d, z, delta, rho, dlam, info)

Discussion

This subroutine computes the i-th updated eigenvalue of a symmetric
rank-one modification to a diagonal matrix whose elements are given in the
array d, and that

D(i) < D(j) for i < j

and that rho > 0. This is arranged by the calling routine, and is no loss in
generality. The rank-one modified system is thus

diag(D) + rho * Z * transpose(Z) .

where we assume the Euclidean norm of Z is 1.

The method consists of approximating the rational functions in the secular
equation by simpler interpolating rational functions.

Input Parameters

n INTEGER. The length of all arrays.

i INTEGER. The index of the eigenvalue to be computed;
1 ≤ i ≤ n.

d, z REAL for slaed4
DOUBLE PRECISION for dlaed4
Arrays, dimension (n) each.
The array d contains the original eigenvalues. It is
assumed that they are in order, d(i) < d(j) for i < j.

The array z contains the components of the updating
vector Z.

6-74

6 Intel® Math Kernel Library Reference Manual

rho REAL for slaed4
DOUBLE PRECISION for dlaed4
The scalar in the symmetric updating formula.

Output Parameters

delta REAL for slaed4
DOUBLE PRECISION for dlaed4
Array, dimension (n).
If n ≠ 1, delta contains (d(j) - lambda_i) in its j-th
component. If n = 1, then delta(1) = 1. The vector
delta contains the information necessary to construct
the eigenvectors.

dlam REAL for slaed4
DOUBLE PRECISION for dlaed4
The computed lambda_i, the i-th updated eigenvalue.

info INTEGER.
If info = 0, the execution is successful.
If info = 1, the updating process failed.

?laed5
Used by sstedc/dstedc.
Solves the 2-by-2 secular equation.

call slaed5 (i, d, z, delta, rho, dlam)

call dlaed5 (i, d, z, delta, rho, dlam)

Discussion

This subroutine computes the i-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix

diag(D) + rho * Z * transpose(Z) .

The diagonal elements in the array D are assumed to satisfy

D(i) < D(j) for i < j .

LAPACK Auxiliary Routines6

6-75

We also assume rho > 0 and that the Euclidean norm of the vector Z is one.

Input Parameters

i INTEGER. The index of the eigenvalue to be computed;
1 ≤ i ≤ 2.

d, z REAL for slaed5
DOUBLE PRECISION for dlaed5
Arrays, dimension (2) each.
The array d contains the original eigenvalues. It is
assumed that d(1) < d(2).

The array z contains the components of the updating
vector.

rho REAL for slaed5
DOUBLE PRECISION for dlaed5
The scalar in the symmetric updating formula.

Output Parameters

delta REAL for slaed5
DOUBLE PRECISION for dlaed5
Array, dimension (2).
The vector delta contains the information necessary to
construct the eigenvectors.

dlam REAL for slaed5
DOUBLE PRECISION for dlaed5
The computed lambda_i, the i-th updated eigenvalue.

?laed6
Used by sstedc/dstedc.
Computes one Newton step in solution
of the secular equation.

call slaed6(kniter, orgati, rho, d, z, finit, tau, info)

6-76

6 Intel® Math Kernel Library Reference Manual

call dlaed6(kniter, orgati, rho, d, z, finit, tau, info)

Discussion

This routine computes the positive or negative root (closest to the origin) of

It is assumed that if orgati = .TRUE. the root is between d(2) and d(3);
otherwise it is between d(1) and d(2)
This routine will be called by ?laed4 when necessary. In most cases, the
root sought is the smallest in magnitude, though it might not be in some
extremely rare situations.

Input Parameters

kniter INTEGER.
Refer to ?laed4 for its significance.

orgati LOGICAL.
If orgati = .TRUE., the needed root is between d(2)
and d(3); otherwise it is between d(1) and d(2). See
?laed4 for further details.

rho REAL for slaed6
DOUBLE PRECISION for dlaed6
Refer to the equation for f(x) above.

d, z REAL for slaed6
DOUBLE PRECISION for dlaed6
Arrays, dimension (3) each.

The array d satisfies d(1) < d(2) < d(3).

Each of the elements in the array z must be positive.

finit REAL for slaed6
DOUBLE PRECISION for dlaed6
The value of f(x) at 0. It is more accurate than the one
evaluated inside this routine (if someone wants to do so).

f x() rho
z 1()

d 1() x–

z 2()
d 2() x–

z 3()
d 3() x–
-------------------+ + +=

LAPACK Auxiliary Routines6

6-77

Output Parameters

tau REAL for slaed6
DOUBLE PRECISION for dlaed6
The root of the equation for f(x).

info INTEGER.
If info = 0, the execution is successful.
If info = 1, failure to converge.

6-78

6 Intel® Math Kernel Library Reference Manual

?laed7
Used by ?stedc. Computes the updated
eigensystem of a diagonal matrix after
modification by a rank-one symmetric matrix.
Used when the original matrix is dense.

call slaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq,
indxq, rho, cutpnt, qstore, qptr, prmptr, perm, givptr, givcol,
givnum, work, iwork, info)

call dlaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq,
indxq, rho, cutpnt, qstore, qptr, prmptr, perm, givptr, givcol,
givnum, work, iwork, info)

call claed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho,
indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum,
work, rwork, iwork, info)

call zlaed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho,
indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum,
work, rwork, iwork, info)

Discussion

The routine ?laed7 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This routine is
used only for the eigenproblem which requires all eigenvalues and
optionally eigenvectors of a dense symmetric/Hermitian matrix that has
been reduced to tridiagonal form. For real flavors, slaed1/dlaed1
handles the case in which all eigenvalues and eigenvectors of a symmetric
tridiagonal matrix are desired.

T = Q(in) (D(in) + rho * z*z') Q'(in) = Q(out) * D(out) * Q'(out)

where z = Q'u, u is a vector of length n with ones in the cutpnt and
(cutpnt + 1) -th elements and zeros elsewhere. The eigenvectors of the
original matrix are stored in Q, and the eigenvalues are in D. The algorithm
consists of three stages:

LAPACK Auxiliary Routines6

6-79

The first stage consists of deflating the size of the problem when there are
multiple eigenvalues or if there is a zero in the z vector. For each such
occurrence the dimension of the secular equation problem is reduced by
one. This stage is performed by the routine slaed8/dlaed8 (for real
flavors) or by the routine slaed2/dlaed2 (for complex flavors) .

The second stage consists of calculating the updated eigenvalues. This is
done by finding the roots of the secular equation via the routine ?laed4 (as
called by ?laed9 or ?laed3). This routine also calculates the eigenvectors
of the current problem.

The final stage consists of computing the updated eigenvectors directly
using the updated eigenvalues. The eigenvectors for the current problem are
multiplied with the eigenvectors from the overall problem.

Input Parameters
icompq INTEGER. Used with real flavors only.

If icompq = 0, compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense
symmetric matrix also. On entry, the array q must
contain the orthogonal matrix used to reduce the original
matrix to tridiagonal form.

n INTEGER. The dimension of the symmetric tridiagonal
matrix (n ≥ 0).

cutpnt INTEGER. The location of the last eigenvalue in the
leading sub-matrix. min(1,n) ≤cutpnt ≤n .

qsiz INTEGER. The dimension of the orthogonal/unitary
matrix used to reduce the full matrix to tridiagonal form;
qsiz ≥ n (for real flavors, qsiz ≥ n if icompq = 1).

tlvls INTEGER. The total number of merging levels in the
overall divide and conquer tree.

curlvl INTEGER. The current level in the overall merge
routine, 0 ≤curlvl ≤tlvls .

curpbm INTEGER. The current problem in the current level in
the overall merge routine (counting from upper left to
lower right).

6-80

6 Intel® Math Kernel Library Reference Manual

d REAL for slaed7/claed7

DOUBLE PRECISION for dlaed7/zlaed7.

Array, dimension at least max(1, n).
Array d(*) contains the eigenvalues of the
rank-1-perturbed matrix.

q, work REAL for slaed7
DOUBLE PRECISION for dlaed7
COMPLEX for claed7
COMPLEX*16 for zlaed7.
Arrays:
q(ldq, *) contains the the eigenvectors of the
rank-1-perturbed matrix. The second dimension of q
must be at least max(1, n).

work(*) is a workspace array, dimension at least
(3n+qsiz*n) for real flavors and at least (qsiz*n) for
complex flavors.

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

rho REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7.
The subdiagonal element used to create the rank-1
modification.

qstore REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7.
Array, dimension (n2+1). Serves also as output
parameter.
Stores eigenvectors of submatrices encountered during
divide and conquer, packed together. qptr points to
beginning of the submatrices.

qptr INTEGER. Array, dimension (n+2). Serves also as
output parameter.
List of indices pointing to beginning of submatrices
stored in qstore. The submatrices are numbered
starting at the bottom left of the divide and conquer tree,
from left to right and bottom to top.

LAPACK Auxiliary Routines6

6-81

prmptr, perm,
givptr INTEGER. Arrays, dimension (n lgn) each.

The array prmptr(*) contains a list of pointers which
indicate where in perm a level's permutation is stored.
prmptr(i+1) - prmptr(i) indicates the size of the
permutation and also the size of the full, non-deflated
problem.

The array perm(*) contains the permutations (from
deflation and sorting) to be applied to each eigenblock.

The array givptr(*) contains a list of pointers which
indicate where in givcol a level's Givens rotations are
stored. givptr(i+1) - givptr(i) indicates the number
of Givens rotations.

givcol INTEGER. Array, dimension (2, n lgn).
Each pair of numbers indicates a pair of columns to take
place in a Givens rotation.

givnum REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7.
Array, dimension (2, n lgn).
Each number indicates the S value to be used in the
corresponding Givens rotation.

iwork INTEGER. Workspace array, dimension (4n).

rwork REAL for claed7
DOUBLE PRECISION for zlaed7.
Workspace array, dimension (3n+2qsiz*n). Used in
complex flavors only.

Output Parameters

d On exit, contains the eigenvalues of the repaired matrix.

q On exit, q contains the eigenvectors of the repaired
tridiagonal matrix.

6-82

6 Intel® Math Kernel Library Reference Manual

indxq INTEGER. Array, dimension (n).
Contains the permutation which will reintegrate the
subproblems back into sorted order, that is,
d(indxq(i = 1, n)) will be in ascending order.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, an eigenvalue did not converge.

LAPACK Auxiliary Routines6

6-83

?laed8
Used by ?stedc. Merges eigenvalues and
deflates secular equation. Used when the
original matrix is dense.

call slaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z,
dlamda, q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx,
info)

call dlaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z,
dlamda, q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx,
info)

call claed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2,
ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum,
info)

call zlaed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2,
ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum,
info)

Discussion

This routine merges the two sets of eigenvalues together into a single sorted
set. Then it tries to deflate the size of the problem. There are two ways in
which deflation can occur: when two or more eigenvalues are close
together or if there is a tiny element in the z vector. For each such
occurrence the order of the related secular equation problem is reduced by
one.

Input Parameters
icompq INTEGER. Used with real flavors only.

If icompq = 0, compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense
symmetric matrix also. On entry, the array q must
contain the orthogonal matrix used to reduce the original
matrix to tridiagonal form.

n INTEGER. The dimension of the symmetric tridiagonal
matrix (n ≥ 0).

6-84

6 Intel® Math Kernel Library Reference Manual

cutpnt INTEGER. The location of the last eigenvalue in the
leading sub-matrix. min(1,n) ≤cutpnt ≤n .

qsiz INTEGER. The dimension of the orthogonal/unitary
matrix used to reduce the full matrix to tridiagonal form;
qsiz ≥ n (for real flavors, qsiz ≥ n if icompq = 1).

d, z REAL for slaed8/claed8

DOUBLE PRECISION for dlaed8/zlaed8.
Arrays, dimension at least max(1, n) each.
The array d(*) contains the eigenvalues of the two
submatrices to be combined.
On entry, z(*) contains the updating vector (the last row
of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix). The contents of z
are destroyed by the updating process.

q REAL for slaed8
DOUBLE PRECISION for dlaed8
COMPLEX for claed8
COMPLEX*16 for zlaed8.
Array q(ldq, *). The second dimension of q must be
at least max(1, n). On entry, q contains the eigenvectors
of the partially solved system which has been previously
updated in matrix multiplies with other partially solved
eigensystems.
For real flavors, if icompq = 0, q is not referenced.

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

ldq2 INTEGER. The first dimension of the output array q2;
ldq2 ≥ max(1, n).

indxq INTEGER. Array, dimension (n).
The permutation which separately sorts the two
sub-problems in d into ascending order. Note that
elements in the second half of this permutation must
first have cutpnt added to their values in order to be
accurate.

LAPACK Auxiliary Routines6

6-85

rho REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
On entry, the off-diagonal element associated with the
rank-1 cut which originally split the two submatrices
which are now being recombined.

Output Parameters

k INTEGER. The number of non-deflated eigenvalues, and
the order of the related secular equation.

d On exit, contains the trailing (n-k) updated eigenvalues
(those which were deflated) sorted into increasing order.

q On exit, q contains the trailing (n-k) updated
eigenvectors (those which were deflated) in its last (n-k)
columns.

rho On exit, rho has been modified to the value required by
?laed3.

dlamda, w REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Arrays, dimension (n) each.
The array dlamda(*) contains a copy of the first k
eigenvalues which will be used by ?laed3 to form the
secular equation.

The array w(*) will hold the first k values of the final
deflation-altered z-vector and will be passed to ?laed3.

q2 REAL for slaed8
DOUBLE PRECISION for dlaed8
COMPLEX for claed8
COMPLEX*16 for zlaed8.
Array q2(ldq2, *). The second dimension of q2 must
be at least max(1, n).
Contains a copy of the first k eigenvectors which will be
used by slaed7/dlaed7 in a matrix multiply
(sgemm/dgemm) to update the new eigenvectors.
For real flavors, if icompq = 0, q2 is not referenced.

indxp, indx INTEGER. Workspace arrays, dimension (n) each.

6-86

6 Intel® Math Kernel Library Reference Manual

The array indxp(*) will contain the permutation used to
place deflated values of d at the end of the array. On
output, indxp(1:k) points to the nondeflated d-values
and indxp(k+1:n) points to the deflated eigenvalues.

The array indx(*) will contain the permutation used to
sort the contents of d into ascending order.

perm INTEGER. Array, dimension (n).
Contains the permutations (from deflation and sorting)
to be applied to each eigenblock.

givptr INTEGER. Contains the number of Givens rotations
which took place in this subproblem.

givcol INTEGER. Array, dimension (2, n).
Each pair of numbers indicates a pair of columns to take
place in a Givens rotation.

givnum REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Array, dimension (2, n).
Each number indicates the S value to be used in the
corresponding Givens rotation.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Auxiliary Routines6

6-87

?laed9
Used by sstedc/dstedc.
Finds the roots of the secular equation
and updates the eigenvectors. Used
when the original matrix is dense.

call slaed9(k, kstart, kstop, n, d, q, ldq, rho,
dlamda, w, s, lds, info)

call dlaed9(k, kstart, kstop, n, d, q, ldq, rho,
dlamda, w, s, lds, info)

Discussion

This routine finds the roots of the secular equation, as defined by the values
in d, z, and rho, between kstart and kstop. It makes the appropriate
calls to slaed4/dlaed4 and then stores the new matrix of eigenvectors for
use in calculating the next level of z vectors.

Input Parameters

k INTEGER. The number of terms in the rational function
to be solved by slaed4/dlaed4 (k ≥ 0).

kstart, kstop INTEGER. The updated eigenvalues lambda(i),
kstart ≤ i ≤ kstop are to be computed.
1 ≤kstart ≤kstop ≤k.

n INTEGER. The number of rows and columns in the Q
matrix. n ≥ k (deflation may result in n > k).

q REAL for slaed9
DOUBLE PRECISION for dlaed9.
Workspace array, dimension (ldq, *) . The second
dimension of q must be at least max(1, n).

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

6-88

6 Intel® Math Kernel Library Reference Manual

rho REAL for slaed9
DOUBLE PRECISION for dlaed9
The value of the parameter in the rank one update
equation. rho ≥ 0 required.

dlamda, w REAL for slaed9
DOUBLE PRECISION for dlaed9
Arrays, dimension (k) each.
The first k elements of the array dlamda(*) contain the
old roots of the deflated updating problem. These are
the poles of the secular equation.

The first k elements of the array w(*) contain the
components of the deflation-adjusted updating vector.

lds INTEGER. The first dimension of the output array s;
lds ≥ max(1, k).

Output Parameters

d REAL for slaed9
DOUBLE PRECISION for dlaed9
Array, dimension (n). d (i) contains the updated
eigenvalues for kstart ≤ i ≤ kstop.

s REAL for slaed9
DOUBLE PRECISION for dlaed9.
Array, dimension (lds, *) . The second dimension of s
must be at least max(1, k).
Will contain the eigenvectors of the repaired matrix
which will be stored for subsequent z vector calculation
and multiplied by the previously accumulated
eigenvectors to update the system.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the eigenvalue did not converge.

LAPACK Auxiliary Routines6

6-89

?laeda
Used by ?stedc. Computes the Z vector
determining the rank-one modification of the
diagonal matrix. Used when the original
matrix is dense.

call slaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol,
givnum, q, qptr, z, ztemp, info)

call dlaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol,
givnum, q, qptr, z, ztemp, info)

Discussion

The routine ?laeda computes the z vector corresponding to the merge step
in the curlvl-th step of the merge process with tlvls steps for the
curpbm-th problem.

Input Parameters

n INTEGER. The dimension of the symmetric tridiagonal
matrix (n ≥ 0).

tlvls INTEGER. The total number of merging levels in the
overall divide and conquer tree.

curlvl INTEGER. The current level in the overall merge
routine, 0 ≤curlvl ≤tlvls .

curpbm INTEGER. The current problem in the current level in
the overall merge routine (counting from upper left to
lower right).

prmptr, perm,
givptr INTEGER. Arrays, dimension (n lgn) each.

The array prmptr(*) contains a list of pointers which
indicate where in perm a level's permutation is stored.
prmptr(i+1) - prmptr(i) indicates the size of the
permutation and also the size of the full, non-deflated
problem.

6-90

6 Intel® Math Kernel Library Reference Manual

The array perm(*) contains the permutations (from
deflation and sorting) to be applied to each eigenblock.

The array givptr(*) contains a list of pointers which
indicate where in givcol a level's Givens rotations are
stored. givptr(i+1) - givptr(i) indicates the number
of Givens rotations.

givcol INTEGER. Array, dimension (2, n lgn).
Each pair of numbers indicates a pair of columns to take
place in a Givens rotation.

givnum REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension (2, n lgn).
Each number indicates the S value to be used in the
corresponding Givens rotation.

q REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension (n2).
Contains the square eigenblocks from previous levels,
the starting positions for blocks are given by qptr.

qptr INTEGER. Array, dimension (n+2). Contains a list of
pointers which indicate where in q an eigenblock is
stored. sqrt(qptr(i+1) - qptr(i)) indicates the size
of the block.

ztemp REAL for slaeda
DOUBLE PRECISION for dlaeda.
Workspace array, dimension (n).

Output Parameters

z REAL for slaeda

DOUBLE PRECISION for dlaeda.
Array, dimension (n). Contains the updating vector (the
last row of the first sub-eigenvector matrix and the first
row of the second sub-eigenvector matrix).

LAPACK Auxiliary Routines6

6-91

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

6-92

6 Intel® Math Kernel Library Reference Manual

?laein
Computes a specified right or left eigenvector
of an upper Hessenberg matrix by inverse
iteration.

call slaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb,
work, eps3, smlnum, bignum, info)

call dlaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb,
work, eps3, smlnum, bignum, info)

call claein(rightv, noinit, n, h, ldh, w, v, b, ldb,
rwork, eps3, smlnum, info)

call zlaein(rightv, noinit, n, h, ldh, w, v, b, ldb,
rwork, eps3, smlnum, info)

Discussion

The routine ?laein uses inverse iteration to find a right or left eigenvector
corresponding to the eigenvalue (wr,wi) of a real upper Hessenberg matrix
H (for real flavors slaein/dlaein) or to the eigenvalue w of a complex
upper Hessenberg matrix H (for complex flavors claein/zlaein).

Input Parameters

rightv LOGICAL.
If rightv = .TRUE., compute right eigenvector;
if rightv = .FALSE., compute left eigenvector.

noinit LOGICAL.
If noinit = .TRUE., no initial vector is supplied in
(vr,vi) or in v (for complex flavors);
if noinit = .FALSE., initial vector is supplied in
(vr,vi) or in v (for complex flavors).

n INTEGER. The order of the matrix H (n ≥ 0).

LAPACK Auxiliary Routines6

6-93

h REAL for slaein
DOUBLE PRECISION for dlaein
COMPLEX for claein
COMPLEX*16 for zlaein.
Array h(ldh, *). The second dimension of h must be
at least max(1, n). Contains the upper Hessenberg
matrix H.

ldh INTEGER. The first dimension of the array h;
ldh ≥ max(1, n).

wr, wi REAL for slaein
DOUBLE PRECISION for dlaein.
The real and imaginary parts of the eigenvalue of H
whose corresponding right or left eigenvector is to be
computed (for real flavors of the routine).

w COMPLEX for claein
COMPLEX*16 for zlaein.
The eigenvalue of H whose corresponding right or left
eigenvector is to be computed (for complex flavors of
the routine).

vr, vi REAL for slaein
DOUBLE PRECISION for dlaein.
Arrays, dimension (n) each. Used for real flavors only.
On entry, if noinit = .FALSE. and wi = 0.0, vr must
contain a real starting vector for inverse iteration using
the real eigenvalue wr;
if noinit = .FALSE. and wi ≠ 0.0, vr and vi must
contain the real and imaginary parts of a complex
starting vector for inverse iteration using the complex
eigenvalue (wr,wi); otherwise vr and vi need not be
set.

v COMPLEX for claein
COMPLEX*16 for zlaein.
Array, dimension (n) . Used for complex flavors only.
On entry, if noinit = .FALSE., v must contain a
starting vector for inverse iteration; otherwise v need not
be set.

6-94

6 Intel® Math Kernel Library Reference Manual

b REAL for slaein
DOUBLE PRECISION for dlaein
COMPLEX for claein
COMPLEX*16 for zlaein.
Workspace array b(ldb, *). The second dimension of
b must be at least max(1, n).

ldb INTEGER. The first dimension of the array b;
ldb ≥ n+1 for real flavors;
ldb ≥ max(1, n) for complex flavors.

work REAL for slaein
DOUBLE PRECISION for dlaein.
Workspace array, dimension (n). Used for real flavors
only.

rwork REAL for claein
DOUBLE PRECISION for zlaein.
Workspace array, dimension (n). Used for complex
flavors only.

eps3, smlnum REAL for slaein/claein
DOUBLE PRECISION for dlaein/zlaein.
eps3 is a small machine-dependent value which is used
to perturb close eigenvalues, and to replace zero pivots.
smlnum is a machine-dependent value close to
underflow threshold.

bignum REAL for slaein
DOUBLE PRECISION for dlaein.
bignum is a machine-dependent value close to overflow
threshold. Used for real flavors only.

Output Parameters

vr, vi On exit, if wi = 0.0 (real eigenvalue), vr contains the
computed real eigenvector; if wi ≠ 0.0 (complex
eigenvalue), vr and vi contain the real and imaginary
parts of the computed complex eigenvector. The
eigenvector is normalized so that the component of

LAPACK Auxiliary Routines6

6-95

largest magnitude has magnitude 1; here the magnitude
of a complex number (x,y) is taken to be |x| + |y|.
vi is not referenced if wi = 0.0.

v On exit, v contains the computed eigenvector,
normalized so that the component of largest magnitude
has magnitude 1; here the magnitude of a complex
number (x,y) is taken to be |x| + |y|.

info INTEGER.
If info = 0, the execution is successful.
If info = 1, inverse iteration did not converge. For real
flavors, vr is set to the last iterate, and so is vi if wi ≠
0.0. For complex flavors, v is set to the last iterate.

?laev2
Computes the eigenvalues and eigenvectors of
a 2-by-2 symmetric/Hermitian matrix.

call slaev2 (a, b, c, rt1, rt2, cs1, sn1)

call dlaev2 (a, b, c, rt1, rt2, cs1, sn1)

call claev2 (a, b, c, rt1, rt2, cs1, sn1)

call zlaev2 (a, b, c, rt1, rt2, cs1, sn1)

Discussion

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix

(for slaev2/dlaev2) or Hermitian matrix

(for claev2/zlaev2).

On return, rt1 is the eigenvalue of larger absolute value, rt2 of smaller
absolute value, and (cs1, sn1) is the unit right eigenvector for rt1, giving
the decomposition

a b

b c

a b

conjg b() c

6-96

6 Intel® Math Kernel Library Reference Manual

(for slaev2/dlaev2),
or

(for claev2/zlaev2).

Input Parameters

a, b, c REAL for slaev2
DOUBLE PRECISION for dlaev2
COMPLEX for claev2
COMPLEX*16 for zlaev2.
Elements of the input matrix.

Output Parameters

rt1, rt2 REAL for slaev2/claev2
DOUBLE PRECISION for dlaev2/zlaev2.
Eigenvalues of larger and smaller absolute value,
respectively.

cs1 REAL for slaev2/claev2
DOUBLE PRECISION for dlaev2/zlaev2.

sn1 REAL for slaev2
DOUBLE PRECISION for dlaev2
COMPLEX for claev2
COMPLEX*16 for zlaev2.
The vector (cs1, sn1) is the unit right eigenvector for
rt1.

cs1 sn1

sn1– cs1

a b

b c
cs1 sn1–

sn1 cs1
⋅ ⋅ rt1 0

0 rt2
=

cs1 conjg sn1()
sn1– cs1

a b

conjg b() c
cs1 conjg sn1()–

sn1 cs1
⋅ ⋅ rt1 0

0 rt2
=

LAPACK Auxiliary Routines6

6-97

Application Notes

rt1 is accurate to a few ulps barring over/underflow. rt2 may be inaccurate
if there is massive cancellation in the determinant a*c-b*b; higher
precision or correctly rounded or correctly truncated arithmetic would be
needed to compute rt2 accurately in all cases. cs1 and sn1 are accurate to
a few ulps barring over/underflow. Overflow is possible only if rt1 is
within a factor of 5 of overflow. Underflow is harmless if the input data is 0
or exceeds underflow_threshold / macheps.

6-98

6 Intel® Math Kernel Library Reference Manual

?laexc
Swaps adjacent diagonal blocks of a real
upper quasi-triangular matrix in Schur
canonical form, by an orthogonal similarity
transformation.

call slaexc (wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)

call dlaexc (wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)

Discussion

This routine swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
an upper quasi-triangular matrix T by an orthogonal similarity
transformation.
T must be in Schur canonical form, that is, block upper triangular with
1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its
diagonal elements equal and its off-diagonal elements of opposite sign.

Input Parameters

wantq LOGICAL.
If wantq =.TRUE., accumulate the transformation in
the matrix Q;
If wantq =.FALSE., do not accumulate the
transformation.

n INTEGER. The order of the matrix T (n ≥ 0).

t, q REAL for slaexc
DOUBLE PRECISION for dlaexc
Arrays:
t(ldt,*) contains on entry the upper quasi-triangular
matrix T, in Schur canonical form.
The second dimension of t must be at least max(1, n).

LAPACK Auxiliary Routines6

6-99

q(ldq,*) contains on entry, if wantq =.TRUE., the
orthogonal matrix Q. If wantq =.FALSE., q is not
referenced.
The second dimension of q must be at least max(1, n).

ldt INTEGER. The first dimension of t; at least max(1, n).

ldq INTEGER. The first dimension of q;
If wantq =.FALSE., then ldq ≥ 1.
If wantq =.TRUE., then ldq ≥ max(1,n).

j1 INTEGER. The index of the first row of the first
block T11.

n1 INTEGER. The order of the first block T11
(n1 = 0, 1, or 2).

n2 INTEGER. The order of the second block T22
(n2 = 0, 1, or 2).

work REAL for slaexc;
DOUBLE PRECISION for dlaexc.
Workspace array, DIMENSION (n).

Output Parameters

t On exit, the updated matrix T, again in Schur canonical
form.

q On exit, if wantq =.TRUE., the updated matrix Q.

info INTEGER.
If info = 0, the execution is successful.
If info = 1, the transformed matrix T would be too far
from Schur form; the blocks are not swapped and T and
Q are unchanged.

6-100

6 Intel® Math Kernel Library Reference Manual

?lag2
Computes the eigenvalues of a 2-by-2
generalized eigenvalue problem, with
scaling as necessary to avoid
over-/underflow.

call slag2 (a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)

call dlag2 (a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)

Discussion

This routine computes the eigenvalues of a 2 x 2 generalized eigenvalue
problem A - w B, with scaling as necessary to avoid over-/underflow. The
scaling factor, s, results in a modified eigenvalue equation

s A - w B ,

where s is a non-negative scaling factor chosen so that w, w B, and s A do
not overflow and, if possible, do not underflow, either.

Input Parameters

a, b REAL for slag2
DOUBLE PRECISION for dlag2
Arrays:
a(lda,2) contains, on entry, the 2 x 2 matrix A. It is
assumed that its 1-norm is less than 1/safmin. Entries
less than sqrt(safmin)*norm(A) are subject to being
treated as zero.

b(ldb,2) contains, on entry, the 2 x 2 upper triangular
matrix B. It is assumed that the one-norm of B is less
than 1/safmin. The diagonals should be at least
sqrt(safmin) times the largest element of B (in
absolute value); if a diagonal is smaller than that, then
+/- sqrt(safmin) will be used instead of that diagonal.

lda INTEGER. The first dimension of a; lda ≥ 2.

LAPACK Auxiliary Routines6

6-101

ldb INTEGER. The first dimension of b; ldb ≥ 2.

safmin REAL for slag2;
DOUBLE PRECISION for dlag2.
The smallest positive number such that 1/safmin does
not overflow. (This should always be ?lamch('S') - it is
an argument in order to avoid having to call ?lamch
frequently.)

Output Parameters

scale1 REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the first eigenvalue.
If the eigenvalues are complex, then the eigenvalues are
(wr1 +/- wi i) /scale1 (which may lie outside the
exponent range of the machine), scale1=scale2, and
scale1 will always be positive.
If the eigenvalues are real, then the first (real) eigenvalue
is wr1 / scale1 , but this may overflow or underflow,
and in fact, scale1 may be zero or less than the
underflow threshhold if the exact eigenvalue is
sufficiently large.

scale2 REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the
eigenvalue equation which defines the second
eigenvalue. If the eigenvalues are complex, then
scale2=scale1. If the eigenvalues are real, then the
second (real) eigenvalue is wr2 / scale2 , but this may
overflow or underflow, and in fact, scale2 may be zero
or less than the underflow threshold if the exact
eigenvalue is sufficiently large.

wr1 REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wr1 is scale1 times the

6-102

6 Intel® Math Kernel Library Reference Manual

eigenvalue closest to the (2,2) element of AB-1. If the
eigenvalue is complex, then wr1=wr2 is scale1 times
the real part of the eigenvalues.

wr2 REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wr2 is scale2 times the
other eigenvalue. If the eigenvalue is complex, then
wr1=wr2 is scale1 times the real part of the
eigenvalues.

wi REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wi is zero. If the
eigenvalue is complex, then wi is scale1 times the
imaginary part of the eigenvalues. wi will always be
non-negative.

LAPACK Auxiliary Routines6

6-103

?lags2
Computes 2-by-2 orthogonal matrices U, V,
and Q, and applies them to matrices A and
B such that the rows of the transformed A
and B are parallel.

call slags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu,
csv, snv, csq, snq)

call dlags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu,
csv, snv, csq, snq)

Discussion

This routine computes 2-by-2 orthogonal matrices U, V and Q, such that if
upper =.TRUE. , then

and

or if upper =.FALSE. , then

and

U ′ *A*Q U ′ *
A1 A2

0 A3

*Q x 0
x x

= =

V ′ *B*Q V ′ *
B1 B2

0 B3

*Q x 0
x x

= =

U ′ *A*Q U ′ *
A1 0

A2 A3

*Q x x

0 x
= =

V ′ *B*Q V ′ *
B1 0

B2 B3

*Q x x

0 x
= =

6-104

6 Intel® Math Kernel Library Reference Manual

The rows of the transformed A and B are parallel, where

, ,

Here Z' denotes the transpose of Z.

Input Parameters

upper LOGICAL.
If upper =.TRUE., the input matrices A and B are upper
triangular;
If upper =.FALSE., the input matrices A and B are
lower triangular.

a1, a2, a3 REAL for slags2
DOUBLE PRECISION for dlags2
On entry, a1, a2 and a3 are elements of the input
2-by-2 upper (lower) triangular matrix A.

b1, b2, b3 REAL for slags2
DOUBLE PRECISION for dlags2
On entry, b1, b2 and b3 are elements of the input
2-by-2 upper (lower) triangular matrix B.

Output Parameters

csu, snu REAL for slags2
DOUBLE PRECISION for dlags2
The desired orthogonal matrix U.

csv, snv REAL for slags2
DOUBLE PRECISION for dlags2
The desired orthogonal matrix V.

csq, snq REAL for slags2
DOUBLE PRECISION for dlags2
The desired orthogonal matrix Q.

U csu snu

snu– csu
= V csv snv

snv– csv
= Q csq snq

snq– csq
=

LAPACK Auxiliary Routines6

6-105

?lagtf
Computes an LU factorization of a matrix
T-λI, where T is a general tridiagonal
matrix, and λ a scalar, using partial
pivoting with row interchanges.

call slagtf (n, a, lambda, b, c, tol, d, in, info)

call dlagtf (n, a, lambda, b, c, tol, d, in, info)

Discussion

This routine factorizes the matrix (T - lambda*I), where T is an n-by-n
tridiagonal matrix and lambda is a scalar, as

T - lambda*I = P L U,

where P is a permutation matrix, L is a unit lower tridiagonal matrix with at
most one non-zero sub-diagonal elements per column and U is an upper
triangular matrix with at most two non-zero super-diagonal elements per
column. The factorization is obtained by Gaussian elimination with partial
pivoting and implicit row scaling. The parameter lambda is included in the
routine so that ?lagtf may be used, in conjunction with ?lagts, to obtain
eigenvectors of T by inverse iteration..

Input Parameters

n INTEGER. The order of the matrix T (n ≥ 0).

a, b, c REAL for slagtf
DOUBLE PRECISION for dlagtf
Arrays, dimension a(n) , b(n-1), c(n-1):
On entry, a(*) must contain the diagonal elements of
the matrix T.
On entry, b(*) must contain the (n-1) super-diagonal
elements of T.
On entry, c(*) must contain the (n-1) sub-diagonal
elements of T.

6-106

6 Intel® Math Kernel Library Reference Manual

tol REAL for slagtf
DOUBLE PRECISION for dlagtf
On entry, a relative tolerance used to indicate whether or
not the matrix (T - lambda*I) is nearly singular. tol
should normally be chose as approximately the largest
relative error in the elements of T. For example, if the
elements of T are correct to about 4 significant figures,
then tol should be set to about 5*10-4. If tol is
supplied as less than eps, where eps is the relative
machine precision, then the value eps is used in place of
tol.

Output Parameters

a On exit, a is overwritten by the n diagonal elements of
the upper triangular matrix U of the factorization of T.

b On exit, b is overwritten by the n-1 super-diagonal
elements of the matrix U of the factorization of T.

c On exit, c is overwritten by the n-1 sub-diagonal
elements of the matrix L of the factorization of T.

d REAL for slagtf
DOUBLE PRECISION for dlagtf
Array, dimension (n-2).
On exit, d is overwritten by the n-2 second
super-diagonal elements of the matrix U of the
factorization of T.

in INTEGER.
Array, dimension (n).
On exit, in contains details of the permutation matrix P.
If an interchange occurred at the k-th step of the
elimination, then in(k) = 1, otherwise in(k) = 0. The
element in(n) returns the smallest positive integer j
such that

abs(u(j,j)) ≤ norm((T - lambda*I)(j))*tol,
where norm(A(j)) denotes the sum of the absolute
values of the j-th row of the matrix A. If no such j exists
then in(n) is returned as zero. If in(n) is returned as

LAPACK Auxiliary Routines6

6-107

positive, then a diagonal element of U is small,
indicating that (T - lambda*I) is singular or nearly
singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -k, the kth parameter had an illegal value.

6-108

6 Intel® Math Kernel Library Reference Manual

?lagtm
Performs a matrix-matrix product of the
form C = αAB+βC, where A is a
tridiagonal matrix, B and C are
rectangular matrices, and α and β are
scalars, which may be 0, 1, or -1.

call slagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call dlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call clagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call zlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

Discussion

This routine performs a matrix-vector product of the form :

B := alpha*A*X + beta*B

where A is a tridiagonal matrix of order n, B and X are n-by-nrhs matrices,
and alpha and beta are real scalars, each of which may be 0., 1., or -1.

Input Parameters
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:
If trans = 'N', then B := alpha*A*X + beta*B
(no transpose);
If trans = 'T', then B := alpha*AT*X + beta*B
(transpose);
If trans = 'C', then B := alpha*AH*X + beta*B
(conjugate transpose)

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides, i.e., the
number of columns in X and B (nrhs ≥ 0).

LAPACK Auxiliary Routines6

6-109

alpha, beta REAL for slagtm/clagtm
DOUBLE PRECISION for dlagtm/zlagtm
The scalars α and β. alpha must be 0., 1., or -1.;
otherwise, it is assumed to be 0. beta must be 0., 1., or
-1.; otherwise, it is assumed to be 1.

dl,d,du REAL for slagtm
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
COMPLEX*16 for zlagtm.
Arrays: dl(n - 1), d(n), du(n - 1).
The array dl contains the (n - 1) sub-diagonal elements
of T.
The array d contains the n diagonal elements of T.
The array du contains the (n - 1) super-diagonal
elements of T.

x, b REAL for slagtm
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
COMPLEX*16 for zlagtm.
Arrays:
x(ldx,*) contains the n-by-nrhs matrix X. The
second dimension of x must be at least max(1, nrhs).

b(ldb,*) contains the n-by-nrhs matrix B. The
second dimension of b must be at least max(1, nrhs).

ldx INTEGER. The leading dimension of the array x;
ldx ≥ max(1, n).

ldb INTEGER. The leading dimension of the array b;
ldb ≥ max(1, n).

Output Parameters

b Overwritten by the matrix expression
B := alpha*A*X + beta*B

6-110

6 Intel® Math Kernel Library Reference Manual

?lagts
Solves the system of equations (T-λI)x = y
or (T-λI)Tx = y ,where T is a general
tridiagonal matrix and λ a scalar, using the
LU factorization computed by ?lagtf.

call slagts (job, n, a, b, c, d, in, y, tol, info)

call dlagts (job, n, a, b, c, d, in, y, tol, info)

Discussion

This routine may be used to solve for x one of the systems of equations:

(T - lambda*I)*x = y or (T - lambda*I)′ *x = y ,
where T is an n-by-n tridiagonal matrix, following the factorization of
(T - lambda*I) as

T - lambda*I = P L U,

computed by the routine ?lagtf.

The choice of equation to be solved is controlled by the argument job, and
in each case there is an option to perturb zero or very small diagonal
elements of U, this option being intended for use in applications such as
inverse iteration.

Input Parameters

job INTEGER. Specifies the job to be performed by ?lagts

as follows:
= 1: The equations (T - lambda*I)x = y are to be
solved, but diagonal elements of U are not to be
perturbed.

= -1: The equations (T - lambda*I)x = y are to be
solved and, if overflow would otherwise occur, the
diagonal elements of U are to be perturbed. See
argument tol below.

LAPACK Auxiliary Routines6

6-111

= 2: The equations (T - lambda*I)′ x = y are to be
solved, but diagonal elements of U are not to be
perturbed.

= -2: The equations (T - lambda*I)′ x = y are to be
solved and, if overflow would otherwise occur, the
diagonal elements of U are to be perturbed. See
argument tol below.

n INTEGER. The order of the matrix T (n ≥ 0).

a, b, c, d REAL for slagts
DOUBLE PRECISION for dlagts
Arrays, dimension a(n) , b(n-1), c(n-1), d(n-2):
On entry, a(*) must contain the diagonal elements of
U as returned from ?lagtf.
On entry, b(*) must contain the first super-diagonal
elements of U as returned from ?lagtf.
On entry, c(*) must contain the sub-diagonal elements
of L as returned from ?lagtf.
On entry, d(*) must contain the second super-diagonal
elements of U as returned from ?lagtf.

in INTEGER.
Array, dimension (n).
On entry, in(*) must contain details of the matrix P as
returned from ?lagtf.

y REAL for slagts
DOUBLE PRECISION for dlagts
Array, dimension (n) . On entry, the right hand side
vector y.

tol REAL for slagtf
DOUBLE PRECISION for dlagtf.
On entry, with job < 0, tol should be the minimum
perturbation to be made to very small diagonal elements
of U. tol should normally be chosen as about
eps*norm(U), where eps is the relative machine

6-112

6 Intel® Math Kernel Library Reference Manual

precision, but if tol is supplied as non-positive, then it
is reset to eps*max(abs(u(i,j))). If job > 0 then tol

is not referenced.

Output Parameters

y On exit, y is overwritten by the solution vector x.

tol On exit, tol is changed as described in Input
Parameters section above, only if tol is non-positive on
entry. Otherwise tol is unchanged.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i > 0, overflow would occur when
computing the ith element of the solution vector x. This
can only occur when job is supplied as positive and
either means that a diagonal element of U is very small,
or that the elements of the right-hand side vector y are
very large.

LAPACK Auxiliary Routines6

6-113

?lagv2
Computes the Generalized Schur
factorization of a real 2-by-2 matrix pencil
(A,B) where B is upper triangular.

call slagv2 (a, lda, b, ldb, alphar, alphai, beta, csl,
snl, csr, snr)

call dlagv2 (a, lda, b, ldb, alphar, alphai, beta, csl,
snl, csr, snr)

Discussion

This routine computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular. The routine computes
orthogonal (rotation) matrices given by csl, snl and csr, snr such that:

1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types),
then

2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then

where b11 ≥ b22 > 0.

a11 a12

0 a22

csl snl

snl– csl

a11 a12

a21 a22

csr snr–
snr csr

=

b11 b12

0 b22

csl snl

snl– csl

b11 b12

0 b22

csr snr–
snr csr

=

a11 a12

a21 a22

csl snl

snl– csl

a11 a12

a21 a22

csr snr–
snr csr

=

b11 0

0 b22

csl snl

snl– csl

b11 b12

0 b22

csr snr–
snr csr

=

6-114

6 Intel® Math Kernel Library Reference Manual

Input Parameters

a, b REAL for slagv2
DOUBLE PRECISION for dlagv2
Arrays:
a(lda,2) contains the 2-by-2 matrix A;
b(ldb,2) contains the upper triangular 2-by-2 matrix
B.

lda INTEGER. The leading dimension of the array a;
lda ≥ 2.

ldb INTEGER. The leading dimension of the array b;
ldb ≥ 2.

Output Parameters

a On exit, a is overwritten by the “A-part” of the
generalized Schur form.

b On exit, b is overwritten by the “B-part” of the
generalized Schur form.

alphar,alphai,
beta REAL for slagv2

DOUBLE PRECISION for dlagv2.
Arrays, dimension (2) each.

(alphar(k) + i ∗ alphai(k))/beta(k) are the
eigenvalues of the pencil (A,B), k=1,2 and i = sqrt(-1).
Note that beta(k) may be zero.

csl, snl REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the left rotation matrix,
respectively.

csr, snr REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the right rotation matrix,
respectively.

LAPACK Auxiliary Routines6

6-115

?lahqr
Computes the eigenvalues and Schur
factorization of an upper Hessenberg
matrix, using the
double-shift/single-shift QR algorithm.

call slahqr (wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
iloz, ihiz, z, ldz, info)

call dlahqr (wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
iloz, ihiz, z, ldz, info)

call clahqr (wantt, wantz, n, ilo, ihi, h, ldh, w,
iloz, ihiz, z, ldz, info)

call zlahqr (wantt, wantz, n, ilo, ihi, h, ldh, w,
iloz, ihiz, z, ldz, info)

Discussion

This routine is an auxiliary routine called by ?hseqr to update the
eigenvalues and Schur decomposition already computed by ?hseqr, by
dealing with the Hessenberg submatrix in rows and columns ilo to ihi.

Input Parameters

wantt LOGICAL.
If wantt =.TRUE., the full Schur form T is required;
If wantt =.FALSE., eigenvalues only are required.

wantz LOGICAL.
If wantz =.TRUE., the matrix of Schur vectors Z is
required;
If wantz =.FALSE., Schur vectors are not required.

n INTEGER. The order of the matrix H (n ≥ 0).

ilo, ihi INTEGER.
It is assumed that H is already upper quasi-triangular in
rows and columns ihi+1:n, and that H(ilo,ilo-1) = 0
(unless ilo = 1). The routine ?lahqr works primarily

6-116

6 Intel® Math Kernel Library Reference Manual

with the Hessenberg submatrix in rows and columns
ilo to ihi, but applies transformations to all of H if
wantt =.TRUE..
Constraints:
1 ≤ilo ≤max(1,ihi); ihi ≤n.

h, z REAL for slahqr
DOUBLE PRECISION for dlahqr
COMPLEX for clahqr
COMPLEX*16 for zlahqr.
Arrays:
h(ldh,*) contains the upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

z(ldz,*)

If wantz =.TRUE., then, on entry, z must contain the
current matrix Z of transformations accumulated by
?hseqr.
If wantz =.FALSE., then z is not referenced.
The second dimension of z must be at least max(1, n) .

ldh INTEGER. The first dimension of h; at least max(1, n).

ldz INTEGER. The first dimension of z; at least max(1, n).

iloz, ihiz INTEGER. Specify the rows of Z to which
transformations must be applied if wantz =.TRUE..
1 ≤iloz ≤ilo; ihi ≤ihiz ≤ n.

Output Parameters

h On exit, if wantt =.TRUE., H is upper quasi-triangular
(upper triangular for complex flavors) in rows and
columns ilo:ihi, with any 2-by-2 diagonal blocks in
standard form. If wantt =.FALSE., the contents of H
are unspecified on exit.

wr, wi REAL for slahqr
DOUBLE PRECISION for dlahqr
Arrays, DIMENSION at least max (1, n) each. Used with
real flavors only.
The real and imaginary parts, respectively, of the

LAPACK Auxiliary Routines6

6-117

computed eigenvalues ilo to ihi are stored in the
corresponding elements of wr and wi. If two
eigenvalues are computed as a complex conjugate pair,
they are stored in consecutive elements of wr and wi,
say the i-th and (i+1)th, with wi(i) > 0 and wi(i+1) < 0.
If wantt =.TRUE., the eigenvalues are stored in the
same order as on the diagonal of the Schur form
returned in H, with wr(i) = H(i,i), and, if H(i:i+1, i:i+1)
is a 2-by-2 diagonal block,
wi(i) = sqrt(H(i+1,i)*H(i,i+1)) and wi(i+1) = -wi(i).

w COMPLEX for clahqr
COMPLEX*16 for zlahqr.
Array, DIMENSION at least max (1, n). Used with
complex flavors only.
The computed eigenvalues ilo to ihi are stored in the
corresponding elements of w.
If wantt =.TRUE., the eigenvalues are stored in the
same order as on the diagonal of the Schur form
returned in H, with w(i) = H(i,i).

z If wantz =.TRUE., then, on exit z has been updated;
transformations are applied only to the submatrix
Z(iloz:ihiz, ilo:ihi).

info INTEGER.
If info = 0, the execution is successful.
If info = i > 0, ?lahqr failed to compute all the
eigenvalues ilo to ihi in a total of 30*(ihi-ilo+1)
iterations; elements i+1:ihi of wr and wi (for
slahqr/dlahqr) or w (for clahqr/zlahqr) contain
those eigenvalues which have been successfully
computed.

6-118

6 Intel® Math Kernel Library Reference Manual

?lahrd
Reduces the first nb columns of a general
rectangular matrix A so that elements below
the k-th subdiagonal are zero, and returns
auxiliary matrices which are needed to apply
the transformation to the unreduced part of A.

call slahrd (n, k, nb, a, lda, tau, t, ldt, y, ldy)

call dlahrd (n, k, nb, a, lda, tau, t, ldt, y, ldy)

call clahrd (n, k, nb, a, lda, tau, t, ldt, y, ldy)

call zlahrd (n, k, nb, a, lda, tau, t, ldt, y, ldy)

Discussion

The routine reduces the first nb columns of a real/complex general
n-by-(n-k+1) matrix A so that elements below the k-th subdiagonal are zero.
The reduction is performed by an orthogonal/unitary similarity
transformation Q′ A Q. The routine returns the matrices V and T which
determine Q as a block reflector I - V T V′ , and also the matrix Y = A V T.

The matrix Q is represented as products of nb elementary reflectors:
Q = H(1) H(2) ... H(nb)

Each H(i) has the form

H(i) = I - tau*v*v′
where tau is a real/complex scalar, and v is a real/complex vector.

This is an auxiliary routine called by ?gehrd.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

k INTEGER. The offset for the reduction. Elements below
the k-th subdiagonal in the first nb columns are reduced
to zero.

nb INTEGER. The number of columns to be reduced.

LAPACK Auxiliary Routines6

6-119

a REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.

Array a(lda, n-k+1) contains the n-by-(n-k+1)
general matrix A to be reduced.

lda INTEGER. The first dimension of a; at least max(1, n).

ldt INTEGER. The first dimension of the output array t;
must be at least max(1, nb).

ldy INTEGER. The first dimension of the output array y;
must be at least max(1, n).

Output Parameters

a On exit, the elements on and above the k-th subdiagonal
in the first nb columns are overwritten with the
corresponding elements of the reduced matrix; the
elements below the k-th subdiagonal, with the array
tau, represent the matrix Q as a product of elementary
reflectors. The other columns of a are unchanged. See
Application Notes below.

tau REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.

Array, DIMENSION (nb).
Contains scalar factors of the elementary reflectors.

t, y REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.

Arrays, dimension t(ldt, nb), y(ldy, nb).
The array t contains upper triangular matrix T.

The array y contains the n-by-nb matrix Y .

6-120

6 Intel® Math Kernel Library Reference Manual

Application Notes

For the elementary reflector H(i) ,

v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in a(i+k+1:n, i)
and tau is stored in tau(i).

The elements of the vectors v together form the (n-k+1)-by-nb matrix V
which is needed, with T and Y, to apply the transformation to the unreduced
part of the matrix, using an update of the form:
A := (I - V T V′) * (A - Y V′).
The contents of A on exit are illustrated by the following example with
n = 7, k = 3 and nb = 2:

where a denotes an element of the original matrix A, h denotes a modified
element of the upper Hessenberg matrix H, and vi denotes an element of the
vector defining H(i).

a h a a a

a h a a a

a h a a a

h h a a a

v1 h a a a

v1 v2 a a a

v1 v2 a a a

LAPACK Auxiliary Routines6

6-121

?laic1
Applies one step of incremental condition
estimation.

call slaic1 (job, j, x, sest, w, gamma, sestpr, s, c)

call dlaic1 (job, j, x, sest, w, gamma, sestpr, s, c)

call claic1 (job, j, x, sest, w, gamma, sestpr, s, c)

call zlaic1 (job, j, x, sest, w, gamma, sestpr, s, c)

Discussion

The routine ?laic1 applies one step of incremental condition estimation in
its simplest version.

Let x, | | x| | 2 = 1 (where | | a| | 2 denotes the 2-norm of a), be an
approximate singular vector of an j-by-j lower triangular matrix L, such
that

| | L*x| | 2 = sest

Then ?laic1 computes sestpr, s, c such that the vector

is an approximate singular vector of

in the sense that

| | Lhat *xhat| | 2 = sestpr.

Depending on job, an estimate for the largest or smallest singular value is
computed.

Note that [s c]′ and sestpr2 is an eigenpair of the system (for
slaic1/claic)

xhat s*x

c
=

Lhat
L 0

w ′ gamma
=

6-122

6 Intel® Math Kernel Library Reference Manual

where alpha = x′ *w ;

or of the system (for claic1/zlaic)

where alpha = conjg(x)′ *w.

Input Parameters

job INTEGER.
If job =1, an estimate for the largest singular value is
computed;
If job =2, an estimate for the smallest singular value is
computed;

j INTEGER. Length of x and w.

x, w REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
COMPLEX*16 for zlaic1.
Arrays, dimension (j) each.
Contain vectors x and w , respectively.

sest REAL for slaic1/claic1;
DOUBLE PRECISION for dlaic1/zlaic1.
Estimated singular value of j-by-j matrix L.

gamma REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
COMPLEX*16 for zlaic1.
The diagonal element gamma.

diag sest*sest 0(,) alpha gamma[] *
alpha

gamma
+

diag sest*sest 0(,) alpha gamma[] *
conjg alpha()

conjg gamma()
+

LAPACK Auxiliary Routines6

6-123

Output Parameters

sestpr REAL for slaic1/claic1;
DOUBLE PRECISION for dlaic1/zlaic1.
Estimated singular value of (j+1)-by-(j+1) matrix
Lhat.

s, c REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
COMPLEX*16 for zlaic1.
Sine and cosine needed in forming xhat.

6-124

6 Intel® Math Kernel Library Reference Manual

?laln2
Solves a 1-by-1 or 2-by-2 linear system
of equations of the specified form.

call slaln2(ltrans, na, nw, smin, ca, a, lda, d1, d2,
b, ldb, wr, wi, x, ldx, scale, xnorm, info)

call dlaln2(ltrans, na, nw, smin, ca, a, lda, d1, d2,
b, ldb, wr, wi, x, ldx, scale, xnorm, info)

Discussion

The routine solves a system of the form

(ca A - w D) X = s B or (ca A' - w D) X = s B
with possible scaling (s) and perturbation of A (A' means A-transpose.)

A is an na-by-na real matrix, ca is a real scalar, D is an na-by-na real
diagonal matrix, w is a real or complex value, and X and B are na-by-1
matrices: real if w is real, complex if w is complex. The parameter na may
be 1 or 2.

If w is complex, X and B are represented as na-by-2 matrices, the first
column of each being the real part and the second being the imaginary part.

The routine computes the scaling factor s (≤ 1) so chosen that X can be
computed without overflow. X is further scaled if necessary to assure that
norm(ca A - w D)*norm(X) is less than overflow.

If both singular values of (ca A - w D) are less than smin, smin * I (where
I stands for identity) will be used instead of (ca A - w D). If only one
singular value is less than smin, one element of (ca A - w D) will be
perturbed enough to make the smallest singular value roughly smin. If both
singular values are at least smin, (ca A - w D) will not be perturbed.
In any case, the perturbation will be at most some small multiple of

LAPACK Auxiliary Routines6

6-125

max(smin, ulp * norm(ca A - w D)).
The singular values are computed by infinity-norm approximations, and
thus will only be correct to a factor of 2 or so.

Input Parameters

trans LOGICAL.
If trans =.TRUE., A- transpose will be used.
If trans =.FALSE., A will be used (not transposed.)

na INTEGER. The size of the matrix A. May only be 1 or 2.

nw INTEGER. This parameter must be 1 if w is real, and 2 if
w is complex. May only be 1or 2.

smin REAL for slaln2
DOUBLE PRECISION for dlaln2.
The desired lower bound on the singular values of A.
This should be a safe distance away from underflow or
overflow, for example, between
(underflow/machine_precision) and
(machine_precision * overflow). (See bignum and ulp).

ca REAL for slaln2
DOUBLE PRECISION for dlaln2.
The coefficient by which A is multiplied.

a REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (lda,na). The na-by-na matrix A.

lda INTEGER. The leading dimension of a. Must be at least
na.

d1, d2 REAL for slaln2
DOUBLE PRECISION for dlaln2.
The (1,1) and (2,2) elements in the diagonal matrix D,
respectively. d2 is not used if nw = 1.

NOTE. All input quantities are assumed to be smaller than overflow by
a reasonable factor (see bignum).

6-126

6 Intel® Math Kernel Library Reference Manual

b REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (ldb,nw). The na-by-nw matrix B
(right-hand side). If nw =2 (w is complex), column 1
contains the real part of B and column 2 contains the
imaginary part.

ldb INTEGER. The leading dimension of b. Must be at least
na.

wr, wi REAL for slaln2
DOUBLE PRECISION for dlaln2.
The real and imaginary part of the scalar w, respectively.
wi is not used if nw = 1.

ldx INTEGER. The leading dimension of the output array x.
Must be at least na.

Output Parameters

x REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (ldx,nw). The na-by-nw matrix X
(unknowns), as computed by the routine. If nw = 2 (w is
complex), on exit, column 1 will contain the real part of
X and column 2 will contain the imaginary part.

scale REAL for slaln2
DOUBLE PRECISION for dlaln2.
The scale factor that B must be multiplied by to insure
that overflow does not occur when computing X. Thus
(ca A - w D) X will be scale*B, not B (ignoring
perturbations of A.) It will be at most 1.

xnorm REAL for slaln2
DOUBLE PRECISION for dlaln2.
The infinity-norm of X, when X is regarded as an
na-by-nw real matrix.

info INTEGER.
An error flag. It will be zero if no error occurs, a
negative number if an argument is in error, or a positive

LAPACK Auxiliary Routines6

6-127

number if (ca A - w D) had to be perturbed.
The possible values are:
If info = 0: no error occurred, and (ca A - w D) did not
have to be perturbed.
If info = 1: (ca A - w D) had to be perturbed to make
its smallest (or only) singular value greater than smin.

?lals0
Applies back multiplying factors in
solving the least squares problem using
divide and conquer SVD approach.
Used by ?gelsd.

call slals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, work, info)

call dlals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, work, info)

call clals0 (icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, rwork, info)

call zlals0 (icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, rwork, info)

NOTE. In the interests of speed, this routine does not check the inputs
for errors.

6-128

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine applies back the multiplying factors of either the left or right
singular vector matrix of a diagonal matrix appended by a row to the right
hand side matrix B in solving the least squares problem using the
divide-and-conquer SVD approach.

For the left singular vector matrix, three types of orthogonal matrices are
involved:

(1L) Givens rotations: the number of such rotations is givptr; the pairs of
columns/rows they were applied to are stored in givcol; and the c- and
s-values of these rotations are stored in givnum.

(2L) Permutation. The (nl+1)-st row of B is to be moved to the first row,
and for j=2:n, perm(j)-th row of B is to be moved to the j-th row.

(3L) The left singular vector matrix of the remaining matrix.

For the right singular vector matrix, four types of orthogonal matrices are
involved:

(1R) The right singular vector matrix of the remaining matrix.

(2R) If sqre = 1, one extra Givens rotation to generate the right null space.

(3R) The inverse transformation of (2L).

(4R) The inverse transformation of (1L).

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be
computed in factored form:
If icompq = 0: Left singular vector matrix.
If icompq = 1: Right singular vector matrix.

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square
matrix.
If sqre = 1: the lower block is an nr-by-(nr+1)

LAPACK Auxiliary Routines6

6-129

rectangular matrix. The bidiagonal matrix has row
dimension n = nl + nr + 1, and column dimension
m = n + sqre.

nrhs INTEGER. The number of columns of b and bx.
Must be at least 1.

b REAL for slals0
DOUBLE PRECISION for dlals0
COMPLEX for clals0
COMPLEX*16 for zlals0.
Array, DIMENSION (ldb, nrhs). Contains the right
hand sides of the least squares problem in rows 1
through m.

ldb INTEGER. The leading dimension of b. Must be at least
max(1,max(m, n)).

bx REAL for slals0
DOUBLE PRECISION for dlals0
COMPLEX for clals0
COMPLEX*16 for zlals0.
Workspace array, DIMENSION (ldbx, nrhs).

ldbx INTEGER. The leading dimension of bx.

perm INTEGER.
Array, DIMENSION (n). The permutations (from
deflation and sorting) applied to the two blocks.

givptr INTEGER. The number of Givens rotations which took
place in this subproblem.

givcol INTEGER.
Array, DIMENSION (ldgcol, 2). Each pair of numbers
indicates a pair of rows/columns involved in a Givens
rotation.

ldgcol INTEGER. The leading dimension of givcol, must be at
least n.

6-130

6 Intel® Math Kernel Library Reference Manual

givnum REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (ldgnum, 2). Each number
indicates the c or s value used in the corresponding
Givens rotation.

ldgnum INTEGER. The leading dimension of arrays difr,
poles and givnum, must be at least k.

poles REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (ldgnum, 2). On entry,
poles(1:k, 1) contains the new singular values obtained
from solving the secular equation, and poles(1:k, 2) is
an array containing the poles in the secular equation.

difl REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (k). On entry, difl(i) is the
distance between i-th updated (undeflated) singular
value and the i-th (undeflated) old singular value.

difr REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (ldgnum, 2). On entry, difr(i, 1)
contains the distances between i-th updated
(undeflated) singular value and the i+1-th (undeflated)
old singular value. And difr(i, 2) is the normalizing
factor for the i-th right singular vector.

z REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (k). Contains the components of the
deflation-adjusted updating row vector.

k INTEGER. Contains the dimension of the non-deflated
matrix. This is the order of the related secular equation.
1 ≤k ≤n.

LAPACK Auxiliary Routines6

6-131

c REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre =0 and the c value of a Givens
rotation related to the right null space if sqre = 1.

s REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre =0 and the s value of a Givens
rotation related to the right null space if sqre = 1.

work REAL for slals0
DOUBLE PRECISION for dlals0
Workspace array, DIMENSION (k). Used with real
flavors only.

rwork REAL for clals0
DOUBLE PRECISION for zlals0
Workspace array, DIMENSION (k*(1+nrhs) + 2*nrhs).
Used with complex flavors only.

Output Parameters

b On exit, contains the solution X in rows 1 through n.

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal
value.

6-132

6 Intel® Math Kernel Library Reference Manual

?lalsa
Computes the SVD of the coefficient
matrix in compact form. Used by
?gelsd.

call slalsa (icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, work,
iwork, info)

call dlalsa (icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, work,
iwork, info)

call clalsa (icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, rwork,
iwork, info)

call zlalsa (icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, rwork,
iwork, info)

Discussion

The routine is an itermediate step in solving the least squares problem by
computing the SVD of the coefficient matrix in compact form. The singular
vectors are computed as products of simple orthorgonal matrices.

If icompq = 0, ?lalsa applies the inverse of the left singular vector matrix
of an upper bidiagonal matrix to the right hand side; and if
icompq = 1, the routine applies the right singular vector matrix to the right
hand side. The singular vector matrices were generated in the compact form
by ?lalsa.

LAPACK Auxiliary Routines6

6-133

Input Parameters

icompq INTEGER. Specifies whether the left or the right singular
vector matrix is involved.
If icompq = 0: left singular vector matrix is used
If icompq = 1: right singular vector matrix is used.

smlsiz INTEGER. The maximum size of the subproblems at the
bottom of the computation tree.

n INTEGER. The row and column dimensions of the upper
bidiagonal matrix.

nrhs INTEGER. The number of columns of b and bx. Must
be at least 1.

b REAL for slalsa
DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
COMPLEX*16 for zlalsa
Array, DIMENSION (ldb, nrhs). Contains the right
hand sides of the least squares problem in rows 1
through m.

ldb INTEGER. The leading dimension of b in the calling
subprogram. Must be at least max(1,max(m, n)).

ldbx INTEGER. The leading dimension of the output array bx.

u REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, smlsiz). On entry, u
contains the left singular vector matrices of all
subproblems at the bottom level.

ldu INTEGER, ldu ≥ n. The leading dimension of arrays u,
vt, difl, difr, poles, givnum, and z.

vt REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, smlsiz +1). On entry,
contains the right singular vector matrices of all
subproblems at the bottom level.

k INTEGER array, DIMENSION (n).

6-134

6 Intel® Math Kernel Library Reference Manual

difl REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, nlvl), where nlvl =
int(log2 (n /(smlsiz+1))) + 1.

difr REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, 2*nlvl). On entry,
difl(*, i) and difr(*, 2i -1) record distances between
singular values on the i-th level and singular values on
the (i -1)-th level, and difr(*, 2i) record the
normalizing factors of the right singular vectors matrices
of subproblems on i-th level.

z REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, nlvl). On entry, z(1, i)
contains the components of the deflation- adjusted
updating the row vector for subproblems on the i-th
level.

poles REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, 2*nlvl).
On entry, poles(*, 2i-1: 2i) contains the new and old
singular values involved in the secular equations on the
i-th level.

givptr INTEGER.
Array, DIMENSION (n).
On entry, givptr(i) records the number of Givens
rotations performed on the i-th problem on the
computation tree.

givcol INTEGER.
Array, DIMENSION (ldgcol, 2*nlvl). On entry, for
each i, givcol(*, 2i-1: 2i) records the locations of
Givens rotations performed on the i-th level on the
computation tree.

LAPACK Auxiliary Routines6

6-135

ldgcol INTEGER, ldgcol ≥ n. The leading dimension of
arrays givcol and perm.

perm INTEGER.
Array, DIMENSION (ldgcol, nlvl). On entry, perm(*,
i) records permutations done on the i-th level of the
computation tree.

givnum REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, 2*nlvl). On entry,
givnum(*, 2i-1 : 2i) records the c and s values of
Givens rotations performed on the i-th level on the
computation tree.

c REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (n). On entry, if the i-th
subproblem is not square, c(i) contains the c value of a
Givens rotation related to the right null space of the i-th
subproblem.

s REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (n). On entry, if the i-th
subproblem is not square, s(i) contains the s-value of
a Givens rotation related to the right null space of the
i-th subproblem.

work REAL for slalsa
DOUBLE PRECISION for dlalsa
Workspace array, DIMENSION at least (n). Used with
real flavors only.

rwork REAL for clalsa
DOUBLE PRECISION for zlalsa
Workspace array, DIMENSION at least
max(n, (smlsz+1)*nrhs*3). Used with complex
flavors only.

iwork INTEGER.
Workspace array, DIMENSION at least (3n).

6-136

6 Intel® Math Kernel Library Reference Manual

Output Parameters

b On exit, contains the solution X in rows 1 through n.

bx REAL for slalsa
DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
COMPLEX*16 for zlalsa
Array, DIMENSION (ldbx, nrhs). On exit, the result of
applying the left or right singular vector matrix to b.

info INTEGER.
If info = 0: successful exit
If info = -i < 0, the i-th argument had an illegal value.

?lalsd
Uses the singular value decomposition
of A to solve the least squares problem.

call slalsd (uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, iwork, info)

call dlalsd (uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, iwork, info)

call clalsd (uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, rwork, iwork, info)

call zlalsd (uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, rwork, iwork, info)

Discussion

The routine uses the singular value decomposition of A to solve the least
squares problem of finding X to minimize the Euclidean norm of each
column of AX-B, where A is n-by-n upper bidiagonal, and X and B are
n-by-nrhs. The solution X overwrites B.

LAPACK Auxiliary Routines6

6-137

The singular values of A smaller than rcond times the largest singular value
are treated as zero in solving the least squares problem; in this case a
minimum norm solution is returned. The actual singular values are returned
in d in ascending order.

This code makes very mild assumptions about floating point arithmetic. It
will work on machines with a guard digit in add/subtract, or on those binary
machines without guard digits which subtract like the Cray XMP, Cray
YMP, Cray C 90, or Cray 2.

It could conceivably fail on hexadecimal or decimal machines without
guard digits, but we know of none.

Input Parameters

uplo CHARACTER*1.
If uplo = 'U', d and e define an upper bidiagonal
matrix.
If uplo = 'L', d and e define a lower bidiagonal matrix.

smlsiz INTEGER. The maximum size of the subproblems at the
bottom of the computation tree.

n INTEGER. The dimension of the bidiagonal matrix.
n ≥ 0.

nrhs INTEGER. The number of columns of B. Must be at
least 1.

d REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
Array, DIMENSION (n). On entry, d contains the main
diagonal of the bidiagonal matrix.

e REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
Array, DIMENSION (n-1). Contains the super-diagonal
entries of the bidiagonal matrix. On exit, e is destroyed.

b REAL for slalsd
DOUBLE PRECISION for dlalsd
COMPLEX for clalsd
COMPLEX*16 for zlalsd

6-138

6 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (ldb,nrhs). On input, b contains
the right hand sides of the least squares problem. On
output, b contains the solution X.

ldb INTEGER. The leading dimension of b in the calling
subprogram. Must be at least max(1,n).

rcond REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
The singular values of A less than or equal to rcond

times the largest singular value are treated as zero in
solving the least squares problem.
If rcond is negative, machine precision is used instead.
For example, if diag(S)*X=B were the least squares
problem, where diag(S) is a diagonal matrix of singular
values, the solution would be X(i) = B(i) / S(i) if S(i) is
greater than rcond *max(S), and X(i) = 0 if S(i) is less
than or equal to rcond *max(S).

rank INTEGER. The number of singular values of A greater
than rcond times the largest singular value.

work REAL for slalsd
DOUBLE PRECISION for dlalsd
COMPLEX for clalsd
COMPLEX*16 for zlalsd
Workspace array.
DIMENSION for real flavors at least
(9n+2n*smlsiz+8n*nlvl+n*nrhs+(smlsiz+1)2),
where
nlvl = max(0, int(log2(n / (smlsiz+1))) + 1).

DIMENSION for complex flavors at least (n*nrhs).

rwork REAL for clalsd
DOUBLE PRECISION for zlalsd
Workspace array, used with complex flavors only.
DIMENSION at least (9n + 2n*smlsiz + 8n*nlvl +
3*mlsiz*nrhs + (smlsiz+1)2),
where
nlvl = max(0, int(log2(min(m,n)/(smlsiz+1))) + 1).

LAPACK Auxiliary Routines6

6-139

iwork INTEGER.
Workspace array, DIMENSION at least (3n*nlvl + 11n).

Output Parameters

d On exit, if info = 0, d contains singular values of the
bidiagonal matrix.

b On exit, b contains the solution X.

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info > 0: The algorithm failed to compute a singular
value while working on the submatrix lying in rows and
columns info/(n+1) through mod(info,n+1).

?lamch
Determines machine parameters for
floating-point arithmetic.

val = slamch (cmach)

val = dlamch (cmach)

Discussion

The function ?lamch determines single precision and double precision
machine parameters.

Input Parameters

cmach CHARACTER*1. Specifies the value to be returned by
?lamch:
= 'E' or 'e', val = eps

= 'S' or 's , val = sfmin

= 'B' or 'b', val = base

= 'P' or 'p', val = eps*base

6-140

6 Intel® Math Kernel Library Reference Manual

= 'N' or 'n', val = t

= 'R' or 'r', val = rnd

= 'M' or 'm', val = emin

= 'U' or 'u', val = rmin

= 'L' or 'l', val = emax

= 'O' or 'o', val = rmax

where
eps = relative machine precision;
sfmin = safe minimum, such that 1/sfmin does not
overflow;
base = base of the machine;
prec = eps*base;
t = number of (base) digits in the mantissa;
rnd = 1.0 when rounding occurs in addition, 0.0
otherwise;
emin = minimum exponent before (gradual) underflow;
rmin = underflow_threshold - base**(emin-1);
emax = largest exponent before overflow;
rmax = overflow_threshold - (base**emax)*(1-eps).

Output Parameters

val REAL for slamch
DOUBLE PRECISION for dlamch
Value returned by the function.

?lamc1
Called from ?lamc2.
Determines machine parameters given
by beta, t, rnd, ieee1.

call slamc1 (beta, t, rnd, ieee1)

call dlamc1 (beta, t, rnd, ieee1)

LAPACK Auxiliary Routines6

6-141

Discussion

The routine ?lamc1 determines machine parameters given by beta, t,

rnd, ieee1.

Output Parameters

beta INTEGER. The base of the machine.

t INTEGER. The number of (beta) digits in the mantissa.

rnd LOGICAL.
Specifies whether proper rounding (rnd = .TRUE.) or
chopping (rnd = .FALSE.) occurs in addition. This
may not be a reliable guide to the way in which the
machine performs its arithmetic.

ieee1 LOGICAL.
Specifies whether rounding appears to be done in the
ieee 'round to nearest' style.

?lamc2
Used by ?lamch.
Determines machine parameters
specified in its arguments list.

call slamc2 (beta, t, rnd, eps, emin, rmin, emax, rmax)

call dlamc2 (beta, t, rnd, eps, emin, rmin, emax, rmax)

Discussion

The routine ?lamc2 determines machine parameters specified in its
arguments list.

Output Parameters

beta INTEGER. The base of the machine.

t INTEGER. The number of (beta) digits in the mantissa.

6-142

6 Intel® Math Kernel Library Reference Manual

rnd LOGICAL.
Specifies whether proper rounding (rnd = .TRUE.) or
chopping (rnd = .FALSE.) occurs in addition. This
may not be a reliable guide to the way in which the
machine performs its arithmetic.

eps REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest positive number such that
fl(1.0 - eps) < 1.0,

where fl denotes the computed value.

emin INTEGER. The minimum exponent before (gradual)
underflow occurs.

rmin REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest normalized number for the machine, given
by base emin - 1 , where base is the floating point
value of beta.

emax INTEGER.The maximum exponent before overflow
occurs.

rmax REAL for slamc2
DOUBLE PRECISION for dlamc2
The largest positive number for the machine, given by
baseemax (1 - eps), where base is the floating point
value of beta.

?lamc3
Called from ?lamc1-?lamc5. Intended
to force a and b to be stored prior to
doing the addition of a and b.

val = slamc3 (a, b)

val = dlamc3 (a, b)

LAPACK Auxiliary Routines6

6-143

Discussion

The routine is intended to force a and b to be stored prior to doing the
addition of a and b, for use in situations where optimizers might hold one
of these in a register.

Input Parameters

a,b REAL for slamc3

DOUBLE PRECISION for dlamc3
The values a and b.

Output Parameters

val REAL for slamc3

DOUBLE PRECISION for dlamc3
The result of adding values a and b.

?lamc4
This is a service routine for ?lamc2.

call slamc4 (emin, start, base)

call dlamc4 (emin, start, base)

Discussion

This is a service routine for ?lamc2.

Input Parameters

start REAL for slamc4
DOUBLE PRECISION for dlamc4
The starting point for determining emin.

base INTEGER. The base of the machine.

6-144

6 Intel® Math Kernel Library Reference Manual

Output Parameters

emin INTEGER. The minimum exponent before (gradual)
underflow, computed by setting a = start and dividing
by base until the previous a can not be recovered.

?lamc5
Called from ?lamc2.
Attempts to compute the largest machine
floating-point number, without overflow.

call slamc5 (beta, p, emin, ieee, emax, rmax)

call dlamc5 (beta, p, emin, ieee, emax, rmax)

Discussion

The routine ?lamc5 attempts to compute rmax, the largest machine
floating-point number, without overflow. It assumes that
emax + abs(emin) sum approximately to a power of 2. It will fail on
machines where this assumption does not hold, for example, the Cyber 205
(emin = -28625, emax = 28718). It will also fail if the value supplied for
emin is too large (that is, too close to zero), probably with overflow.

Input Parameters

beta INTEGER.The base of floating-point arithmetic.

p INTEGER.The number of base beta digits in the
mantissa of a floating-point value.

emin INTEGER. The minimum exponent before (gradual)
underflow.

ieee LOGICAL. A logical flag specifying whether or not the
arithmetic system is thought to comply with the IEEE
standard.

LAPACK Auxiliary Routines6

6-145

Output Parameters.

emax INTEGER. The largest exponent before overflow.

rmax REAL for slamc5

DOUBLE PRECISION for dlamc5

The largest machine floating-point number.

?lamrg
Creates a permutation list to merge the
entries of two independently sorted sets
into a single set sorted in acsending
order.

call slamrg (n1, n2, a, strd1, strd2, index)

call dlamrg (n1, n2, a, strd1, strd2, index)

Discussion

The routine creates a permutation list which will merge the elements of a
(which is composed of two independently sorted sets) into a single set
which is sorted in ascending order.

Input Parameters

n1, n2 INTEGER.
These arguments contain the respective lengths of the
two sorted lists to be merged.

a REAL for slamrg
DOUBLE PRECISION for dlamrg.
Array, DIMENSION (n1+n2).
The first n1 elements of a contain a list of numbers
which are sorted in either ascending or descending
order. Likewise for the final n2 elements.

6-146

6 Intel® Math Kernel Library Reference Manual

strd1, strd2 INTEGER.
These are the strides to be taken through the array a.
Allowable strides are 1 and -1. They indicate whether a
subset of a is sorted in ascending (strdx = 1) or
descending (strdx = -1) order.

Output Parameters

index INTEGER.
Array, DIMENSION (n1+n2).
On exit, this array will contain a permutation such that if
b(i) = a(index(i)) for i=1, n1+n2, then b will be
sorted in ascending order.

?langb
Returns the value of the 1-norm,
Frobenius norm, infinity-norm, or the
largest absolute value of any element of
general band matrix.

val = slangb (norm, n, kl, ku, ab, ldab, work)

val = dlangb (norm, n, kl, ku, ab, ldab, work)

val = clangb (norm, n, kl, ku, ab, ldab, work)

val = zlangb (norm, n, kl, ku, ab, ldab, work)

Discussion

The function returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of an n-by-n band
matrix A, with kl sub-diagonals and ku super-diagonals.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

LAPACK Auxiliary Routines6

6-147

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned by the
routine as described above.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?langb is set to zero.

kl INTEGER. The number of sub-diagonals of the matrix A.
kl ≥ 0.

ku INTEGER. The number of super-diagonals of the matrix
A. ku ≥ 0.

ab REAL for slangb
DOUBLE PRECISION for dlangb
COMPLEX for clangb
COMPLEX*16 for zlangb
Array, DIMENSION (ldab,n). The band matrix A, stored
in rows 1 to kl+ku+1. The j-th column of A is stored in
the j-th column of the array ab as follows:
ab(ku+1+i-j,j) = a(i,j)
for max(1,j-ku) ≤ i ≤ min(n,j+kl).

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ kl+ku+1.

work REAL for slangb/clangb
DOUBLE PRECISION for dlangb/zlangb
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I'; otherwise, work is not
referenced.

6-148

6 Intel® Math Kernel Library Reference Manual

Output Parameters

val REAL for slangb/clangb
DOUBLE PRECISION for dlangb/zlangb
Value returned by the function.

?lange
Returns the value of the 1-norm,
Frobenius norm, infinity-norm, or the
largest absolute value of any element of
a general rectangular matrix.

val = slange (norm, m, n, a, lda, work)

val = dlange (norm, m, n, a, lda, work)

val = clange (norm, m, n, a, lda, work)

val = zlange (norm, m, n, a, lda, work)

Discussion

The function ?lange returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a
real/complex matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

LAPACK Auxiliary Routines6

6-149

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lange as described above.

m INTEGER. The number of rows of the matrix A.
m ≥ 0. When m = 0, ?lange is set to zero.

n INTEGER. The number of columns of the matrix A.
n ≥ 0. When n = 0, ?lange is set to zero.

a REAL for slange
DOUBLE PRECISION for dlange
COMPLEX for clange
COMPLEX*16 for zlange
Array, DIMENSION (lda,n). The m-by-n matrix A.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(m,1).

work REAL for slange and clange.
DOUBLE PRECISION for dlange and zlange.
Workspace array, DIMENSION (lwork), where lwork ≥
m when norm = 'I'; otherwise, work is not referenced.

Output Parameters

val REAL for slange/clange
DOUBLE PRECISION for dlange/zlange
Value returned by the function.

?langt
Returns the value of the 1-norm,
Frobenius norm, infinity-norm, or the
largest absolute value of any element of
a general tridiagonal matrix.

val = slangt (norm, n, dl, d, du)

6-150

6 Intel® Math Kernel Library Reference Manual

val = dlangt (norm, n, dl, d, du)

val = clangt (norm, n, dl, d, du)

val = zlangt (norm, n, dl, d, du)

Discussion

The routine returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real/complex
tridiagonal matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?langt as described above.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?langt is set to zero.

dl, d, du REAL for slangt
DOUBLE PRECISION for dlangt
COMPLEX for clangt
COMPLEX*16 for zlangt
Arrays: dl (n-1), d (n), du (n-1).
The array dl contains the (n-1) sub-diagonal elements
of A.
The array d contains the diagonal elements of A.
The array du contains the (n-1) super-diagonal
elements of A.

LAPACK Auxiliary Routines6

6-151

Output Parameters

val REAL for slangt/clangt
DOUBLE PRECISION for dlangt/zlangt
Value returned by the function.

?lanhs
Returns the value of the 1-norm,
Frobenius norm, infinity-norm, or the
largest absolute value of any element of
an upper Hessenberg matrix.

val = slanhs (norm, n, a, lda, work)

val = dlanhs (norm, n, a, lda, work)

val = clanhs (norm, n, a, lda, work)

val = zlanhs (norm, n, a, lda, work)

Discussion

The function ?lanhs returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a
Hessenberg matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

6-152

6 Intel® Math Kernel Library Reference Manual

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lanhs as described above.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lanhs is set to zero.

a REAL for slanhs
DOUBLE PRECISION for dlanhs
COMPLEX for clanhs
COMPLEX*16 for zlanhs
Array, DIMENSION (lda,n). The n-by-n upper
Hessenberg matrix A; the part of A below the first
sub-diagonal is not referenced.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(n,1).

work REAL for slanhs and clanhs.
DOUBLE PRECISION for dlange and zlange.
Workspace array, DIMENSION (lwork), where lwork ≥
n when norm = 'I'; otherwise, work is not referenced.

Output Parameters

val REAL for slanhs/clanhs
DOUBLE PRECISION for dlanhs/zlanhs
Value returned by the function.

?lansb
Returns the value of the 1-norm, or the
Frobenius norm, or the infinity norm, or
the element of largest absolute value of
a symmetric band matrix.

val = slansb (norm, uplo, n, k, ab, ldab, work)

val = dlansb (norm, uplo, n, k, ab, ldab, work)

LAPACK Auxiliary Routines6

6-153

val = clansb (norm, uplo, n, k, ab, ldab, work)

val = zlansb (norm, uplo, n, k, ab, ldab, work)

Discussion

The function ?lansb returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of an
n-by-n real/complex symmetric band matrix A, with k super-diagonals.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lansb as described above.

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the band matrix A is supplied.
If uplo = 'U': upper triangular part is supplied;
If uplo = 'L': lower triangular part is supplied.

n INTEGER. The order of the matrix A. n ≥ 0.
When n = 0, ?lansb is set to zero.

k INTEGER. The number of super-diagonals or
sub-diagonals of the band matrix A. k ≥ 0.

ab REAL for slansb
DOUBLE PRECISION for dlansb
COMPLEX for clansb
COMPLEX*16 for zlansb
Array, DIMENSION (ldab,n). The upper or lower
triangle of the symmetric band matrix A, stored in the

6-154

6 Intel® Math Kernel Library Reference Manual

first k+1 rows of ab. The j-th column of A is stored in
the j-th column of the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j)
for max(1,j-k) ≤ i≤ j;
if uplo = 'L', ab(1+i-j,j) = a(i,j) for j≤i≤min(n,j+k).

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ k+1.

work REAL for slansb and clansb.
DOUBLE PRECISION for dlansb and zlansb.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work
is not referenced.

Output Parameters

val REAL for slansb/clansb
DOUBLE PRECISION for dlansb/zlansb
Value returned by the function.

?lanhb
Returns the value of the 1-norm, or the
Frobenius norm, or the infinity norm,
or the element of largest absolute value
of a Hermitian band matrix.

val = clanhb (norm, uplo, n, k, ab, ldab, work)

val = zlanhb (norm, uplo, n, k, ab, ldab, work)

Discussion

The routine returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of an n-by-n
Hermitian band matrix A, with k super-diagonals.

The value val returned by the function is:

LAPACK Auxiliary Routines6

6-155

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lanhb as described above.

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the band matrix A is supplied.
If uplo = 'U': upper triangular part is supplied;
If uplo = 'L': lower triangular part is supplied.

n INTEGER. The order of the matrix A. n ≥ 0. When
n = 0, ?lanhb is set to zero.

k INTEGER. The number of super-diagonals or
sub-diagonals of the band matrix A. k ≥ 0.

ab COMPLEX for clanhb.
COMPLEX*16 for zlanhb.
Array, DIMENSION (ldab,n). The upper or lower
triangle of the Hermitian band matrix A, stored in the
first k+1 rows of ab. The j-th column of A is stored in
the j-th column of the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j)
for max(1,j-k) ≤ i≤ j;
if uplo = 'L', ab(1+i-j,j) = a(i,j) for j≤i≤min(n,j+k).

Note that the imaginary parts of the diagonal elements
need not be set and are assumed to be zero.

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ k+1.

6-156

6 Intel® Math Kernel Library Reference Manual

work REAL for clanhb.
DOUBLE PRECISION for zlanhb.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work
is not referenced.

Output Parameters

val REAL for slanhb/clanhb
DOUBLE PRECISION for dlanhb/zlanhb
Value returned by the function.

?lansp
Returns the value of the 1-norm, or the
Frobenius norm, or the infinity norm, or
the element of largest absolute value
of a symmetric matrix supplied in
packed form.

val = slansp (norm, uplo, n, ap, work)

val = dlansp (norm, uplo, n, ap, work)

val = clansp (norm, uplo, n, ap, work)

val = zlansp (norm, uplo, n, ap, work)

Discussion

The function ?lansp returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a
real/complex symmetric matrix A, supplied in packed form.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

LAPACK Auxiliary Routines6

6-157

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lansp as described above.

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the symmetric matrix A is supplied.
If uplo = 'U': Upper triangular part of A is supplied
If uplo = 'L': Lower triangular part of A is supplied.

n INTEGER. The order of the matrix A. n ≥ 0. When
n = 0, ?lansp is set to zero.

ap REAL for slansp
DOUBLE PRECISION for dlansp
COMPLEX for clansp
COMPLEX*16 for zlansp
Array, DIMENSION (n(n+1)/2). The upper or lower
triangle of the symmetric matrix A, packed columnwise
in a linear array. The j-th column of A is stored in the
array ap as follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1≤ i≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

work REAL for slansp and clansp.
DOUBLE PRECISION for dlansp and zlansp.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work
is not referenced.

Output Parameters

val REAL for slansp/clansp
DOUBLE PRECISION for dlansp/zlansp
Value returned by the function.

6-158

6 Intel® Math Kernel Library Reference Manual

?lanhp
Returns the value of the 1-norm, or the
Frobenius norm, or the infinity norm,
or the element of largest absolute value
of a complex Hermitian matrix supplied
in packed form.

val = clanhp (norm, uplo, n, ap, work)

val = zlanhp (norm, uplo, n, ap, work)

Discussion

The function ?lanhp returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a
complex Hermitian matrix A, supplied in packed form.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lanhp as described above.

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the Hermitian matrix A is supplied.
If uplo = 'U': Upper triangular part of A is supplied
If uplo = 'L': Lower triangular part of A is supplied.

LAPACK Auxiliary Routines6

6-159

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lanhp is set to zero.

ap COMPLEX for clanhp.
COMPLEX*16 for zlanhp.
Array, DIMENSION (n(n+1)/2). The upper or lower
triangle of the Hermitian matrix A, packed columnwise
in a linear array. The j-th column of A is stored in the
array ap as follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1≤ i≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

work REAL for clanhp.
DOUBLE PRECISION for zlanhp.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work
is not referenced.

Output Parameters

val REAL for clanhp.
DOUBLE PRECISION for zlanhp.
Value returned by the function.

?lanst/?lanht
Returns the value of the 1-norm, or the
Frobenius norm, or the infinity norm, or
the element of largest absolute value of
a real symmetric or complex Hermitian
tridiagonal matrix.

val = slanst (norm, n, d, e)

val = dlanst (norm, n, d, e)

val = clanht (norm, n, d, e)

val = zlanht (norm, n, d, e)

6-160

6 Intel® Math Kernel Library Reference Manual

Discussion

The functions ?lanst/?lanht return the value of the 1-norm, or the
Frobenius norm, or the infinity norm, or the element of largest absolute
value of a real symmetric or a complex Hermitian tridiagonal matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lanst/?lanht as described above.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lanst/?lanht is set to zero.

d REAL for slanst/clanht
DOUBLE PRECISION for dlanst/zlanht
Array, DIMENSION (n). The diagonal elements of A.

e REAL for slanst
DOUBLE PRECISION for dlanst
COMPLEX for clanht
COMPLEX*16 for zlanht
Array, DIMENSION (n-1). The (n-1) sub-diagonal or
super-diagonal elements of A.

Output Parameters

val REAL for slanst/clanht
DOUBLE PRECISION for dlanst/zlanht
Value returned by the function.

LAPACK Auxiliary Routines6

6-161

?lansy
Returns the value of the 1-norm, or the
Frobenius norm, or the infinity norm,
or the element of largest absolute value
of a real/complex symmetric matrix.

val = slansy (norm, uplo, n, a, lda, work)

val = dlansy (norm, uplo, n, a, lda, work)

val = clansy (norm, uplo, n, a, lda, work)

val = zlansy (norm, uplo, n, a, lda, work)

Discussion

The function ?lansy returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a
real/complex symmetric matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lansy as described above.

6-162

6 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the symmetric matrix A is to be
referenced.
= 'U': Upper triangular part of A is referenced.
= 'L': Lower triangular part of A is referenced

n INTEGER. The order of the matrix A. n ≥ 0. When
n = 0, ?lansy is set to zero.

a REAL for slansy
DOUBLE PRECISION for dlansy
COMPLEX for clansy
COMPLEX*16 for zlansy
Array, DIMENSION (lda,n). The symmetric matrix A. If
uplo = 'U', the leading n-by-n upper triangular part of a
contains the upper triangular part of the matrix A, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and
the strictly upper triangular part of a is not referenced.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(n,1).

work REAL for slansy and clansy.
DOUBLE PRECISION for dlansy and zlansy.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work
is not referenced.

Output Parameters

val REAL for slansy/clansy
DOUBLE PRECISION for dlansy/zlansy
Value returned by the function.

LAPACK Auxiliary Routines6

6-163

?lanhe
Returns the value of the 1-norm, or the
Frobenius norm, or the infinity norm,
or the element of largest absolute value
of a complex Hermitian matrix.

val = clanhe (norm, uplo, n, a, lda, work)

val = zlanhe (norm, uplo, n, a, lda, work)

Discussion

The function ?lanhe returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a
complex Hermitian matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lanhe as described above.

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the Hermitian matrix A is to be
referenced.
= 'U': Upper triangular part of A is referenced.
= 'L': Lower triangular part of A is referenced

6-164

6 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lanhe is set to zero.

a COMPLEX for clanhe.
COMPLEX*16 for zlanhe.
Array, DIMENSION (lda,n). The Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
a contains the upper triangular part of the matrix A, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and
the strictly upper triangular part of a is not referenced.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(n,1).

work REAL for clanhe.
DOUBLE PRECISION for zlanhe.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work
is not referenced.

Output Parameters

val REAL for clanhe.
DOUBLE PRECISION for zlanhe.
Value returned by the function.

?lantb
Returns the value of the 1-norm, or the
Frobenius norm, or the infinity norm,
or the element of largest absolute value
of a triangular band matrix.

val = slantb (norm, uplo, diag, n, k, ab, ldab, work)

val = dlantb (norm, uplo, diag, n, k, ab, ldab, work)

LAPACK Auxiliary Routines6

6-165

val = clantb (norm, uplo, diag, n, k, ab, ldab, work)

val = zlantb (norm, uplo, diag, n, k, ab, ldab, work)

Discussion

The function ?lantb returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of an
n-by-n triangular band matrix A, with (k + 1) diagonals.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lantb as described above.

uplo CHARACTER*1. Specifies whether the matrix A is upper
or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular.

diag CHARACTER*1. Specifies whether or not the matrix A is
unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lantb is set to zero.

k INTEGER. The number of super-diagonals of the matrix
A if uplo = 'U', or the number of sub-diagonals of the
matrix A if uplo = 'L'. k ≥ 0.

6-166

6 Intel® Math Kernel Library Reference Manual

ab REAL for slantb
DOUBLE PRECISION for dlantb
COMPLEX for clantb
COMPLEX*16 for zlantb
Array, DIMENSION (ldab,n). The upper or lower
triangular band matrix A, stored in the first k+1 rows of
ab. The j-th column of A is stored in the j-th column of
the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j) for
max(1,j-k) ≤ i ≤ j;
if uplo = 'L', ab(1+i-j,j) = a(i,j) for
j≤ i≤ min(n,j+k).
Note that when diag = 'U', the elements of the array ab

corresponding to the diagonal elements of the matrix A
are not referenced, but are assumed to be one.

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ k+1.

work REAL for slantb and clantb.
DOUBLE PRECISION for dlantb and zlantb.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' ; otherwise, work is not
referenced.

Output Parameters

val REAL for slantb/clantb.
DOUBLE PRECISION for dlantb/zlantb.
Value returned by the function.

LAPACK Auxiliary Routines6

6-167

?lantp
Returns the value of the 1-norm, or the
Frobenius norm, or the infinity norm, or
the element of largest absolute value of
a triangular matrix supplied in packed
form.

val = slantp (norm, uplo, diag, n, ap, work)

val = dlantp (norm, uplo, diag, n, ap, work)

val = clantp (norm, uplo, diag, n, ap, work)

val = zlantp (norm, uplo, diag, n, ap, work)

Discussion

The function ?lantp returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a
triangular matrix A, supplied in packed form.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lantp as described above.

6-168

6 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Specifies whether the matrix A is upper
or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular.

diag CHARACTER*1. Specifies whether or not the matrix A is
unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lantp is set to zero.

ap REAL for slantp
DOUBLE PRECISION for dlantp
COMPLEX for clantp
COMPLEX*16 for zlantp
Array, DIMENSION (n(n+1)/2). The upper or lower
triangular matrix A, packed columnwise in a linear array.
The j-th column of A is stored in the array ap as
follows:
if uplo = 'U', AP(i + (j-1)j/2) = a(i,j)
for 1≤ i≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = a(i,j)
for j≤ i≤ n.
Note that when diag = 'U', the elements of the array ap
corresponding to the diagonal elements of the matrix A
are not referenced, but are assumed to be one.

work REAL for slantp and clantp.
DOUBLE PRECISION for dlantp and zlantp.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' ; otherwise, work is not
referenced.

Output Parameters

val REAL for slantp/clantp.
DOUBLE PRECISION for dlantp/zlantp.
Value returned by the function.

LAPACK Auxiliary Routines6

6-169

?lantr
Returns the value of the 1-norm, or the
Frobenius norm, or the infinity norm,
or the element of largest absolute value
of a trapezoidal or triangular matrix.

val = slantr (norm, uplo, diag, m, n, a, lda, work)

val = dlantr (norm, uplo, diag, m, n, a, lda, work)

val = clantr (norm, uplo, diag, m, n, a, lda, work)

val = zlantr (norm, uplo, diag, m, n, a, lda, work)

Discussion

The function ?lantr returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a
trapezoidal or triangular matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

= norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

= normI(A) , if norm = ‘I’ or ‘i’

= normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the 1-norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in
?lantr as described above.

6-170

6 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Specifies whether the matrix A is upper
or lower trapezoidal.
= 'U': Upper trapezoidal
= 'L': Lower trapezoidal.
Note that A is triangular instead of trapezoidal if m = n.

diag CHARACTER*1. Specifies whether or not the matrix A
has unit diagonal.
= 'N': Non-unit diagonal
= 'U': Unit diagonal.

m INTEGER. The number of rows of the matrix A.
m ≥ 0, and if uplo = 'U', m ≤ n. When m = 0, ?lantr
is set to zero.

n INTEGER. The number of columns of the matrix A.
n ≥ 0, and if uplo = 'L', n ≤ m. When n = 0, ?lantr
is set to zero.

a REAL for slantr
DOUBLE PRECISION for dlantr
COMPLEX for clantr
COMPLEX*16 for zlantr
Array, DIMENSION (lda,n).

The trapezoidal matrix A (A is triangular if m = n).
If uplo = 'U', the leading m-by-n upper trapezoidal part
of the array a contains the upper trapezoidal matrix, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading m-by-n lower trapezoidal part
of the array a contains the lower trapezoidal matrix, and
the strictly upper triangular part of a is not referenced.
Note that when diag = 'U', the diagonal elements of a
are not referenced and are assumed to be one.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(m,1).

LAPACK Auxiliary Routines6

6-171

work REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Workspace array, DIMENSION (lwork), where
lwork ≥ m when norm = 'I' ; otherwise, work is not
referenced.

Output Parameters

val REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Value returned by the function.

?lanv2
Computes the Schur factorization of a
real 2-by-2 nonsymmetric matrix in
standard form.

call slanv2 (a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)

call dlanv2 (a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)

Discussion

The routine computes the Schur factorization of a real 2-by-2 nonsymmetric
matrix in standard form:

where either

1. cc = 0 so that aa and dd are real eigenvalues of the matrix, or
2. aa = dd and bb*cc < 0, so that aa sqrt(bb*cc) are complex

conjugate eigenvalues.

a b

c d

cs sn–
sn cs

aa bb

cc dd
cs sn

sn– cs
=

±

6-172

6 Intel® Math Kernel Library Reference Manual

The routine was adjusted to reduce the risk of cancellation errors, when
computing real eigenvalues, and to ensure, if possible, that abs(rt1r) ≥
abs(rt2r).

Input Parameters

a, b, c, d REAL for slanv2
DOUBLE PRECISION for dlanv2.
On entry, elements of the input matrix.

Output Parameters

a, b, c, d On exit, overwritten by the elements of the standardized
Schur form.

rt1r, rt1i,
rt2r, rt2i, REAL for slanv2

DOUBLE PRECISION for dlanv2.
The real and imaginary parts of the eigenvalues. If the
eigenvalues are a complex conjugate pair, rt1i > 0.

cs, sn REAL for slanv2
DOUBLE PRECISION for dlanv2.
Parameters of the rotation matrix.

?lapll
Measures the linear dependence of two
vectors.

call slapll (n, x, incx, y, incy, ssmin)

call dlapll (n, x, incx, y, incy, ssmin)

call clapll (n, x, incx, y, incy, ssmin)

call zlapll (n, x, incx, y, incy, ssmin)

Discussion

Given two column vectors x and y of length n, let

LAPACK Auxiliary Routines6

6-173

A = (x y) be the n-by-2 matrix.

The routine ?lapll first computes the QR factorization of A as A = QR and
then computes the SVD of the 2-by-2 upper triangular matrix R. The
smaller singular value of R is returned in ssmin, which is used as the
measurement of the linear dependency of the vectors x and y.

Input Parameters

n INTEGER. The length of the vectors x and y.

x REAL for slapll
DOUBLE PRECISION for dlapll
COMPLEX for clapll
COMPLEX*16 for zlapll
Array, DIMENSION (1+(n-1)incx).
On entry, x contains the n-vector x.

y REAL for slapll
DOUBLE PRECISION for dlapll
COMPLEX for clapll
COMPLEX*16 for zlapll
Array, DIMENSION (1+(n-1)incy). On entry, y

contains the n-vector y.

incx INTEGER. The increment between successive elements
of x; incx > 0.

incy INTEGER. The increment between successive elements
of y; incy > 0.

Output Parameters

x On exit, x is overwritten.

y On exit, y is overwritten.

ssmin REAL for slapll/clapll
DOUBLE PRECISION for dlapll/zlapll
The smallest singular value of the n-by-2 matrix

A = (x y) .

6-174

6 Intel® Math Kernel Library Reference Manual

?lapmt
Performs a forward or backward
permutation of the columns of a matrix.

call slapmt (forwrd, m, n, x, ldx, k)

call dlapmt (forwrd, m, n, x, ldx, k)

call clapmt (forwrd, m, n, x, ldx, k)

call zlapmt (forwrd, m, n, x, ldx, k)

Discussion

The routine ?lapmt rearranges the columns of the m-by-n matrix X as
specified by the permutation k(1),k(2),...,k(n) of the integers 1,...,n.

If forwrd = .TRUE., forward permutation:

X(*,k(j)) is moved to X(*,j) for j= 1,2,...,n.

If forwrd = .FALSE., backward permutation:

X(*,j) is moved to X(*,k(j)) for j = 1,2,...,n.

Input Parameters

forwrd LOGICAL.
If forwrd = .TRUE., forward permutation
If forwrd = .FALSE., backward permutation

m INTEGER. The number of rows of the matrix X.
m ≥ 0.

n INTEGER. The number of columns of the matrix X.
n ≥ 0.

x REAL for slapmt
DOUBLE PRECISION for dlapmt
COMPLEX for clapmt
COMPLEX*16 for zlapmt
Array, DIMENSION (ldx,n). On entry, the m-by-n
matrix X.

LAPACK Auxiliary Routines6

6-175

ldx INTEGER. The leading dimension of the array x,
ldx ≥ max(1,m).

k INTEGER.
Array, DIMENSION (n). On entry, k contains the
permutation vector.

Output Parameters

x On exit, x contains the permuted matrix X.

?lapy2
Returns sqrt(x2+y2).

val = slapy2 (x, y)

val = dlapy2 (x, y)

Discussion

The function ?lapy2 returns sqrt(x2+y2), avoiding unnecessary overflow
or harmful underflow.

Input Parameters

x, y REAL for slapy2
DOUBLE PRECISION for dlapy2
Specify the input values x and y.

Output Parameters

val REAL for slapy2
DOUBLE PRECISION for dlapy2.
Value returned by the function.

6-176

6 Intel® Math Kernel Library Reference Manual

?lapy3
Returns sqrt(x2+y2+z2).

val = slapy3 (x, y, z)

val = dlapy3 (x, y, z)

Discussion

The function ?lapy3 returns sqrt(x2+y2+z2), avoiding unnecessary
overflow or harmful underflow.

Input Parameters

x, y, z REAL for slapy3
DOUBLE PRECISION for dlapy3
Specify the input values x, y and z.

Output Parameters

val REAL for slapy3
DOUBLE PRECISION for dlapy3.
Value returned by the function.

?laqgb
Scales a general band matrix, using row
and column scaling factors computed by
?gbequ.

call slaqgb (m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed)

call dlaqgb (m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed)

LAPACK Auxiliary Routines6

6-177

call claqgb (m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed)

call zlaqgb (m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed)

Discussion

The routine equilibrates a general m-by-n band matrix A with kl

subdiagonals and ku superdiagonals using the row and column scaling
factors in the vectors r and c.

Input Parameters

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

kl INTEGER. The number of subdiagonals within the band
of A. kl ≥ 0.

ku INTEGER. The number of superdiagonals within the
band of A. ku ≥ 0.

ab REAL for slaqgb
DOUBLE PRECISION for dlaqgb
COMPLEX for claqgb
COMPLEX*16 for zlaqgb
Array, DIMENSION (ldab,n). On entry, the matrix A in
band storage, in rows 1 to kl+ku+1. The j-th column of
A is stored in the j-th column of the array ab as follows:
ab(ku+1+i-j,j) = A(i,j) for
max(1,j-ku) ≤ i ≤ min(m,j+kl).

ldab INTEGER. The leading dimension of the array ab.
lda ≥ kl+ku+1.

amax REAL for slaqgb/claqgb
DOUBLE PRECISION for dlaqgb/zlaqgb
Absolute value of largest matrix entry.

6-178

6 Intel® Math Kernel Library Reference Manual

Output Parameters

ab On exit, the equilibrated matrix, in the same storage
format as A.
See equed for the form of the equilibrated matrix.

r, c REAL for slaqgb/claqgb
DOUBLE PRECISION for dlaqgb/zlaqgb
Arrays r (m), c (n). Contain the row and column scale
factors for A, respectively.

rowcnd REAL for slaqgb/claqgb
DOUBLE PRECISION for dlaqgb/zlaqgb
Ratio of the smallest r(i) to the largest r(i).

colcnd REAL for slaqgb/claqgb
DOUBLE PRECISION for dlaqgb/zlaqgb
Ratio of the smallest c(i) to the largest c(i).

equed CHARACTER*1.
Specifies the form of equilibration that was done.
If equed = 'N': No equilibration
If equed = 'R': Row equilibration, that is, A has been
premultiplied by diag(r).
If equed = 'C': Column equilibration, that is, A has
been postmultiplied by diag(c).
If equed = 'B': Both row and column equilibration,
that is, A has been replaced by diag(r)*A*diag(c).

Application Notes

The routine uses internal parameters thresh, large, and small, which
have the following meaning. thresh is a threshold value used to decide if
row or column scaling should be done based on the ratio of the row or
column scaling factors. If rowcnd < thresh, row scaling is done, and if
colcnd < thresh, column scaling is done. large and small are threshold
values used to decide if row scaling should be done based on the absolute
size of the largest matrix element. If amax > large or amax < small, row
scaling is done.

LAPACK Auxiliary Routines6

6-179

?laqge
Scales a general rectangular matrix,
using row and column scaling factors
computed by ?geequ.

call slaqge (m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

call dlaqge (m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

call claqge (m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

call zlaqge (m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

Discussion

The routine equilibrates a general m-by-n matrix A using the row and
scaling factors in the vectors r and c.

Input Parameters

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

a REAL for slaqge
DOUBLE PRECISION for dlaqge
COMPLEX for claqge
COMPLEX*16 for zlaqge
Array, DIMENSION (lda,n). On entry, the m-by-n
matrix A.

lda INTEGER. The leading dimension of the array A.
lda ≥ max(m,1).

r REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION (m). The row scale factors for A.

6-180

6 Intel® Math Kernel Library Reference Manual

c REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION (n). The column scale factors for A.

rowcnd REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Ratio of the smallest r(i) to the largest r(i).

colcnd REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Ratio of the smallest c(i) to the largest c(i).

amax REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Absolute value of largest matrix entry.

Output Parameters

a On exit, the equilibrated matrix.
See equed for the form of the equilibrated matrix.

equed CHARACTER*1.
Specifies the form of equilibration that was done.
If equed = 'N': No equilibration
If equed = 'R': Row equilibration, that is, A has been
premultiplied by diag(r).
If equed = 'C': Column equilibration, that is, A has
been postmultiplied by diag(c).
If equed = 'B': Both row and column equilibration,
that is, A has been replaced by diag(r)*A*diag(c).

Application Notes

The routine uses internal parameters thresh, large, and small, which
have the following meaning. thresh is a threshold value used to decide if
row or column scaling should be done based on the ratio of the row or
column scaling factors. If rowcnd < thresh, row scaling is done, and if
colcnd < thresh, column scaling is done. large and small are threshold
values used to decide if row scaling should be done based on the absolute
size of the largest matrix element. If amax > large or amax < small, row
scaling is done.

LAPACK Auxiliary Routines6

6-181

?laqp2
Computes a QR factorization with
column pivoting of the matrix block.

call slaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

call dlaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

call claqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

call zlaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

Discussion

The routine computes a QR factorization with column pivoting of the block
A(offset+1:m,1:n). The block A(1:offset,1:n) is accordingly pivoted, but
not factorized.

Input Parameters

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

offset INTEGER. The number of rows of the matrix A that must
be pivoted but no factorized. offset ≥ 0.

a REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Array, DIMENSION (lda,n). On entry, the m-by-n matrix
A.

lda INTEGER. The leading dimension of the array A. lda ≥
max(1,m).

6-182

6 Intel® Math Kernel Library Reference Manual

jpvt INTEGER .
Array, DIMENSION (n). On entry, if jpvt(i) ≠ 0, the
i-th column of A is permuted to the front of A*P (a
leading column); if jpvt(i) = 0, the i-th column of A is
a free column.

vn1, vn2 REAL for slaqp2/claqp2
DOUBLE PRECISION for dlaqp2/zlaqp2
Arrays, DIMENSION (n) each. Contain the vectors with
the partial and exact column norms, respectively.

work REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Workspace array, DIMENSION (n).

Output Parameters

a On exit, the upper triangle of block A(offset+1:m,1:n)
is the triangular factor obtained; the elements in block
A(offset+1:m,1:n) below the diagonal, together with
the array tau, represent the orthogonal matrix Q as a
product of elementary reflectors. Block
A(1:offset,1:n) has been accordingly pivoted, but not
factorized.

jpvt On exit, if jpvt(i) = k, then the i-th column of A*P
was the k-th column of A.

tau REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Array, DIMENSION (min(m,n)). The scalar factors of the
elementary reflectors.

vn1, vn2 Contain the vectors with the partial and exact column
norms, respectively.

LAPACK Auxiliary Routines6

6-183

?laqps
Computes a step of QR factorization
with column pivoting of a real m-by-n
matrix A by using BLAS level 3.

call slaqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)

call dlaqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)

call claqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)

call zlaqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)

Discussion

This routine computes a step of QR factorization with column pivoting of a
real m-by-n matrix A by using BLAS level 3. The routine tries to factorize
nb columns from A starting from the row offset+1, and updates all of the
matrix with BLAS level 3 routine ?gemm.

In some cases, due to catastrophic cancellations, ?laqps cannot factorize
nb columns. Hence, the actual number of factorized columns is returned
in kb.

Block A(1:offset,1:n) is accordingly pivoted, but not factorized.

Input Parameters

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

offset INTEGER. The number of rows of A that have been
factorized in previous steps.

nb INTEGER. The number of columns to factorize.

6-184

6 Intel® Math Kernel Library Reference Manual

a REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (lda,n).
On entry, the m-by-n matrix A.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(1,m).

jpvt INTEGER.
Array, DIMENSION (n). If jpvt(i) = k then column k

of the full matrix A has been permuted into position i in
AP.

vn1, vn2 REAL for slaqps/claqps
DOUBLE PRECISION for dlaqps/zlaqps
Arrays, DIMENSION (n) each. Contain the vectors with
the partial and exact column norms, respectively.

auxv REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (nb). Auxiliary vector.

f REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (ldf,nb). Matrix F′ = L*Y′ *A.

ldf INTEGER. The leading dimension of the array f.
ldf ≥ max(1,n).

Output Parameters

kb INTEGER. The number of columns actually factorized.

a On exit, block A(offset+1:m,1:kb) is the triangular
factor obtained and block A(1:offset,1:n) has been
accordingly pivoted, but no factorized. The rest of the
matrix, block A(offset+1:m,kb+1:n) has been updated.

LAPACK Auxiliary Routines6

6-185

jpvt INTEGER array, DIMENSION (n). If jpvt(i) = k then
column k of the full matrix A has been permuted into
position i in AP.

tau REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (kb). The scalar factors of the
elementary reflectors.

vn1, vn2 The vectors with the partial and exact column norms,
respectively.

auxv Auxiliary vector.

f Matrix F′ = L*Y′ *A.

?laqsb
Scales a symmetric/Hermitian band
matrix, using scaling factors computed
by ?pbequ.

call slaqsb (uplo, n, kd, ab, ldab, s, scond, amax, equed)

call dlaqsb (uplo, n, kd, ab, ldab, s, scond, amax, equed)

call claqsb (uplo, n, kd, ab, ldab, s, scond, amax, equed)

call zlaqsb (uplo, n, kd, ab, ldab, s, scond, amax, equed)

Discussion

The routine equilibrates a symmetric band matrix A using the scaling factors
in the vector s.

6-186

6 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the symmetric matrix A is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.

n INTEGER. The order of the matrix A.
n ≥ 0.

kd INTEGER. The number of super-diagonals of the matrix
A if uplo = 'U', or the number of sub-diagonals if uplo
= 'L'. kd ≥ 0.

ab REAL for slaqsb
DOUBLE PRECISION for dlaqsb
COMPLEX for claqsb
COMPLEX*16 for zlaqsb
Array, DIMENSION (ldab,n). On entry, the upper or
lower triangle of the symmetric band matrix A, stored in
the first kd+1 rows of the array. The j-th column of A is
stored in the j-th column of the array ab as follows:
if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for
max(1,j-kd) ≤ i ≤ j;

if uplo = 'L', ab(1+i-j,j) = A(i,j) for
j ≤ i ≤ min(n,j+kd).

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ kd+1.

scond REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Ratio of the smallest s(i) to the largest s(i).

amax REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Absolute value of largest matrix entry.

Output Parameters

ab On exit, if info = 0, the triangular factor U or L from
the Cholesky factorization A = U' U or A = L L' of the
band matrix A, in the same storage format as A.

LAPACK Auxiliary Routines6

6-187

s REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Array, DIMENSION (n). The scale factors for A.

equed CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, that is, A has
been replaced by diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which
have the following meaning. thresh is a threshold value used to decide if
scaling should be based on the ratio of the scaling factors. If scond <
thresh, scaling is done. large and small are threshold values used to
decide if scaling should be done based on the absolute size of the largest
matrix element. If amax > large or amax < small, scaling is done.

?laqsp
Scales a symmetric/Hermitian matrix in
packed storage, using scaling factors
computed by ?ppequ.

call slaqsp (uplo, n, ap, s, scond, amax, equed)

call dlaqsp (uplo, n, ap, s, scond, amax, equed)

call claqsp (uplo, n, ap, s, scond, amax, equed)

call zlaqsp (uplo, n, ap, s, scond, amax, equed)

Discussion

The routine ?laqsp equilibrates a symmetric matrix A using the scaling
factors in the vector s.

6-188

6 Intel® Math Kernel Library Reference Manual

Internal Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the symmetric matrix A is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.

n INTEGER. The order of the matrix A.
n ≥ 0.

ap REAL for slaqsp
DOUBLE PRECISION for dlaqsp
COMPLEX for claqsp
COMPLEX*16 for zlaqsp
Array, DIMENSION (n(n+1)/2). On entry, the upper or
lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is
stored in the array ap as follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1 ≤ i ≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

s REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Array, DIMENSION (n). The scale factors for A.

scond REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Ratio of the smallest s(i) to the largest s(i).

amax REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Absolute value of largest matrix entry.

Output Parameters

ap On exit, the equilibrated matrix: diag(s)*A*diag(s), in
the same storage format as A.

equed CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, that is, A has
been replaced by diag(s)*A*diag(s).

LAPACK Auxiliary Routines6

6-189

Application Notes

The routine uses internal parameters thresh, large, and small, which
have the following meaning. thresh is a threshold value used to decide if
scaling should be based on the ratio of the scaling factors. If scond <
thresh, scaling is done. large and small are threshold values used to
decide if scaling should be done based on the absolute size of the largest
matrix element. If amax > large or amax < small, scaling is done.

?laqsy
Scales a symmetric/Hermitian matrix,
using scaling factors computed by
?poequ.

call slaqsy (uplo, n, a, lda, s, scond, amax, equed)

call dlaqsy (uplo, n, a, lda, s, scond, amax, equed)

call claqsy (uplo, n, a, lda, s, scond, amax, equed)

call zlaqsy (uplo, n, a, lda, s, scond, amax, equed)

Discussion

The routine equilibrates a symmetric matrix A using the scaling factors in
the vector s.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the symmetric matrix A is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.

n INTEGER. The order of the matrix A.
n ≥ 0.

a REAL for slaqsy
DOUBLE PRECISION for dlaqsy
COMPLEX for claqsy

6-190

6 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zlaqsy
Array, DIMENSION (lda,n). On entry, the symmetric
matrix A. If uplo = 'U', the leading n-by-n upper
triangular part of a contains the upper triangular part of
the matrix A, and the strictly lower triangular part of a is
not referenced. If uplo = 'L', the leading n-by-n lower
triangular part of a contains the lower triangular part of
the matrix A, and the strictly upper triangular part of a is
not referenced.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(n,1).

s REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Array, DIMENSION (n). The scale factors for A.

scond REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Ratio of the smallest s(i) to the largest s(i).

amax REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Absolute value of largest matrix entry.

Output Parameters

a On exit, if equed = 'Y', the equilibrated matrix:
diag(s)*A*diag(s).

equed CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, i.e., A has been
replaced by diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which
have the following meaning. thresh is a threshold value used to decide if
scaling should be based on the ratio of the scaling factors. If scond <

LAPACK Auxiliary Routines6

6-191

thresh, scaling is done. large and small are threshold values used to
decide if scaling should be done based on the absolute size of the largest
matrix element. If amax > large or amax < small, scaling is done.

?laqtr
Solves a real quasi-triangular system of
equations, or a complex
quasi-triangular system of special form,
in real arithmetic.

call slaqtr (ltran, lreal, n, t, ldt, b, w, scale, x,
work, info)

call dlaqtr (ltran, lreal, n, t, ldt, b, w, scale, x,
work, info)

Discussion

The routine ?laqtr solves the real quasi-triangular system
op(T) * p = scale* c, if lreal = .TRUE.

or the complex quasi-triangular systems
op(T + iB)*(p+iq) = scale*(c+id), if lreal = .FALSE.

in real arithmetic, where T is upper quasi-triangular.

If lreal = .FALSE., then the first diagonal block of T must be 1-by-1,
B is the specially structured matrix

op(A) = A or A′ , A′ denotes the conjugate transpose of matrix A.

On input,

B

b1 b2 ……bn

w

w

…
w

=

6-192

6 Intel® Math Kernel Library Reference Manual

, on output

This routine is designed for the condition number estimation in routine
?trsna.

Input Parameters

ltran LOGICAL.
On entry, ltran specifies the option of conjugate
transpose:
= .FALSE., op(T + iB) = T + iB,
= .TRUE., op(T + iB) = (T + iB)′ .

lreal LOGICAL.
On entry, lreal specifies the input matrix structure:
= .FALSE., the input is complex
= .TRUE., the input is real.

n INTEGER. On entry, n specifies the order of T + iB.
n ≥ 0.

t REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (ldt,n). On entry, t contains a matrix
in Schur canonical form. If lreal = .FALSE., then the
first diagonal block of t must be 1-by-1.

ldt INTEGER. The leading dimension of the matrix T.
ldt ≥ max(1,n).

b REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (n). On entry, b contains the
elements to form the matrix B as described above. If
lreal = .TRUE., b is not referenced.

w REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On entry, w is the diagonal element of the matrix B. If
lreal = .TRUE., w is not referenced.

x
c

d
= x

p

q
=

LAPACK Auxiliary Routines6

6-193

x REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (2n). On entry, x contains the right
hand side of the system.

work REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Workspace array, dimension (n).

Output Parameters

scale REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On exit, scale is the scale factor.

x On exit, x is overwritten by the solution.

info INTEGER.
If info = 0: successful exit.
If info = 1: the some diagonal 1-by-1 block has been
perturbed by a small number smin to keep
nonsingularity.
If info = 2: the some diagonal 2-by-2 block has been
perturbed by a small number in ?laln2 to keep
nonsingularity.

NOTE. In the interests of speed, this routine does not check the inputs
for errors.

6-194

6 Intel® Math Kernel Library Reference Manual

?lar1v
Computes the (scaled) r-th column of
the inverse of the submatrix in rows b1
through bn of the tridiagonal matrix
LDLT - σI.

call slar1v (n, b1, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work)

call dlar1v (n, b1, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work)

call clar1v (n, b1, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work)

call zlar1v (n, b1, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work)

Discussion

The routine ?lar1v computes the (scaled) r-th column of the inverse of
the submatrix in rows b1 through bn of the tridiagonal matrix
LDLT - σ*I.
The following steps accomplish this computation :

1. Stationary qd transform, LDLT - σ*I = L(+) D(+) L(+)T

2. Progressive qd transform, LDLT - σ*I = U(-) D(-) U(-)T,
3. Computation of the diagonal elements of the inverse of LDLT - σ*I

by combining the above transforms, and choosing r as the index
where the diagonal of the inverse is (one of the) largest in
magnitude.

4. Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
stationary and the bottom part of the progressive transform.

Input Parameters

n INTEGER. The order of the matrix LDLT.

b1 INTEGER. First index of the submatrix of LDLT.

LAPACK Auxiliary Routines6

6-195

bn INTEGER. Last index of the submatrix of LDLT.

sigma REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The shift. Initially, when r = 0, sigma should be a good
approximation to an eigenvalue of LDLT.

l REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1). The (n-1) subdiagonal
elements of the unit bidiagonal matrix L, in elements 1
to n-1.

d REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n). The n diagonal elements of the
diagonal matrix D.

ld REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1). The n-1 elements Li*Di.

lld REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1). The n-1 elements Li*Li*Di.

gersch REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (2n). The n Gerschgorin intervals.
These are used to restrict the initial search for r, when r
is input as 0.

r INTEGER.
Initially r should be input to be 0 and is then output as
the index where the diagonal element of the inverse is
largest in magnitude. In later iterations, this same value
of r should be input.

work REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Workspace array, DIMENSION (4n).

6-196

6 Intel® Math Kernel Library Reference Manual

Output Parameters

z REAL for slar1v
DOUBLE PRECISION for dlar1v
COMPLEX for clar1v
COMPLEX*16 for zlar1v
Array, DIMENSION (n). The (scaled) r-th column of the
inverse. z(r) is returned to be 1.

ztz REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The square of the norm of z.

mingma REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The reciprocal of the largest (in magnitude) diagonal
element of the inverse of LDLT - σ*I.

r On output, r is the index where the diagonal element of
the inverse is largest in magnitude.

isuppz INTEGER.
Array, DIMENSION (2). The support of the vector in z,
that is, the vector z is nonzero only in elements
isuppz(1) through isuppz(2).

?lar2v
Applies a vector of plane rotations with
real cosines and real/complex sines
from both sides to a sequence of 2-by-2
symmetric/Hermitian matrices.

call slar2v (n, x, y, z, incx, c, s, incc)

call dlar2v (n, x, y, z, incx, c, s, incc)

call clar2v (n, x, y, z, incx, c, s, incc)

call zlar2v (n, x, y, z, incx, c, s, incc)

LAPACK Auxiliary Routines6

6-197

Discussion

The routine ?lar2v applies a vector of real/complex plane rotations with
real cosines from both sides to a sequence of 2-by-2 real symmetric or
complex Hermitian matrices, defined by the elements of the vectors x, y
and z. For i = 1,2,...,n

Input Parameters

n INTEGER. The number of plane rotations to be applied.

x, y, z REAL for slar2v
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
COMPLEX*16 for zlar2v
Arrays, DIMENSION (1+(n-1)*incx) each. Contain the
vectors x, y and z, respectively. For all flavors of
?lar2v, elements of x and y are assumed to be real.

incx INTEGER. The increment between elements of x, y,
and z. incx > 0.

c REAL for slar2v/clar2v
DOUBLE PRECISION for dlar2v/zlar2v
Array, DIMENSION (1+(n-1)*incc). The cosines of the
plane rotations.

s REAL for slar2v
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
COMPLEX*16 for zlar2v
Array, DIMENSION (1+(n-1)*incc). The sines of the
plane rotations.

incc INTEGER. The increment between elements of c and s.
incc > 0.

xi zi

conjg zi() yi

: c i() conjg s i()()
s i()– c i()

xi zi

conjg zi() yi

c i() conjg s i()()–

s i() c i()
=

6-198

6 Intel® Math Kernel Library Reference Manual

Output Parameters

x, y, z Vectors x, y and z, containing the results of transform.

?larf
Applies an elementary reflector to a
general rectangular matrix.

call slarf (side, m, n, v, incv, tau, c, ldc, work)

call dlarf (side, m, n, v, incv, tau, c, ldc, work)

call clarf (side, m, n, v, incv, tau, c, ldc, work)

call zlarf (side, m, n, v, incv, tau, c, ldc, work)

Discussion

The routine applies a real/complex elementary reflector H to a real/complex
m-by-n matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v',
where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then H is taken to be the unit matrix.
For clarf/zlarf, to apply H′ (the conjugate transpose of H), supply
conjg(tau) instead of tau.

Input Parameters

side CHARACTER*1.
If side = 'L': form H *C
If side = 'R': form C *H.

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

v REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf

LAPACK Auxiliary Routines6

6-199

COMPLEX*16 for zlarf
Array, DIMENSION
(1 + (m-1)*abs(incv)) if side = 'L' or
(1 + (n-1)*abs(incv)) if side = 'R'.
The vector v in the representation of H. v is not used if
tau = 0.

incv INTEGER. The increment between elements of v.
incv ≠ 0.

tau REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
The value tau in the representation of H.

c REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Array, DIMENSION (ldc,n).
On entry, the m-by-n matrix C.

ldc INTEGER. The leading dimension of the array c.
ldc ≥ max(1,m).

work REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.

Output Parameters

c On exit, c is overwritten by the matrix H*C if side =
'L', or C*H if side = 'R'.

6-200

6 Intel® Math Kernel Library Reference Manual

?larfb
Applies a block reflector or its
transpose/conjugate-transpose to a
general rectangular matrix.

call slarfb (side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork)

call dlarfb (side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork)

call clarfb (side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork)

call zlarfb (side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork)

Discussion

The routine ?larfb applies a complex block reflector H or its transpose
H′ to a complex m-by-n matrix C from either left or right.

Input Parameters

side CHARACTER*1.
If side = 'L': apply H or H' from the left
If side = 'R': apply H or H' from the right

trans CHARACTER*1.
If trans = 'N': apply H (No transpose)
If trans = 'C': apply H' (Conjugate transpose)

direct CHARACTER*1. Indicates how H is formed from a
product of elementary reflectors
If direct = 'F': H = H(1) H(2) . . . H(k) (forward)
If direct = 'B': H = H(k) . . . H(2) H(1) (backward)

storev CHARACTER*1. Indicates how the vectors which define
the elementary reflectors are stored:
If storev = 'C': Column-wise
If storev = 'R': Row-wise

LAPACK Auxiliary Routines6

6-201

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

k INTEGER. The order of the matrix T (equal to the
number of elementary reflectors whose product defines
the block reflector).

v REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION
(ldv, k) if storev = 'C'
(ldv, m) if storev = 'R' and side = 'L'
(ldv, n) if storev = 'R' and side = 'R'
The matrix V.

ldv INTEGER.
The leading dimension of the array v.
If storev = 'C' and side = 'L', ldv ≥ max(1,m);
if storev = 'C' and side = 'R', ldv ≥ max(1,n);
if storev = 'R', ldv ≥ k.

t REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION (ldt,k).
Contains the triangular k-by-k matrix T in the
representation of the block reflector.

ldt INTEGER. The leading dimension of the array t.
ldt ≥ k.

c REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION (ldc,n).
On entry, the m-by-n matrix C.

6-202

6 Intel® Math Kernel Library Reference Manual

ldc INTEGER. The leading dimension of the array c.
ldc ≥ max(1,m).

work REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Workspace array, DIMENSION (ldwork, k).

ldwork INTEGER. The leading dimension of the array work.
If side = 'L', ldwork ≥ max(1, n);
if side = 'R', ldwork ≥ max(1, m).

Output parameters

c On exit, c is overwritten by H*C or H′ *C or C*H or
C*H′ .

?larfg
Generates an elementary reflector
(Householder matrix).

call slarfg (n, alpha, x, incx, tau)

call dlarfg (n, alpha, x, incx, tau)

call clarfg (n, alpha, x, incx, tau)

call zlarfg (n, alpha, x, incx, tau)

Discussion

The routine ?larfg generates a real/complex elementary reflector H of
order n, such that

, H′ *H = I ,H ′ * alpha

x

beta

0
=

LAPACK Auxiliary Routines6

6-203

where alpha and beta are scalars (with beta real for all flavors), and x is an
(n-1)-element real/complex vector. H is represented in the form

where tau is a real/complex scalar and v is a real/complex (n-1)-element
vector. Note that for clarfg/zlarfg, H is not Hermitian.

If the elements of x are all zero (and, for complex flavors, alpha is real),
then tau = 0 and H is taken to be the unit matrix.

Otherwise, 1 ≤tau ≤2 (for real flavors), or
1 ≤Re(tau) ≤2 and abs(tau-1) ≤ 1 (for complex flavors).

Input Parameters

n INTEGER. The order of the elementary reflector.

alpha REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
On entry, the value alpha.

x REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
Array, DIMENSION (1+(n-2)*abs(incx)).
On entry, the vector x.

incx INTEGER.
The increment between elements of x. incx > 0.

Output Parameters

alpha On exit, it is overwritten with the value beta.

x On exit, it is overwritten with the vector v.

H I tau* 1

v
* 1 v′–=

6-204

6 Intel® Math Kernel Library Reference Manual

tau REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
The value tau.

?larft
Forms the triangular factor T of a block
reflector H = I - VTVH.

call slarft (direct, storev, n, k, v, ldv, tau, t, ldt)

call dlarft (direct, storev, n, k, v, ldv, tau, t, ldt)

call clarft (direct, storev, n, k, v, ldv, tau, t, ldt)

call zlarft (direct, storev, n, k, v, ldv, tau, t, ldt)

Discussion

The routine ?larft forms the triangular factor T of a real/complex block
reflector H of order n, which is defined as a product of k elementary
reflectors.

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If storev = 'C', the vector which defines the elementary reflector H(i) is
stored in the i-th column of the array v, and H = I - V*T*V' .

If storev = 'R', the vector which defines the elementary reflector H(i) is
stored in the i-th row of the array v, and H = I - V' *T*V.

Input Parameters

direct CHARACTER*1. Specifies the order in which the
elementary reflectors are multiplied to form the block
reflector:
= 'F': H = H(1) H(2) . . . H(k) (forward)
= 'B': H = H(k) . . . H(2) H(1) (backward)

LAPACK Auxiliary Routines6

6-205

storev CHARACTER*1. Specifies how the vectors which define
the elementary reflectors are stored (see also
Application Notes below):
= 'C': column-wise
= 'R': row-wise.

n INTEGER. The order of the block reflector H. n ≥ 0.

k INTEGER. The order of the triangular factor T (equal to
the number of elementary reflectors). k ≥ 1.

v REAL for slarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION
(ldv, k) if storev = 'C' or
(ldv, n) if storev = 'R'.
The matrix V.

ldv INTEGER. The leading dimension of the array v.
If storev = 'C', ldv ≥ max(1,n);
if storev = 'R', ldv ≥ k.

tau REAL for slarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION (k). tau(i) must contain the scalar
factor of the elementary reflector H(i).

ldt INTEGER. The leading dimension of the output array t.
ldt ≥ k.

Output Parameters

t REAL for slarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION (ldt,k). The k-by-k triangular factor

6-206

6 Intel® Math Kernel Library Reference Manual

T of the block reflector. If direct = 'F', T is upper
triangular; if direct = 'B', T is lower triangular. The rest
of the array is not used.

v The matrix V.

Application Notes

The shape of the matrix V and the storage of the vectors which define the
H(i) is best illustrated by the following example with n = 5 and k = 3. The
elements equal to 1 are not stored; the corresponding array elements are
modified but restored on exit. The rest of the array is not used.
direct = 'F' and storev = 'C': direct = 'F' and storev = 'R':

direct = 'B' and storev = 'C': direct = 'B' and storev = 'R':

1

v1 1

v1 v2 1

v1 v2 v3

v1 v2 v3

1 v1 v1 v1 v1

1 v2 v2 v2

1 v3 v3

v1 v2 v3

v1 v2 v3

1 v2 v3

1 v3

1

v1 v1 1

v2 v2 v2 1

v3 v3 v3 v3 1

LAPACK Auxiliary Routines6

6-207

?larfx
Applies an elementary reflector to a
general rectangular matrix, with loop
unrolling when the reflector has
order ≤ 10.

call slarfx (side, m, n, v, tau, c, ldc, work)

call dlarfx (side, m, n, v, tau, c, ldc, work)

call clarfx (side, m, n, v, tau, c, ldc, work)

call zlarfx (side, m, n, v, tau, c, ldc, work)

Discussion

The routine ?larfx applies a real/complex elementary reflector H to a
real/complex m-by-n matrix C, from either the left or the right.
H is represented in the form
H = I - tau * v * v', where tau is a real/complex scalar and v is a
real/complex vector.

If tau = 0, then H is taken to be the unit matrix

Input Parameters

side CHARACTER*1.
If side = 'L': form H*C
If side = 'R': form C*H.

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

v REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Array, DIMENSION
(m) if side = 'L' or
(n) if side = 'R'.
The vector v in the representation of H.

6-208

6 Intel® Math Kernel Library Reference Manual

tau REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
The value tau in the representation of H.

c REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Array, DIMENSION (ldc,n). On entry, the m-by-n matrix
C.

ldc INTEGER. The leading dimension of the array c.
lda ≥ (1,m).

work REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.
work is not referenced if H has order < 11.

Output Parameters

c On exit, C is overwritten by the matrix H*C if side =
'L', or C*H if side = 'R'.

?largv
Generates a vector of plane rotations
with real cosines and real/complex
sines.

call slargv (n, x, incx, y, incy, c, incc)

LAPACK Auxiliary Routines6

6-209

call dlargv (n, x, incx, y, incy, c, incc)

call clargv (n, x, incx, y, incy, c, incc)

call zlargv (n, x, incx, y, incy, c, incc)

Discussion

The routine generates a vector of real/complex plane rotations with real
cosines, determined by elements of the real/complex vectors x and y.

For slargv/dlargv:

, for i = 1,2,...,n

For clargv/zlargv:

, for i = 1,2,...,n

where c(i)2 + abs(s(i))2 = 1 and the following conventions are used (these
are the same as in clartg/zlartg but differ from the BLAS Level 1
routine crotg/zrotg):
If yi = 0, then c(i) = 1 and s(i) = 0;
If xi = 0, then c(i) = 0 and s(i) is chosen so that ri is real.

Input Parameters

n INTEGER. The number of plane rotations to be
generated.

x, y REAL for slargv
DOUBLE PRECISION for dlargv
COMPLEX for clargv
COMPLEX*16 for zlargv
Arrays, DIMENSION (1+(n-1)*incx) and
(1+(n-1)*incy), respectively.
On entry, the vectors x and y.

incx INTEGER. The increment between elements of x.
incx > 0.

c i() s i()
s i()– c i()

xi

yi

ai

0
=

c i() s i()
conjg s i()()– c i()

xi

yi

ri

0
=

6-210

6 Intel® Math Kernel Library Reference Manual

incy INTEGER. The increment between elements of y.
incy > 0.

incc INTEGER. The increment between elements of the
output array c. incc > 0.

Output Parameters

x On exit, x(i) is overwritten by ai (for real flavors), or by
ri (for complex flavors), for i = 1,...,n.

y On exit, the sines s(i) of the plane rotations.

c REAL for slargv/clargv
DOUBLE PRECISION for dlargv/zlargv
Array, DIMENSION (1+(n-1)*incc). The cosines of the
plane rotations.

?larnv
Returns a vector of random numbers
from a uniform or normal distribution.

call slarnv (idist, iseed, n, x)

call dlarnv (idist, iseed, n, x)

call clarnv (idist, iseed, n, x)

call zlarnv (idist, iseed, n, x)

Discussion

The routine ?larnv returns a vector of n random real/complex numbers
from a uniform or normal distribution.

This routine calls the auxiliary routine ?laruv to generate random real
numbers from a uniform (0,1) distribution, in batches of up to 128 using
vectorisable code. The Box-Muller method is used to transform numbers
from a uniform to a normal distribution.

LAPACK Auxiliary Routines6

6-211

Input Parameters

idist INTEGER. Specifies the distribution of the random
numbers:
for slarnv and dlanrv:
= 1: uniform (0,1)
= 2: uniform (-1,1)
= 3: normal (0,1).
for clarnv and zlanrv:
= 1: real and imaginary parts each uniform (0,1)
= 2: real and imaginary parts each uniform (-1,1)
= 3: real and imaginary parts each normal (0,1)
= 4: uniformly distributed on the disc abs(z) < 1
= 5: uniformly distributed on the circle abs(z) = 1

iseed INTEGER.
Array, DIMENSION (4).
On entry, the seed of the random number generator; the
array elements must be between 0 and 4095, and
iseed(4) must be odd.

n INTEGER. The number of random numbers to be
generated.

Output Parameters

x REAL for slarnv
DOUBLE PRECISION for dlarnv
COMPLEX for clarnv
COMPLEX*16 for zlarnv
Array, DIMENSION (n). The generated random numbers.

iseed On exit, the seed is updated.

6-212

6 Intel® Math Kernel Library Reference Manual

?larrb
Provides limited bisection to locate
eigenvalues for more accuracy.

call slarrb (n, d, l, ld, lld, ifirst, ilast, sigma,
reltol, w, wgap, werr, work, iwork, info)

call dlarrb (n, d, l, ld, lld, ifirst, ilast, sigma,
reltol, w, wgap, werr, work, iwork, info)

Discussion

Given the relatively robust representation(RRR) LDLT, the routine does
“limited” bisection to locate the eigenvalues of LDLT, w(ifirst) through
w(ilast), to more accuracy. Intervals [left, right] are maintained by storing
their mid-points and semi-widths in the arrays w and werr respectively.

Input Parameters

n INTEGER. The order of the matrix.

d REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). The n diagonal elements of the
diagonal matrix D.

l REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1). The n-1 subdiagonal elements
of the unit bidiagonal matrix L.

ld REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1). The n-1 elements Li*Di.

lld REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1). The n-1 elements Li*Li*Di.

ifirst INTEGER. The index of the first eigenvalue in the
cluster.

LAPACK Auxiliary Routines6

6-213

ilast INTEGER. The index of the last eigenvalue in the cluster.

sigma REAL for slarrb
DOUBLE PRECISION for dlarrb
The shift used to form LDLT (see ?larrf).

reltol REAL for slarrb
DOUBLE PRECISION for dlarrb
The relative tolerance.

w REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). On input, w(ifirst) through
w(ilast) are estimates of the corresponding
eigenvalues of LDLT .

wgap REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). The gaps between the
eigenvalues of LDLT .

werr REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). On input, werr(ifirst)
through werr(ilast) are the errors in the estimates
w(ifirst) through w(ilast).

work REAL for slarrb
DOUBLE PRECISION for dlarrb
Workspace array. Note that this parameter is never used
in the routine.

iwork INTEGER.
Workspace array, DIMENSION (2n).

Output Parameters

w On output these estimates of the eigenvalues are
“refined”.

wgap Very small gaps are changed on output.

werr On output, “refined” errors in the estimates w(ifirst)
through w(ilast).

6-214

6 Intel® Math Kernel Library Reference Manual

info INTEGER.
Error flag. Note that this parameter is never set in the
routine.

?larre
Given the tridiagonal matrix T, sets
small off-diagonal elements to zero and
for each unreduced block Ti, finds base
representations and eigenvalues.

call slarre (n, d, e, tol, nsplit, isplit, m, w, woff,
gersch, work, info)

call dlarre (n, d, e, tol, nsplit, isplit, m, w, woff,
gersch, work, info)

Discussion

Given the tridiagonal matrix T, the routine sets "small" off-diagonal
elements to zero, and for each unreduced block Ti, it finds

• the numbers σi

• the base Ti - σi I = Li Di Li
T representations and

• eigenvalues of each Li Di Li
T.

The representations and eigenvalues found are then used by ?stegr to
compute the eigenvectors of a symmetric tridiagonal matrix. Currently, the
base representations are limited to being positive or negative definite, and
the eigenvalues of the definite matrices are found by the dqds algorithm
(subroutine ?lasq2). As an added benefit, ?larre also outputs the n
Gerschgorin intervals for each Li Di Li

T.

Input Parameters

n INTEGER. The order of the matrix.

LAPACK Auxiliary Routines6

6-215

d REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). On entry, the n diagonal
elements of the tridiagonal matrix T.

e REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). On entry, the (n-1) subdiagonal
elements of the tridiagonal matrix T; e(n) need not be
set.

tol REAL for slarre
DOUBLE PRECISION for dlarre
The threshold for splitting. If on input |e(i)| < tol, then
the matrix T is split into smaller blocks.

nsplit INTEGER. The number of blocks T splits into.
1 ≤nsplit ≤n.

work REAL for slarre
DOUBLE PRECISION for dlarre
Workspace array, DIMENSION (4*n).

Output Parameters

d On exit, the n diagonal elements of the diagonal
matrices Di .

e On exit, the subdiagonal elements of the unit bidiagonal
matrices Li .

isplit INTEGER.
Array, DIMENSION (2n). The splitting points, at which T
breaks up into submatrices. The first submatrix consists
of rows/columns 1 to isplit(1), the second of
rows/columns isplit(1)+1 through isplit(2), etc.,
and the nsplit-th consists of rows/columns
isplit(nsplit-1)+1 through isplit(nsplit)=n.

m INTEGER. The total number of eigenvalues (of all the
Li Di Li

T) found.

6-216

6 Intel® Math Kernel Library Reference Manual

w REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). The first m elements contain
the eigenvalues. The eigenvalues of each of the blocks,
Li Di Li

T, are sorted in ascending order.

woff REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n).The nsplit base points σi.

gersch REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (2n). The n Gerschgorin intervals.

info INTEGER. Output error code from ?lasq2.

?larrf
Finds a new relatively robust
representation such that at least one of
the eigenvalues is relatively isolated.

call slarrf (n, d, l, ld, lld, ifirst, ilast, w, dplus,
lplus, work, iwork, info)

call dlarrf (n, d, l, ld, lld, ifirst, ilast, w, dplus,
lplus, work, iwork, info)

Discussion

Given the initial representation LDLT and its cluster of close eigenvalues (in
a relative measure), w(ifirst), w(ifirst+1), ... w(ilast), the routine
?larrf finds a new relatively robust representation

LDLT - σi I = L(+)D(+)L(+)T

such that at least one of the eigenvalues of L(+)D(+)L(+)T is relatively
isolated.

LAPACK Auxiliary Routines6

6-217

Input Parameters

n INTEGER. The order of the matrix.

d REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The n diagonal elements of the
diagonal matrix D.

l REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1). The (n-1) subdiagonal
elements of the unit bidiagonal matrix L.

ld REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1). The n-1 elements Li*Di.

lld REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1). The n-1 elements Li*Li*Di.

ifirst INTEGER. The index of the first eigenvalue in the
cluster.

ilast INTEGER. The index of the last eigenvalue in the cluster.

w REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). On input, the eigenvalues of
LDLT in ascending order. w(ifirst) through
w(ilast) form the cluster of relatively close
eigenvalues.

sigma REAL for slarrf
DOUBLE PRECISION for dlarrf
The shift used to form L(+)D(+)L(+)T.

work REAL for slarrf
DOUBLE PRECISION for dlarrf
Workspace array.

6-218

6 Intel® Math Kernel Library Reference Manual

Output Parameters

w On output, w(ifirst) through w(ilast) are estimates
of the corresponding eigenvalues of L(+)D(+)L(+)T.

dplus REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The n diagonal elements of the
diagonal matrix D(+).

lplus REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The first (n-1) elements of
lplus contain the subdiagonal elements of the unit
bidiagonal matrix L(+). lplus(n) is set to sigma.

?larrv
Computes the eigenvectors of the
tridiagonal matrix T = L D LT given L,
D and the eigenvalues of L D LT.

call slarrv (n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info)

call dlarrv (n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info)

call clarrv (n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info)

call zlarrv (n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info)

Discussion

The routine ?larrv computes the eigenvectors of the tridiagonal matrix
T = L D LT given L, D and the eigenvalues of L D LT. The input eigenvalues
should have high relative accuracy with respect to the entries of L and D.
The desired accuracy of the output can be specified by the input parameter
tol.

LAPACK Auxiliary Routines6

6-219

Input Parameters

n INTEGER. The order of the matrix. n ≥ 0.

d REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). On entry, the n diagonal
elements of the diagonal matrix D.

l REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n-1). On entry, the (n-1)
subdiagonal elements of the unit bidiagonal matrix L are
contained in elements 1 to n-1 of l. l(n) need not be
set.

isplit INTEGER.
Array, DIMENSION (n). The splitting points, at which T
breaks up into submatrices. The first submatrix consists
of rows/columns 1 to isplit(1), the second of
rows/columns isplit(1)+1 through isplit(2), etc.

tol REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
The absolute error tolerance for the
eigenvalues/eigenvectors.
Errors in the input eigenvalues must be bounded by tol.
The eigenvectors output have residual norms bounded
by tol, and the dot products between different
eigenvectors are bounded by tol. tol must be at least
n*eps*|T|, where eps is the machine precision and |T| is
the 1-norm of the tridiagonal matrix.

m INTEGER. The total number of eigenvalues found.
0 ≤m ≤n. If range = 'A', m = n, and if range = 'I',
m = iu - il +1.

w REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). The first m elements of w

contain the eigenvalues for which eigenvectors are to be
computed. The eigenvalues should be grouped by

6-220

6 Intel® Math Kernel Library Reference Manual

split-off block and ordered from smallest to largest
within the block (The output array w from ?larre is
expected here). Errors in w must be bounded by tol.

iblock INTEGER.
Array, DIMENSION (n). The submatrix indices
associated with the corresponding eigenvalues in w;
iblock(i)=1 if eigenvalue w(i) belongs to the first
submatrix from the top, =2 if w(i) belongs to the second
submatrix, etc.

ldz INTEGER. The leading dimension of the output array z.
ldz ≥ 1, and if jobz = 'V', ldz ≥ max(1,n).

work REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Workspace array, DIMENSION (13n).

iwork INTEGER.
Workspace array, DIMENSION (6n).

Output Parameters

d On exit, d may be overwritten.

l On exit, l is overwritten.

z REAL for slarrv
DOUBLE PRECISION for dlarrv
COMPLEX for clarrv
COMPLEX*16 for zlarrv
Array, DIMENSION (ldz, max(1,m)).
If jobz = 'V', then if info = 0, the first m columns
of z contain the orthonormal eigenvectors of the matrix
T corresponding to the selected eigenvalues, with the
i-th column of z holding the eigenvector associated

LAPACK Auxiliary Routines6

6-221

with w(i).
If jobz = 'N', then z is not referenced.

isuppz INTEGER .
Array, DIMENSION (2*max(1,m)). The support of the
eigenvectors in z, i.e., the indices indicating the nonzero
elements in z. The i-th eigenvector is nonzero only in
elements isuppz(2i-1) through isuppz(2i).

info INTEGER.
If info = 0: successful exit
If info = -i < 0: the i-th argument had an illegal value
info > 0: if info = 1, there is an internal error in
?larrb;
if info = 2, there is an internal error in ?stein.

?lartg
Generates a plane rotation with real
cosine and real/complex sine.

call slartg (f, g, cs, sn, r)

call dlartg (f, g, cs, sn, r)

call clartg (f, g, cs, sn, r)

call zlartg (f, g, cs, sn, r)

NOTE. The user must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of m is not
known in advance and an upper bound must be used.

6-222

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine generates a plane rotation so that

where cs2 + |sn|2 = 1

This is a slower, more accurate version of the BLAS Level 1 routine ?rotg,
except for the following differences.

For slartg/dlartg:

f and g are unchanged on return;
If g=0, then cs=1 and sn=0;
If f=0 and g ≠ 0, then cs=0 and sn=1 without doing any floating
point operations (saves work in ?bdsqr when there are zeros on the
diagonal);
If f exceeds g in magnitude, cs will be positive.

For clartg/zlartg:

f and g are unchanged on return;
If g=0, then cs=1 and sn=0;
If f=0, then cs=0 and sn is chosen so that r is real.

Input Parameters

f, g REAL for slartg

DOUBLE PRECISION for dlartg

COMPLEX for clartg

COMPLEX*16 for zlartg

The first and second component of vector to be rotated.

Output Parameters

cs REAL for slartg/clartg

DOUBLE PRECISION for dlartg/zlartg

The cosine of the rotation.

cs sn

conjg sn()– cs

f

g
⋅ r

0
=

LAPACK Auxiliary Routines6

6-223

sn REAL for slartg

DOUBLE PRECISION for dlartg

COMPLEX for clartg

COMPLEX*16 for zlartg

The sine of the rotation.

r REAL for slartg

DOUBLE PRECISION for dlartg

COMPLEX for clartg

COMPLEX*16 for zlartg

The nonzero component of the rotated vector.

?lartv
Applies a vector of plane rotations with
real cosines and real/complex sines to
the elements of a pair of vectors.

call slartv (n, x, incx, y, incy, c, s, incc)

call dlartv (n, x, incx, y, incy, c, s, incc)

call clartv (n, x, incx, y, incy, c, s, incc)

call zlartv (n, x, incx, y, incy, c, s, incc)

Discussion

The routine applies a vector of real/complex plane rotations with real
cosines to elements of the real/complex vectors x and y. For i = 1,2,...,n

Input Parameters

n INTEGER. The number of plane rotations to be applied.

xi

yi

: c i() s i()
conjg s i()()– c i()

xi

yi

=

6-224

6 Intel® Math Kernel Library Reference Manual

x, y REAL for slartv
DOUBLE PRECISION for dlartv
COMPLEX for clartv
COMPLEX*16 for zlartv
Arrays, DIMENSION (1+(n-1)*incx) and
(1+(n-1)*incy), respectively. The input vectors x and y.

incx INTEGER. The increment between elements of x.
incx > 0.

incy INTEGER. The increment between elements of y.
incy > 0.

c REAL for slartv/clartv
DOUBLE PRECISION for dlartv/zlartv
Array, DIMENSION (1+(n-1)*incc). The cosines of the
plane rotations.

s REAL for slartv
DOUBLE PRECISION for dlartv
COMPLEX for clartv
COMPLEX*16 for zlartv
Array, DIMENSION (1+(n-1)*incc). The sines of the
plane rotations.

incc INTEGER. The increment between elements of c and s.
incc > 0.

Output Parameters

x, y The rotated vectors x and y.

?laruv
Returns a vector of n random real
numbers from a uniform distribution.

call slaruv (iseed, n, x)

call dlaruv (iseed, n, x)

LAPACK Auxiliary Routines6

6-225

Discussion

The routine ?laruv returns a vector of n random real numbers from a
uniform (0,1) distribution (n ≤128).

This is an auxiliary routine called by ?larnv.

Input Parameters

iseed INTEGER.
Array, DIMENSION (4). On entry, the seed of the random
number generator; the array elements must be between 0
and 4095, and iseed(4) must be odd.

n INTEGER. The number of random numbers to be
generated. n ≤128.

Output Parameters

x REAL for slaruv
DOUBLE PRECISION for dlaruv
Array, DIMENSION (n). The generated random
numbers.

seed On exit, the seed is updated.

?larz
Applies an elementary reflector (as
returned by ?tzrzf) to a general
matrix.

call slarz (side, m, n, l, v, incv, tau, c, ldc, work)

call dlarz (side, m, n, l, v, incv, tau, c, ldc, work)

call clarz (side, m, n, l, v, incv, tau, c, ldc, work)

call zlarz (side, m, n, l, v, incv, tau, c, ldc, work)

6-226

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine ?larz applies a real/complex elementary reflector H to a
real/complex m-by-n matrix C, from either the left or the right.
H is represented in the form
H = I - tau * v * v',
where tau is a real/complex scalar and v is a real/complex vector.
If tau = 0, then H is taken to be the unit matrix.
For complex flavors, to apply H′ (the conjugate transpose of H), supply
conjg(tau) instead of tau.
H is a product of k elementary reflectors as returned by ?tzrzf.

Input Parameters

side CHARACTER*1.
If side = 'L': form H*C
If side = 'R': form C*H

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

l INTEGER. The number of entries of the vector v
containing the meaningful part of the Householder
vectors.
If side = 'L', m ≥ l ≥ 0, if side = 'R', n ≥ l ≥ 0.

v REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Array, DIMENSION (1+(l-1)*abs(incv)). The vector v
in the representation of H as returned by ?tzrzf.
v is not used if tau = 0.

incv INTEGER. The increment between elements of v.
incv ≠ 0.

tau REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
The value tau in the representation of H.

LAPACK Auxiliary Routines6

6-227

c REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Array, DIMENSION (ldc,n).
On entry, the m-by-n matrix C.

ldc INTEGER. The leading dimension of the array c.
ldc ≥ max(1,m).

work REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.

Output Parameters

c On exit, c is overwritten by the matrix H*C if side =
'L', or C*H if side = 'R'.

?larzb
Applies a block reflector or its
transpose/conjugate-transpose to a
general matrix.

call slarzb (side, trans, direct, storev, m, n, k, l,
v, ldv, t, ldt, c, ldc, work, ldwork)

call dlarzb (side, trans, direct, storev, m, n, k, l,
v, ldv, t, ldt, c, ldc, work, ldwork)

call clarzb (side, trans, direct, storev, m, n, k, l,
v, ldv, t, ldt, c, ldc, work, ldwork)

call zlarzb (side, trans, direct, storev, m, n, k, l,
v, ldv, t, ldt, c, ldc, work, ldwork)

6-228

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine applies a real/complex block reflector H or its transpose HT (or
HH for complex flavors) to a real/complex distributed m-by-n matrix C
from the left or the right.
Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters

side CHARACTER*1.
If side = 'L': apply H or H' from the left
If side = 'R': apply H or H' from the right

trans CHARACTER*1.
If trans = 'N': apply H (No transpose)
If trans='C': apply H' (Transpose/conjugate transpose)

direct CHARACTER*1. Indicates how H is formed from a
product of elementary reflectors
= 'F': H = H(1) H(2)... H(k) (forward, not supported yet)
= 'B': H = H(k)... H(2) H(1) (backward)

storev CHARACTER*1. Indicates how the vectors which define
the elementary reflectors are stored:
= 'C': Column-wise (not supported yet)
= 'R': Row-wise.

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

k INTEGER. The order of the matrix T (equal to the
number of elementary reflectors whose product defines
the block reflector).

l INTEGER. The number of columns of the matrix V
containing the meaningful part of the Householder
reflectors.
If side = 'L', m ≥ l ≥ 0, if side = 'R', n ≥ l ≥ 0.

v REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb

LAPACK Auxiliary Routines6

6-229

COMPLEX*16 for zlarzb
Array, DIMENSION (ldv, nv).
If storev = 'C', nv = k; if storev = 'R', nv = l.

ldv INTEGER. The leading dimension of the array v.
If storev = 'C', ldv ≥ l; if storev = 'R', ldv ≥ k.

t REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldt,k). The triangular k-by-k
matrix T in the representation of the block reflector.

ldt INTEGER. The leading dimension of the array t.
ldt ≥ k.

c REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldc,n). On entry, the m-by-n matrix
C.

ldc INTEGER. The leading dimension of the array c.
ldc ≥ max(1,m).

work REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Workspace array, DIMENSION (ldwork, k).

ldwork INTEGER. The leading dimension of the array work.
If side = 'L', ldwork ≥ max(1, n);
if side = 'R', ldwork ≥ max(1, m).

Output Parameters

c On exit, c is overwritten by H*C or H'*C or C*H or
C*H'.

6-230

6 Intel® Math Kernel Library Reference Manual

?larzt
Forms the triangular factor T of a block
reflector H = I - VTVH.

call slarzt (direct, storev, n, k, v, ldv, tau, t, ldt)

call dlarzt (direct, storev, n, k, v, ldv, tau, t, ldt)

call clarzt (direct, storev, n, k, v, ldv, tau, t, ldt)

call zlarzt (direct, storev, n, k, v, ldv, tau, t, ldt)

Discussion

The routine forms the triangular factor T of a real/complex block reflector H
of order > n, which is defined as a product of k elementary reflectors.
If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular.
If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If storev = 'C', the vector which defines the elementary reflector H(i) is
stored in the i-th column of the array v, and
H = I - V*T*V'
If storev = 'R', the vector which defines the elementary reflector H(i) is
stored in the i-th row of the array v, and
H = I - V'*T*V
Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters

direct CHARACTER*1. Specifies the order in which the
elementary reflectors are multiplied to form the block
reflector:
If direct = 'F': H = H(1) H(2) . . . H(k) (forward, not
supported yet)
If direct = 'B': H = H(k) . . . H(2) H(1) (backward)

storev CHARACTER*1. Specifies how the vectors which define
the elementary reflectors are stored (see also
Application Notes below):
If storev = 'C': column-wise (not supported yet)
If storev = 'R': row-wise

LAPACK Auxiliary Routines6

6-231

n INTEGER. The order of the block reflector H. n ≥ 0.

k INTEGER. The order of the triangular factor T (equal to
the number of elementary reflectors). k ≥ 1.

v REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION
(ldv, k) if storev = 'C'
(ldv, n) if storev = 'R'
The matrix V.

ldv INTEGER. The leading dimension of the array v.
If storev = 'C', ldv ≥ max(1,n);
if storev = 'R', ldv ≥ k.

tau REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION (k). tau(i) must contain the scalar
factor of the elementary reflector H(i).

ldt INTEGER. The leading dimension of the output array t.
ldt ≥ k.

Output Parameters

t REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION (ldt,k). The k-by-k triangular factor
T of the block reflector. If direct = 'F', T is upper
triangular; if direct = 'B', T is lower triangular. The rest
of the array is not used.

v The matrix V. See Application Notes below.

6-232

6 Intel® Math Kernel Library Reference Manual

Application Notes

The shape of the matrix V and the storage of the vectors which define the
H(i) is best illustrated by the following example with n = 5 and k = 3. The
elements equal to 1 are not stored; the corresponding array elements are
modified but restored on exit. The rest of the array is not used.

direct = 'F' and storev = 'C': direct = 'F' and storev = 'R':

____V___

/ \

direct = 'B' and storev = 'C': direct = 'B' and storev = 'R':

____V___

/ \

V

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

=

. . .

. . .

1 . .

1 .

1

v1 v1 v1 v1 v1 1

v2 v2 v2 v2 v2 . . . 1

v3 v3 v3 v3 v3 . . 1

1

. 1

. . 1

. . .

. . .

V

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

=

1 v1 v1 v1 v1 v1

. 1 . . . v2 v2 v2 v2 v2

. . 1 . . v3 v3 v3 v3 v3

LAPACK Auxiliary Routines6

6-233

?las2
Computes singular values of a 2-by-2
triangular matrix.

call slas2 (f, g, h, ssmin, ssmax)

call dlas2 (f, g, h, ssmin, ssmax)

Discussion

The routine ?las2 computes the singular values of the 2-by-2 matrix

On return, ssmin is the smaller singular value and ssmax is the larger
singular value.

Input Parameters

f, g, h REAL for slas2

DOUBLE PRECISION for dlas2

The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix,
respectively.

Output Parameters

ssmin, ssmax REAL for slas2

DOUBLE PRECISION for dlas2

The smaller and the larger singular values, respectively.

Application Notes

Barring over/underflow, all output quantities are correct to within a few
units in the last place (ulps), even in the absence of a guard digit in
addition/subtraction.
In IEEE arithmetic, the code works correctly if one matrix element is
infinite.

f g

0 h

6-234

6 Intel® Math Kernel Library Reference Manual

Overflow will not occur unless the largest singular value itself overflows, or
is within a few ulps of overflow. (On machines with partial overflow, like
the Cray, overflow may occur if the largest singular value is within a factor
of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results may
correspond to a matrix modified by perturbations of size near the underflow
threshold.

?lascl
Multiplies a general rectangular matrix
by a real scalar defined as cto/cfrom.

call slascl (type, kl, ku, cfrom, cto, m, n, a, lda, info)

call dlascl (type, kl, ku, cfrom, cto, m, n, a, lda, info)

call clascl (type, kl, ku, cfrom, cto, m, n, a, lda, info)

call zlascl (type, kl, ku, cfrom, cto, m, n, a, lda, info)

Discussion

The routine ?lascl multiplies the m-by-n real/complex matrix A by the
real scalar cto/cfrom. The operation is performed without over/underflow
as long as the final result cto*A(i,j)/cfrom does not over/underflow.
type specifies that A may be full, upper triangular, lower triangular, upper
Hessenberg, or banded.

Input Parameters

type CHARACTER*1. type indices the storage type of the
input matrix.
= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H': A is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower
bandwidth kl and upper bandwidth ku and with the

LAPACK Auxiliary Routines6

6-235

only the lower half stored
= 'Q': A is a symmetric band matrix with lower
bandwidth kl and upper bandwidth ku and with the
only the upper half stored.
= 'Z': A is a band matrix with lower bandwidth kl and
upper bandwidth ku.

kl INTEGER. The lower bandwidth of A. Referenced only if
type = 'B', 'Q' or 'Z'.

ku INTEGER. The upper bandwidth of A. Referenced only if
type = 'B', 'Q' or 'Z'.

cfrom, cto REAL for slascl/clascl
DOUBLE PRECISION for dlascl/zlascl

The matrix A is multiplied by cto/cfrom. A(i,j) is
computed without over/underflow if the final result
cto*A(i,j)/cfrom can be represented without
over/underflow. cfrom must be nonzero.

m INTEGER. The number of rows of the matrix A. m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

a REAL for slascl
DOUBLE PRECISION for dlascl
COMPLEX for clascl
COMPLEX*16 for zlascl
Array, DIMENSION (lda, m). The matrix to be multiplied
by cto/cfrom. See type for the storage type.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(1,m).

Output Parameters

a The multiplied matrix A.

info INTEGER.
If info = 0 - successful exit
If info = -i < 0, the i-th argument had an illegal
value.

6-236

6 Intel® Math Kernel Library Reference Manual

?lasd0
Computes the singular values of a real
upper bidiagonal n-by-m matrix B with
diagonal d and off-diagonal e.
Used by ?bdsdc.

call slasd0 (n, sqre, d, e, u, ldu, vt, ldvt, smlsiz,
iwork, work, info)

call dlasd0 (n, sqre, d, e, u, ldu, vt, ldvt, smlsiz,
iwork, work, info)

Discussion

Using a divide and conquer approach, the routine ?lasd0 computes the
singular value decomposition (SVD) of a real upper bidiagonal n-by-m
matrix B with diagonal d and offdiagonal e, where m = n + sqre.

The algorithm computes orthogonal matrices U and VT such that
B = U*S*VT. The singular values S are overwritten on d.

A related subroutine, ?lasda, computes only the singular values, and
optionally, the singular vectors in compact form.

Input Parameters

n INTEGER. On entry, the row dimension of the upper
bidiagonal matrix. This is also the dimension of the
main diagonal array d.

sqre INTEGER. Specifies the column dimension of the
bidiagonal matrix.
If sqre = 0: The bidiagonal matrix has column
dimension m = n;
If sqre = 1: The bidiagonal matrix has column
dimension m = n+1;

LAPACK Auxiliary Routines6

6-237

d REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION (n). On entry, d contains the main
diagonal of the bidiagonal matrix.

e REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION (m-1). Contains the subdiagonal
entries of the bidiagonal matrix. On exit, e is destroyed.

ldu INTEGER. On entry, leading dimension of the output
array u.

ldvt INTEGER. On entry, leading dimension of the output
array vt.

smlsiz INTEGER. On entry, maximum size of the subproblems
at the bottom of the computation tree.

iwork INTEGER.
Workspace array, DIMENSION must be at least (8n).

work REAL for slasd0
DOUBLE PRECISION for dlasd0
Workspace array, DIMENSION must be at least
(3m2 + 2m).

Output Parameters

d On exit d, if info = 0, contains singular values of the
bidiagonal matrix.

u REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least (ldq, n). On exit, u
contains the left singular vectors.

vt REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least (ldvt, m). On exit, vt'
contains the right singular vectors.

6-238

6 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal
value.
If info = 1, an singular value did not converge.

?lasd1
Computes the SVD of an upper
bidiagonal matrix B of the specified
size. Used by ?bdsdc.

call slasd1 (nl, nr, sqre, d, alpha, beta, u, ldu, vt,
ldvt, idxq, iwork, work, info)

call dlasd1 (nl, nr, sqre, d, alpha, beta, u, ldu, vt,
ldvt, idxq, iwork, work, info)

Discussion

This routine computes the SVD of an upper bidiagonal n-by-m matrix B,
where n = nl + nr + 1 and m = n + sqre. The routine ?lasd1 is called
from ?lasd0.

A related subroutine ?lasd7 handles the case in which the singular values
(and the singular vectors in factored form) are desired.
?lasd1 computes the SVD as follows:

where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension m with
alpha and beta in the nl+1 and nl+2 -th entries and zeros elsewhere; and
the entry b is empty if sqre = 0.

B U in()*

D1 in() 0 0 0

Z1 ′ a Z2 ′ b

0 0 D2 in() 0
*VT in()=

U out()* D out() 0()*VT out()=

LAPACK Auxiliary Routines6

6-239

The left singular vectors of the original matrix are stored in u, and the
transpose of the right singular vectors are stored in vt, and the singular
values are in d. The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are
multiple singular values or when there are zeros in the Z vector. For each
such occurrence the dimension of the secular equation problem is reduced
by one. This stage is performed by the routine ?lasd2.

The second stage consists of calculating the updated singular values. This is
done by finding the square roots of the roots of the secular equation via the
routine ?lasd4 (as called by ?lasd3). This routine also calculates the
singular vectors of the current problem.

The final stage consists of computing the updated singular vectors directly
using the updated singular values. The singular vectors for the current
problem are multiplied with the singular vectors from the overall problem.

Input Parameters

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square
matrix.
If sqre = 1: the lower block is an nr-by-(nr+1)
rectangular matrix. The bidiagonal matrix has row
dimension n = nl + nr + 1, and column dimension
m = n + sqre.

d REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (n = nl+nr+1). On entry
d(1:nl,1:nl) contains the singular values of the upper
block; and d(nl+2:n) contains the singular values of the
lower block.

6-240

6 Intel® Math Kernel Library Reference Manual

alpha REAL for slasd1
DOUBLE PRECISION for dlasd1
Contains the diagonal element associated with the added
row.

beta REAL for slasd1
DOUBLE PRECISION for dlasd1
Contains the off-diagonal element associated with the
added row.

u REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (ldu, n). On entry u(1:nl, 1:nl)
contains the left singular vectors of the upper block;
u(nl+2:n, nl+2:n) contains the left singular vectors of
the lower block.

ldu INTEGER. The leading dimension of the array u.
ldu ≥ max(1, n).

vt REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (ldvt, m), where m = n + sqre.
On entry vt(1:nl+1, 1:nl+1)' contains the right singular
vectors of the upper block; vt(nl+2:m, nl+2:m)'
contains the right singular vectors of the lower block.

ldvt INTEGER. The leading dimension of the array vt.
ldvt ≥ max(1, m).

iwork INTEGER.
Workspace array, DIMENSION (4n).

work REAL for slasd1
DOUBLE PRECISION for dlasd1
Workspace array, DIMENSION (3m2 + 2m).

Output Parameters

d On exit d(1:n) contains the singular values of the
modified matrix.

LAPACK Auxiliary Routines6

6-241

u On exit u contains the left singular vectors of the
bidiagonal matrix.

vt On exit vt' contains the right singular vectors of the
bidiagonal matrix.

idxq INTEGER

Array, DIMENSION (n). Contains the permutation which
will reintegrate the subproblem just solved back into
sorted order, that is, d(idxq(i = 1, n)) will be in
ascending order.

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info = 1, an singular value did not converge.

?lasd2
Merges the two sets of singular values
together into a single sorted set.
Used by ?bdsdc.

call slasd2 (nl, nr, sqre, k, d, z, alpha, beta, u, ldu,
vt, ldvt, dsigma, u2, ldu2, vt2, ldvt2,
idxp, idx, idxc, idxq, coltyp, info)

call dlasd2 (nl, nr, sqre, k, d, z, alpha, beta, u, ldu,
vt, ldvt, dsigma, u2, ldu2, vt2, ldvt2,
idxp, idx, idxc, idxq, coltyp, info)

Discussion

The routine ?lasd2 merges the two sets of singular values together into a
single sorted set. Then it tries to deflate the size of the problem. There are
two ways in which deflation can occur: when two or more singular values
are close together or if there is a tiny entry in the Z vector. For each such
occurrence the order of the related secular equation problem is reduced by
one.

6-242

6 Intel® Math Kernel Library Reference Manual

The routine ?lasd2 is called from ?lasd1.

Input Parameters

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square
matrix
If sqre = 1: the lower block is an nr-by-(nr+1)
rectangular matrix. The bidiagonal matrix has n = nl +
nr + 1 rows and m = n + sqre ≥ n columns.

d REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). On entry d contains the singular
values of the two submatrices to be combined.

alpha REAL for slasd2
DOUBLE PRECISION for dlasd2
Contains the diagonal element associated with the added
row.

beta REAL for slasd2
DOUBLE PRECISION for dlasd2
Contains the off-diagonal element associated with the
added row.

u REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldu, n). On entry u contains the
left singular vectors of two submatrices in the two
square blocks with corners at (1,1), (nl, nl), and
(nl+2, nl+2), (n,n).

ldu INTEGER. The leading dimension of the array u.
ldu ≥ n.

LAPACK Auxiliary Routines6

6-243

ldu2 INTEGER. The leading dimension of the output array u2.
ldu2 ≥ n.

vt REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldvt, m). On entry vt' contains the
right singular vectors of two submatrices in the two
square blocks with corners at (1,1), (nl+1, nl+1), and
(nl+2, nl+2), (m,m).

ldvt INTEGER. The leading dimension of the array vt.
ldvt ≥ m.

ldvt2 INTEGER. The leading dimension of the output array
vt2. ldvt2 ≥ m.

idxp INTEGER.
Workspace array, DIMENSION (n). This will contain the
permutation used to place deflated values of d at the end
of the array. On output idxp(2:k) points to the
nondeflated d-values and idxp(k+1:n) points to the
deflated singular values.

idx INTEGER.
Workspace array, DIMENSION (n). This will contain the
permutation used to sort the contents of d into ascending
order.

coltyp INTEGER.
Workspace array, DIMENSION (n). As workspace, this
will contain a label which will indicate which of the
following types a column in the u2 matrix or a row in
the vt2 matrix is:
1 : non-zero in the upper half only
2 : non-zero in the lower half only
3 : dense
4 : deflated.

idxq INTEGER.
Array, DIMENSION (n). This contains the permutation
which separately sorts the two sub-problems in d into
ascending order. Note that entries in the first half of this

6-244

6 Intel® Math Kernel Library Reference Manual

permutation must first be moved one position backward;
and entries in the second half must first have nl+1
added to their values.

Output Parameters

k INTEGER. Contains the dimension of the non-deflated
matrix, This is the order of the related secular equation.
1 ≤k ≤n.

d On exit d contains the trailing (n-k) updated singular
values (those which were deflated) sorted into
increasing order.

u On exit u contains the trailing (n-k) updated left singular
vectors (those which were deflated) in its last n-k
columns.

z REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). On exit z contains the updating
row vector in the secular equation.

dsigma REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). Contains a copy of the diagonal
elements (k-1 singular values and one zero) in the
secular equation.

u2 REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldu2, n). Contains a copy of the
first k-1 left singular vectors which will be used by
?lasd3 in a matrix multiply (?gemm) to solve for the
new left singular vectors. u2 is arranged into four
blocks. The first block contains a column with 1 at nl+1
and zero everywhere else; the second block contains
non-zero entries only at and above nl; the third contains
non-zero entries only below nl+1; and the fourth is
dense.

LAPACK Auxiliary Routines6

6-245

vt On exit vt' contains the trailing (n-k) updated right
singular vectors (those which were deflated) in its last
n-k columns. In case sqre =1, the last row of vt spans
the right null space.

vt2 REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldvt2, n). vt2' contains a copy of
the first k right singular vectors which will be used by
?lasd3 in a matrix multiply (?gemm) to solve for the
new right singular vectors. vt2 is arranged into three
blocks. The first block contains a row that corresponds
to the special 0 diagonal element in sigma; the second
block contains non-zeros only at and before nl +1; the
third block contains non-zeros only at and after nl +2.

idxc INTEGER.
Array, DIMENSION (n). This will contain the
permutation used to arrange the columns of the deflated
U matrix into three groups: the first group contains
non-zero entries only at and above nl, the second
contains non-zero entries only below nl+2, and the third
is dense.

coltyp On exit, it is an array of dimension 4, with coltyp(i)
being the dimension of the i-th type columns.

info INTEGER.
If info = 0: successful exit
If info = -i < 0, the i-th argument had an illegal value.

6-246

6 Intel® Math Kernel Library Reference Manual

?lasd3
Finds all square roots of the roots of the
secular equation, as defined by the
values in D and Z, and then updates the
singular vectors by matrix
multiplication. Used by ?bdsdc.

call slasd3 (nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu,
u2, ldu2, vt, ldvt, vt2, ldvt2, idxc, ctot,
z, info)

call dlasd3 (nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu,
u2, ldu2, vt, ldvt, vt2, ldvt2, idxc, ctot,
z, info)

Discussion

The routine ?lasd3 finds all the square roots of the roots of the secular
equation, as defined by the values in D and Z. It makes the appropriate calls
to ?lasd4 and then updates the singular vectors by matrix multiplication.

The routine ?lasd3 is called from ?lasd1.

Input Parameters

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square
matrix.
If sqre = 1: the lower block is an nr-by-(nr+1)
rectangular matrix. The bidiagonal matrix has n = nl +
nr + 1 rows and m = n + sqre ≥ n columns.

k INTEGER.The size of the secular equation, 1 ≤k ≤n.

LAPACK Auxiliary Routines6

6-247

q REAL for slasd3
DOUBLE PRECISION for dlasd3
Workspace array, DIMENSION at least (ldq, k).

ldq INTEGER. The leading dimension of the array q.
ldq ≥ k.

dsigma REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). The first k elements of this
array contain the old roots of the deflated updating
problem. These are the poles of the secular equation.

u REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldu, n). The last n - k columns of
this matrix contain the deflated left singular vectors.

ldu INTEGER. The leading dimension of the array u.
ldu ≥ n.

u2 REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldu2, n). The first k columns of
this matrix contain the non-deflated left singular vectors
for the split problem.

ldu2 INTEGER. The leading dimension of the array u2.
ldu2 ≥ n.

vt REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldvt, m). The last m - k columns of
vt' contain the deflated right singular vectors.

ldvt INTEGER. The leading dimension of the array vt.
ldvt ≥ n.

vt2 REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldvt2, n). The first k columns of
vt2' contain the non-deflated right singular vectors for
the split problem.

6-248

6 Intel® Math Kernel Library Reference Manual

ldvt2 INTEGER. The leading dimension of the array vt2.
ldvt2 ≥ n.

idxc INTEGER.
Array, DIMENSION (n). The permutation used to arrange
the columns of u (and rows of vt) into three groups: the
first group contains non-zero entries only at and above
(or before) nl +1; the second contains non-zero entries
only at and below (or after) nl+2; and the third is dense.
The first column of u and the row of vt are treated
separately, however. The rows of the singular vectors
found by ?lasd4 must be likewise permuted before the
matrix multiplies can take place.

ctot INTEGER.
Array, DIMENSION (4). A count of the total number of
the various types of columns in u (or rows in vt), as
described in idxc. The fourth column type is any
column which has been deflated.

z REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). The first k elements of this
array contain the components of the deflation-adjusted
updating row vector.

Output Parameters

d REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). On exit the square roots of the
roots of the secular equation, in ascending order.

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info = 1, an singular value did not converge.

LAPACK Auxiliary Routines6

6-249

Application Notes

This code makes very mild assumptions about floating point arithmetic. It
will work on machines with a guard digit in add/subtract, or on those binary
machines without guard digits which subtract like the Cray XMP, Cray
YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or
decimal machines without guard digits, but we know of none.

?lasd4
Computes the square root of the i-th
updated eigenvalue of a positive
symmetric rank-one modification to a
positive diagonal matrix.
Used by ?bdsdc.

call slasd4 (n, i, d, z, delta, rho, sigma, work, info)

call dlasd4 (n, i, d, z, delta, rho, sigma, work, info)

Discussion

This routine computes the square root of the i-th updated eigenvalue of a
positive symmetric rank-one modification to a positive diagonal matrix
whose entries are given as the squares of the corresponding entries in the
array d, and that 0 ≤d(i) < d(j) for i < j and that rho > 0. This is arranged
by the calling routine, and is no loss in generality. The rank-one modified
system is thus

diag(d)* diag(d) + rho *Z * Z_transpose
where we assume the Euclidean norm of Z is 1.The method consists of
approximating the rational functions in the secular equation by simpler
interpolating rational functions.

Input Parameters

n INTEGER. The length of all arrays.

6-250

6 Intel® Math Kernel Library Reference Manual

i INTEGER. The index of the eigenvalue to be computed.
1 ≤i ≤n.

d REAL for slasd4
DOUBLE PRECISION for dlasd4

Array, DIMENSION (n).
The original eigenvalues. It is assumed that they are in
order, 0 ≤d(i) < d(j) for i < j.

z REAL for slasd4
DOUBLE PRECISION for dlasd4

Array, DIMENSION (n).
The components of the updating vector.

rho REAL for slasd4

DOUBLE PRECISION for dlasd4
The scalar in the symmetric updating formula.

work REAL for slasd4
DOUBLE PRECISION for dlasd4
Workspace array, DIMENSION (n).
If n ≠ 1, work contains (d(j) + sigma_i) in its j-th
component. If n = 1, then work(1) = 1.

Output Parameters

delta REAL for slasd4
DOUBLE PRECISION for dlasd4

Array, DIMENSION (n).
If n ≠ 1, delta contains (d(j) - sigma_i) in its j-th
component. If n = 1, then delta (1) = 1. The vector
delta contains the information necessary to construct
the (singular) eigenvectors.

sigma REAL for slasd4

DOUBLE PRECISION for dlasd4

The computed λi, the i-th updated eigenvalue.

info INTEGER.
= 0: successful exit
> 0: if info = 1, the updating process failed.

LAPACK Auxiliary Routines6

6-251

?lasd5
Computes the square root of the i-th
eigenvalue of a positive symmetric
rank-one modification of a 2-by-2
diagonal matrix.Used by ?bdsdc.

call slasd5 (i, d, z, delta, rho, dsigma, work)

call dlasd5 (i, d, z, delta, rho, dsigma, work)

Discussion

This routine computes the square root of the i-th eigenvalue of a positive
symmetric rank-one modification of a 2-by-2 diagonal matrix

diag(d)* diag(d) + rho *Z * Z_transpose

The diagonal entries in the array d are assumed to satisfy 0 ≤d(i) < d(j) for
i < j .We also assume rho > 0 and that the Euclidean norm of the vector Z is
one.

Input Parameters

i INTEGER.The index of the eigenvalue to be computed.
i = 1 or i = 2.

d REAL for slasd5
DOUBLE PRECISION for dlasd5
Array, DIMENSION (2).
The original eigenvalues. We assume 0 ≤d(1) < d(2).

z REAL for slasd5
DOUBLE PRECISION for dlasd5
Array, DIMENSION (2).
The components of the updating vector.

rho REAL for slasd5

DOUBLE PRECISION for dlasd5

The scalar in the symmetric updating formula.

6-252

6 Intel® Math Kernel Library Reference Manual

work REAL for slasd5
DOUBLE PRECISION for dlasd5.
Workspace array, DIMENSION (2).
Contains (d(j) + sigma_i) in its j-th component.

Output Parameters

delta REAL for slasd5
DOUBLE PRECISION for dlasd5.
Array, DIMENSION (2).
Contains (d(j) - λi) in its j-th component. The vector
delta contains the information necessary to construct
the eigenvectors.

dsigma REAL for slasd5
DOUBLE PRECISION for dlasd5.
The computed λi, the i-th updated eigenvalue.

?lasd6
Computes the SVD of an updated upper
bidiagonal matrix obtained by merging
two smaller ones by appending a row.
Used by ?bdsdc.

call slasd6 (icompq, nl, nr, sqre, d, vf, vl, alpha,
beta, idxq, perm, givptr, givcol, ldgcol,
givnum, ldgnum, poles, difl, difr, z, k, c,
s, work, iwork, info)

call dlasd6 (icompq, nl, nr, sqre, d, vf, vl, alpha,
beta, idxq, perm, givptr, givcol, ldgcol,
givnum, ldgnum, poles, difl, difr, z, k, c,
s, work, iwork, info)

LAPACK Auxiliary Routines6

6-253

Discussion

The routine ?lasd6 computes the SVD of an updated upper bidiagonal
matrix B obtained by merging two smaller ones by appending a row. This
routine is used only for the problem which requires all singular values and
optionally singular vector matrices in factored form. B is an n-by-m matrix
with
n = nl + nr + 1 and m = n + sqre. A related subroutine, ?lasd1, handles
the case in which all singular values and singular vectors of the bidiagonal
matrix are desired. ?lasd6 computes the SVD as follows:

where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension m with
alpha and beta in the nl+1 and nl+2 -th entries and zeros elsewhere; and
the entry b is empty if sqre = 0.

The singular values of B can be computed using D1, D2, the first
components of all the right singular vectors of the lower block, and the last
components of all the right singular vectors of the upper block. These
components are stored and updated in vf and vl, respectively, in ?lasd6.
Hence U and VT are not explicitly referenced.
The singular values are stored in D. The algorithm consists of two stages:
the first stage consists of deflating the size of the problem when there are
multiple singular values or if there is a zero in the Z vector. For each such
occurrence the dimension of the secular equation problem is reduced by
one. This stage is performed by the routine ?lasd7.

The second stage consists of calculating the updated singular values. This is
done by finding the roots of the secular equation via the routine ?lasd4 (as
called by ?lasd8). This routine also updates vf and vl and computes the
distances between the updated singular values and the old singular values.
?lasd6 is called from ?lasda.

B U in()*

D1 in() 0 0 0

Z1 ′ a Z2 ′ b

0 0 D2 in() 0
*VT in()=

U out()* D out() 0()*VT out()=

6-254

6 Intel® Math Kernel Library Reference Manual

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be
computed in factored form:
= 0: Compute singular values only
= 1: Compute singular vectors in factored form as well.

nl INTEGER.The row dimension of the upper block.
nl ≥ 1.

nr INTEGER.The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER .
= 0: the lower block is an nr-by-nr square matrix.
= 1: the lower block is an nr-by-(nr+1) rectangular
matrix.
The bidiagonal matrix has row dimension n=nl+nr+1,
and column dimension m = n + sqre.

d REAL for slasd6
DOUBLE PRECISION for dlasd6

Array, DIMENSION (nl+nr+1). On entry d(1:nl,1:nl)
contains the singular values of the upper block, and
d(nl+2:n) contains the singular values of the lower
block.

vf REAL for slasd6
DOUBLE PRECISION for dlasd6

Array, DIMENSION (m). On entry, vf(1:nl+1) contains
the first components of all right singular vectors of the
upper block; and vf(nl+2:m) contains the first
components of all right singular vectors of the lower
block.

vl REAL for slasd6
DOUBLE PRECISION for dlasd6

Array, DIMENSION (m). On entry, vl(1:nl+1)
contains the last components of all right singular
vectors of the upper block; and vl(nl+2:m) contains the
last components of all right singular vectors of the lower
block.

LAPACK Auxiliary Routines6

6-255

alpha REAL for slasd6
DOUBLE PRECISION for dlasd6

Contains the diagonal element associated with the added
row.

beta REAL for slasd6
DOUBLE PRECISION for dlasd6

Contains the off-diagonal element associated with the
added row.

ldgcol INTEGER.The leading dimension of the output array
givcol, must be at least n.

ldgnum INTEGER. The leading dimension of the output arrays
givnum and poles, must be at least n.

work REAL for slasd6
DOUBLE PRECISION for dlasd6

Workspace array, DIMENSION (4m).

iwork INTEGER

Workspace array, DIMENSION (3n).

Output Parameters

d On exit d(1:n) contains the singular values of the
modified matrix.

vf On exit, vf contains the first components of all right
singular vectors of the bidiagonal matrix.

vl On exit, vl contains the last components of all right
singular vectors of the bidiagonal matrix.

idxq INTEGER.
Array, DIMENSION (n). This contains the permutation
which will reintegrate the subproblem just solved back
into sorted order, that is, d(idxq(i = 1, n)) will be in
ascending order.

perm INTEGER.
Array, DIMENSION (n). The permutations (from
deflation and sorting) to be applied to each block. Not
referenced if icompq = 0.

6-256

6 Intel® Math Kernel Library Reference Manual

givptr INTEGER. The number of Givens rotations which took
place in this subproblem. Not referenced if icompq = 0.

givcol INTEGER.
Array, DIMENSION (ldgcol, 2). Each pair of numbers
indicates a pair of columns to take place in a Givens
rotation. Not referenced if icompq = 0.

givnum REAL for slasd6
DOUBLE PRECISION for dlasd6

Array, DIMENSION (ldgnum, 2). Each number
indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if
icompq = 0.

poles REAL for slasd6
DOUBLE PRECISION for dlasd6

Array, DIMENSION (ldgnum, 2). On exit, poles(1,*)
is an array containing the new singular values obtained
from solving the secular equation, and poles(2,*) is an
array containing the poles in the secular equation. Not
referenced if icompq = 0.

difl REAL for slasd6
DOUBLE PRECISION for dlasd6

Array, DIMENSION (n). On exit, difl(i) is the distance
between i-th updated (undeflated) singular value and the
i-th (undeflated) old singular value.

difr REAL for slasd6
DOUBLE PRECISION for dlasd6

Array,
DIMENSION (ldgnum, 2) if icompq = 1 and
DIMENSION (n) if icompq = 0.
On exit, difr(i, 1) is the distance between i-th updated
(undeflated) singular value and the i+1-th (undeflated)
old singular value. If icompq = 1, difr(1:k, 2) is an
array containing the normalizing factors for the right
singular vector matrix.

See ?lasd8 for details on difl and difr.

LAPACK Auxiliary Routines6

6-257

z REAL for slasd6
DOUBLE PRECISION for dlasd6

Array, DIMENSION (m).
The first elements of this array contain the components
of the deflation-adjusted updating row vector.

k INTEGER. Contains the dimension of the non-deflated
matrix. This is the order of the related secular equation.
1 ≤k ≤ n.

c REAL for slasd6
DOUBLE PRECISION for dlasd6

c contains garbage if sqre =0 and the C-value of a
Givens rotation related to the right null space if
sqre = 1.

s REAL for slasd6

DOUBLE PRECISION for dlasd6

s contains garbage if sqre =0 and the S-value of a
Givens rotation related to the right null space if
sqre = 1.

info INTEGER.
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.
>0:if info = 1, an singular value did not converge

?lasd7
Merges the two sets of singular values
together into a single sorted set. Then it
tries to deflate the size of the problem.
Used by ?bdsdc.

call slasd7 (icompq, nl, nr, sqre, k, d, z, zw, vf, vfw,
vl, vlw, alpha, beta, dsigma, idx, idxp,
idxq, perm, givptr, givcol, ldgcol, givnum,
ldgnum, c, s, info)

6-258

6 Intel® Math Kernel Library Reference Manual

call dlasd7 (icompq, nl, nr, sqre, k, d, z, zw, vf, vfw,
vl, vlw, alpha, beta, dsigma, idx, idxp,
idxq, perm, givptr, givcol, ldgcol, givnum,
ldgnum, c, s, info)

Discussion

The routine ?lasd7 merges the two sets of singular values together into a
single sorted set. Then it tries to deflate the size of the problem. There are
two ways in which deflation can occur: when two or more singular values
are close together or if there is a tiny entry in the Z vector. For each such
occurrence the order of the related secular equation problem is reduced by
one. ?lasd7 is called from ?lasd6.

Input Parameters

icompq INTEGER.Specifies whether singular vectors are to be
computed in compact form, as follows:
= 0: Compute singular values only.
= 1: Compute singular vectors of upper bidiagonal

matrix in compact form.

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER.
= 0: the lower block is an nr-by-nr square matrix.
= 1: the lower block is an nr-by-(nr+1) rectangular

matrix. The bidiagonal matrix has n = nl + nr + 1 rows
and m = n + sqre ≥ n columns.

d REAL for slasd7

DOUBLE PRECISION for dlasd7

Array, DIMENSION (n). On entry d contains the singular
values of the two submatrices to be combined.

zw REAL for slasd7
DOUBLE PRECISION for dlasd7

Array, DIMENSION (m). Workspace for z.

LAPACK Auxiliary Routines6

6-259

vf REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m). On entry, vf(1:nl+1)
contains the first components of all right singular
vectors of the upper block; and vf(nl+2:m) contains the
first components of all right singular vectors of the
lower block.

vfw REAL for slasd7
DOUBLE PRECISION for dlasd7

Array, DIMENSION (m). Workspace for vf.

vl REAL for slasd7
DOUBLE PRECISION for dlasd7

Array, DIMENSION (m). On entry, vl(1:nl+1) contains
the last components of all right singular vectors of the
upper block; and vl(nl+2:m) contains the last
components of all right singular vectors of the lower
block.

vlw REAL for slasd7

DOUBLE PRECISION for dlasd7

Array, DIMENSION (m). Workspace for vl.

alpha REAL for slasd7

DOUBLE PRECISION for dlasd7.
Contains the diagonal element associated with the added
row.

beta REAL for slasd7

DOUBLE PRECISION for dlasd7

Contains the off-diagonal element associated with the
added row.

idx INTEGER.
Workspace array, DIMENSION (n). This will contain the
permutation used to sort the contents of d into ascending
order.

6-260

6 Intel® Math Kernel Library Reference Manual

idxp INTEGER.
Workspace array, DIMENSION (n). This will contain the
permutation used to place deflated values of d at the end
of the array.

idxq INTEGER.
Array, DIMENSION (n). This contains the permutation
which separately sorts the two sub-problems in d into
ascending order. Note that entries in the first half of this
permutation must first be moved one position backward;
and entries in the second half must first have nl+1
added to their values.

ldgcol INTEGER.The leading dimension of the output array
givcol, must be at least n.

ldgnum INTEGER. The leading dimension of the output array
givnum, must be at least n.

Output Parameters

k INTEGER. Contains the dimension of the non-deflated
matrix, this is the order of the related secular equation.
1 ≤k ≤n.

d On exit, d contains the trailing (n-k) updated singular
values (those which were deflated) sorted into
increasing order.

z REAL for slasd7

DOUBLE PRECISION for dlasd7.
Array, DIMENSION (m). On exit, z contains the
updating row vector in the secular equation.

vf On exit, vf contains the first components of all right
singular vectors of the bidiagonal matrix.

vl On exit, vl contains the last components of all right
singular vectors of the bidiagonal matrix.

LAPACK Auxiliary Routines6

6-261

dsigma REAL for slasd7

DOUBLE PRECISION for dlasd7.
Array, DIMENSION (n). Contains a copy of the diagonal
elements (k-1 singular values and one zero) in the
secular equation.

idxp On output, idxp(2:k) points to the nondeflated d-values
and idxp(k+1:n) points to the deflated singular values.

perm INTEGER.
Array, DIMENSION (n). The permutations (from
deflation and sorting) to be applied to each singular
block. Not referenced if icompq = 0.

givptr INTEGER.The number of Givens rotations which took
place in this subproblem. Not referenced if icompq = 0.

givcol INTEGER.
Array, DIMENSION (ldgcol, 2). Each pair of numbers
indicates a pair of columns to take place in a Givens
rotation. Not referenced if icompq = 0.

givnum REAL for slasd7

DOUBLE PRECISION for dlasd7.
Array, DIMENSION (ldgnum, 2). Each number
indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if
icompq = 0.

c REAL for slasd7.

DOUBLE PRECISION for dlasd7.

c contains garbage if sqre =0 and the C-value of a
Givens rotation related to the right null space if
sqre = 1.

s REAL for slasd7.

DOUBLE PRECISION for dlasd7.

s contains garbage if sqre =0 and the S-value of a
Givens rotation related to the right null space if
sqre = 1.

6-262

6 Intel® Math Kernel Library Reference Manual

info INTEGER.
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal

value.

?lasd8
Finds the square roots of the roots of the
secular equation, and stores, for each
element in D, the distance to its two
nearest poles. Used by ?bdsdc.

call slasd8 (icompq, k, d, z, vf, vl, difl, difr,
lddifr, dsigma, work, info)

call dlasd8 (icompq, k, d, z, vf, vl, difl, difr,
lddifr, dsigma, work, info)

Discussion

The routine ?lasd8 finds the square roots of the roots of the secular
equation, as defined by the values in dsigma and z. It makes the
appropriate calls to ?lasd4, and stores, for each element in d, the distance
to its two nearest poles (elements in dsigma). It also updates the arrays vf
and vl, the first and last components of all the right singular vectors of the
original bidiagonal matrix. ?lasd8 is called from ?lasd6.

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be
computed in factored form in the calling routine:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.

k INTEGER. The number of terms in the rational function
to be solved by ?lasd4. k ≥ 1.

LAPACK Auxiliary Routines6

6-263

z REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). The first k elements of this
array contain the components of the deflation-adjusted
updating row vector.

vf REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). On entry, vf contains
information passed through dbede8.

vl REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k).On entry, vl contains
information passed through dbede8.

lddifr INTEGER.The leading dimension of the output array
difr, must be at least k.

dsigma REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). The first k elements of this
array contain the old roots of the deflated updating
problem. These are the poles of the secular equation.

work REAL for slasd8
DOUBLE PRECISION for dlasd8.
Workspace array, DIMENSION at least (3k).

Output Parameters

d REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). On output, d contains the
updated singular values.

vf On exit, vf contains the first k components of the first
components of all right singular vectors of the
bidiagonal matrix.

vl On exit, vl contains the first k components of the last
components of all right singular vectors of the
bidiagonal matrix.

6-264

6 Intel® Math Kernel Library Reference Manual

difl REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). On exit, difl(i) = d(i) -
dsigma(i).

difr REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array,
DIMENSION (lddifr, 2) if icompq = 1 and
DIMENSION (k) if icompq = 0.
On exit, difr(i,1) = d(i) - dsigma(i+1), difr(k,1) is
not defined and will not be referenced.
If icompq = 1, difr(1:k,2) is an array containing the
normalizing factors for the right singular vector matrix.

info INTEGER.
= 0: successful exit.
< 0: ifinfo= -i, thei-th argument had an illegal value.
> 0: if info = 1, an singular value did not converge.

?lasd9
Finds the square roots of the roots of the
secular equation, and stores, for each
element in D, the distance to its two
nearest poles. Used by ?bdsdc.

call slasd9 (icompq, ldu, k, d, z, vf, vl, difl, difr,
dsigma, work, info)

call dlasd9 (icompq, ldu, k, d, z, vf, vl, difl, difr,
dsigma, work, info)

Discussion

The routine ?lasd9 finds the square roots of the roots of the secular
equation, as defined by the values in dsigma and z. It makes the
appropriate calls to ?lasd4, and stores, for each element in d, the distance

LAPACK Auxiliary Routines6

6-265

to its two nearest poles (elements in dsigma). It also updates the arrays vf
and vl, the first and last components of all the right singular vectors of the
original bidiagonal matrix. ?lasd9 is called from ?lasd7.

Input Parameters

icompq INTEGER.Specifies whether singular vectors are to be
computed in factored form in the calling routine:
If icompq = 0, compute singular values only;
If icompq = 1, compute singular vector matrices in
factored form also.

k INTEGER.The number of terms in the rational function
to be solved by slasd4. k ≥ 1.

dsigma REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). The first k elements of this array
contain the old roots of the deflated updating problem.
These are the poles of the secular equation.

z REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION (k). The first k elements of this
array contain the components of the deflation-adjusted
updating row vector.

vf REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). On entry, vf contains
information passed through sbede8.

vl REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). On entry, vl contains
information passed through sbede8.

work REAL for slasd9
DOUBLE PRECISION for dlasd9.
Workspace array, DIMENSION at least (3k).

6-266

6 Intel® Math Kernel Library Reference Manual

Output Parameters

d REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). d(i) contains the updated
singular values.

vf On exit, vf contains the first k components of the first
components of all right singular vectors of the
bidiagonal matrix.

vl On exit, vl contains the first k components of the last
components of all right singular vectors of the
bidiagonal matrix.

difl REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION (k).
On exit, difl(i) = d(i) - dsigma(i).

difr REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array,
DIMENSION (ldu, 2) if icompq =1 and
DIMENSION (k) if icompq = 0.
On exit, difr(i, 1) = d(i) - dsigma(i+1), difr(k, 1) is
not defined and will not be referenced.
If icompq = 1, difr(1:k, 2) is an array containing the
normalizing factors for the right singular vector matrix.

info INTEGER.
= 0: successful exit.

< 0: if info = -i, the i-th argument had an illegal
value.
> 0: if info = 1, an singular value did not converge

LAPACK Auxiliary Routines6

6-267

?lasda
Computes the singular value
decomposition (SVD) of a real upper
bidiagonal matrix with diagonal d and
off-diagonal e. Used by ?bdsdc.

call slasda (icompq, smlsiz, n, sqre, d, e, u, ldu, vt,
k, difl, difr, z, poles, givptr, givcol,
ldgcol, perm, givnum, c, s, work, iwork,
info)

call dlasda (icompq, smlsiz, n, sqre, d, e, u, ldu, vt,
k, difl, difr, z, poles, givptr, givcol,
ldgcol, perm, givnum, c, s, work, iwork,
info)

Discussion

Using a divide and conquer approach, ?lasda computes the singular value
decomposition (SVD) of a real upper bidiagonal n-by-m matrix B with
diagonal d and off-diagonal e, where m = n + sqre. The algorithm
computes the singular values in the SVD B = U*S*VT. The orthogonal
matrices U and VT are optionally computed in compact form. A related
subroutine, ?lasd0, computes the singular values and the singular vectors
in explicit form.

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be
computed in compact form, as follows:
= 0: Compute singular values only.
= 1: Compute singular vectors of upper bidiagonal
matrix in compact form.

smlsiz INTEGER. The maximum size of the subproblems at the
bottom of the computation tree.

6-268

6 Intel® Math Kernel Library Reference Manual

n INTEGER. The row dimension of the upper bidiagonal
matrix. This is also the dimension of the main diagonal
array d.

sqre INTEGER. Specifies the column dimension of the
bidiagonal matrix.
If sqre = 0: The bidiagonal matrix has column
dimension m = n;
If sqre = 1: The bidiagonal matrix has column
dimension m = n + 1.

d REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (n). On entry d contains the main
diagonal of the bidiagonal matrix.

e REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (m -1). Contains the subdiagonal
entries of the bidiagonal matrix. On exit, e has been
destroyed.

ldu INTEGER. The leading dimension of arrays u, vt,
difl, difr, poles, givnum, and z. ldu ≥ n.

ldgcol INTEGER. The leading dimension of arrays givcol and
perm. ldgcol ≥ n.

work REAL for slasda
DOUBLE PRECISION for dlasda.
Workspace array, DIMENSION (6n + (smlsiz + 1)2).

iwork INTEGER.
Workspace array, DIMENSION must be at least (7n).

Output Parameters

d On exit d, if info = 0, contains the singular values of
the bidiagonal matrix.

u REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, smlsiz) if icompq = 1.

LAPACK Auxiliary Routines6

6-269

Not referenced if icompq = 0.
If icompq = 1, on exit, u contains the left singular
vector matrices of all subproblems at the bottom level.

vt REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, smlsiz+1) if icompq = 1,
and not referenced if icompq = 0. If icompq = 1, on
exit, vt contains the right singular vector matrices of all
subproblems at the bottom level.

k INTEGER.
Array,
DIMENSION (n) if icompq = 1 and
DIMENSION (1) if icompq = 0.
If icompq = 1, on exit, k(i) is the dimension of the i-th
secular equation on the computation tree.

difl REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, nlvl),
where nlvl = floor (log2 (n/smlsiz))).

difr REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (ldu, 2 nlvl) if icompq = 1 and
DIMENSION (n) if icompq = 0.
If icompq = 1, on exit, difl(1:n, i) and difr(1:n,2i -1)
record distances between singular values on the i-th
level and singular values on the (i -1)-th level, and
difr(1:n, 2i) contains the normalizing factors for the
right singular vector matrix. See ?lasd8 for details.

z REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (ldu, nlvl) if icompq = 1 and
DIMENSION (n) if icompq = 0.

6-270

6 Intel® Math Kernel Library Reference Manual

The first k elements of z(1, i) contain the components of
the deflation-adjusted updating row vector for
subproblems on the i-th level.

poles REAL for slasda
DOUBLE PRECISION for dlasda

Array, DIMENSION (ldu, 2*nlvl) if icompq = 1, and
not referenced if icompq = 0. If icompq = 1, on exit,
poles(1, 2i - 1) and poles(1, 2i) contain the new and
old singular values involved in the secular equations on
the i-th level.

givptr INTEGER.
Array, DIMENSION (n) if icompq = 1, and not
referenced if icompq = 0. If icompq = 1, on exit,
givptr(i) records the number of Givens rotations
performed on the i-th problem on the computation tree.

givcol INTEGER .
Array, DIMENSION (ldgcol, 2*nlvl) if icompq = 1,
and not referenced if icompq = 0. If icompq = 1, on
exit, for each i, givcol(1, 2 i - 1) and givcol(1, 2 i)
record the locations of Givens rotations performed on
the i-th level on the computation tree.

perm INTEGER .
Array, DIMENSION (ldgcol, nlvl) if icompq = 1,
and not referenced if icompq = 0. If icompq = 1, on
exit, perm (1, i) records permutations done on the i-th
level of the computation tree.

givnum REAL for slasda
DOUBLE PRECISION for dlasda.
Array DIMENSION (ldu, 2*nlvl) if icompq = 1, and
not referenced if icompq = 0. If icompq = 1, on exit, for
each i, givnum(1, 2 i - 1) and givnum(1, 2 i) record the
C- and S-values of Givens rotations performed on the
i-th level on the computation tree.

LAPACK Auxiliary Routines6

6-271

c REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (n) if icompq = 1, and
DIMENSION (1) if icompq = 0.
If icompq = 1 and the i-th subproblem is not square, on
exit, c(i) contains the C-value of a Givens rotation
related to the right null space of the i-th subproblem.

s REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (n) icompq = 1, and
DIMENSION (1) if icompq = 0.
If icompq = 1 and the i-th subproblem is not square, on
exit, s(i) contains the S-value of a Givens rotation
related to the right null space of the i-th subproblem.

info INTEGER.
= 0: successful exit.

< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = 1, an singular value did not converge

?lasdq
Computes the SVD of a real bidiagonal
matrix with diagonal d and off-diagonal e.
Used by ?bdsdc.

call slasdq (uplo, sqre, n, ncvt, nru, ncc, d, e, vt,
ldvt, u, ldu, c, ldc, work, info)

call dlasdq (uplo, sqre, n, ncvt, nru, ncc, d, e, vt,
ldvt, u, ldu, c, ldc, work, info)

6-272

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine ?lasdq computes the singular value decomposition (SVD) of a
real (upper or lower) bidiagonal matrix with diagonal d and off-diagonal e,
accumulating the transformations if desired. Letting B denote the input
bidiagonal matrix, the algorithm computes orthogonal matrices Q and P
such that B = Q S P' (P' denotes the transpose of P). The singular values S
are overwritten on d.
The input matrix U is changed to UQ if desired.
The input matrix VT is changed to P' VT if desired.
The input matrix C is changed to Q' C if desired.

Input Parameters

uplo CHARACTER*1. On entry, uplo specifies whether the
input bidiagonal matrix is upper or lower bidiagonal.
If uplo = 'U' or 'u' , B is upper bidiagonal;
If uplo = 'L' or 'l' , B is lower bidiagonal.

sqre INTEGER.
= 0: then the input matrix is n-by-n.
= 1: then the input matrix is n-by-(n+1) if uplu = 'U'

and (n+1)-by-n if uplu = 'L'. The bidiagonal matrix
has n = nl + nr + 1 rows and m = n + sqre ≥ n

columns.

n INTEGER. On entry, n specifies the number of rows and
columns in the matrix. n must be at least 0.

ncvt INTEGER. On entry, ncvt specifies the number of
columns of the matrix VT. ncvt must be at least 0.

nru INTEGER. On entry, nru specifies the number of rows of
the matrix U. nru must be at least 0.

ncc INTEGER. On entry, ncc specifies the number of
columns of the matrix C. ncc must be at least 0.

d REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (n). On entry, d contains the
diagonal entries of the bidiagonal matrix whose SVD is
desired.

LAPACK Auxiliary Routines6

6-273

e REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION is (n-1) if sqre = 0 and n if sqre =
1. On entry, the entries of e contain the off-diagonal
entries of the bidiagonal matrix whose SVD is desired.

vt REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (ldvt, ncvt). On entry, contains a
matrix which on exit has been premultiplied by P',
dimension n-by-ncvt if sqre = 0 and (n+1)-by-ncvt if
sqre = 1 (not referenced if ncvt=0).

ldvt INTEGER. On entry, ldvt specifies the leading
dimension of vt as declared in the calling (sub)
program. ldvt must be at least 1. If ncvt is nonzero,
ldvt must also be at least n.

u REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (ldu, n). On entry, contains a
matrix which on exit has been postmultiplied by Q,
dimension nru-by-n if sqre = 0 and nru-by-(n+1) if
sqre = 1 (not referenced if nru=0).

ldu INTEGER.On entry, ldu specifies the leading dimension
of u as declared in the calling (sub) program. ldu must
be at least max(1, nru) .

c REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (ldc, ncc). On entry, contains an
n-by-ncc matrix which on exit has been premultiplied
by Q', dimension n-by-ncc if sqre = 0 and
(n+1)-by-ncc if sqre = 1 (not referenced if ncc=0).

ldc INTEGER. On entry, ldc specifies the leading
dimension of c as declared in the calling (sub) program.
ldc must be at least 1. If ncc is non-zero, ldc must also
be at least n.

6-274

6 Intel® Math Kernel Library Reference Manual

work REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (4n).This is a workspace array. Only
referenced if one of ncvt, nru, or ncc is nonzero, and
if n is at least 2.

Output Parameters

d On normal exit, d contains the singular values in
ascending order.

e On normal exit, e will contain 0. If the algorithm does
not converge, d and e will contain the diagonal and
superdiagonal entries of a bidiagonal matrix
orthogonally equivalent to the one given as input.

vt On exit, the matrix has been premultiplied by P'.

u On exit, the matrix has been postmultiplied by Q.

c On exit, the matrix has been premultiplied by Q'.

info INTEGER. On exit, a value of 0 indicates a successful
exit. If info < 0, argument number -info is illegal. If
info > 0, the algorithm did not converge, and info
specifies how many superdiagonals did not converge.

?lasdt
Creates a tree of subproblems for
bidiagonal divide and conquer.
Used by ?bdsdc.

call slasdt (n, lvl, nd, inode, ndiml, ndimr, msub)

call dlasdt (n, lvl, nd, inode, ndiml, ndimr, msub)

Discussion

The routine creates a tree of subproblems for bidiagonal divide and conquer.

LAPACK Auxiliary Routines6

6-275

Input Parameters

n INTEGER. On entry, the number of diagonal elements of
the bidiagonal matrix.

msub INTEGER. On entry, the maximum row dimension each
subproblem at the bottom of the tree can be of.

Output Parameters

lvl INTEGER. On exit, the number of levels on the
computation tree.

nd INTEGER. On exit, the number of nodes on the tree.

inode INTEGER.
Array, DIMENSION (n). On exit, centers of subproblems.

ndiml INTEGER .
Array, DIMENSION (n). On exit, row dimensions of left
children.

ndimr INTEGER .
Array, DIMENSION (n). On exit, row dimensions of
right children.

?laset
Initializes the off-diagonal elements
and the diagonal elements of a matrix to
given values.

call slaset (uplo, m, n, alpha, beta, a, lda)

call dlaset (uplo, m, n, alpha, beta, a, lda)

call claset (uplo, m, n, alpha, beta, a, lda)

call zlaset (uplo, m, n, alpha, beta, a, lda)

6-276

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine initializes an m-by-n matrix A to beta on the diagonal and
alpha on the off-diagonals .

Input parameters
uplo CHARACTER*1. Specifies the part of the matrix A to be

set.
If uplo = 'U', upper triangular part is set; the strictly
lower triangular part of A is not changed.
If uplo = 'L': lower triangular part is set; the strictly
upper triangular part of A is not changed.
Otherwise: all of the matrix A is set.

m INTEGER. The number of rows of the matrix A. m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

alpha, beta REAL for slaset
DOUBLE PRECISION for dlaset
COMPLEX for claset
COMPLEX*16 for zlaset.
The constants to which the off-diagonal and diagonal
elements are to be set, respectively.

a REAL for slaset
DOUBLE PRECISION for dlaset
COMPLEX for claset
COMPLEX*16 for zlaset.
Array, DIMENSION (lda, n).
On entry, the m-by-n matrix A.

lda INTEGER. The leading dimension of the array A.
lda ≥ max(1,m).

Output Parameters

a On exit, the leading m-by-n submatrix of A is set as
follows:
if uplo = 'U', A(i,j) = alpha, 1≤ i ≤ j-1, 1≤ j ≤ n,
if uplo = 'L', A(i,j) = alpha, j+1≤ i ≤ m, 1≤ j ≤ n,

LAPACK Auxiliary Routines6

6-277

otherwise, A(i,j) = alpha, 1≤ i ≤ m, 1≤ j ≤ n, i ≠ j,

and, for all uplo, A(i,i) = beta, 1≤ i ≤ min(m, n).

?lasq1
Computes the singular values of a real
square bidiagonal matrix. Used by
?bdsqr.

call slasq1 (n, d, e, work, info)

call dlasq1 (n, d, e, work, info)

Discussion

The routine ?lasq1 computes the singular values of a real n-by-n
bidiagonal matrix with diagonal d and off-diagonal e. The singular values
are computed to high relative accuracy, in the absence of denormalization,
underflow and overflow.

Input Parameters

n INTEGER.The number of rows and columns in the
matrix. n ≥ 0.

d REAL for slasq1
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (n). On entry, d contains the
diagonal elements of the bidiagonal matrix whose SVD
is desired.

e REAL for slasq1
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (n). On entry, elements e(1:n-1)
contain the off-diagonal elements of the bidiagonal
matrix whose SVD is desired.

6-278

6 Intel® Math Kernel Library Reference Manual

work REAL for slasq1
DOUBLE PRECISION for dlasq1.
Workspace array, DIMENSION (4n).

Output Parameters

d On normal exit, d contains the singular values in
decreasing order.

e On exit, e is overwritten.

info INTEGER.
= 0: successful exit;

< 0: if info= -i, the i-th argument had an illegal value;
> 0: the algorithm failed:
= 1, a split was marked by a positive value in e;

= 2, current block of z not diagonalized after 30*n
iterations (in inner while loop);
= 3, termination criterion of outer while loop not met
(program created more than n unreduced blocks.

?lasq2
Computes all the eigenvalues of the
symmetric positive definite tridiagonal
matrix associated with the qd array z to
high relative accuracy. Used by ?bdsqr
and ?stegr.

call slasq2 (n, z, info)

call dlasq2 (n, z, info)

Discussion

The routine ?lasq2 computes all the eigenvalues of the symmetric positive
definite tridiagonal matrix associated with the qd array z to high relative
accuracy, in the absence of denormalization, underflow and overflow.

LAPACK Auxiliary Routines6

6-279

To see the relation of z to the tridiagonal matrix, let L be a unit lower
bidiagonal matrix with subdiagonals z(2,4,6,,..) and let U be an upper
bidiagonal matrix with 1's above and diagonal z(1,3,5,,..). The tridiagonal
is LU or, if you prefer, the symmetric tridiagonal to which it is similar.

Input Parameters

n INTEGER. The number of rows and columns in the
matrix. n ≥ 0.

z REAL for slasq2
DOUBLE PRECISION for dlasq2.
Array, DIMENSION (4n). On entry, z holds the qd array.

Output Parameters

z On exit, entries 1 to n hold the eigenvalues in
decreasing order, z(2n+1) holds the trace, and z(2n+2)
holds the sum of the eigenvalues. If n > 2, then
z(2n+3) holds the iteration count, z(2n+4) holds
ndivs/nin2, and z(2n+5) holds the percentage of shifts
that failed.

info INTEGER.
= 0: successful exit;

< 0: if the i-th argument is a scalar and had an illegal
value, then info = -i, if the i-th argument is an array
and the j-entry had an illegal value, then info =
-(i*100+j);
> 0: the algorithm failed:

= 1, a split was marked by a positive value in e;
= 2, current block of z not diagonalized after 30*n

iterations (in inner while loop);
= 3, termination criterion of outer while loop not met

(program created more than n unreduced blocks).

6-280

6 Intel® Math Kernel Library Reference Manual

Application Notes

The routine ?lasq2 defines a logical variable, ieee, which is .TRUE. on
machines which follow IEEE-754 floating-point standard in their handling
of infinities and NaNs, and .FALSE. otherwise. This variable is passed to
?lasq3.

?lasq3
Checks for deflation, computes a shift
and calls dqds. Used by ?bdsqr.

call slasq3 (i0, n0, z, pp, dmin, sigma, desig, qmax,

nfail, iter, ndiv, ieee)

call dlasq3 (i0, n0, z, pp, dmin, sigma, desig, qmax,

nfail, iter, ndiv, ieee)

Discussion

The routine ?lasq3 checks for deflation, computes a shift (tau) and calls
dqds.In case of failure, it changes shifts, and tries again until output is
positive.

Input Parameters

i0 INTEGER. First index.

n0 INTEGER. Last index.

z REAL for slasq3

DOUBLE PRECISION for dlasq3.
Array, DIMENSION (4n). z holds the qd array.

pp INTEGER.
pp=0 for ping, pp=1 for pong.

desig REAL for slasq3

DOUBLE PRECISION for dlasq3.
Lower order part of sigma.

LAPACK Auxiliary Routines6

6-281

qmax REAL for slasq3

DOUBLE PRECISION for dlasq3.
Maximum value of q.

ieee LOGICAL. Flag for IEEE or non-IEEE arithmetic
(passed to ?lasq5).

Output Parameters

dmin REAL for slasq3

DOUBLE PRECISION for dlasq3.
Minimum value of d.

sigma REAL for slasq3

DOUBLE PRECISION for dlasq3.
Sum of shifts used in current segment.

desig Lower order part of sigma.

nfail INTEGER. Number of times shift was too big.

iter INTEGER. Number of iterations.

ndiv INTEGER. Number of divisions.

ttype INTEGER. Shift type.

?lasq4
Computes an approximation to the
smallest eigenvalue using values of d
from the previous transform.
Used by ?bdsqr.

call slasq4 (i0, n0, z, pp, n0in, dmin, dmin1, dmin2,
dn, dn1, dn2, tau, ttype)

call dlasq4 (i0, n0, z, pp, n0in, dmin, dmin1, dmin2,
dn, dn1, dn2, tau, ttype)

6-282

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine computes an approximation tau to the smallest eigenvalue
using values of d from the previous transform.

Input Parameters

i0 INTEGER. First index.

n0 INTEGER. Last index.

z REAL for slasq4
DOUBLE PRECISION for dlasq4.
Array, DIMENSION (4n). z holds the qd array.

pp INTEGER. pp=0 for ping, pp=1 for pong.

noin INTEGER. The value of n0 at start of eigtest.

dmin REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d.

dmin1 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d, excluding d(n0).

dmin2 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d, excluding d(n0) and d(n0-1).

dn REAL for slasq4
DOUBLE PRECISION for dlasq4.
Contains d(n).

dn1 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Contains d(n-1).

dn2 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Contains d(n-2).

LAPACK Auxiliary Routines6

6-283

Output Parameters

tau REAL for slasq4
DOUBLE PRECISION for dlasq4.
This is the shift.

ttype INTEGER. Shift type.

?lasq5
Computes one dqds transform in
ping-pong form. Used by ?bdsqr and
?stegr.

call slasq5 (i0, n0, z, pp, tau, dmin, dmin1, dmin2,
dn, dnm1, dnm2, ieee)

call dlasq5 (i0, n0, z, pp, tau, dmin, dmin1, dmin2,
dn, dnm1, dnm2, ieee)

Discussion

The routine computes one dqds transform in ping-pong form, one version
for IEEE machines another for non-IEEE machines.

Input Parameters

i0 INTEGER First index.

n0 INTEGER Last index.

z REAL for slasq5
DOUBLE PRECISION for dlasq5.
Array, DIMENSION (4n). z holds the qd array. emin is
stored in z(4*n0) to avoid an extra argument.

pp INTEGER. pp=0 for ping, pp=1 for pong.

tau REAL for slasq5
DOUBLE PRECISION for dlasq5.
This is the shift.

6-284

6 Intel® Math Kernel Library Reference Manual

ieee LOGICAL. Flag for IEEE or non-IEEE arithmetic.

Output Parameters

dmin REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d.

dmin1 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d, excluding d(n0).

dmin2 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d, excluding d(n0) and d(n0-1).

dn REAL for slasq5
DOUBLE PRECISION for dlasq5.
Contains d(n0), the last value of d.

dnm1 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Contains d(n0-1).

dnm2 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Contains d(n0-2).

?lasq6
Computes one dqds transform in
ping-pong form. Used by ?bdsqr and
?stegr.

call slasq6 (i0, n0, z, pp, dmin, dmin1, dmin2, dn,
dnm1, dnm2)

call dlasq6 (i0, n0, z, pp, dmin, dmin1, dmin2, dn,

dnm1, dnm2)

LAPACK Auxiliary Routines6

6-285

Discussion

The routine ?lasq6 computes one dqd (shift equal to zero) transform in
ping-pong form, with protection against underflow and overflow.

Input Parameters

i0 INTEGER. First index.

n0 INTEGER. Last index.

z REAL for slasq6

DOUBLE PRECISION for dlasq6.
Array, DIMENSION (4n). z holds the qd array. emin is
stored in z(4*n0) to avoid an extra argument.

pp INTEGER. pp=0 for ping, pp=1 for pong.

Output Parameters

dmin REAL for slasq6

DOUBLE PRECISION for dlasq6.
Minimum value of d.

dmin1 REAL for slasq6

DOUBLE PRECISION for dlasq6.
Minimum value of d, excluding d(n0).

dmin2 REAL for slasq6

DOUBLE PRECISION for dlasq6.
Minimum value of d, excluding d(n0) and d(n0-1).

dn REAL for slasq6

DOUBLE PRECISION for dlasq6.
Contains d(n0), the last value of d.

dnm1 REAL for slasq6

DOUBLE PRECISION for dlasq6.
Contains d(n0-1).

dnm2 REAL for slasq6

DOUBLE PRECISION for dlasq6.
Contains d(n0-2).

6-286

6 Intel® Math Kernel Library Reference Manual

?lasr
Applies a sequence of plane rotations to
a general rectangular matrix.

call slasr (side, pivot, direct, m, n, c, s, a, lda)

call dlasr (side, pivot, direct, m, n, c, s, a, lda)

call clasr (side, pivot, direct, m, n, c, s, a, lda)

call zlasr (side, pivot, direct, m, n, c, s, a, lda)

Discussion

The routine performs the transformation:
A := P A, when side = 'L' or 'l' (Left-hand side)
A := A P', when side = 'R' or 'r' (Right-hand side)

where A is an m-by-n real matrix and P is an orthogonal matrix, consisting
of a sequence of plane rotations determined by the parameters pivot and
direct as follows (z = m when side = 'L' or 'l' and z = n when side = 'R'
or 'r'):

When direct = 'F' or 'f' (Forward sequence) then
P = P(z - 1) ... P(2) P(1),

and when direct = 'B' or 'b' (Backward sequence) then
P = P(1) P(2) ... P(z - 1),

where P(k) is a plane rotation matrix for the following planes:

when pivot = 'V' or 'v' (Variable pivot), the plane (k, k + 1)
when pivot = 'T' or 't' (Top pivot), the plane (1, k + 1)
when pivot = 'B' or 'b' (Bottom pivot), the plane (k, z)

c(k) and s(k) must contain the cosine and sine that define the matrix
P(k). The 2-by-2 plane rotation part of the matrix P(k), R(k), is assumed to
be of the form:

R k() c k() s k()
s k()– c k()

=

LAPACK Auxiliary Routines6

6-287

Input Parameters

side CHARACTER*1. Specifies whether the plane rotation
matrix P is applied to A on the left or the right.
= 'L': Left, compute A := P A

= 'R': Right, compute A:= A P'

direct CHARACTER*1. Specifies whether P is a forward or
backward sequence of plane rotations.
= 'F': Forward, P = P(z - 1) ... P(2) P(1)
= 'B': Backward, P = P(1) P(2) ... P(z - 1)

pivot CHARACTER*1. Specifies the plane for which P(k) is a
plane rotation matrix.
= 'V': Variable pivot, the plane (k, k+1)
= 'T': Top pivot, the plane (1, k+1)
= 'B': Bottom pivot, the plane (k, z)

m INTEGER. The number of rows of the matrix A.
If m ≤1, an immediate return is effected.

n INTEGER. The number of columns of the matrix A.
If n ≤1, an immediate return is effected.

c, s REAL for slasr/clasr
DOUBLE PRECISION for dlasr/zlasr.
Arrays, DIMENSION
(m-1) if side = 'L',
(n-1) if side = 'R'.
c(k) and s(k) contain the cosine and sine that define the
matrix P(k) as described above.

a REAL for slasr
DOUBLE PRECISION for dlasr
COMPLEX for clasr
COMPLEX*16 for zlasr.
Array, DIMENSION (lda, n). The m-by-n matrix A.

lda INTEGER. The leading dimension of the array A.
lda ≥ max(1,m).

6-288

6 Intel® Math Kernel Library Reference Manual

Output Parameters

a On exit, A is overwritten by PA if side = 'R' or by AP' if
side = 'L'.

?lasrt
Sorts numbers in increasing or
decreasing order.

call slasrt (id, n, d, info)

call dlasrt (id, n, d, info)

Discussion

The routine ?lasrt sorts the numbers in d in increasing order (if id = 'I')
or in decreasing order (if id = 'D'). It uses Quick Sort, reverting to Insertion
Sort on arrays of size ≤20. Dimension of stack limits n to about 232.

Input Parameters

id CHARACTER*1.

= 'I': sort d in increasing order;
= 'D': sort d in decreasing order.

n INTEGER. The length of the array d.

d REAL for slasrt
DOUBLE PRECISION for dlasrt.
On entry, the array to be sorted.

Output Parameters

d On exit, d has been sorted into increasing order
(d(1) ≤... ≤d(n)) or into decreasing order
(d(1) ≥ ... ≥ d(n)), depending on id.

info INTEGER.
= 0: successful exit

< 0: if info = -i, the i-th argument had an illegal value.

LAPACK Auxiliary Routines6

6-289

?lassq
Updates a sum of squares represented in
scaled form.

call slassq (n, x, incx, scale, sumsq)

call dlassq (n, x, incx, scale, sumsq)

call classq (n, x, incx, scale, sumsq)

call zlassq (n, x, incx, scale, sumsq)

Discussion

The real routines slassq/dlassq return the values scl and smsq such
that

scl2 * smsq = x(1)2 +...+ x(n)2 + scale2 *sumsq,

where x(i) = x(1 + (i - 1) incx).
The value of sumsq is assumed to be non-negative and scl returns the
value

scl = max(scale, abs(x(i))).

Values scale and sumsq must be supplied in scale and sumsq, and scl
and smsq are overwritten on scale and sumsq, respectively.

The complex routines classq/zlassq return the values scl and ssq
such that

scl2 * ssq = x(1)2 +...+ x(n)2 + scale2 *sumsq,

where x(i) = abs (x(1 + (i - 1) incx)).
The value of sumsq is assumed to be at least unity and the value of ssq will
then satisfy

1.0 ≤ssq ≤ sumsq + 2n

scale is assumed to be non-negative and scl returns the value

scl = max(scale, abs(real(x(i))), abs(aimag(x(i)))).
i

Values scale and sumsq must be supplied in scale and sumsq, and scl
and ssq are overwritten on scale and sumsq, respectively.

All routines ?lassq make only one pass through the vector x.

6-290

6 Intel® Math Kernel Library Reference Manual

Input Parameters

n INTEGER. The number of elements to be used from the
vector x.

x REAL for slassq
DOUBLE PRECISION for dlassq

COMPLEX for classq
COMPLEX*16 for zlassq.
The vector for which a scaled sum of squares is
computed: x(i) = x(1 + (i - 1) incx), 1 ≤i ≤n.

incx INTEGER. The increment between successive values of
the vector x. incx > 0.

scale REAL for slassq/classq
DOUBLE PRECISION for dlassq/zlassq.
On entry, the value scale in the equation above.

sumsq REAL for slassq/classq
DOUBLE PRECISION for dlassq/zlassq.
On entry, the value sumsq in the equation above.

Output Parameters

scale On exit, scale is overwritten with scl , the scaling
factor for the sum of squares.

sumsq For real flavors:
On exit, sumsq is overwritten with the value smsq in
the equation above.
For complex flavors:
On exit, sumsq is overwritten with the value ssq in the
equation above.

LAPACK Auxiliary Routines6

6-291

?lasv2
Computes the singular value
decomposition of a 2-by-2 triangular
matrix

call slasv2 (f, g, h, ssmin, ssmax, snr, csr, snl, csl)

call dlasv2 (f, g, h, ssmin, ssmax, snr, csr, snl, csl)

Discussion

The routine ?lasv2 computes the singular value decomposition of a
2-by-2 triangular matrix

On return, abs(ssmax) is the larger singular value, abs(ssmin) is the
smaller singular value, and (csl,snl) and (csr,snr) are the left and right
singular vectors for abs(ssmax), giving the decomposition

Input Parameters

f, g, h REAL for slasv2

DOUBLE PRECISION for dlasv2.
The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix,
respectively.

Output Parameters

ssmin, ssmax REAL for slasv2

DOUBLE PRECISION for dlasv2.
abs(ssmin) and abs(ssmax) is the smaller and the
larger singular value, respectively.

f g

0 h

csl snl

snl– csl

f g

0 h

csr snr–
snr csr

ssmax 0

0 ssmin
=

6-292

6 Intel® Math Kernel Library Reference Manual

snl, csl REAL for slasv2

DOUBLE PRECISION for dlasv2.
The vector (csl, snl) is a unit left singular vector for
the singular value abs(ssmax).

snr, csr REAL for slasv2

DOUBLE PRECISION for dlasv2.
The vector (csr, snr) is a unit right singular vector for
the singular value abs(ssmax).

Application Notes

Any input parameter may be aliased with any output parameter.
Barring over/underflow and assuming a guard digit in subtraction, all
output quantities are correct to within a few units in the last place (ulps).

In IEEE arithmetic, the code works correctly if one matrix element is
infinite.
Overflow will not occur unless the largest singular value itself overflows or
is within a few ulps of overflow. (On machines with partial overflow, like
the Cray, overflow may occur if the largest singular value is within a factor
of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results may
correspond to a matrix modified by perturbations of size near the underflow
threshold.

?laswp
Performs a series of row interchanges
on a general rectangular matrix.

call slaswp (n, a, lda, k1, k2, ipiv, incx)

call dlaswp (n, a, lda, k1, k2, ipiv, incx)

call claswp (n, a, lda, k1, k2, ipiv, incx)

call zlaswp (n, a, lda, k1, k2, ipiv, incx)

LAPACK Auxiliary Routines6

6-293

Discussion

The routine performs a series of row interchanges on the matrix A. One row
interchange is initiated for each of rows k1 through k2 of A.

Input Parameters

n INTEGER.The number of columns of the matrix A.

a REAL for slaswp
DOUBLE PRECISION for dlaswp

COMPLEX for claswp
COMPLEX*16 for zlaswp.
Array, DIMENSION (lda, n).
On entry, the matrix of column dimension n to which
the row interchanges will be applied.

lda INTEGER. The leading dimension of the array a.

k1 INTEGER. The first element of ipiv for which a row
interchange will be done.

k2 INTEGER. The last element of ipiv for which a row
interchange will be done.

ipiv INTEGER.
Array, DIMENSION (m * abs(incx)).
The vector of pivot indices. Only the elements in
positions k1 through k2 of ipiv are accessed.
ipiv(k) = l implies rows k and l are to be interchanged.

incx INTEGER. The increment between successive values of
ipiv. If ipiv is negative, the pivots are applied in
reverse order.

Output Parameters

a On exit, the permuted matrix.

6-294

6 Intel® Math Kernel Library Reference Manual

?lasy2
Solves the Sylvester matrix equation
where the matrices are of order 1 or 2.

call slasy2 (ltranl, ltranr, isgn, n1, n2, tl, ldtl,
tr,ldtr, b, ldb, scale, x, ldx, xnorm, info)

call dlasy2 (ltranl, ltranr, isgn, n1, n2, tl, ldtl,
tr,ldtr, b, ldb, scale, x, ldx, xnorm, info)

Discussion

The routine solves for the n1-by-n2 matrix X, 1 ≤n1, n2 ≤2, in

op(TL) * X + isgn * X *op(TR) = scale *B,

where
TL is n1-by-n1,
TR is n2- by-n2,
B is n1-by-n2,

and isgn = 1 or -1. op(T) = T or T', where T' denotes the transpose of T.

Input Parameters

ltranl LOGICAL.
On entry, ltranl specifies the op(TL):
= .FALSE., op(TL) = TL,
= .TRUE., op(TL) = TL'.

ltranr LOGICAL.
On entry, ltranr specifies the op(TR):
= .FALSE., op(TR) = TR,
= .TRUE., op(TR) = TR'.

isgn INTEGER. On entry, isgn specifies the sign of the
equation as described before. isgn may only be 1 or -1.

n1 INTEGER. On entry, n1 specifies the order of matrix TL.
n1 may only be 0, 1 or 2.

LAPACK Auxiliary Routines6

6-295

n2 INTEGER.
On entry, n2 specifies the order of matrix TR.
n2 may only be 0, 1 or 2.

tl REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldtl,2). On entry, tl contains an
n1-by-n1 matrix TL.

ldtl INTEGER.The leading dimension of the matrix tl.
ldtl ≥ max(1,n1).

tr REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldtr,2). On entry, tr contains an
n2-by-n2 matrix TR.

ldtr INTEGER.
The leading dimension of the matrix tr.
ldtr ≥ max(1,n2).

b REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldb,2). On entry, the n1-by-n2
matrix b contains the right-hand side of the equation.

ldb INTEGER.
The leading dimension of the matrix b.
ldb ≥ max(1,n1).

ldx INTEGER.
The leading dimension of the output matrix x.
ldx ≥ max(1,n1).

Output Parameters

scale REAL for slasy2
DOUBLE PRECISION for dlasy2.
On exit, scale contains the scale factor.
scale is chosen less than or equal to 1 to prevent the
solution overflowing.

6-296

6 Intel® Math Kernel Library Reference Manual

x REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldx,2). On exit, x contains the
n1-by-n2 solution.

xnorm REAL for slasy2
DOUBLE PRECISION for dlasy2.
On exit, xnorm is the infinity-norm of the solution.

info INTEGER. On exit, info is set to
0: successful exit.
1: TL and TR have too close eigenvalues, so TL or TR is
perturbed to get a nonsingular equation.

?lasyf
Computes a partial factorization of a
real/complex symmetric matrix, using
the diagonal pivoting method.

call slasyf (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call dlasyf (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call clasyf (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call zlasyf (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

Discussion

The routine ?lasyf computes a partial factorization of a real/complex
symmetric matrix A using the Bunch-Kaufman diagonal pivoting method.
The partial factorization has the form:

NOTE. In the interests of speed, this routine does not check the inputs
for errors.

LAPACK Auxiliary Routines6

6-297

if uplo = 'U', or

if uplo = 'L'

where the order of D is at most nb. The actual order is returned in the
argument kb, and is either nb or nb-1, or n if n ≤nb.

This is an auxiliary routine called by ?sytrf. It uses blocked code (calling
Level 3 BLAS) to update the submatrix A11 (if uplo = 'U') or A22 (if uplo
= 'L').

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of
the symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

nb INTEGER.
The maximum number of columns of the matrix A that
should be factored. nb should be at least 2 to allow for
2-by-2 pivot blocks.

a REAL for slasyf
DOUBLE PRECISION for dlasyf

COMPLEX for clasyf
COMPLEX*16 for zlasyf.
Array, DIMENSION (lda, n). On entry, the symmetric
matrix A. If uplo = 'U', the leading n-by-n upper
triangular part of a contains the upper triangular part of
the matrix A, and the strictly lower triangular part of a is
not referenced. If uplo = 'L', the leading n-by-n lower

A
I U12

0 U22

A11 0

0 D

I 0

U12′ U22 ′
=

A
L11 0

L21 I

D 0

0 A22

L11′ L21′

0 I
=

6-298

6 Intel® Math Kernel Library Reference Manual

triangular part of a contains the lower triangular part of
the matrix A, and the strictly upper triangular part of a is
not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

w REAL for slasyf
DOUBLE PRECISION for dlasyf

COMPLEX for clasyf
COMPLEX*16 for zlasyf.
Workspace array, DIMENSION (ldw, nb).

ldw INTEGER.
The leading dimension of the array w. ldw ≥ max(1,n).

Output Parameters

kb INTEGER.
The number of columns of A that were actually factored
kb is either nb-1 or nb, or n if n ≤nb.

a On exit, a contains details of the partial factorization.

ipiv INTEGER.
Array, DIMENSION (n). Details of the interchanges and
the block structure of D.
If uplo = 'U', only the last kb elements of ipiv are set;
if uplo = 'L', only the first kb elements are set.

If ipiv(k) > 0, then rows and columns k and ipiv(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows
and columns k-1and -ipiv(k) were interchanged and
D(k-1:k, k-1:k) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows
and columns k+1 and -ipiv(k) were interchanged and
D(k:k+1, k:k+1) is a 2-by-2 diagonal block.

LAPACK Auxiliary Routines6

6-299

info INTEGER.
= 0: successful exit
> 0: if info = k, D(k,k) is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular.

?lahef
Computes a partial factorization of a
complex Hermitian indefinite matrix,
using the diagonal pivoting method.

call clahef (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call zlahef (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

Discussion

The routine ?lahef computes a partial factorization of a complex
Hermitian matrix A, using the Bunch-Kaufman diagonal pivoting method.
The partial factorization has the form:

if uplo = 'U', or

if uplo = 'L'

where the order of D is at most nb. The actual order is returned in the
argument kb, and is either nb or nb-1, or n if n ≤nb.
Note that U′ denotes the conjugate transpose of U.

This is an auxiliary routine called by ?hetrf. It uses blocked code (calling
Level 3 BLAS) to update the submatrix A11 (if uplo = 'U') or A22 (if uplo
= 'L').

A
I U12

0 U22

A11 0

0 D

I 0

U12′ U22 ′
=

A
L11 0

L21 I

D 0

0 A22

L11′ L21′

0 I
=

6-300

6 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of
the Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

nb INTEGER.
The maximum number of columns of the matrix A that
should be factored. nb should be at least 2 to allow for
2-by-2 pivot blocks.

a COMPLEX for clahef
COMPLEX*16 for zlahef.
Array, DIMENSION (lda, n).
On entry, the Hermitian matrix A. If uplo = 'U', the
leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly
lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and
the strictly upper triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

w COMPLEX for clahef
COMPLEX*16 for zlahef.
Workspace array, DIMENSION (ldw, nb).

ldw INTEGER.
The leading dimension of the array w. ldw ≥ max(1,n).

Output Parameters

kb INTEGER.
The number of columns of A that were actually factored
kb is either nb-1 or nb, or n if n ≤nb.

LAPACK Auxiliary Routines6

6-301

a On exit, a contains details of the partial factorization.

ipiv INTEGER.
Array, DIMENSION (n). Details of the interchanges and
the block structure of D.
If uplo = 'U', only the last kb elements of ipiv are set;
if uplo = 'L', only the first kb elements are set.

If ipiv(k) > 0, then rows and columns k and ipiv(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows
and columns k-1and -ipiv(k) were interchanged and
D(k-1:k, k-1:k) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows
and columns k+1 and -ipiv(k) were interchanged and
D(k:k+1, k:k+1) is a 2-by-2 diagonal block.

info INTEGER.
= 0: successful exit
> 0: if info = k, D(k,k) is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular.

?latbs
Solves a triangular banded system of
equations.

call slatbs (uplo, trans, diag, normin, n, kd, ab,
ldab, x, scale, cnorm, info)

call dlatbs (uplo, trans, diag, normin, n, kd, ab,
ldab, x, scale, cnorm, info)

call clatbs (uplo, trans, diag, normin, n, kd, ab,
ldab, x, scale, cnorm, info)

call zlatbs (uplo, trans, diag, normin, n, kd, ab,
ldab, x, scale, cnorm, info)

6-302

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine solves one of the triangular systems

Ax = s b or ATx = s b or AHx = s b (for complex flavors)

with scaling to prevent overflow, where A is an upper or lower triangular
band matrix. Here AT denotes the transpose of A, AH denotes the conjugate
transpose of A, x and b are n-element vectors, and s is a scaling factor,
usually less than or equal to 1, chosen so that the components of x will be
less than the overflow threshold. If the unscaled problem will not cause
overflow, the Level 2 BLAS routine ?tbsv is called. If the matrix A is
singular (A(j, j) = 0 for some j), then s is set to 0 and a non-trivial solution
to Ax = 0 is returned.

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower
triangular.
= 'U': Upper triangular
= 'L': Lower triangular

trans CHARACTER*1.
Specifies the operation applied to A.
= 'N': Solve Ax = s b (no transpose)
= 'T': Solve ATx = s b (transpose)
= 'C': Solve AHx = s b (conjugate transpose)

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular
= 'N': Non-unit triangular

= 'U': Unit triangular

normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. On exit, the norms will
be computed and stored in cnorm.

n INTEGER.
The order of the matrix A. n ≥ 0.

LAPACK Auxiliary Routines6

6-303

kd INTEGER.
The number of subdiagonals or superdiagonals in the
triangular matrix A. kd ≥ 0.

ab REAL for slatbs

DOUBLE PRECISION for dlatbs
COMPLEX for clatbs

COMPLEX*16 for zlatbs.
Array, DIMENSION (ldab, n). The upper or lower
triangular band matrix A, stored in the first kd+1 rows of
the array. The j-th column of A is stored in the j-th
column of the array ab as follows:
if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for
max(1,j-kd) ≤ i ≤ j;
if uplo = 'L', ab(1+i-j,j) = A(i,j) for
j ≤ i ≤ min(n,j+kd).

ldab INTEGER.
The leading dimension of the array ab. ldab ≥ kd+1.

x REAL for slatbs

DOUBLE PRECISION for dlatbs
COMPLEX for clatbs

COMPLEX*16 for zlatbs.
Array, DIMENSION (n).
On entry, the right hand side b of the triangular system.

cnorm REAL for slatbs/clatbs

DOUBLE PRECISION for dlatbs/zlatbs.
Array, DIMENSION (n).
If normin = 'Y', cnorm is an input argument and
cnorm(j) contains the norm of the off-diagonal part of
the j-th column of A. If trans = 'N', cnorm(j) must be
greater than or equal to the infinity-norm, and if
trans = 'T' or 'C', cnorm(j) must be greater than or
equal to the 1-norm.

6-304

6 Intel® Math Kernel Library Reference Manual

Output Parameters

scale REAL for slatbs/clatbs

DOUBLE PRECISION for dlatbs/zlatbs.
The scaling factor s for the triangular system as
described above.
If scale = 0, the matrix A is singular or badly scaled,
and the vector x is an exact or approximate solution to
Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and
cnorm(j) returns the 1-norm of the off-diagonal part of
the j-th column of A.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

?latdf
Uses the LU factorization of the n-by-n
matrix computed by ?getc2 and
computes a contribution to the
reciprocal Dif-estimate.

call slatdf (ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

call dlatdf (ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

call clatdf (ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

call zlatdf (ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

Discussion

The routine ?latdf uses the LU factorization of the n-by-n matrix Z
computed by ?getc2 and computes a contribution to the reciprocal
Dif-estimate by solving Zx = b for x, and choosing the right-hand side b
such that the norm of x is as large as possible. On entry rhs = b holds the
contribution from earlier solved sub-systems, and on return rhs = x.

LAPACK Auxiliary Routines6

6-305

The factorization of Z returned by ?getc2 has the form Z = P L U Q,
where P and Q are permutation matrices. L is lower triangular with unit
diagonal elements and U is upper triangular.

Input Parameters

ijob INTEGER.
ijob = 2: First compute an approximative null-vector e
of Z using ?gecon, e is normalized, and solve for
Zx = ±e - f with the sign giving the greater value of
2-norm(x). This option is about 5 times as expensive as
default.
ijob ≠ 2 (default): Local look ahead strategy where all
entries of the right-hand side b is chosen as either +1 or
-1 .

n INTEGER.
The number of columns of the matrix Z.

z REAL for slatdf/clatdf

DOUBLE PRECISION for dlatdf/zlatdf.
Array, DIMENSION (ldz, n)
On entry, the LU part of the factorization of the n-by-n
matrix Z computed by ?getc2: Z = P L U Q .

ldz INTEGER.
The leading dimension of the array z. lda ≥ max(1, n).

rhs REAL for slatdf/clatdf

DOUBLE PRECISION for dlatdf/zlatdf.
Array, DIMENSION (n).
On entry, rhs contains contributions from other
subsystems.

rdsum REAL for slatdf/clatdf

DOUBLE PRECISION for dlatdf/zlatdf.
On entry, the sum of squares of computed contributions
to the Dif-estimate under computation by ?tgsyl,
where the scaling factor rdscal has been factored out.

6-306

6 Intel® Math Kernel Library Reference Manual

If trans = 'T' , rdsum is not touched.
Note that rdsum only makes sense when ?tgsy2 is
called by ?tgsyl.

rdscal REAL for slatdf/clatdf

DOUBLE PRECISION for dlatdf/zlatdf.
On entry, scaling factor used to prevent overflow in
rdsum. If trans = T', rdscal is not touched.
Note that rdscal only makes sense when ?tgsy2 is
called by ?tgsyl.

ipiv INTEGER.
Array, DIMENSION (n).
The pivot indices; for 1 ≤i ≤n, row i of the matrix has
been interchanged with row ipiv(i).

jpiv INTEGER.
Array, DIMENSION (n).
The pivot indices; for 1 ≤j ≤n, column j of the matrix has
been interchanged with column jpiv(j).

Output Parameters

rhs On exit, rhs contains the solution of the subsystem with
entries according to the value of ijob.

rdsum On exit, the corresponding sum of squares updated with
the contributions from the current sub-system.
If trans = 'T' , rdsum is not touched.

rdscal On exit, rdscal is updated with respect to the current
contributions in rdsum.
If trans = 'T', rdscal is not touched.

LAPACK Auxiliary Routines6

6-307

?latps
Solves a triangular system of equations
with the matrix held in packed storage.

call slatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call dlatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call clatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call zlatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

Discussion

The routine ?latps solves one of the triangular systems

Ax = s b or ATx = s b or AHx = s b (for complex flavors)

with scaling to prevent overflow, where A is an upper or lower triangular
matrix stored in packed form. Here AT denotes the transpose of A, AH

denotes the conjugate transpose of A, x and b are n-element vectors, and s
is a scaling factor, usually less than or equal to 1, chosen so that the
components of x will be less than the overflow threshold. If the unscaled
problem will not cause overflow, the Level 2 BLAS routine ?tpsv is
called. If the matrix A is singular (A(j, j) = 0 for some j), then s is set to 0
and a non-trivial solution to Ax = 0 is returned.

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower
triangular.
= 'U': Upper triangular
= 'L': Lower triangular

trans CHARACTER*1.
Specifies the operation applied to A.
= 'N': Solve Ax = s b (no transpose)
= 'T': Solve ATx = s b (transpose)
= 'C': Solve AHx = s b (conjugate transpose)

6-308

6 Intel® Math Kernel Library Reference Manual

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. On exit, the norms will
be computed and stored in cnorm.

n INTEGER.
The order of the matrix A. n ≥ 0.

ap REAL for slatps

DOUBLE PRECISION for dlatps
COMPLEX for clatps
COMPLEX*16 for zlatps.
Array, DIMENSION (n(n+1)/2). The upper or lower
triangular matrix A, packed columnwise in a linear array.
The j-th column of A is stored in the array ap as
follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1≤ i ≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

x REAL for slatps

DOUBLE PRECISION for dlatps
COMPLEX for clatps
COMPLEX*16 for zlatps.
Array, DIMENSION (n)

On entry, the right hand side b of the triangular system.

cnorm REAL for slatps/clatps

DOUBLE PRECISION for dlatps/zlatps.
Array, DIMENSION (n).
If normin = 'Y', cnorm is an input argument and
cnorm(j) contains the norm of the off-diagonal part of
the j-th column of A. If trans = 'N', cnorm(j) must be
greater than or equal to the infinity-norm, and if
trans = 'T' or 'C', cnorm(j) must be greater than or
equal to the 1-norm.

LAPACK Auxiliary Routines6

6-309

Output Parameters

x On exit, x is overwritten by the solution vector x.

scale REAL for slatps/clatps

DOUBLE PRECISION for dlatps/zlatps.
The scaling factor s for the triangular system as
described above.
If scale = 0, the matrix A is singular or badly scaled,
and the vector x is an exact or approximate solution to
Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and
cnorm(j) returns the 1-norm of the off-diagonal part of
the j-th column of A.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

?latrd
Reduces the first nb rows and columns
of a symmetric/Hermitian matrix A to
real tridiagonal form by an
orthogonal/unitary similarity
transformation.

call slatrd (uplo, n, nb, a, lda, e, tau, w, ldw)

call dlatrd (uplo, n, nb, a, lda, e, tau, w, ldw)

call clatrd (uplo, n, nb, a, lda, e, tau, w, ldw)

call zlatrd (uplo, n, nb, a, lda, e, tau, w, ldw)

Discussion

The routine ?latrd reduces nb rows and columns of a real symmetric or
complex Hermitian matrix A to symmetric/Hermitian tridiagonal form by an
orthogonal/unitary similarity transformation Q' A Q, and returns the

6-310

6 Intel® Math Kernel Library Reference Manual

matrices V and W which are needed to apply the transformation to the
unreduced part of A.
If uplo = 'U', ?latrd reduces the last nb rows and columns of a matrix,
of which the upper triangle is supplied;
if uplo = 'L', ?latrd reduces the first nb rows and columns of a matrix,
of which the lower triangle is supplied.

This is an auxiliary routine called by ?sytrd/?hetrd.

Input Parameters

uplo CHARACTER

Specifies whether the upper or lower triangular part of
the symmetric/Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A.

nb INTEGER.
The number of rows and columns to be reduced.

a REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n) .
On entry, the symmetric/Hermitian matrix A
If uplo = 'U', the leading n-by-n upper triangular part of
a contains the upper triangular part of the matrix A, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part
of a contains the lower triangular part of the matrix A,
and the strictly upper triangular part of a is not
referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ (1,n).

LAPACK Auxiliary Routines6

6-311

ldw INTEGER.
The leading dimension of the output array w.
ldw ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the last nb columns have been
reduced to tridiagonal form, with the diagonal elements
overwriting the diagonal elements of a; the elements
above the diagonal with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors;
if uplo = 'L', the first nb columns have been reduced to
tridiagonal form, with the diagonal elements overwriting
the diagonal elements of a; the elements below the
diagonal with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors.

e REAL for slatrd/clatrd
DOUBLE PRECISION for dlatrd/zlatrd.
If uplo = 'U', e(n-nb:n-1) contains the superdiagonal
elements of the last nb columns of the reduced matrix;
if uplo = 'L', e(1:nb) contains the subdiagonal

elements of the first nb columns of the reduced matrix.

tau REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n).
The scalar factors of the elementary reflectors, stored in
tau(n-nb:n-1) if uplo = 'U', and in tau(1:nb) if uplo
= 'L'.

w REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.

6-312

6 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (lda, n).
The n-by-nb matrix W required to update the unreduced
part of A.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary
reflectors

Q = H(n) H(n-1) . . . H(n-nb+1)

Each H(i) has the form
H(i) = I - tau*v*v'

where tau is a real/complex scalar, and v is a real/complex vector with
v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in a(1:i-1, i), and tau in
tau(i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary
reflectors

Q = H(1) H(2) . . . H(nb)

Each H(i) has the form
H(i) = I - tau*v*v'

where tau is a real/complex scalar, and v is a real/complex vector with
v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in a(i+1:n, i), and tau in
tau(i).

The elements of the vectors v together form the n-by-nb matrix V which is
needed, with W, to apply the transformation to the unreduced part of the
matrix, using a symmetric/Hermitian rank-2k update of the form:
A := A - VW' - WV'.

The contents of a on exit are illustrated by the following examples with
n = 5 and nb = 2:

if uplo = 'U': if uplo = 'L':

a a a v4 v5

a a v4 v5

a 1 v5

d 1

d

d

1 d

v1 1 a

v1 v2 a a

v1 v2 a a a

LAPACK Auxiliary Routines6

6-313

where d denotes a diagonal element of the reduced matrix, a denotes an
element of the original matrix that is unchanged, and vi denotes an element
of the vector defining H(i).

?latrs
Solves a triangular system of equations
with the scale factor set to prevent
overflow.

call slatrs (uplo, trans, diag, normin, n, a, lda, x,
scale, cnorm, info)

call dlatrs (uplo, trans, diag, normin, n, a, lda, x,
scale, cnorm, info)

call clatrs (uplo, trans, diag, normin, n, a, lda, x,
scale, cnorm, info)

call zlatrs (uplo, trans, diag, normin, n, a, lda, x,
scale, cnorm, info)

Discussion

The routine solves one of the triangular systems

Ax = s b or ATx = s b or AHx = s b (for complex flavors)

with scaling to prevent overflow. Here A is an upper or lower triangular
matrix, AT denotes the transpose of A, AH denotes the conjugate transpose
of A, x and b are n-element vectors, and s is a scaling factor, usually less
than or equal to 1, chosen so that the components of x will be less than the
overflow threshold. If the unscaled problem will not cause overflow, the
Level 2 BLAS routine ?trsv is called. If the matrix A is singular (A(j,j)
= 0 for some j), then s is set to 0 and a non-trivial solution to Ax = 0 is
returned.

6-314

6 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower
triangular.
= 'U': Upper triangular
= 'L': Lower triangular

trans CHARACTER*1.
Specifies the operation applied to A.
= 'N': Solve Ax = s b (no transpose)
= 'T': Solve ATx = s b (transpose)
= 'C': Solve AHx = s b (conjugate transpose)

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. On exit, the norms will
be computed and stored in cnorm.

n INTEGER.
The order of the matrix A. n ≥ 0

a REAL for slatrs
DOUBLE PRECISION for dlatrs

COMPLEX for clatrs
COMPLEX*16 for zlatrs.
Array, DIMENSION (lda, n). Contains the triangular
matrix A. If uplo = 'U', the leading n-by-n upper
triangular part of the array a contains the upper
triangular matrix, and the strictly lower triangular part of
a is not referenced. If uplo = 'L', the leading n-by-n
lower triangular part of the array a contains the lower
triangular matrix, and the strictly upper triangular part of
a is not referenced. If diag = 'U', the diagonal elements
of a are also not referenced and are assumed to be 1.

LAPACK Auxiliary Routines6

6-315

lda INTEGER.
The leading dimension of the array a. lda ≥ max (1, n).

x REAL for slatrs
DOUBLE PRECISION for dlatrs

COMPLEX for clatrs
COMPLEX*16 for zlatrs.
Array, DIMENSION (n). On entry, the right hand side b
of the triangular system.

cnorm REAL for slatrs/clatrs)
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (n). If normin = 'Y', cnorm is an
input argument and cnorm (j) contains the norm of the
off-diagonal part of the j-th column of A. If trans =
'N', cnorm (j) must be greater than or equal to the
infinity-norm, and if trans = 'T' or 'C', cnorm(j) must
be greater than or equal to the 1-norm.

Output Parameters

x On exit, x is overwritten by the solution vector x.

scale REAL for slatrs/clatrs)
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (lda, n). The scaling factor s for the
triangular system as described above.
If scale = 0, the matrix A is singular or badly scaled,
and the vector x is an exact or approximate solution to
Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and
cnorm(j) returns the 1-norm of the off-diagonal part of
the j-th column of A.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

6-316

6 Intel® Math Kernel Library Reference Manual

Application Notes

A rough bound on x is computed; if that is less than overflow, ?trsv is
called, otherwise, specific code is used which checks for possible overflow
or divide-by-zero at every operation.

A columnwise scheme is used for solving Ax = b. The basic algorithm if A
is lower triangular is

x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j)*A[j+1:n,j]
end

Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]

Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.

Then for iteration j+1 we have
M(j+1) ≤G(j) / | A(j+1,j+1) |
G(j+1) ≤G(j) + M(j+1)*| A[j+2:n,j+1] |
≤G(j) (1 + cnorm(j+1) / | A(j+1,j+1) | ,

where cnorm(j+1) is greater than or equal to the infinity-norm of column
j+1 of A, not counting the diagonal. Hence

and

Since |x(j)| ≤M(j), we use the Level 2 BLAS routine ?trsv if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the columnwise
method can be performed without fear of overflow. If the computed bound

G j() G 0() 1 cnorm i() A i i(,)⁄+()
1 i j≤ ≤
∏≤

x j() G 0() A j j(,)⁄() 1 cnorm i() A i i(,)⁄+()
1 i j≤ ≤
∏≤

LAPACK Auxiliary Routines6

6-317

is greater than a large constant, x is scaled to prevent overflow, but if the
bound overflows, x is set to 0, x(j) to 1, and scale to 0, and a non-trivial
solution to Ax = 0 is found.

Similarly, a row-wise scheme is used to solve ATx = b or AHx = b. The
basic algorithm for A upper triangular is

for j = 1, ..., n
x(j) := (b(j) - A[1:j-1,j]' x[1:j-1]) / A(j,j)
end

We simultaneously compute two bounds
G(j) = bound on (b(i) - A[1:i-1,i]'*x[1:i-1]), 1≤i≤ j
M(j) = bound on x(i), 1≤i≤ j

The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we add the
constraint G(j) ≥ G(j-1) and M(j) ≥ M(j-1) for j ≥ 1.
Then the bound on x(j) is

M(j) ≤ M(j-1) *(1 + cnorm(j)) / | A(j,j) |

and we can safely call ?trsv if 1/M(n) and 1/G(n) are both greater than
max(underflow, 1/overflow).

?latrz
Factors an upper trapezoidal matrix by
means of orthogonal/unitary
transformations.

call slatrz (m, n, l, a, lda, tau, work)

call dlatrz (m, n, l, a, lda, tau, work)

call clatrz (m, n, l, a, lda, tau, work)

call zlatrz (m, n, l, a, lda, tau, work)

M 0() 1 cnorm i() A i i(,)⁄+()
1 i j≤ ≤
∏≤

6-318

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine ?latrz factors the m-by-(m+l) real/complex upper trapezoidal
matrix
[A1 A2] = [A(1:m,1:m) A(1:m, n-l+1:n)]

as (R 0)*Z, by means of orthogonal/unitary transformations. Z is an
(m+l)-by-(m+l) orthogonal/unitary matrix and R and A1 are m-by-m upper
triangular matrices.

Input Parameters

m INTEGER.
The number of rows of the matrix A. m ≥ 0.

n INTEGER.
The number of columns of the matrix A. n ≥ 0.

l INTEGER.
The number of columns of the matrix A containing the
meaningful part of the Householder vectors.
n-m ≥ l ≥ 0.

a REAL for slatrz

DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (lda, n).
On entry, the leading m-by-n upper trapezoidal part of
the array a must contain the matrix to be factorized.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,m).

work REAL for slatrz

DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Workspace array, DIMENSION (m).

LAPACK Auxiliary Routines6

6-319

Output Parameters

a On exit, the leading m-by-m upper triangular part of a
contains the upper triangular matrix R, and elements
n-l+1 to n of the first m rows of a, with the array tau,
represent the orthogonal/unitary matrix Z as a product of
m elementary reflectors.

tau REAL for slatrz

DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (m). The scalar factors of the
elementary reflectors.

Application Notes

The factorization is obtained by Householder's method. The k-th
transformation matrix, Z(k), which is used to introduce zeros into the
(m - k + 1)-th row of A, is given in the form

where

T(k) = I - tau* u(k)* u(k)',

tau is a scalar and z(k) is an l-element vector. tau and z(k)
are chosen to annihilate the elements of the k-th row of A2.
The scalar tau is returned in the k-th element of tau and the vector
u(k) in the k-th row of A2, such that the elements of z(k) are
in a(k, l + 1), ..., a(k, n). The elements of R are returned in
the upper triangular part of A1.
Z is given by

Z = Z(1) Z(2) ... Z(m).

Z k() I 0

0 T k()
=

u k()
1

0

z k()

=

6-320

6 Intel® Math Kernel Library Reference Manual

?lauu2
Computes the product UUH or LHL,
where U and L are upper or lower
triangular matrices (unblocked
algorithm).

call slauu2 (uplo, n, a, lda, info)

call dlauu2 (uplo, n, a, lda, info)

call clauu2 (uplo, n, a, lda, info)

call zlauu2 (uplo, n, a, lda, info)

Discussion

The routine ?lauu2 computes the product UU' or L'L, where the triangular
factor U or L is stored in the upper or lower triangular part of the array a.
If uplo = 'U' or 'u' , then the upper triangle of the result is stored,
overwriting the factor U in a.
If uplo = 'L' or 'l' , then the lower triangle of the result is stored,
overwriting the factor L in a.

This is the unblocked form of the algorithm, calling Level 2 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the triangular factor stored in the
array a is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the triangular factor U or L. n ≥ 0.

a REAL for slauu2

DOUBLE PRECISION for dlauu2
COMPLEX for clauu2

LAPACK Auxiliary Routines6

6-321

COMPLEX*16 for zlauu2.
Array, DIMENSION (lda, n).On entry, the triangular
factor U or L.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the upper triangle of a is
overwritten with the upper triangle of the product UU' ;
if uplo = 'L', the lower triangle of a is overwritten with
the lower triangle of the product L'L.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

?lauum
Computes the product UUH or LHL,
where U and L are upper or lower
triangular matrices.

call slauum (uplo, n, a, lda, info)

call dlauum (uplo, n, a, lda, info)

call clauum (uplo, n, a, lda, info)

call zlauum (uplo, n, a, lda, info)

Discussion

The routine ?lauum computes the product UU' or L'L, where the triangular
factor U or L is stored in the upper or lower triangular part of the array a.

If uplo = 'U' or 'u' , then the upper triangle of the result is stored,
overwriting the factor U in a.
If uplo = 'L' or 'l' , then the lower triangle of the result is stored,
overwriting the factor L in a.

6-322

6 Intel® Math Kernel Library Reference Manual

This is the blocked form of the algorithm, calling Level 3 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the triangular factor stored in the
array a is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the triangular factor U or L. n ≥ 0.

a REAL for slauum
DOUBLE PRECISION for dlauum
COMPLEX for clauum
COMPLEX*16 for zlauum .
Array, DIMENSION (lda, n). On entry, the triangular
factor U or L.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the upper triangle of a is
overwritten with the upper triangle of the product UU' ;
if uplo = 'L', the lower triangle of a is overwritten with
the lower triangle of the product L'L.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

LAPACK Auxiliary Routines6

6-323

?org2l/?ung2l
Generates all or part of the
orthogonal/unitary matrix Q from a QL
factorization determined by ?geqlf
(unblocked algorithm).

call sorg2l (m, n, k, a, lda, tau, work, info)

call dorg2l (m, n, k, a, lda, tau, work, info)

call cung2l (m, n, k, a, lda, tau, work, info)

call zung2l (m, n, k, a, lda, tau, work, info)

Discussion

The routine ?org2l/?ung2l generates an m-by-n real/complex matrix Q
with orthonormal columns, which is defined as the last n columns of a
product of k elementary reflectors of order m:

Q = H(k) . . . H(2) H(1) as returned by ?geqlf.

Input Parameters

m INTEGER.
The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. m ≥ n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product
defines the matrix Q. n ≥ k ≥ 0.

a REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Array, DIMENSION (lda,n).
On entry, the (n-k+i)-th column must contain the vector

6-324

6 Intel® Math Kernel Library Reference Manual

which defines the elementary reflector H(i), for
i = 1,2,...,k, as returned by ?geqlf in the last k columns
of its array argument a.

lda INTEGER.
The first dimension of the array a. lda ≥ max(1,m).

tau REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?geqlf.

work REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Workspace array, DIMENSION (n).

Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value

?org2r/?ung2r
Generates all or part of the
orthogonal/unitary matrix Q from a QR
factorization determined by ?geqrf
(unblocked algorithm).

call sorg2r (m, n, k, a, lda, tau, work, info)

call dorg2r (m, n, k, a, lda, tau, work, info)

LAPACK Auxiliary Routines6

6-325

call cung2r (m, n, k, a, lda, tau, work, info)

call zung2r (m, n, k, a, lda, tau, work, info)

Discussion

The routine ?org2r/?ung2r generates an m-by-n real/complex matrix Q
with orthonormal columns, which is defined as the first n columns of a
product of k elementary reflectors of order m

Q = H(1) H(2) . . . H(k)

as returned by ?geqrf.

Input Parameters

m INTEGER.
The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. m ≥ n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product
defines the matrix Q. n ≥ k ≥ 0.

a REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
COMPLEX*16 for zung2r.
Array, DIMENSION (lda, n).
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by ?geqrf in the first k columns of its array
argument a.

lda INTEGER.
The first DIMENSION of the array a. lda ≥ max(1,m).

tau REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
COMPLEX*16 for zung2r.

6-326

6 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?geqrf.

work REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
COMPLEX*16 for zung2r.
Workspace array, DIMENSION (n).

Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value

?orgl2/?ungl2
Generates all or part of the
orthogonal/unitary matrix Q from an
LQ factorization determined by ?gelqf
(unblocked algorithm).

call sorgl2 (m, n, k, a, lda, tau, work, info)

call dorgl2 (m, n, k, a, lda, tau, work, info)

call cungl2 (m, n, k, a, lda, tau, work, info)

call zungl2 (m, n, k, a, lda, tau, work, info)

Discussion

The routine ?orgl2/?ungl2 generates a m-by-n real/complex matrix Q
with orthonormal rows, which is defined as the first m rows of a product of
k elementary reflectors of order n

Q = H(k) . . . H(2) H(1) or Q = H(k)′ . . . H(2)′ H(1)′
as returned by ?gelqf.

LAPACK Auxiliary Routines6

6-327

Input Parameters

m INTEGER.
The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. n ≥ m.

k INTEGER.
The number of elementary reflectors whose product
defines the matrix Q. m ≥ k ≥ 0.

a REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Array, DIMENSION (lda, n). On entry, the i-th row must
contain the vector which defines the elementary
reflector H(i), for i = 1,2,...,k, as returned by ?gelqf in
the first k rows of its array argument a.

lda INTEGER.
The first dimension of the array a. lda ≥ max(1,m).

tau REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?gelqf.

work REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Workspace array, DIMENSION (m).

Output Parameters

a On exit, the m-by-n matrix Q.

6-328

6 Intel® Math Kernel Library Reference Manual

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value.

?orgr2/?ungr2
Generates all or part of the
orthogonal/unitary matrix Q from an
RQ factorization determined by ?gerqf
(unblocked algorithm).

call sorgr2 (m, n, k, a, lda, tau, work, info)

call dorgr2 (m, n, k, a, lda, tau, work, info)

call cungr2 (m, n, k, a, lda, tau, work, info)

call zungr2 (m, n, k, a, lda, tau, work, info)

Discussion

The routine ?orgr2/?ungr2 generates an m-by-n real matrix Q with
orthonormal rows, which is defined as the last m rows of a product of k
elementary reflectors of order n
Q = H(1) H(2) . . . H(k) or Q = H(1)′ H(2)′ . . . H(k)′
as returned by ?gerqf.

Input Parameters

m INTEGER. The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. n ≥ m.

k INTEGER.
The number of elementary reflectors whose product
defines the matrix Q. m ≥ k ≥ 0.

a REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2

LAPACK Auxiliary Routines6

6-329

COMPLEX*16 for zungr2.
Array, DIMENSION (lda, n).On entry, the (m-k+i)-th
row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
?gerqf in the last k rows of its array argument a.

lda INTEGER.
The first dimension of the array a. lda ≥ max(1,m).

tau REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
COMPLEX*16 for zungr2.
Array, DIMENSION (k).tau(i) must contain the scalar
factor of the elementary reflector H(i), as returned by
?gerqf.

work REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
COMPLEX*16 for zungr2.
Workspace array, DIMENSION (m).

Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument has an illegal value

6-330

6 Intel® Math Kernel Library Reference Manual

?orm2l/?unm2l
Multiplies a general matrix by the
orthogonal/unitary matrix from a QL
factorization determined by ?geqlf
(unblocked algorithm).

call sorm2l (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dorm2l (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunm2l (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunm2l (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

Discussion

The routine ?orm2l/?unm2l overwrites the general real/complex m-by-n
matrix C with

Q*C if side = 'L' and trans = 'N', or
Q'*C if side = 'L' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors), or
C*Q if side = 'R' and trans = 'N', or
C*Q' if side = 'R' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the
product of k elementary reflectors

Q = H(k) . . . H(2) H(1)

as returned by ?geqlf. Q is of order m if side = 'L' and of order n if side
= 'R'.

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

LAPACK Auxiliary Routines6

6-331

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex

flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product
defines the matrix Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (lda,k).The i-th column must
contain the vector which defines the elementary
reflector H(i), for i = 1,2,...,k, as returned by ?geqlf in
the last k columns of its array argument a. The array a is
modified by the routine but restored on exit.

lda INTEGER.
The leading dimension of the array a.
If side = 'L', lda ≥ max(1, m);
if side = 'R', lda ≥ max(1, n).

tau REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (k). tau(i) must contain the scalar
factor of the elementary reflector H(i), as returned by
?geqlf.

6-332

6 Intel® Math Kernel Library Reference Manual

c REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (ldc, n).On entry, the m-by-n matrix
C.

ldc INTEGER.
The leading dimension of the array C. ldc ≥ max(1,m).

work REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Workspace array, DIMENSION:
(n) if side = 'L',
(m) if side = 'R'.

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

?orm2r/?unm2r
Multiplies a general matrix by the
orthogonal/unitary matrix from a QR
factorization determined by ?geqrf
(unblocked algorithm).

call sorm2r (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dorm2r (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunm2r (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunm2r (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

LAPACK Auxiliary Routines6

6-333

Discussion

The routine ?orm2r/?unm2r overwrites the general real/complex m-by-n
matrix C with

Q*C if side = 'L' and trans = 'N', or
Q'*C if side = 'L' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors), or
C*Q if side = 'R' and trans = 'N', or
C*Q' if side = 'R' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the
product of k elementary reflectors

Q = H(1) H(2) . . . H(k)

as returned by ?geqrf. Q is of order m if side = 'L' and of order n if side
= 'R'.

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex

flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product
defines the matrix Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

6-334

6 Intel® Math Kernel Library Reference Manual

a REAL for sorm2r
DOUBLE PRECISION for dorm2r

COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (lda,k).The i-th column must
contain the vector which defines the elementary
reflector H(i), for i = 1,2,...,k, as returned by ?geqrf in
the first k columns of its array argument a. The array a

is modified by the routine but restored on exit.

lda INTEGER.
The leading dimension of the array a.
If side = 'L', lda ≥ max(1, m);
if side = 'R', lda ≥ max(1, n).

tau REAL for sorm2r
DOUBLE PRECISION for dorm2r

COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?geqrf.

c REAL for sorm2r
DOUBLE PRECISION for dorm2r

COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (ldc, n). On entry, the m-by-n
matrix C.

ldc INTEGER.
The leading dimension of the array C. ldc ≥ max(1,m).

work REAL for sorm2r
DOUBLE PRECISION for dorm2r

COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'.

LAPACK Auxiliary Routines6

6-335

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

?orml2/?unml2
Multiplies a general matrix by the
orthogonal/unitary matrix from a LQ
factorization determined by ?gelqf
(unblocked algorithm).

call sorml2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dorml2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunml2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunml2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

Discussion

The routine ?orml2/?unml2 overwrites the general real/complex m-by-n
matrix C with

Q*C if side = 'L' and trans = 'N', or
Q'*C if side = 'L' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors), or
C*Q if side = 'R' and trans = 'N', or
C*Q' if side = 'R' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the
product of k elementary reflectors

Q = H(k) . . . H(2) H(1) or Q = H(k)′ . . . H(2)′ H(1)′
as returned by ?gelqf. Q is of order m if side = 'L' and of order n if side
= 'R'.

6-336

6 Intel® Math Kernel Library Reference Manual

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex

flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product
defines the matrix Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
?gelqf in the first k rows of its array argument a. The
array a is modified by the routine but restored on exit.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,k).

tau REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.

LAPACK Auxiliary Routines6

6-337

Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?gelqf.

c REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION (ldc, n)
On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array c. ldc ≥ max(1,m).

work REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

?ormr2/?unmr2
Multiplies a general matrix by the
orthogonal/unitary matrix from a RQ
factorization determined by ?gerqf
(unblocked algorithm).

call sormr2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

6-338

6 Intel® Math Kernel Library Reference Manual

call dormr2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunmr2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunmr2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

Discussion

The routine ?ormr2/?unmr2 overwrites the general real/complex m-by-n
matrix C with

Q*C if side = 'L' and trans = 'N', or
Q'*C if side = 'L' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors), or
C*Q if side = 'R' and trans = 'N', or
C*Q' if side = 'R' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the
product of k elementary reflectors

Q = H(1) H(2) . . . H(k) or Q = H(1)′ H(2)′ . . . H(k)′
as returned by ?gerqf. Q is of order m if side = 'L' and of order n if side
= 'R'.

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex

flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

LAPACK Auxiliary Routines6

6-339

k INTEGER.
The number of elementary reflectors whose product
defines the matrix Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
?gerqf in the last k rows of its array argument a. The
array a is modified by the routine but restored on exit.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,k).

tau REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?gerqf.

c REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Array, DIMENSION (ldc, n).
On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array C. ldc ≥ max(1,m).

6-340

6 Intel® Math Kernel Library Reference Manual

work REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

?ormr3/?unmr3
Multiplies a general matrix by the
orthogonal/unitary matrix from a RZ
factorization determined by ?tzrzf
(unblocked algorithm).

call sormr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call dormr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call cunmr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call zunmr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

Discussion

The routine ?ormr3/?unmr3 overwrites the general real/complex m-by-n
matrix C with

Q*C if side = 'L' and trans = 'N', or
Q'*C if side = 'L' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors), or

LAPACK Auxiliary Routines6

6-341

C*Q if side = 'R' and trans = 'N', or
C*Q' if side = 'R' and trans = 'T' (for real flavors) or

trans = 'C' (for complex flavors)

where Q is a real orthogonal or complex unitary matrix defined as the
product of k elementary reflectors

Q = H(1) H(2) . . . H(k)

as returned by ?tzrzf. Q is of order m if side = 'L' and of order n if side
= 'R'.

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex

flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product
defines the matrix Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

l INTEGER.
The number of columns of the matrix A containing the
meaningful part of the Householder reflectors.
If side = 'L', m ≥ l ≥ 0,
if side = 'R', n ≥ l ≥ 0.

6-342

6 Intel® Math Kernel Library Reference Manual

a REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
?tzrzf in the last k rows of its array argument a. The
array a is modified by the routine but restored on exit.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,k).

tau REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ?tzrzf.

c REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Array, DIMENSION (ldc, n).
On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array c. ldc ≥ max(1,m).

work REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'.

LAPACK Auxiliary Routines6

6-343

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value

?pbtf2
Computes the Cholesky factorization of
a symmetric/ Hermitian positive definite
band matrix (unblocked algorithm).

call spbtf2 (uplo, n, kd, ab, ldab, info)

call dpbtf2 (uplo, n, kd, ab, ldab, info)

call cpbtf2 (uplo, n, kd, ab, ldab, info)

call zpbtf2 (uplo, n, kd, ab, ldab, info)

Discussion

The routine computes the Cholesky factorization of a real symmetric or
complex Hermitian positive definite band matrix A. The factorization has
the form
A = U' U , if uplo = 'U', or
A = L L', if uplo = 'L',

where U is an upper triangular matrix, U' is the transpose of U, and L is
lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of
the symmetric/Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

6-344

6 Intel® Math Kernel Library Reference Manual

n INTEGER.
The order of the matrix A. n ≥ 0.

kd INTEGER.
The number of super-diagonals of the matrix A if uplo
= 'U , or the number of sub-diagonals if uplo = 'L'.
kd ≥ 0.

ab REAL for spbtf2
DOUBLE PRECISION for dpbtf2
COMPLEX for cpbtf2
COMPLEX*16 for zpbtf2.
Array, DIMENSION (ldab, n).
On entry, the upper or lower triangle of the symmetric/
Hermitian band matrix A, stored in the first kd+1 rows
of the array. The j-th column of A is stored in the j-th
column of the array ab as follows:
if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for
max(1,j-kd) ≤ i ≤ j;
if uplo = 'L', ab(1+i-j,j) = A(i,j) for
j ≤ i ≤ min(n,j+kd).

ldab INTEGER.
The leading dimension of the array ab. ldab ≥ kd+1.

Output Parameters

ab On exit, if info = 0, the triangular factor U or L from
the Cholesky factorization A = U' U or A = L L' of the
band matrix A, in the same storage format as A.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.

LAPACK Auxiliary Routines6

6-345

?potf2
Computes the Cholesky factorization of
a symmetric/Hermitian positive definite
matrix (unblocked algorithm).

call spotf2 (uplo, n, a, lda, info)

call dpotf2 (uplo, n, a, lda, info)

call cpotf2 (uplo, n, a, lda, info)

call zpotf2 (uplo, n, a, lda, info)

Discussion

The routine ?potf2 computes the Cholesky factorization of a real
symmetric or complex Hermitian positive definite matrix A. The
factorization has the form
A = U' U , if uplo = 'U', or
A = L L', if uplo = 'L',
where U is an upper triangular matrix and L is lower triangular.

This is the unblocked version of the algorithm, calling Level 2 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of
the symmetric/Hermitian matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

a REAL for spotf2
DOUBLE PRECISION or dpotf2
COMPLEX for cpotf2
COMPLEX*16 for zpotf2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.

6-346

6 Intel® Math Kernel Library Reference Manual

If uplo = 'U', the leading n-by-n upper triangular part of
a contains the upper triangular part of the matrix A, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and
the strictly upper triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, if info = 0, the factor U or L from the
Cholesky factorization A = U' U or A = L L'.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, the leading minor of order k is not
positive definite, and the factorization could not be
completed.

?ptts2
Solves a tridiagonal system of the form
AX=B using the L D LH factorization
computed by ?pttrf.

call sptts2 (n, nrhs, d, e, b, ldb)

call dptts2 (n, nrhs, d, e, b, ldb)

call cptts2 (iuplo, n, nrhs, d, e, b, ldb)

call zptts2 (iuplo, n, nrhs, d, e, b, ldb)

LAPACK Auxiliary Routines6

6-347

Discussion

The routine ?ptts2 solves a tridiagonal system of the form
A X = B

Real flavors sptts2/dptts2 use the L D L’ factorization of A computed
by spttrf/dpttrf, and complex flavors cptts2/zptts2 use the
U'D U or L D L' factorization of A computed by cpttrf/zpttrf.
D is a diagonal matrix specified in the vector d, U (or L) is a unit
bidiagonal matrix whose superdiagonal (subdiagonal) is specified in the
vector e, and X and B are n-by-nrhs matrices.

Input Parameters

iuplo INTEGER. Used with complex flavors only.
Specifies the form of the factorization and whether the
vector e is the superdiagonal of the upper bidiagonal
factor U or the subdiagonal of the lower bidiagonal
factor L.
= 1: A = U' D U, e is the superdiagonal of U;
= 0: A = L D L', e is the subdiagonal of L

n INTEGER.
The order of the tridiagonal matrix A. n ≥ 0.

nrhs INTEGER.
The number of right hand sides, that is, the number of
columns of the matrix B. nrhs ≥ 0.

d REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (n).
The n diagonal elements of the diagonal matrix D from
the factorization of A.

e REAL for sptts2
DOUBLE PRECISION for dptts2
COMPLEX for cptts2

COMPLEX*16 for zptts2.
Array, DIMENSION (n-1).
Contains the (n-1) subdiagonal elements of the unit
bidiagonal factor L from the LDL' factorization of A (for

6-348

6 Intel® Math Kernel Library Reference Manual

real flavors, or for complex flavors when iuplo = 0).
For complex flavors when iuplo = 1, e contains the
(n-1) superdiagonal elements of the unit bidiagonal
factor U from the factorization A = U'DU.

b REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (ldb, nrhs).
On entry, the right hand side vectors B for the system of
linear equations.

ldb INTEGER.
The leading dimension of the array B. ldb ≥ max(1,n).

Output Parameters

b On exit, the solution vectors, X.

?rscl
Multiplies a vector by the reciprocal of
a real scalar.

call srscl (n, sa, sx, incx)

call drscl (n, sa, sx, incx)

call csrscl (n, sa, sx, incx)

call zdrscl (n, sa, sx, incx)

Discussion

The routine ?rscl multiplies an n-element real/complex vector x by the
real scalar 1/a. This is done without overflow or underflow as long as the
final result x/a does not overflow or underflow.

Input Parameters

n INTEGER.
The number of components of the vector x.

LAPACK Auxiliary Routines6

6-349

sa REAL for srscl/csrscl

DOUBLE PRECISION for drscl/zdrscl.
The scalar a which is used to divide each component of
the vector x. sa must be ≥ 0, or the subroutine will
divide by zero.

sx REAL for srscl
DOUBLE PRECISION for drscl
COMPLEX for csrscl
COMPLEX*16 for zdrscl.
Array, DIMENSION (1+(n-1)*abs(incx)).
The n-element vector x.

incx INTEGER.
The increment between successive values of the vector
sx.
If incx > 0, sx(1) = x(1) and
sx(1+(i-1)*incx) = x(i), 1< i ≤n.

Output Parameters

sx On exit, the result x/a.

?sygs2/?hegs2
Reduces a symmetric/Hermitian definite
generalized eigenproblem to standard
form, using the factorization results
obtained from ?potrf (unblocked
algorithm).

call ssygs2 (itype, uplo, n, a, lda, b, ldb, info)

call dsygs2 (itype, uplo, n, a, lda, b, ldb, info)

call chegs2 (itype, uplo, n, a, lda, b, ldb, info)

call zhegs2 (itype, uplo, n, a, lda, b, ldb, info)

6-350

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine ?sygs2/?hegs2 reduces a real symmetric-definite or a
complex Hermitian-definite generalized eigenproblem to standard form.
If itype = 1, the problem is

Ax = λBx,
and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L').

If itype = 2 or 3, the problem is
ABx = λx or B Ax =λx,

and A is overwritten by UAU′ or L′ AL. B must have been previously
factorized as U' U or L L' by ?potrf.

Input Parameters

itype INTEGER.
= 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
= 2 or 3: compute UAU' or L' AL.

uplo CHARACTER

Specifies whether the upper or lower triangular part of
the symmetric/Hermitian matrix A is stored, and how B
has been factorized.
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrices A and B. n ≥ 0.

a REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
COMPLEX*16 for zhegs2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
a contains the upper triangular part of the matrix A, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and
the strictly upper triangular part of a is not referenced.

LAPACK Auxiliary Routines6

6-351

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

b REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
COMPLEX*16 for zhegs2.
Array, DIMENSION (ldb, n).
The triangular factor from the Cholesky factorization of
B as returned by ?potrf.

ldb INTEGER.
The leading dimension of the array B. ldb ≥ max(1,n).

Output Parameters

a On exit, if info = 0, the transformed matrix, stored in
the same format as A.

info INTEGER.
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal
value.

?sytd2/?hetd2
Reduces a symmetric/Hermitian matrix
to real symmetric tridiagonal form by
an orthogonal/unitary similarity
transformation (unblocked algorithm).

call ssytd2 (uplo, n, a, lda, d, e, tau, info)

call dsytd2 (uplo, n, a, lda, d, e, tau, info)

call chetd2 (uplo, n, a, lda, d, e, tau, info)

call zhetd2 (uplo, n, a, lda, d, e, tau, info)

6-352

6 Intel® Math Kernel Library Reference Manual

Discussion

The routine ?sytd2/?hetd2 reduces a real symmetric/complex Hermitian
matrix A to real symmetric tridiagonal form T by an orthogonal/unitary
similarity transformation: Q' AQ = T.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of
the symmetric/Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

a REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
COMPLEX*16 for zhetd2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
a contains the upper triangular part of the matrix A, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and
the strictly upper triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the diagonal and first
superdiagonal of a are overwritten by the corresponding
elements of the tridiagonal matrix T, and the elements
above the first superdiagonal, with the array tau,
represent the orthogonal/unitary matrix Q as a product
of elementary reflectors;

LAPACK Auxiliary Routines6

6-353

if uplo = 'L', the diagonal and first subdiagonal of a are
overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements below the first
subdiagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary
reflectors.

d REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n).
The diagonal elements of the tridiagonal matrix T:
d(i) = a(i,i).

e REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n-1).
The off-diagonal elements of the tridiagonal matrix T:
e(i) = a(i,i+1) if uplo = 'U',
e(i) = a(i+1,i) if uplo = 'L'.

tau REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
COMPLEX*16 for zhetd2.
Array, DIMENSION (n-1).
The scalar factors of the elementary reflectors .

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal
value.

6-354

6 Intel® Math Kernel Library Reference Manual

?sytf2
Computes the factorization of a
real/complex symmetric indefinite
matrix, using the diagonal pivoting
method (unblocked algorithm).

call ssytf2 (uplo, n, a, lda, ipiv, info)

call dsytf2 (uplo, n, a, lda, ipiv, info)

call сsytf2 (uplo, n, a, lda, ipiv, info)

call zsytf2 (uplo, n, a, lda, ipiv, info)

Discussion

The routine ?sytf2 computes the factorization of a real/complex
symmetric matrix A using the Bunch-Kaufman diagonal pivoting method:

A = U D U' or A = L D L'

where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, U' is the transpose of U, and D is symmetric and block diagonal
with 1-by-1 and 2-by-2 diagonal blocks.

This is the unblocked version of the algorithm, calling Level 2 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of
the symmetric matrix A is stored
= 'U': Upper triangular

= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

a REAL for ssytf2
DOUBLE PRECISION for dsytf2
COMPLEX for csytf2
COMPLEX*16 for zsytf2.
Array, DIMENSION (lda, n).

LAPACK Auxiliary Routines6

6-355

On entry, the symmetric matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of
a contains the upper triangular part of the matrix A, and
the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and
the strictly upper triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, the block diagonal matrix D and the multipliers
used to obtain the factor U or L.

ipiv INTEGER.
Array, DIMENSION (n).

Details of the interchanges and the block structure of D
If ipiv(k) > 0, then rows and columns k and ipiv(k)
were interchanged and D(k,k) is a 1-by-1 diagonal
block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows
and columns k-1 and -ipiv(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows
and columns k+1 and -ipiv(k) were interchanged and
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, D(k,k) is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular, and division by zero will
occur if it is used to solve a system of equations.

6-356

6 Intel® Math Kernel Library Reference Manual

?hetf2
Computes the factorization of a complex
Hermitian matrix, using the diagonal
pivoting method (unblocked algorithm).

call chetf2 (uplo, n, a, lda, ipiv, info)

call zhetf2 (uplo, n, a, lda, ipiv, info)

Discussion

The routine computes the factorization of a complex Hermitian matrix A
using the Bunch-Kaufman diagonal pivoting method:

A = U D U' or A = L D L'

where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, U' is the conjugate transpose of U, and D is Hermitian and block
diagonal with 1-by-1 and 2-by-2 diagonal blocks.

This is the unblocked version of the algorithm, calling Level 2 BLAS.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of
the Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

a COMPLEX for chetf2
COMPLEX*16 for zhetf2.
Array, DIMENSION (lda, n).
On entry, the Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part
of a contains the upper triangular part of the matrix A,
and the strictly lower triangular part of a is not
referenced.

LAPACK Auxiliary Routines6

6-357

If uplo = 'L', the leading n-by-n lower triangular part of
a contains the lower triangular part of the matrix A, and
the strictly upper triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, the block diagonal matrix D and the multipliers
used to obtain the factor U or L.

ipiv INTEGER.
Array, DIMENSION (n).

Details of the interchanges and the block structure of D
If ipiv(k) > 0, then rows and columns k and ipiv(k)
were interchanged and D(k,k) is a 1-by-1 diagonal
block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows
and columns k-1 and -ipiv(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows
and columns k+1 and -ipiv(k) were interchanged and
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, D(k,k) is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular, and division by zero will
occur if it is used to solve a system of equations.

6-358

6 Intel® Math Kernel Library Reference Manual

?tgex2
Swaps adjacent diagonal blocks in an
upper (quasi) triangular matrix pair by
an orthogonal/unitary equivalence
transformation.

call stgex2 (wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
ldz, j1, n1, n2, work, lwork, info)

call dtgex2 (wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
ldz, j1, n1, n2, work, lwork, info)

call ctgex2 (wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
ldz, j1, info)

call ztgex2 (wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
ldz, j1, info)

Discussion

The real routines stgex2/dtgex2 swap adjacent diagonal blocks (A11,
B11) and (A22, B22) of size 1-by-1 or 2-by-2 in an upper (quasi) triangular
matrix pair (A, B) by an orthogonal equivalence transformation. (A, B)
must be in generalized real Schur canonical form (as returned by
sgges/dgges), that is, A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.

The complex routines ctgex2/ztgex2 swap adjacent diagonal 1-by-1
blocks (A11, B11) and (A22, B22) in an upper triangular matrix pair (A, B)
by an unitary equivalence transformation. (A, B) must be in generalized
Schur canonical form, that is, A and B are both upper triangular.

All routines optionally update the matrices Q and Z of generalized Schur
vectors:

Q(in) *A(in)*Z(in)' = Q(out)*A(out)* Z(out)'
Q(in)*B(in)*Z(in)' = Q(out)*B(out)*Z(out)'

LAPACK Auxiliary Routines6

6-359

Input Parameters

wantq LOGICAL.
If wantq = .TRUE. : update the left transformation
matrix Q;
If wantq = .FALSE.: do not update Q.

wantz LOGICAL.
If wantz = .TRUE. : update the right transformation
matrix Z;
If wantz = .FALSE.: do not update Z.

n INTEGER.
The order of the matrices A and B. n ≥ 0.

a, b REAL for stgex2

DOUBLE PRECISION for dtgex2

COMPLEX for ctgex2
COMPLEX*16 for ztgex2.
Arrays, DIMENSION (lda, n) and (ldb, n), respectively.
On entry, the matrices A and B in the pair (A, B).

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

ldb INTEGER.
The leading dimension of the array b. ldb ≥ max(1,n).

q, z REAL for stgex2

DOUBLE PRECISION for dtgex2

COMPLEX for ctgex2
COMPLEX*16 for ztgex2.
Arrays, DIMENSION (ldq, n) and (ldz, n), respectively.
On entry, if wantq = .TRUE., q contains the
orthogonal/unitary matrix Q, and if wantz = .TRUE.,
z contains the orthogonal/unitary matrix Z.

ldq INTEGER.
The leading dimension of the array q. ldq ≥ 1.
If wantq = .TRUE., ldq ≥ n.

6-360

6 Intel® Math Kernel Library Reference Manual

ldz INTEGER.
The leading dimension of the array z. ldz ≥ 1.
If wantz = .TRUE., ldz ≥ n.

j1 INTEGER.
The index to the first block (A11, B11). 1 ≤j1 ≤n.

n1 INTEGER. Used with real flavors only.
The order of the first block (A11, B11). n1 = 0, 1 or 2.

n2 INTEGER. Used with real flavors only.
The order of the second block (A22, B22). n2 = 0, 1 or 2.

work REAL for stgex2

DOUBLE PRECISION for dtgex2.
Workspace array, DIMENSION (lwork). Used with real
flavors only.

lwork INTEGER.
The dimension of the array work.
lwork ≥ max(n*(n2+n1), 2*(n2+n1)2)

Output Parameters

a On exit, the updated matrix A.

b On exit, the updated matrix B.

q On exit, the updated matrix Q.
Not referenced if wantq = .FALSE..

z On exit, the updated matrix Z.
Not referenced if wantz = .FALSE..

info INTEGER.
=0: Successful exit
For stgex2/dtgex2: if info = 1, the transformed
matrix (A, B) would be too far from generalized Schur
form; the blocks are not swapped and (A, B) and (Q, Z)
are unchanged. The problem of swapping is too
ill-conditioned. If info = -16: lwork is too small.
Appropriate value for lwork is returned in work(1).

LAPACK Auxiliary Routines6

6-361

For ctgex2/ztgex2: if info = 1, the transformed
matrix pair (A, B) would be too far from generalized
Schur form; the problem is ill-conditioned. (A, B) may
have been partially reordered, and ilst points to the
first row of the current position of the block being
moved.

?tgsy2
Solves the generalized Sylvester
equation (unblocked algorithm).

call stgsy2 (trans, ijob, m, n, a, lda, b, ldb, c, ldc,
d, ldd, e, lde, f, ldf, scale, rdsum, rdscal,
iwork, pq, info)

call dtgsy2 (trans, ijob, m, n, a, lda, b, ldb, c, ldc,
d, ldd, e, lde, f, ldf, scale, rdsum, rdscal,
iwork, pq, info)

call ctgsy2 (trans, ijob, m, n, a, lda, b, ldb, c, ldc,
d, ldd, e, lde, f, ldf, scale, rdsum, rdscal,
info)

call ztgsy2 (trans, ijob, m, n, a, lda, b, ldb, c, ldc,
d, ldd, e, lde, f, ldf, scale, rdsum, rdscal,
info)

Discussion

The routine ?tgsy2 solves the generalized Sylvester equation:
AR - L B = scale*C (1)

DR - L E = scale*F,

using Level 1 and 2 BLAS, where R and L are unknown m-by-n matrices,
(A, D), (B, E) and (C, F) are given matrix pairs of size m-by-m, n-by-n and
m-by-n, respectively.
For stgsy2/dtgsy2, pairs (A, D) and (B, E) must be in generalized Schur

6-362

6 Intel® Math Kernel Library Reference Manual

canonical form, that is, A, B are upper quasi triangular and D, E are upper
triangular. For ctgsy2/ztgsy2, matrices A, B, D and E are upper
triangular (that is, (A, D) and (B, E) in generalized Schur form).

The solution (R, L) overwrites (C, F). 0 ≤scale ≤1 is an output scaling
factor chosen to avoid overflow.

In matrix notation, solving equation (1) corresponds to solve
Zx = scale* b,

where Z is defined as

(2)

Here Ik is the identity matrix of size k and X' is the transpose of X.
kron(X, Y) denotes the Kronecker product between the matrices X and Y.

If trans = 'T' , solve the transposed (conjugate transposed) system
Z'y = scale* b

for y, which is equivalent to solve for R and L in

A' R + D' L = scale*C (3)
R B' + L E' = scale*(-F)

This case is used to compute an estimate of Dif[(A, D), (B, E)] =
sigma_min(Z) using reverse communication with ?lacon.

?tgsy2 also (for ijob ≥ 1) contributes to the computation in ?tgsyl of
an upper bound on the separation between two matrix pairs. Then the input
(A, D), (B, E) are sub-pencils of the matrix pair (two matrix pairs) in
?tgsyl. See ?tgsyl for details.

Input Parameters

trans CHARACTER

If trans = 'N', solve the generalized Sylvester
equation (1);
If trans = 'T': solve the 'transposed' system (3).

ijob INTEGER.
Specifies what kind of functionality is to be performed.
If ijob = 0: solve (1) only.
If ijob = 1: a contribution from this subsystem to a

Z
kron In, A() kron B ′ , Im()–

kron In, D() kron E ′ , Im()–
=

LAPACK Auxiliary Routines6

6-363

Frobenius norm-based estimate of the separation
between two matrix pairs is computed (look ahead
strategy is used);
If ijob = 2: a contribution from this subsystem to a
Frobenius norm-based estimate of the separation
between two matrix pairs is computed (?gecon on
sub-systems is used).
Not referenced if trans = 'T'.

m INTEGER.
On entry, m specifies the order of A and D, and the row
dimension of C, F, R and L.

n INTEGER.
On entry, n specifies the order of B and E, and the
column dimension of C, F, R and L.

a, b REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2

COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (lda, m) and (ldb, n),
respectively. On entry, a contains an upper (quasi)
triangular matrix A and b contains an upper (quasi)
triangular matrix B.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1, m).

ldb INTEGER.
The leading dimension of the array b. ldb ≥ max(1, n).

c, f REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2

COMPLEX*16 for ztgsy2.

Arrays, DIMENSION (ldc, n) and (ldf, n),
respectively. On entry, c contains the right-hand-side of
the first matrix equation in (1) and f contains the
right-hand-side of the second matrix equation in (1).

6-364

6 Intel® Math Kernel Library Reference Manual

ldc INTEGER.
The leading dimension of the array c. ldc ≥ max(1, m).

d, e REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2

COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (ldd, m) and (lde, n),
respectively. On entry, d contains an upper triangular
matrix D and e contains an upper triangular matrix E.

ldd INTEGER.
The leading dimension of the array d. ldd ≥ max(1, m).

lde INTEGER.
The leading dimension of the array e. lde ≥ max(1, n).

ldf INTEGER.
The leading dimension of the array f. ldf ≥ max(1, m).

rdsum REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, the sum of squares of computed contributions
to the Dif-estimate under computation by ?tgsyl,
where the scaling factor rdscal has been factored out.

rdscal REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, scaling factor used to prevent overflow in
rdsum.

iwork INTEGER. Used with real flavors only.
Workspace array, DIMENSION (m+n+2).

Output Parameters

c On exit, if ijob = 0, c has been overwritten by the
solution R.

f On exit, if ijob = 0, f has been overwritten by the
solution L.

LAPACK Auxiliary Routines6

6-365

scale REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On exit, 0 ≤scale ≤1. If 0 < scale < 1, the solutions R
and L (C and F on entry) will hold the solutions to a
slightly perturbed system, but the input matrices A, B, D
and E have not been changed. If scale = 0, R and L will
hold the solutions to the homogeneous system with C =
F = 0. Normally scale = 1.

rdsum On exit, the corresponding sum of squares updated with
the contributions from the current sub-system.
If trans = 'T', rdsum is not touched.
Note that rdsum only makes sense when ?tgsy2 is
called by ?tgsyl.

rdscal On exit, rdscal is updated with respect to the current
contributions in rdsum.
If trans = 'T', rdscal is not touched.
Note that rdscal only makes sense when ?tgsy2 is
called by ?tgsyl.

pq INTEGER. Used with real flavors only.
On exit, the number of subsystems (of size 2-by-2,
4-by-4 and 8-by-8) solved by the routine
stgsy2/dtgsy2.

info INTEGER.
On exit, if info is set to
=0: Successful exit
<0: If info = -i, the i-th argument had an illegal value.
>0: The matrix pairs (A, D) and (B, E) have common or
very close eigenvalues.

6-366

6 Intel® Math Kernel Library Reference Manual

?trti2
Computes the inverse of a triangular
matrix (unblocked algorithm).

call strti2 (uplo, diag, n, a, lda, info)

call dtrti2 (uplo, diag, n, a, lda, info)

call ctrti2 (uplo, diag, n, a, lda, info)

call ztrti2 (uplo, diag, n, a, lda, info)

Discussion

The routine ?trti2 computes the inverse of a real/complex upper or lower
triangular matrix.

This is the Level 2 BLAS version of the algorithm.

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower
triangular.
= 'U': Upper triangular
= 'L': Lower triangular

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

a REAL for strti2
DOUBLE PRECISION for dtrti2
COMPLEX for ctrti2
COMPLEX*16 for ztrti2.
Array, DIMENSION (lda, n).
On entry, the triangular matrix A. If uplo = 'U', the
leading n-by-n upper triangular part of the array a

LAPACK Auxiliary Routines6

6-367

contains the upper triangular matrix, and the strictly
lower triangular part of a is not referenced. If uplo =
'L', the leading n-by-n lower triangular part of the array
a contains the lower triangular matrix, and the strictly
upper triangular part of a is not referenced. If diag =
'U', the diagonal elements of a are also not referenced
and are assumed to be 1.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, the (triangular) inverse of the original matrix, in
the same storage format.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

xerbla
Error handling routine called by
LAPACK routines.

call xerbla (srname, info)

Discussion

The routine xerbla is an error handler for the LAPACK routines. It is
called by a LAPACK routine if an input parameter has an invalid value.
A message is printed and execution stops.
Installers may consider modifying the stop statement in order to call
system-specific exception-handling facilities.

6-368

6 Intel® Math Kernel Library Reference Manual

Input Parameters

srname CHARACTER*6

The name of the routine which called xerbla.

info INTEGER.
The position of the invalid parameter in the parameter
list of the calling routine.

7-1

Vector Mathematical
Functions 7

This chapter describes Vector Mathematical Functions Library (VML),
which is designed to compute elementary functions on vector arguments.
VML is an integral part of the Intel® MKL Kernel Library and the VML
terminology is used here for simplicity in discussing this group of functions.

VML includes a set of highly optimized implementations of certain
computationally expensive core mathematical functions (power,
trigonometric, exponential, hyperbolic etc.) that operate on vectors.

Application programs that might significantly improve performance with
VML include nonlinear programming software, integrals computation, and
many others.

VML functions are divided into the following groups according to the
operations they perform:

• VML Mathematical Functions compute values of elementary
functions (such as sine, cosine, exponential, logarithm and so on) on
vectors with unit increment indexing.
• VML Pack/Unpack Functions convert to and from vectors with
positive increment indexing, vector indexing and mask indexing (see
Appendix A for details on vector indexing methods).
• VML Service Functions allow the user to set /get the accuracy mode,
and set/get the error code.

VML mathematical functions take an input vector as argument, compute
values of the respective elementary function element-wise, and return the
results in an output vector.

7-2

7 Intel® Math Kernel Library Reference Manual

Data Types and Accuracy Modes
Mathematical and pack/unpack vector functions in VML have been
implemented for vector arguments of single and double precision real data.
Both Fortran- and C-interfaces to all functions, including VML service
functions, are provided in the library. The differences in naming and calling
the functions for Fortran- and C-interfaces are detailed in the Function
Naming Conventions section below.

Each vector function from VML (for each data format) can work in two
modes: High Accuracy (HA) and Low Accuracy (LA). For many functions,
using the LA version will improve performance at the cost of accuracy.
For some cases, the advantage of relaxing the accuracy improves
performance very little so the same function is employed for both versions.
Error behavior depends not only on whether the HA or LA version is
chosen, but also depends on the processor on which the software runs.
In addition, special value behavior may differ between the HA and LA
versions of the functions. Any information on accuracy behavior can be
found in the VML Release Notes.

Switching between the two modes (HA and LA) is accomplished by using
vmlSetMode(mode) (see Table 7-11). The function vmlGetMode()
will return the currently used mode. The High Accuracy mode is used by
default.

Function Naming Conventions
Full names of all VML functions include only lowercase letters for
Fortran-interface, whereas for C-interface names the lowercase letters are
mixed with uppercase..

NOTE. This naming convention is followed in the function descriptions
in the manual. Actual function names in the library may differ slightly
(with respect to lower- and uppercase usage) and will be sufficient to
meet the requirements of the supported compilers.

Vector Mathematical Functions 7

7-3

VML mathematical and pack/unpack function full names have the
following structure:

v <p> <name> <mod>

The initial letter v is a prefix indicating that a function belongs to VML.
The <p> field is a precision prefix that indicates the data type:

s REAL for Fortran–interface, or float for C–interface
d DOUBLE PRECISION for Fortran–interface, or double for

C–interface.

The <name> field indicates the function short name, with some of its letters
in uppercase for C-interface (see Table 7-2, Table 7-9).

The <mod> field (written in uppercase for C-interface) is present in
pack/unpack functions only; it indicates the indexing method used:

i indexing with positive increment
v indexing with index vector
m indexing with mask vector.

VML service function full names have the following structure:

vml <name>

where vml is a prefix indicating that a function belongs to VML, and
<name> is the function short name, which includes some uppercase letters
for C-interface (see Table 7-10).
To call VML functions from an application program, use conventional
function calls. For example, the VML exponential function for single
precision data can be called as

call vsexp (n, a, y)for Fortran–interface, or
vsExp (n, a, y); for C–interface.

Functions Interface

The interface to VML functions includes function full names and the
arguments list.
The Fortran- and C-interface descriptions for different groups of VML
functions are given below. Note that some functions (Div, Pow, and
Atan2) have two input vectors a and b as their arguments, while
SinCos function has two output vectors y and z.

7-4

7 Intel® Math Kernel Library Reference Manual

VML Mathematical Functions:

Fortran:

call v<p><name>(n, a, y)
call v<p><name>(n, a, b, y)
call v<p><name>(n, a, y, z)

C:

v<p><name>(n, a, y);
v<p><name>(n, a, b, y);
v<p><name>(n, a, y, z);

Pack Functions:

Fortran:

call v<p>packi(n, a, inca, y)
call v<p>packv(n, a, ia, y)
call v<p>packm(n, a, ma, y)

C:

v<p>PackI(n, a, inca, y);
v<p>PackV(n, a, ia, y);
v<p>PackM(n, a, ma, y);

Unpack Functions:

Fortran:

call v<p>unpacki(n, a, y, incy)
call v<p>unpackv(n, a, y, iy)
call v<p>unpackm(n, a, y, my)

C:

v<p>UnpackI(n, a, y, incy);
v<p>UnpackV(n, a, y, iy);
v<p>UnpackM(n, a, y, my);

Service Functions:

Fortran:

oldmode = vmlsetmode(mode)

mode = vmlgetmode()

olderr = vmlseterrstatus (err)

err = vmlgeterrstatus()

olderr = vmlclearerrstatus()

Vector Mathematical Functions 7

7-5

oldcallback = vmlseterrorcallback(callback)

callback = vmlgeterrorcallback()

oldcallback = vmlclearerrorcallback()

C:
oldmode = vmlSetMode(mode);

mode = vmlGetMode(void);

olderr = vmlSetErrStatus (err);

err = vmlGetErrStatus(void);

olderr = vmlClearErrStatus(void);

oldcallback = vmlSetErrorCallBack(callback);

callback = vmlGetErrorCallBack(void);

oldcallback = vmlClearErrorCallBack(void);

Input Parameters:

n number of elements to be calculated

a first input vector

b second input vector

inca vector increment for the input vector a

ia index vector for the input vector a

ma mask vector for the input vector a

incy vector increment for the output vector y

iy index vector for the output vector y

my mask vector for the output vector y

err error code

mode VML mode

callback address of the callback function

Output Parameters:

y first output vector

z second output vector

err error code

mode VML mode

olderr former error code

7-6

7 Intel® Math Kernel Library Reference Manual

oldmode former VML mode

oldcallback address of the former callback function

The data types of the parameters used in each function are specified in the
respective function description section. All VML mathematical functions
can perform in-place operations, which means that the same vector can be
used as both input and output parameter. This holds true for functions with
two input vectors as well, in which case one of them may be overwritten
with the output vector. For functions with two output vectors, one of them
may coincide with the input vector.

Vector Indexing Methods
Current VML mathematical functions work only with unit increment.
Arrays with other increments, or more complicated indexing, can be
accommodated by gathering the elements into a contiguous vector and then
scattering them after the computation is complete.
Three following indexing methods are used to gather/scatter the vector
elements in VML:

• positive increment
• index vector
• mask vector.

The indexing method used in a particular function is indicated by the
indexing modifier (see the description of the <mod> field in
Function Naming Conventions). For more information on indexing methods
see Vector Arguments in VML in Appendix A.

Error Diagnostics
The VML library has its own error handler. The only difference for C- and
Fortran- interfaces is that the Intel MKL error reporting routine XERBLA can
be called after the Fortran- interface VML function encounters an error, and
this routine gets information on VML_STATUS_BADSIZE and

VML_STATUS_BADMEM input errors (see Table 7-13).

Vector Mathematical Functions 7

7-7

The VML error handler has the following properties:

1) The Error Status (vmlErrStatus) global variable is set after
each VML function call. The possible values of this variable are
shown in the Table 7-13.

2) Depending on the VML mode, the error handler function invokes:
• errno variable setting. The possible values are shown in the

Table 7-1
• writing error text information to the stderr stream
• raising the appropriate exception on error, if necessary
• calling the additional error handler callback function.

Table 7-1 Set Values of the errno Variable

Value of errno Description

0 No errors are detected.

EINVAL The array dimension is not positive.

EACCES NULL pointer is passed.

EDOM At least one of array values is out of a
range of definition.

ERANGE At least one of array values caused a
singularity, overflow or underflow.

7-8

7 Intel® Math Kernel Library Reference Manual

VML Mathematical Functions
This section describes VML functions which compute values of elementary
mathematical functions on real vector arguments with unit increment.
Each function group is introduced by its short name, a brief description of
its purpose, and the calling sequence for each type of data both for Fortran-
and C-interfaces, as well as a description of the input/output arguments.

For all VML mathematical functions, the input range of parameters is equal
to the mathematical range of definition in the set of defined values for the
respective data type. Several VML functions, specifically Div, Exp, Sinh,
Cosh, and Pow, can result in an overflow. For these functions, the
respective input threshold values that mark off the precision overflow are
specified in the function description section. Note that in these
specifications, FLT_MAX denotes the maximum number representable in
single precision data type, while DBL_MAX denotes the maximum number
representable in double precision data type.

Table 7-2 lists available mathematical functions and data types associated
with them.

Table 7-2 VML Mathematical Functions

Function Short
Name

Data
Types

Description

Power and Root Functions

Inv s, d Inversion of the vector elements

Div s, d Divide elements of one vector by elements of second vector

Sqrt s, d Square root of vector elements

InvSqrt s, d Inverse square root of vector elements

Cbrt s, d Cube root of vector elements

InvCbrt s, d Inverse cube root of vector elements

Pow s, d Each vector element raised to the specified power

Powx s, d Each vector element raised to the constant power

Vector Mathematical Functions 7

7-9

Table 6-2 VML Mathematical Functions (continued)

Function Short
Name

Data
Types

Description

Exponential and Logarithmic Functions

Exp s, d Exponential of vector elements

Ln s, d Natural logarithm of vector elements

Log10 s, d Denary logarithm of vector elements

Trigonometric Functions

Cos s, d Cosine of vector elements

Sin s, d Sine of vector elements

SinCos s, d Sine and cosine of vector elements

Tan s, d Tangent of vector elements

Acos s, d Inverse cosine of vector elements

Asin s, d Inverse sine of vector elements

Atan s, d Inverse tangent of vector elements

Atan2 s, d Four-quadrant inverse tangent of elements of two vectors

Hyperbolic Functions

Cosh s, d Hyperbolic cosine of vector elements

Sinh s, d Hyperbolic sine of vector elements

Tanh s, d Hyperbolic tangent of vector elements

Acosh s, d Inverse hyperbolic cosine (nonnegative) of vector elements

Asinh s, d Inverse hyperbolic sine of vector elements

Atanh s, d Inverse hyperbolic tangent of vector elements

Special Functions

Erf s, d Error function value of vector elements

Erfc s, d Complementary error function value of vector elements

7-10

7 Intel® Math Kernel Library Reference Manual

Inv
Performs element by element inversion
of the vector.

Fortran:
call vsinv(n, a, y)

call vdinv(n, a, y)

C:
vsInv(n, a, y);

vdInv(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsinv
DOUBLE PRECISION, INTENT(IN) for vdinv
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsInv
const double* for vdInv
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vsinv
DOUBLE PRECISION for vdinv
Array, specifies the output vector y.

Vector Mathematical Functions 7

7-11

C:

y float* for vsInv
double* for vdInv
Pointer to an array that contains the output vector y.

Div
Performs element by element division of
vector a by vector b.

Fortran:
call vsdiv(n, a, b, y)

call vddiv(n, a, b, y)

C:
vsDiv(n, a, b, y);

vdDiv(n, a, b, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a, b REAL, INTENT(IN) for vsdiv
DOUBLE PRECISION, INTENT(IN) for vddiv
Arrays, specify the input vectors a and b.

C:

n int. Specifies the number of elements to be calculated.

a, b const float* for vsDiv
const double* for vdDiv
Pointers to arrays that contain the input vectors a and b.

7-12

7 Intel® Math Kernel Library Reference Manual

Table 7-3 Precision Overflow Thresholds for Div Function

Output Parameters

Fortran:

y REAL for vsdiv
DOUBLE PRECISION for vddiv
Array, specifies the output vector y.

C:

y float* for vsDiv
double* for vdDiv
Pointer to an array that contains the output vector y.

Sqrt
Computes a square root
of vector elements.

Fortran:
call vssqrt(n, a, y)

call vdsqrt(n, a, y)

C:
vsSqrt(n, a, y);

vdSqrt(n, a, y);

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < abs(b[i]) * FLT_MAX

double precision abs(a[i]) < abs(b[i]) * DBL_MAX

Vector Mathematical Functions 7

7-13

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vssqrt
DOUBLE PRECISION, INTENT(IN) for vdsqrt
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsSqrt
const double* for vdSqrt
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vssqrt
DOUBLE PRECISION for vdsqrt
Array, specifies the output vector y.

C:

y float* for vsSqrt
double* for vdSqrt
Pointer to an array that contains the output vector y.

InvSqrt
Computes an inverse square root
of vector elements.

Fortran:
call vsinvsqrt(n, a, y)

call vdinvsqrt(n, a, y)

7-14

7 Intel® Math Kernel Library Reference Manual

C:
vsInvSqrt(n, a, y);

vdInvSqrt(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsinvsqrt
DOUBLE PRECISION, INTENT(IN) for vdinvsqrt
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsInvSqrt
const double* for vdInvSqrt
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vsinvsqrt
DOUBLE PRECISION for vdinvsqrt
Array, specifies the output vector y.

C:

y float* for vsInvSqrt
double* for vdInvSqrt
Pointer to an array that contains the output vector y.

Vector Mathematical Functions 7

7-15

Cbrt
Computes a cube root
of vector elements.

Fortran:
call vscbrt(n, a, y)

call vdcbrt(n, a, y)

C:
vsCbrt(n, a, y);

vdCbrt(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vscbrt
DOUBLE PRECISION, INTENT(IN) for vdcbrt
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsCbrt
const double* for vdCbrt
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vscbrt
DOUBLE PRECISION for vdcbrt
Array, specifies the output vector y.

C:

y float* for vsCbrt
double* for vdCbrt
Pointer to an array that contains the output vector y.

7-16

7 Intel® Math Kernel Library Reference Manual

InvCbrt
Computes an inverse cube root
of vector elements.

Fortran:
call vsinvcbrt(n, a, y)

call vdinvcbrt(n, a, y)

C:
vsInvCbrt(n, a, y);

vdInvCbrt(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsinvcbrt
DOUBLE PRECISION, INTENT(IN) for vdinvcbrt
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsInvCbrt
const double* for vdInvCbrt
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vsinvcbrt
DOUBLE PRECISION for vdinvcbrt
Array, specifies the output vector y.

C:

y float* for vsInvCbrt
double* for vdInvCbrt
Pointer to an array that contains the output vector y.

Vector Mathematical Functions 7

7-17

Pow
Computes a to the power b
for elements of two vectors.

Fortran:
call vspow(n, a, b, y)

call vdpow(n, a, b, y)

C:
vsPow(n, a, b, y);

vdPow(n, a, b, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a, b REAL, INTENT(IN) for vspow
DOUBLE PRECISION, INTENT(IN) for vdpow
Arrays, specify the input vectors a and b.

C:

n int. Specifies the number of elements to be calculated.
a, b const float* for vsPow

const double* for vdPow
Pointers to arrays that contain the input vectors a and b.

Table 7-4 Precision Overflow Thresholds for Pow Function

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < (FLT_MAX) 1/b[i]

double precision abs(a[i]) < (DBL_MAX) 1/b[i]

7-18

7 Intel® Math Kernel Library Reference Manual

Output Parameters

Fortran:

y REAL for vspow
DOUBLE PRECISION for vdpow
Array, specifies the output vector y.

C:

y float* for vsPow
double* for vdPow
Pointer to an array that contains the output vector y.

Discussion

The function Pow has certain limitations on the input range of a and b

parameters. Specifically, if a[i] is positive, then b[i] may be arbitrary.
For negative or zero a[i], the value of b[i] must be integer (either
positive or negative).

Powx
Raises each element of a vector
to the constant power.

Fortran:
call vspowx(n, a, b, y)

call vdpowx(n, a, b, y)

C:
vsPowx(n, a, b, y);

vdPowx(n, a, b, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a, b REAL, INTENT(IN) for vspowx

Vector Mathematical Functions 7

7-19

DOUBLE PRECISION, INTENT(IN) for vdpowx
Array a specifies the input vector;
scalar value b is the constant power.

C:

n int. Specifies the number of elements to be calculated.
a const float* for vsPowx

const double* for vdPowx
Pointer to an array that contains the input vector a.

b const float for vsPowx
const double for vdPowx
Constant value for power b.

Table 7-5 Precision Overflow Thresholds for Powx Function

Output Parameters

Fortran:

y REAL for vspowx
DOUBLE PRECISION for vdpowx
Array, specifies the output vector y.

C:

y float* for vsPowx
double* for vdPowx
Pointer to an array that contains the output vector y.

Discussion

The function Powx has certain limitations on the input range of a and b

parameters. Specifically, if a[i] is positive, then b may be arbitrary. For
negative or zero a[i], the value of b must be integer (either positive or
negative).

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < (FLT_MAX) 1/b

double precision abs(a[i]) < (DBL_MAX) 1/b

7-20

7 Intel® Math Kernel Library Reference Manual

Exp
Computes an exponential
of vector elements.

Fortran:
call vsexp(n, a, y)

call vdexp(n, a, y)

C:
vsExp(n, a, y);

vdExp(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsexp
DOUBLE PRECISION, INTENT(IN) for vdexp
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsExp
const double* for vdExp
Pointer to an array that contains the input vector a.

Vector Mathematical Functions 7

7-21

Table 7-6 Precision Overflow Thresholds for Exp Function

Output Parameters

Fortran:

y REAL for vsexp
DOUBLE PRECISION for vdexp
Array, specifies the output vector y.

C:

y float* for vsExp
double* for vdExp
Pointer to an array that contains the output vector y.

Ln
Computes natural logarithm
of vector elements.

Fortran:
call vsln(n, a, y)
call vdln(n, a, y)

C:
vsLn(n, a, y);
vdLn(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

Data Type Threshold Limitations on Input Parameters

single precision a[i] < Ln(FLT_MAX)

double precision a[i] < Ln(DBL_MAX)

7-22

7 Intel® Math Kernel Library Reference Manual

a REAL, INTENT(IN) for vsln
DOUBLE PRECISION, INTENT(IN) for vdln
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsLn
const double* for vdLn
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vsln
DOUBLE PRECISION for vdln
Array, specifies the output vector y.

C:

y float* for vsLn
double* for vdLn
Pointer to an array that contains the output vector y.

Log10
Computes denary logarithm
of vector elements.

Fortran:
call vslog10(n, a, y)

call vdlog10(n, a, y)

C:
vsLog10(n, a, y);

vdLog10(n, a, y);

Input Parameters

Fortran:

Vector Mathematical Functions 7

7-23

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vslog10
DOUBLE PRECISION, INTENT(IN) for vdlog10
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsLog10
const double* for vdLog10
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vslog10
DOUBLE PRECISION for vdlog10
Array, specifies the output vector y.

C:

y float* for vsLog10
double* for vdLog10
Pointer to an array that contains the output vector y.

Cos
Computes cosine of vector elements.

Fortran:
call vscos(n, a, y)

call vdcos(n, a, y)

C:
vsCos(n, a, y);

vdCos(n, a, y);

7-24

7 Intel® Math Kernel Library Reference Manual

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vscos
DOUBLE PRECISION, INTENT(IN) for vdcos
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsCos
const double* for vdCos
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vscos
DOUBLE PRECISION for vdcos
Array, specifies the output vector y.

C:

y float* for vsCos
double* for vdCos
Pointer to an array that contains the output vector y.

Sin
Computes sine of vector elements.

Fortran:
call vssin(n, a, y)

call vdsin(n, a, y)

C:
vsSin(n, a, y);

vdSin(n, a, y);

Vector Mathematical Functions 7

7-25

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vssin
DOUBLE PRECISION, INTENT(IN) for vdsin
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsSin
const double* for vdSin
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vssin
DOUBLE PRECISION for vdsin
Array, specifies the output vector y.

C:

y float* for vsSin
double* for vdSin
Pointer to an array that contains the output vector y.

SinCos
Computes sine and cosine
of vector elements.

Fortran:
call vssincos(n, a, y, z)
call vdsincos(n, a, y, z)

7-26

7 Intel® Math Kernel Library Reference Manual

C:
vsSinCos(n, a, y, z);
vdSinCos(n, a, y, z);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vssincos
DOUBLE PRECISION, INTENT(IN) for vdsincos
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.
a const float* for vsSinCos

const double* for vdSinCos
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y, z REAL for vssincos
DOUBLE PRECISION for vdsincos
Arrays, specify the output vectors y (for sine values)
and z (for cosine values).

C:

y, z float* for vsSinCos
double* for vdSinCos
Pointers to arrays that contain the output vectors y (for sine

values) and z (for cosine values).

Vector Mathematical Functions 7

7-27

Tan
Computes tangent of vector elements.

Fortran:
call vstan(n, a, y)

call vdtan(n, a, y)

C:
vsTan(n, a, y);

vdTan(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vstan
DOUBLE PRECISION, INTENT(IN) for vdtan
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsTan
const double* for vdTan
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vstan
DOUBLE PRECISION for vdtan
Array, specifies the output vector y.

C:

y float* for vsTan
double* for vdTan
Pointer to an array that contains the output vector y.

7-28

7 Intel® Math Kernel Library Reference Manual

Acos
Computes inverse cosine
of vector elements.

Fortran:
call vsacos(n, a, y)

call vdacos(n, a, y)

C:
vsAcos(n, a, y);

vdAcos(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsacos
DOUBLE PRECISION, INTENT(IN) for vdacos
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsAcos
const double* for vdAcos
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vsacos
DOUBLE PRECISION for vdacos
Array, specifies the output vector y.

C:

y float* for vsAcos
double* for vdAcos
Pointer to an array that contains the output vector y.

Vector Mathematical Functions 7

7-29

Asin
Computes inverse sine
of vector elements.

Fortran:
call vsasin(n, a, y)

call vdasin(n, a, y)

C:
vsAsin(n, a, y);

vdAsin(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsasin
DOUBLE PRECISION, INTENT(IN) for vdasin
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsAsin
const double* for vdAsin
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vsasin
DOUBLE PRECISION for vdasin
Array, specifies the output vector y.

C:

7-30

7 Intel® Math Kernel Library Reference Manual

y float* for vsAsin
double* for vdAsin
Pointer to an array that contains the output vector y.

Atan
Computes inverse tangent
of vector elements.

Fortran:
call vsatan(n, a, y)

call vdatan(n, a, y)

C:
vsAtan(n, a, y);

vdAtan(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsatan
DOUBLE PRECISION, INTENT(IN) for vdatan
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsAtan
const double* for vdAtan
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

Vector Mathematical Functions 7

7-31

y REAL for vsatan
DOUBLE PRECISION for vdatan
Array, specifies the output vector y.

C:

y float* for vsAtan
double* for vdAtan
Pointer to an array that contains the output vector y.

Atan2
Computes four-quadrant inverse
tangent of elements of two vectors.

Fortran:
call vsatan2(n, a, b, y)

call vdatan2(n, a, b, y)

C:
vsAtan2(n, a, b, y);

vdAtan2(n, a, b, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a, b REAL, INTENT(IN) for vsatan2
DOUBLE PRECISION, INTENT(IN) for vdatan2
Arrays, specify the input vectors a and b.

C:

n int. Specifies the number of elements to be calculated.

a, b const float* for vsAtan2
const double* for vdAtan2
Pointers to arrays that contain the input vectors a and b.

7-32

7 Intel® Math Kernel Library Reference Manual

Output Parameters

Fortran:

y REAL for vsatan2
DOUBLE PRECISION for vdatan2
Array, specifies the output vector y.

C:

y float* for vsAtan2
double* for vdAtan2
Pointer to an array that contains the output vector y.

The elements of the output vector y are computed as the four-quadrant arctangent
of a[i] / b[i].

Cosh
Computes hyperbolic cosine
of vector elements.

Fortran:
call vscosh(n, a, y)

call vdcosh(n, a, y)

C:
vsCosh(n, a, y);

vdCosh(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

Vector Mathematical Functions 7

7-33

a REAL, INTENT(IN) for vscosh
DOUBLE PRECISION, INTENT(IN) for vdcosh
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsCosh
const double* for vdCosh
Pointer to an array that contains the input vector a.

Table 7-7 Precision Overflow Thresholds for Cosh Function

Output Parameters

Fortran:

y REAL for vscosh
DOUBLE PRECISION for vdcosh
Array, specifies the output vector y.

C:

y float* for vsCosh
double* for vdCosh
Pointer to an array that contains the output vector y.

Data Type Threshold Limitations on Input Parameters

single precision -Ln(FLT_MAX)-Ln2 < a[i] < Ln(FLT_MAX)+Ln2

double precision -Ln(DBL_MAX)-Ln2 < a[i] < Ln(DBL_MAX)+Ln2

7-34

7 Intel® Math Kernel Library Reference Manual

Sinh
Computes hyperbolic sine
of vector elements.

Fortran:
call vssinh(n, a, y)

call vdsinh(n, a, y)

C:
vsSinh(n, a, y);

vdSinh(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vssinh
DOUBLE PRECISION, INTENT(IN) for vdsinh
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsSinh
const double* for vdSinh
Pointer to an array that contains the input vector a.

Vector Mathematical Functions 7

7-35

Table 7-8 Precision Overflow Thresholds for Sinh Function

Output Parameters

Fortran:

y REAL for vssinh
DOUBLE PRECISION for vdsinh
Array, specifies the output vector y.

C:

y float* for vsSinh
double* for vdSinh
Pointer to an array that contains the output vector y.

Tanh
Computes hyperbolic tangent
of vector elements.

Fortran:
call vstanh(n, a, y)

call vdtanh(n, a, y)

C:
vsTanh(n, a, y);

vdTanh(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

Data Type Threshold Limitations on Input Parameters

single precision -Ln(FLT_MAX)-Ln2 < a[i] < Ln(FLT_MAX)+Ln2

double precision -Ln(DBL_MAX)-Ln2 < a[i] < Ln(DBL_MAX)+Ln2

7-36

7 Intel® Math Kernel Library Reference Manual

a REAL, INTENT(IN) for vstanh
DOUBLE PRECISION, INTENT(IN) for vdtanh
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsTanh
const double* for vdTanh
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vstanh
DOUBLE PRECISION for vdtanh
Array, specifies the output vector y.

C:

y float* for vsTanh
double* for vdTanh
Pointer to an array that contains the output vector y.

Acosh
Computes inverse hyperbolic cosine
(nonnegative) of vector elements.

Fortran:
call vsacosh(n, a, y)

call vdacosh(n, a, y)

C:
vsAcosh(n, a, y);

vdAcosh(n, a, y);

Input Parameters

Fortran:

Vector Mathematical Functions 7

7-37

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsacosh
DOUBLE PRECISION, INTENT(IN) for vdacosh
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsAcosh
const double* for vdAcosh
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vsacosh
DOUBLE PRECISION for vdacosh
Array, specifies the output vector y.

C:

y float* for vsAcosh
double* for vdAcosh
Pointer to an array that contains the output vector y.

Asinh
Computes inverse hyperbolic sine
of vector elements.

Fortran:
call vsasinh(n, a, y)

call vdasinh(n, a, y)

C:
vsAsinh(n, a, y);

vdAsinh(n, a, y);

7-38

7 Intel® Math Kernel Library Reference Manual

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsasinh
DOUBLE PRECISION, INTENT(IN) for vdasinh
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsAsinh
const double* for vdAsinh
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vsasinh
DOUBLE PRECISION for vdasinh
Array, specifies the output vector y.

C:

y float* for vsAsinh
double* for vdAsinh
Pointer to an array that contains the output vector y.

Atanh
Computes inverse hyperbolic tangent
of vector elements.

Fortran:
call vsatanh(n, a, y)

call vdatanh(n, a, y)

Vector Mathematical Functions 7

7-39

C:
vsAtanh(n, a, y);

vdAtanh(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsatanh
DOUBLE PRECISION, INTENT(IN) for vdatanh
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsAtanh
const double* for vdAtanh
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vsatanh
DOUBLE PRECISION for vdatanh
Array, specifies the output vector y.

C:

y float* for vsAtanh
double* for vdAtanh
Pointer to an array that contains the output vector y.

Erf
Computes the error function value
of vector elements.

Fortran:
call vserf(n, a, y)

call vderf(n, a, y)

7-40

7 Intel® Math Kernel Library Reference Manual

C:
vsErf(n, a, y);

vdErf(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vserf
DOUBLE PRECISION, INTENT(IN) for vderf
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsErf
const double* for vdErf
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vserf
DOUBLE PRECISION for vderf
Array, specifies the output vector y.

C:

y float* for vsErf
double* for vdErf
Pointer to an array that contains the output vector y.

Discussion

The function Erf computes the error function values for elements of the input
vector a and writes them to the output vector y.
The error function is defined as given by:

erf x() 2

π
------- e t

2
– td

0

x

∫=

Vector Mathematical Functions 7

7-41

Erfc
Computes the complementary error function
value of vector elements.

Fortran:
call vserfc(n, a, y)

call vderfc(n, a, y)

C:
vsErfc(n, a, y);

vdErfc(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vserfc
DOUBLE PRECISION, INTENT(IN) for vderfc
Array, specifies the input vector a.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsErfc
const double* for vdErfc
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

y REAL for vserfc
DOUBLE PRECISION for vderfc
Array, specifies the output vector y.

C:

7-42

7 Intel® Math Kernel Library Reference Manual

y float* for vsErfc
double* for vdErfc
Pointer to an array that contains the output vector y.

Discussion

The function Erfc computes the complementary error function values for
elements of the input vector a and writes them to the output vector y.

The complementary error function is defined as given by:

or, in other words,

.

erfc x() 1 erf x()–=

erfc x() 2

π
------- e t

2
– td

x

∞

∫=

Vector Mathematical Functions 7

7-43

VML Pack/Unpack Functions
This section describes VML functions which convert vectors with unit
increment to and from vectors with positive increment indexing, vector
indexing and mask indexing (see Appendix A for details on vector indexing
methods).

Table 7-9 lists available VML Pack/Unpack functions, together with data types
and indexing methods associated with them.

Table 7-9 VML Pack/Unpack Functions

Pack
Copies elements of an array
with specified indexing to
a vector with unit increment.

Fortran:
call vspacki(n, a, inca, y)

call vspackv(n, a, ia, y)

call vspackm(n, a, ma, y)

call vdpacki(n, a, inca, y)

call vdpackv(n, a, ia, y)

call vdpackm(n, a, ma, y)

Function Short
Name

Data
Types

Indexing
Methods

Description

Pack s, d I,V,M Gathers elements of arrays, indexed by different
methods.

Unpack s, d I,V,M Scatters vector elements to arrays with different
indexing.

7-44

7 Intel® Math Kernel Library Reference Manual

C:
vsPackI(n, a, inca, y);

vsPackV(n, a, ia, y);

vsPackM(n, a, ma, y);

vdPackI(n, a, inca, y);

vdPackV(n, a, ia, y);

vdPackM(n, a, ma, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements to be
calculated.

a REAL, INTENT(IN) for vspacki, vspackv, vspackm
DOUBLE PRECISION, INTENT(IN) for vdpacki,
vdpackv, vdpackm
Array, DIMENSION at least (1 + (n-1)*inca) for vspacki,
at least max(n,max(ia[j])),j=0,…,n-1, for vspackv,
at least n for vspackm,
Specifies the input vector a.

inca INTEGER, INTENT(IN) for vspacki, vdpacki.
Specifies the increment for the elements of a.

ia INTEGER, INTENT(IN) for vspackv, vdpackv.
Array, DIMENSION at least n

Specifies the index vector for the elements of a.

ma INTEGER, INTENT(IN) for vspackm, vdpackm.
Array, DIMENSION at least n

Specifies the mask vector for the elements of a.

C:

n int. Specifies the number of elements to be calculated

a const float* for vsPackI, vsPackV, vsPackM
const double* for vdPackI, vdPackV, vdPackM
Specifies the pointer to an array that contains the input vector a.
Size of the array must be:

Vector Mathematical Functions 7

7-45

at least (1 + (n-1)*inca) for vsPackI,
at least max(n,max(ia[j])),j=0,…,n-1, for vsPackV,
at least n for vsPackM.

inca int for vsPackI, vdPackI.
Specifies the increment for the elements of a.

ia const int* for vsPackV, vdPackV. Specifies the pointer to
an array of size at least n that contains the index vector

for the elements of a.

ma const int* for vsPackM, vdPackM. Specifies the pointer to
an array of size at least n that contains the mask vector

for the elements of a.

Output Parameters

Fortran:

y REAL for vspacki, vspackv, vspackm
DOUBLE PRECISION for vdpacki, vdpackv, vdpackm
Array, DIMENSION at least n, specifies the output vector y.

C:

y float* for vsPackI, vsPackV, vsPackM
double* for vdPackI, vdPackV, vdPackM
Specifies the pointer to an array of size at least n that contains
the output vector y.

Unpack
Copies elements of a vector with unit increment
to an array with specified indexing.

Fortran:
call vsunpacki(n, a, y, incy)

call vsunpackv(n, a, y, iy)

call vsunpackm(n, a, y, my)

7-46

7 Intel® Math Kernel Library Reference Manual

call vdunpacki(n, a, y, incy)

call vdunpackv(n, a, y, iy)

call vdunpackm(n, a, y, my)

C:
vsUnpackI(n, a, y, incy);

vsUnpackV(n, a, y, iy);

vsUnpackM(n, a, y, my);

vdUnpackI(n, a, y, incy);

vdUnpackV(n, a, y, iy);

vdUnpackM(n, a, y, my);

Input Parameters

Fortran:

n INTEGER, INTENT(IN). Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsunpacki, vsunpackv,
vsunpackm

DOUBLE PRECISION, INTENT(IN) for vdunpacki,
vdunpackv, vdunpackm.

Array, DIMENSION at least n, specifies the input vector a.

incy INTEGER, INTENT(IN) for vsunpacki, vdunpacki.
Specifies the increment for the elements of y.

iy INTEGER, INTENT(IN) for vsunpackv, vdunpackv.
Array, DIMENSION at least n, specifies the index vector
for the elements of y.

my INTEGER, INTENT(IN) for vsunpackm, vdunpackm.
Array, DIMENSION at least n, specifies the mask vector
for the elements of y.

C:

n int. Specifies the number of elements to be calculated.

a const float* for vsUnpackI, vsUnpackV, vsUnpackM
const double* for vdUnpackI, vdUnpackV, vdUnpackM
Specifies the pointer to an array of size at least n that contains
the input vector a.

Vector Mathematical Functions 7

7-47

incy int for vsUnpackI, vdUnpackI.
Specifies the increment for the elements of y.

iy const int* for vsUnpackV, vdUnpackV. Specifies the
pointer to an array of size at least n that contains the index
vector for the elements of a.

my const int* for vsUnpackM, vdUnpackM. Specifies the
pointer to an array of size at least n that contains the mask
vector for the elements of a.

Output Parameters

Fortran:

y REAL for vsunpacki, vsunpackv, vsunpackm
DOUBLE PRECISION for vdunpacki, vdunpackv,
vdunpackm.
Array, DIMENSION

at least (1 + (n-1)*incy) for vsunpacki,
at least max(n,max(iy[j])),j=0,…,n-1, for vsunpackv,
at least n for vsunpackm

Specifies the output vector y.

C:

y float* for vsUnpackI, vsUnpackV, vsUnpackM
double* for vdUnpackI, vdUnpackV, vdUnpackM
Specifies the pointer to an array that contains the output vector y.
Size of the array must be:

at least (1 + (n-1)*incy) for vsUnPackI,
at least max(n,max(ia[j])),j=0,…,n-1, for vsUnPackV,
at least n for vsUnPackM.

7-48

7 Intel® Math Kernel Library Reference Manual

VML Service Functions
This section describes VML functions which allow the user to set /get the
accuracy mode, and set/get the error code. All these functions are available
both in Fortran- and C- interfaces.
Table 7-10 lists available VML Service functions and their short
description.

Table 7-10 VML Service Functions

SetMode
Sets the new mode for VML functions
according to mode parameter and stores the
previous VML mode to oldmode.

Fortran:
oldmode = vmlsetmode(mode)

C:
oldmode = vmlSetMode(mode);

Function Short Name Description

SetMode Sets the VML mode

GetMode Gets the VML mode

SetErrStatus Sets the VML error status

GetErrStatus Gets the VML error status

ClearErrStatus Clears the VML error status

SetErrorCallBack Sets the additional error handler callback function

GetErrorCallBack Gets the additional error handler callback function

ClearErrorCallBack Deletes the additional error handler callback function

Vector Mathematical Functions 7

7-49

Input Parameters

Fortran:

mode INTEGER, INTENT(IN). Specifies the VML mode to be
set.

C:

mode int. Specifies the VML mode to be set.

Output Parameters

Fortran:

oldmode INTEGER. Specifies the former VML mode.

C:

oldmode int. Specifies the former VML mode.

Discussion

The mode parameter is designed to control accuracy, FPU and error
handling options. Table 7-11 lists values of the mode parameter. All other
possible values of the mode parameter may be obtained from these values
by using bitwise OR (|) operation to combine one value for accuracy, one
for FPU, and one for error control options. The default value of the mode
parameter is VML_HA | VML_ERRMODE_DEFAULT. Thus, the current FPU
control word (FPU precision and the rounding method) is used by default.

If any VML mathematical function requires different FPU precision, or
rounding method, it changes these options automatically and then restores
the former values. The mode parameter enables you to minimize switching
the internal FPU mode inside each VML mathematical function that works
with similar precision and accuracy settings. To accomplish this, set the
mode parameter to VML_FLOAT_CONSISTENT for single precision
functions, or to VML_DOUBLE_CONSISTENT for double precision
functions. These values of the mode parameter are the optimal choice for
the respective function groups, as they are required for most of the VML
mathematical functions. After the execution is over, set the mode to
VML_RESTORE if you need to restore the previous FPU mode.

7-50

7 Intel® Math Kernel Library Reference Manual

Table 7-11 Values of the mode Parameter

Examples

Several examples of calling the function vmlSetMode() with different values of
the mode parameter are given below:

Fortran:

oldmode = vmlsetmode(VML_LA)

call vmlsetmode(IOR(VML_LA, IOR(VML_FLOAT_CONSISTENT,
VML_ERRMODE_IGNORE)))

call vmlsetmode(VML_RESTORE)

Value of mode Description

Accuracy Control

VML_HA High accuracy versions of VML functions will be used

VML_LA Low accuracy versions of VML functions will be used

Additional FPU Mode Control

VML_FLOAT_CONSISTENT The optimal FPU mode (control word) for single
precision functions is set, and the previous FPU
mode is saved

VML_DOUBLE_CONSISTENT The optimal FPU mode (control word) for double
precision functions is set, and the previous FPU
mode is saved

VML_RESTORE The previously saved FPU mode is restored

Error Mode Control

VML_ERRMODE_IGNORE No action is set for computation errors

VML_ERRMODE_ERRNO On error, the errno variable is set

VML_ERRMODE_STDERR On error, the error text information is written to
stderr

VML_ERRMODE_EXCEPT On error, an exception is raised

VML_ERRMODE_CALLBACK On error, an additional error handler function is called

VML_ERRMODE_DEFAULT On error, the errno variable is set, an exception is
raised, and an additional error handler function is
called

Vector Mathematical Functions 7

7-51

C:

vmlSetMode(VML_LA);

vmlSetMode(VML_LA | VML_FLOAT_CONSISTENT | VML_ERRMODE_IGNORE);

vmlSetMode(VML_RESTORE);

GetMode
Gets the VML mode.

Fortran:
mod = vmlgetmode()

C:
mod = vmlGetMode(void);

Output Parameters

Fortran:

mod INTEGER. Specifies the packed mode parameter.

C:

mod int. Specifies the packed mode parameter.

Discussion

The function vmlGetMode() returns the VML mode parameter which
controls accuracy, FPU and error handling options. The mod variable value
is some combination of the values listed in the Table 7-11. You can obtain
some of these values using the respective mask from the Table 7-12, for
example:

Fortran:

mod = vmlgetmode()

accm = IAND(mod, VML_ACCURACY_MASK)

fpum = IAND(mod, VML_FPUMODE_MASK)

errm = IAND(mod, VML_ERRMODE_MASK)

C:

7-52

7 Intel® Math Kernel Library Reference Manual

accm = vmlGetMode(void)& VML_ACCURACY_MASK;

fpum = vmlGetMode(void)& VML_FPUMODE _MASK;

errm = vmlGetMode(void)& VML_ERRMODE _MASK;

Table 7-12 Values of Mask for the mode Parameter

SetErrStatus
Sets the new VML error status according to
err and stores the previous VML error
status to olderr.

Fortran:
olderr = vmlseterrstatus(err)

C:
olderr = vmlSetErrStatus(err);

Input Parameters

Fortran:

err INTEGER, INTENT(IN). Specifies the VML error status
to be set.

C:

err int. Specifies the VML error status to be set.

Output Parameters

Fortran:

Value of mask Description

VML_ACCURACY_MASK Specifies mask for accuracy mode selection.

VML_FPUMODE_MASK Specifies mask for FPU mode selection.

VML_ERRMODE_MASK Specifies mask for error mode selection.

Vector Mathematical Functions 7

7-53

olderr INTEGER. Specifies the former VML error status.

C:

olderr int. Specifies the former VML error status.

Table 7-13 lists possible values of the err parameter.

Table 7-13 Values of the VML Error Status

Examples:
vmlSetErrStatus(VML_STATUS_OK);

vmlSetErrStatus(VML_STATUS_ERRDOM);

vmlSetErrStatus(VML_STATUS_UNDERFLOW);

Error Status Description

VML_STATUS_OK The execution was completed successfully.

VML_STATUS_BADSIZE The array dimension is not positive.

VML_STATUS_BADMEM NULL pointer is passed.

VML_STATUS_ERRDOM At least one of array values is out of a

range of definition.

VML_STATUS_SING At least one of array values caused a

singularity.

VML_STATUS_OVERFLOW An overflow has happened during the
calculation process.

VML_STATUS_UNDERFLOW An underflow has happened during the

calculation process.

7-54

7 Intel® Math Kernel Library Reference Manual

GetErrStatus
Gets the VML error status.

Fortran:
err = vmlgeterrstatus()

C:
err = vmlGetErrStatus(void);

Output Parameters

Fortran:

err INTEGER. Specifies the VML error status.

C:

err int. Specifies the VML error status.

ClearErrStatus
Sets the VML error status to
VML_STATUS_OK and stores the
previous VML error status to olderr.

Fortran:
olderr = vmlclearerrstatus()

C:
olderr = vmlClearErrStatus(void);

Output Parameters

Fortran:

olderr INTEGER. Specifies the former VML error status.

Vector Mathematical Functions 7

7-55

C:

olderr int. Specifies the former VML error status.

SetErrorCallBack
Sets the additional error handler
callback function and gets the old
callback function.

Fortran:
oldcallback = vmlseterrorcallback(callback)

C:
oldcallback = vmlSetErrorCallBack(callback);

Input Parameters

Fortran:

callback Address of the callback function.
The callback function has the following format:

INTEGER FUNCTION ERRFUNC(par)

TYPE (ERROR_STRUCTURE) par

! ...

! user error processing

! ...

ERRFUNC = 0

! if ERRFUNC = 0 - standard VML error
handler
! is called after the callback

! if ERRFUNC != 0 - standard VML error
handler
! is not called

END

The passed error structure is defined as follows:

7-56

7 Intel® Math Kernel Library Reference Manual

TYPE ERROR_STRUCTURE
SEQUENCE

INTEGER*4 ICODE

INTEGER*4 IINDEX

REAL*8 DBA1

REAL*8 DBA2

REAL*8 DBR1

REAL*8 DBR2

CHARACTER(64) CFUNCNAME

INTEGER*4 IFUNCNAMELEN

END TYPE ERROR_STRUCTURE

C:

callback Pointer to the callback function.
The callback function has the following format:

static int __stdcall
MyHandler(DefVmlErrorContext*
pContext)

{
/* Handler body */

};

The passed error structure is defined as follows:

typedef struct _DefVmlErrorContext

{

int iCode; /* Error status value */

int iIndex; /* Index for bad array
element, or bad array
dimension, or bad
array pointer */

double dbA1; * Error argument 1 */

double dbA2; /* Error argument 2 */

double dbR1; /* Error result 1 */

double dbR2; /* Error result 2 */

char cFuncName[64]; /* Function name */

int iFuncNameLen; /* Length of function
name*/

} DefVmlErrorContext;

Vector Mathematical Functions 7

7-57

Output Parameters

Fortran:

oldcallback Address of the former callback function.

C:

oldcallback Pointer to the former callback function.

Discussion

The callback function is called on each VML mathematical function error if
VML_ERRMODE_CALLBACK error mode is set (see Table 7-11).

Use the vmlSetErrorCallBack() function if you need to define your
own callback function instead of default empty callback function.

The input structure for a callback function contains the following
information
about the encountered error:

• the input value which caused an error
• location (array index) of this value
• the computed result value
• error code
• name of the function in which the error occurred.

You can insert your own error processing into the callback function. This
may include correcting the passed result values in order to pass them back
and resume computation. The standard error handler is called after the
callback function only if it returns 0.

GetErrorCallBack
Gets the additional error handler
callback function.

Fortran:
fun = vmlgeterrorcallback()

7-58

7 Intel® Math Kernel Library Reference Manual

C:
fun = vmlGetErrorCallBack(void);

Output Parameters

Fortran:

fun Address of the callback function.

C:

fun Pointer to the callback function.

ClearErrorCallBack
Deletes the additional error handler
callback function and retrieves the
former callback function.

Fortran:
oldcallback = vmlclearerrorcallback()

C:
oldcallback = vmlClearErrorCallBack(void);

Output Parameters

Fortran:

oldcallback INTEGER. Address of the former callback function.

C:

oldcallback int. Pointer to the former callback function.

8-1

Vector Generators of
Statistical Distributions 8

This chapter describes the part of Intel® MKL which is known as Vector
Statistical Library (VSL) and is designed for the purpose of generating
vectors of pseudorandom numbers.

VSL provides a set of pseudorandom number generator subroutines
implementing basic continuous and discrete distributions. To speed up
performance, all these subroutines were developed using the calls to the
highly optimized Basic Random Number Generators (BRNGs) and the
library of vector mathematical functions (VML, see chapter 7).

All VSL subroutines can be classified into three major categories:

• Pseudorandom number generators for different types of statistical
distributions, for example, uniform, normal (Gaussian), binomial, etc.
Detailed description of the generators can be found in Pseudorandom
Generators section.

• Basic subroutines to handle random number streams: create, initialize,
delete, copy, get the index of a basic generator. The description of these
subroutines can be found in Service Subroutines section.

• Registration subroutines for basic pseudorandom generators and
subroutines that obtain properties of the registered generators (see
Advanced Service Subroutines section).

The last two categories will be referred to as service subroutines.

8-2

8 Intel® Math Kernel Library Reference Manual

Conventions
In this discussion, a Random Number Generator (RNG) means a
number-theoretic deterministic algorithm that generates number sequences,
which can be interpreted as random samplings from a universal set with a
given probability distribution function. Since random numbers are
generated by a deterministic algorithm, they cannot be truly random and
should be referred to as pseudorandom. The respective generators should be
also called pseudorandom. However, in this chapter no specific
differentiation is made between random and pseudorandom numbers, as
well as between random and pseudorandom generators unless the context
requires otherwise. Likewise, the terms random number and variate,
statistical distribution and probability distribution, are not distinguished
here either.

The choice of a number-theoretic algorithm A and initial conditions I
identifies a unique sequence of random numbers, which is called a random
stream. The pair is referred to as the random stream state. In VSL
a stream is identified by a stream descriptor represented as TYPE
(VSL_STREAM_STATE) structure in FORTRAN interface, and
VSLStreamStatePtr pointer in C interface.

All generators of nonuniform distributions, both discrete and continuous,
are built on the basis of the uniform distribution generators, called Basic
Random Number Generators (BRNGs). The pseudorandom numbers with
nonuniform distribution are obtained through an appropriate transformation
of the uniformly distributed pseudorandom numbers. The most common
transformation techniques include the inverse Cumulative Distribution
Function (CDF), acceptance/rejection method, and mixtures. For certain
types of distribution, several generation methods are implemented.

VSL subroutines for pseudorandom number generation accept the stream
descriptor and the distribution parameters as input and write the result in a
vector of pseudorandom numbers with a given distribution. For a given
statistical distribution, several generation methods can be used, which may
differ in efficiency for particular ranges of input parameters. Consequently,
the most efficient generators often use different methods for different
ranges. To establish the generation method to be used in the subroutine, you

A I,〈 〉

Vector Generators of Statistical Distributions 8

8-3

should specify the input parameter called the method number. Description
of methods available for each generator can be found in Pseudorandom
Generators section.

In the discussion that follow, the terms multiprocessor system,
computational node, and processor refer to any configuration of the system
with shared or distributed memory, or combination of the two. Specifically,
a computational node, or a processor, refers to a computational unit capable
of performing independent parallel computations (this may be either a
physical processor, a cluster node, or a logical parallel process).

Mathematical Notation

The following notation is used throughout the text:

N The set of natural numbers .

Z The set of integers .

R The set of real numbers.

The floor of a (the largest integer less than or equal to a).

or xor Bitwise exclusive OR.

or
Binomial coefficient or combination (, ;

). . For binomial coefficient is
defined as

. If , then .

Cumulative Gaussian distribution function

, defined over .

, .

LCG(a,c,m) Linear Congruential Generator , where
a is called the multiplier, c is called the increment and m is called the
modulus of the generator.

N 1, 2, 3...{ }=

Z ... -3, -2, -1, 0, 1, 2, 3 ...{ }=

a

⊕

Cα
k α

k

α R∈ α 0≥
k N∈ 0{ }∪ Cα

0 1= α k≥

Cα
k α α 1–() ... α k– 1+()

k!
--= α k< Cα

k 0=

Φ x()

Φ x() 1

2π
---------- exp

y
2

2
-----–

 yd

∞–

x

∫= ∞– x +∞< <

Φ ∞–() 0= Φ +∞() 1=

xn 1+ axn c+() mod m=

8-4

8 Intel® Math Kernel Library Reference Manual

Naming Conventions

The names of all VSL functions in FORTRAN are lowercase; names in C
may contain both lowercase and uppercase letters.

The names of generator subroutines have the following structure:

where v is the prefix of a VSL vector function, and the field <type of

result> is either s , d , or i and specifies one of the following types:

Prefixes s and d apply to continuous distributions only, prefix i applies
only to discrete case. The prefix rng indicates that the subroutine is a
pseudorandom generator, and the <distribution> field specifies the type
of statistical distribution.

MCG(a,m) Multiplicative Congruential Generator is a
special case of Linear Congruential Generator, where the increment c
is taken to be 0.

GFSR(p,q) Generalized Feedback Shift Register Generator
.

NOTE. This naming convention is followed in the function descriptions
in the manual. Actual function names in the library may differ slightly
(with respect to lower- and uppercase usage) and will be sufficient to
meet the requirements of the supported compilers.

v<type of result>rng<distribution> for FORTRAN-interface

v<type of result>Rng<distribution> for C-interface

s REAL for FORTRAN-interface
float for C-interface

d DOUBLE PRECISION for FORTRAN-interface
double for C-interface

i INTEGER for FORTRAN-interface
int for C-interface

xn 1+ axn() mod m=

xn xn p– xn q–⊕=

Vector Generators of Statistical Distributions 8

8-5

Names of service subroutines follow the template below:
vsl<name> ,

where vsl is the prefix of a VSL service function. The field <name>

contains a short function name. For a more detailed description of service
subroutines refer to Service Subroutines and Advanced Service Subroutines
sections.

Prototype of each generator subroutine implementing a given type of
random number distribution fits the following structure:
<function name>(method, stream, n, r, [<distribution

parameters>]),
where

• method is the number specifying the method of generation. A detailed
description of this parameter can be found in Pseudorandom
Generators section.

• stream defines the random stream descriptor and must have a nonzero
value. Random streams and their usage are discussed further in
Random Streams and Service Subroutines.

• n defines the number of pseudorandom values to be generated. If n is
less than or equal to zero, no values are generated. Furthermore, if n is
negative, an error condition is set.

• r defines the destination array for the generated numbers. The
dimension of the array must be large enough to store at least n
pseudorandom numbers.

Additional parameters included into <distribution parameters>

field are individual for each generator subroutine and are described in detail
in Pseudorandom Generators section.

To invoke a pseudorandom generator, use a call to the respective VSL
subroutine. For example, to obtain a vector r, composed of n independent
and identically distributed pseudorandom numbers with normal (Gaussian)
distribution, that have the mean value a and standard deviation sigma,
write the following:

for FORTRAN-interface

call vsrnggaussian(method, stream, n, r, a, sigma)

for C-interface

vsRngGaussian(method, stream, n, r, a, sigma)

8-6

8 Intel® Math Kernel Library Reference Manual

Basic Pseudorandom Generators
Basic Random Number Generators (BRNGs) are the major and widely
spread tool to obtain uniformly distributed pseudorandom numbers.

VSL provides a number of basic generators that differ in speed and quality:
the 32-bit multiplicative congruential generator MCG(1132489760, 231 - 1)
[L’Ecuyer99], the 32-bit generalized feedback shift register generator
GFSR(250,103) [Kirkpatrick81], and the combined multiple recursive
generator MRG-32k3a [L’Ecuyer99a], as well as the 59-bit multiplicative
congruential generator MCG(1313, 259) and Wichmann-Hill generator (in
fact, this is a set of 273 basic generators) from NAG Numerical Libraries
[NAG]. Essentially, applicability of a basic generator to a given
computational task is very difficult to estimate. To ensure more reliable
results, basic generators are usually tested in a series of statistical tests prior
to actual computation. Comparative performance analysis of the generators
and testing results can be found in VSLNotes.

Users may want to design and use their own basic generators. VSL provides
means of registration of such user-designed generators through the steps
described in Advanced Service Subroutines section.

For some basic generators, VSL provides two methods of creating
independent random streams in multiprocessor computations, which are the
leapfrog method and the block-splitting method. The properties of the
generators designed for parallel computations are discussed in detail in
[Coddington94].

For a more detailed description of the generator properties and testing
results refer to VSLNotes.

Random Streams

Several random streams may be used in one application for a number of
reasons.

First, it may be necessary to supply random data to different computational
nodes of a multiprocessor system. In this case, the following options are
available:

• use an individual basic generator for each computational node, so that
each random stream is filled from a different basic generator;

vslnotes.htm
vslnotes.htm

Vector Generators of Statistical Distributions 8

8-7

• use one basic generator for all computational nodes and generate
several independent random streams using the leapfrog method or the
block-splitting method;

• use combination of the two approaches, when one basic generator is
used to generate independent streams for all nodes and each of the
nodes in turn uses its own generator.

Another reason is related to the fact that many Monte Carlo simulations
require additional randomization. A simple illustration is the necessity to
assign random streams to different elements of the model or to run variance
reduction methods [Bratley87].

In either case, the correlation between different random streams can affect
reliability of the final result.

Data Types

Stream State. Random numbers can be generated by portions using the
notion of a stream state, which is a structure created after a call to the
stream creating subroutine. A stream state descriptor is used to access the
structure:

FORTRAN

TYPE VSL_STREAM_STATE

INTEGER*4 descriptor1
INTEGER*4 descriptor2

END TYPE VSL_STREAM_STATE

C

typedef (void*) VSLStreamStatePtr;

See Advanced Service Subroutines for the format of the stream state
structure for user-designed generators.

Service Subroutines
Stream handling comprises subroutines for creating, deleting, or copying
the streams and getting the index of a basic generator.

8-8

8 Intel® Math Kernel Library Reference Manual

Table 8-1 lists all available service subroutines

Most of the generator-based work comprises three basic steps:

1. Creating and initializing a stream (NewStream, NewStreamEx,
CopyStream, CopyStreamState, LeapfrogStream,

SkipAheadStream).
2. Generating pseudorandom numbers with given distribution, see

Pseudorandom Generators.
3. Deleting the stream (DeleteStream).

Table 8-1 Service Subroutines

Subroutine Short Description

NewStream Creates and initializes a random stream.

NewStreamEx Creates and initializes a random stream for the
generators with multiple initial conditions.

DeleteStream Deletes previously created stream.

CopyStream Copies a stream to another stream.

CopyStreamState Creates a copy of a random stream state.

LeapfrogStream Initializes the stream of k-th computational node in
a nstreams-node cluster by the leapfrog method.

SkipAheadStream Initializes the stream by the block-splitting method.

GetStreamStateBrng Obtains the index of the basic generator
responsible for the generation of a given random
stream.

GetNumRegBrng Obtains the number of currently registered basic
generators.

NOTE. In the above table, the vsl prefix in the function names is omitted.
In the function reference this prefix is always used in function prototypes
and code examples.

Vector Generators of Statistical Distributions 8

8-9

Note that you can concurrently create multiple streams and obtain
pseudorandom data from one or several generators by using the stream
state. You must use the DeleteStream function to delete all the streams
afterwards.

NewStream
Creates and initializes a random stream.

Fortran:
call vslnewstream(stream, brng, seed)

C:
vslNewStream(stream, brng, seed)

Discussion

For a basic generator with number brng , this function creates a new stream
and initializes it with a 32-bit seed. The function is also applicable for
generators with multiple initial conditions. See VSLNotes for a more
detailed description of stream initialization for different basic generators.

Input Parameters

FORTRAN:

C:

brng INTEGER, INTENT(IN). Index of the basic
generator to initialize the stream.

seed INTEGER, INTENT(IN). Initial condition of
the stream.

brng int. Index of the basic generator to initialize
the stream.

seed unsigned int. Initial condition of the
stream.

vslnotes.htm

8-10

8 Intel® Math Kernel Library Reference Manual

Output Parameters

FORTRAN:

C:

NewStreamEx
Creates and initializes a random stream
for generators with multiple initial
conditions.

Fortran:
call vslnewstreamex(stream, brng, n, params)

C:
vslNewStreamEx(stream, brng, n, params)

Discussion

This function provides an advanced tool to set the initial conditions for a
basic generator if its input arguments imply several initialization
parameters. This subroutine should not be used unless it is specially
necessary. Whenever possible, use vslNewStream, which is analogous to
vslNewStreamEx except that it takes only one 32-bit initial condition. In
particular, vslNewStreamEx may be used to initialize the seed tables in
Generalized Feedback Shift Register Generators (GFSRs). A more detailed
description of this issue can be found in VSLNotes.

stream TYPE(VSL_STREAM_STATE),

INTENT(OUT). Stream state descriptor.

stream VSLStreamStatePtr*. Pointer to the stream
state structure.

vslnotes.htm

Vector Generators of Statistical Distributions 8

8-11

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

C:

brng INTEGER, INTENT(IN). Index of the basic
generator to initialize the stream.

n INTEGER, INTENT(IN). Number of initial
conditions contained in params.

params INTEGER, INTENT(IN). Array of initial
conditions necessary for the basic generator
brng to initialize the stream.

brng int. Index of the basic generator to initialize
the stream.

n int. Number of initial conditions contained in
params.

params const unsigned int[]. Array of initial
conditions necessary for the basic generator
brng to initialize the stream.

stream TYPE(VSL_STREAM_STATE),

INTENT(OUT). Stream state descriptor.

stream VSLStreamStatePtr*. Pointer to the stream
state structure.

8-12

8 Intel® Math Kernel Library Reference Manual

DeleteStream
Deletes a random stream.

Fortran:
call vsldeletestream(stream)

C:
vslDeleteStream(stream)

Discussion

This function deletes the random stream created by one of the initialization
functions.

Input/Output Parameters

FORTRAN:

C:

CopyStream
Creates a copy of a random stream.

Fortran:
call vslcopystream(newstream, srcstream)

C:
vslCopyStream(newstream, srcstream)

stream TYPE(VSL_STREAM_STATE),

INTENT(INOUT). Descriptor of the stream to
be deleted; must have non-zero value.

stream VSLStreamStatePtr*. Pointer to the stream
state structure; must have non-zero value.
After the stream is successfully deleted, the
stream pointer is set to NULL.

Vector Generators of Statistical Distributions 8

8-13

Discussion

The function creates an exact copy of srcstream and stores its descriptor
to newstream.

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

C:

CopyStreamState
Creates a copy of a random stream
state.

Fortran:
call vslcopystreamstate(deststream, srcstream)

scrstream TYPE(VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream to be
copied.

srcstream VSLStreamStatePtr. Pointer to the stream
state structure to be copied.

newstream TYPE(VSL_STREAM_STATE),

INTENT(OUT). Descriptor of the stream copy.

newstream VSLStreamStatePtr*. Pointer to the copy
of the stream state structure.

8-14

8 Intel® Math Kernel Library Reference Manual

C:
vslCopyStreamState(deststream, srcstream)

Discussion

The function copies a stream state from srcstream to the existing
deststream stream. Both streams should be generated by the same basic
generator. En error message is generated when the index of the BRNG that
produced deststream stream differs from the index of the BRNG that
generated srcstream stream.

Unlike CopyStream function, which creates a new stream and copies both
the stream state and other data from srcstream, the function
CopyStreamState copies only srcstream stream state data to the
generated deststream stream.

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

scrstream TYPE(VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream with
the state to be copied.

srcstream VSLStreamStatePtr. Pointer to the stream
state structure from which the stream state is
copied.

deststream TYPE(VSL_STREAM_STATE),

INTENT(IN). Descriptor of the destination
stream where the state of scrstream
stream is copied.

Vector Generators of Statistical Distributions 8

8-15

C:

LeapfrogStream
Initializes stream of k-th computational
node in nstreams-node cluster using
the leapfrog method.

Fortran:
call vslleapfrogstream(stream, k, nstreams)

C:
vslLeapfrogtream(stream, k, nstreams)

Discussion

The function uses the leapfrog method (see Figure 8-1) to generate an
independent random stream for the computational node k, 0≤k<nstreams,
where nstreams is the largest number of computational nodes used.

deststream VSLStreamStatePtr. Pointer to the stream
state structure where the stream state is
copied.

8-16

8 Intel® Math Kernel Library Reference Manual

The following code examples illustrate the initialization of three
independent streams using the leapfrog method:

Figure 8-1 Leapfrog Method

Example 8-1 FORTRAN Code for Leapfrog Method

…
type(VSL_STREAM_STATE)stream1
type(VSL_STREAM_STATE)stream2
type(VSL_STREAM_STATE)stream3

! Creating 3 identical streams
call vslnewstream(stream1, VSL_BRNG_MCG31, 174)
call vslcopystream(stream2, stream1)
call vslcopystream(stream3, stream1)

! Leapfrogging the streams
call vslleapfrogstream(stream1, 0, 3)
call vslleapfrogstream(stream2, 1, 3)
call vslleapfrogstream(stream3, 2, 3)

! Generating random numbers
…
! Deleting the streams
call vsldeletestream(stream1)
call vsldeletestream(stream2)
call vsldeletestream(stream3)
…

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st node stream

2nd node stream

3rd node stream

nstream = 3

At node1 the streamcontains 1, 4, 7, 10, 13, 16, 19, …
At node2 the streamcontains 2, 5, 8, 11, 14, 17, 20, …
At node3 the streamcontains 3, 6, 9, 12, 15, 18, 21, …

Vector Generators of Statistical Distributions 8

8-17

Input Parameters

FORTRAN:

Example 8-2 C Code for Leapfrog Method

…
VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;

/* Creating 3 identical streams */
vslNewStream(&stream1, VSL_BRNG_MCG31, 174);
vslCopyStream(&stream2, stream1);
vslCopyStream(&stream3, stream1);

/* Leapfrogging the streams */
vslLeapfrogStream(stream1, 0, 3);
vslLeapfrogStream(stream2, 1, 3);
vslLeapfrogStream(stream3, 2, 3);

/* Generating random numbers */
…
/* Deleting the streams */
vslDeleteStream(&stream1);
vslDeleteStream(&stream2);
vslDeleteStream(&stream3);
…

stream TYPE(VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream to
which the leapfrog method is applied.

k INTEGER, INTENT(IN). Index of the
computational node, or stream number.

nstreams INTEGER, INTENT(IN). Largest number of
computational nodes, or number of
independent streams.

8-18

8 Intel® Math Kernel Library Reference Manual

C:

SkipAheadStream
Initializes a stream using the
block-splitting method.

Fortran:
call vslskipaheadstream(stream, nskip)

C:
vslSkipAheadStream(stream, nskip)

Discussion

This function initializes an independent random stream of a given
computational node through the block-splitting method (see Figure 8-2).
The maximum number of computational nodes is unlimited. The largest
number of elements skipped in a given stream is nskip.

stream VSLStreamStatePtr. Pointer to the stream
state structure to which the leapfrog method is
applied.

k int. Index of the computational node, or
stream number.

nstreams int. Largest number of computational nodes,
or number of independent steams.

Vector Generators of Statistical Distributions 8

8-19

The following code examples illustrate how to initialize three independent
streams using the SkipAheadStream function:

Figure 8-2 Block-Splitting Method

Example 8-3 FORTRAN Code for Block-Splitting Method

…
TYPE(VSL_STREAM_STATE)stream1
TYPE(VSL_STREAM_STATE)stream2
TYPE(VSL_STREAM_STATE)stream3

! Creating the 1st stream
call vslnewstream(stream1, VSL_BRNG_MCG31, 174)

! Skipping ahead by 7 elements the 2nd stream
call vslcopystream(stream2, stream1);
call vslskipaheadstream(stream2, 7);

! Skipping ahead by 7 elements the 3rd stream
call vslcopystream(stream3, stream2);
call vslskipaheadstream(stream3, 7);

! Generating random numbers
…
! Deleting the streams
call vsldeletestream(stream1)
call vsldeletestream(stream2)
call vsldeletestream(stream3)
…

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st node stream

2nd node stream

3rd node stream

At node1 the streamcontains 1, 2, 3, 4, 5, 6, 7.
At node2 the streamcontains 8, 9, 10, 11, 12, 13, 14.
At node3 the streamcontains 15, 16, 17, 18, 19, 20, 21.

nskip=7

8-20

8 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

Example 8-4 C Code for Block-Splitting Method

VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;

/* Creating the 1st stream */
vslNewStream(&stream1, VSL_BRNG_MCG31, 174);

/* Skipping ahead by 7 elements the 2nd stream */
vslCopyStream(&stream2, stream1);
vslSkipAheadStream(stream2, 7);

/* Skipping ahead by 7 elements the 3rd stream */
vslCopyStream(&stream3, stream2);
vslSkipAheadStream(stream3, 7);

/* Generating random numbers */
…
/* Deleting the streams */
vslDeleteStream(&stream1);
vslDeleteStream(&stream2);
vslDeleteStream(&stream3);
…

stream TYPE(VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream to
which the block-splitting method is applied.

nskip INTEGER, INTENT(IN). Number of skipped
elements.

stream VSLStreamStatePtr. Pointer to the stream
state structure to which the block-splitting
method is applied.

nskip int. Number of skipped elements.

Vector Generators of Statistical Distributions 8

8-21

GetStreamStateBrng
Returns index of a basic generator used for
generation of a given random stream.

Fortran:
brng = vslgetstreamstatebrng(stream)

C:
brng = vslGetStreamStateBrng(stream)

Discussion

This function retrieves the index of a basic generator used for generation of
a given random stream.

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

stream TYPE(VSL_STREAM_STATE), INTENT(IN).
Descriptor of the stream state.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

brng INTEGER. Index of the basic generator assigned
for the generation of stream ; negative in case
of an error.

8-22

8 Intel® Math Kernel Library Reference Manual

C:

GetNumRegBrng
Obtains the number of currently registered
basic generators.

Fortran:
nregbrng = vslgetnumregbrngs()

C:
nregbrng = vslGetNumRegBrngs(void)

Discussion

This function obtains the number of currently registered basic generators.
Whenever the user registers a user-defined basic generator, the number of
registered basic generators is incremented. The maximum number of basic
generators that can be registered is determined by VSL_MAX_REG_BRNGS

parameter.

Output Parameters

FORTRAN:

C:

brng int. Index of the basic generator assigned for
the generation of stream ; negative in case of
an error.

nregbrngs INTEGER. The number of basic generators
registered at the moment of the function call.

nregbrngs int. The number of basic generators registered
at the moment of the function call.

Vector Generators of Statistical Distributions 8

8-23

Pseudorandom Generators
This section contains description of VSL subroutines for generating random
numbers with different types of distribution. Each function group is
introduced by the type of underlying distribution and contains a short
description of its functionality, as well as specifications of the call sequence
for both FORTRAN and C-interface and the explanation of input and output
parameters.
Table 8-2 and Table 8-3 list the pseudorandom number generator
subroutines, together with used data types and output distributions.

Table 8-2 Continuous Distribution Generators

Type of
Distribution

Data
Types

Description

Uniform s, d Uniform continuous distribution on the interval (a,b).

Gaussian s, d Normal (Gaussian) distribution.

Exponential s, d Exponential distribution.

Laplace s, d Laplace distribution (double exponential distribution).

Weibull s, d Weibull distribution.

Cauchy s, d Cauchy distribution.

Rayleigh s, d Rayleigh distribution.

Lognormal s, d Lognormal distribution.

Gumbel s, d Gumbel (extreme value) distribution.

Table 8-3 Discrete Distribution Generators

Type of Distribution
Data
Types Description

Uniform i Uniform discrete distribution on the interval [a,b).

UniformBits i Generator of integer random values with uniform bit
distribution.

Bernoulli i Bernoulli distribution.

Geometric i Geometric distribution.

Binomial i Binomial distribution.

Hypergeometric i Hypergeometric distribution.

8-24

8 Intel® Math Kernel Library Reference Manual

Continuous Distributions

This section describes routines for generating pseudorandom numbers with
continuous distribution.

Uniform
Generates pseudorandom numbers with
uniform distribution.

Fortran:
call vsrnguniform(method, stream, n, r, a, b)

call vdrnguniform(method, stream, n, r, a, b)

C:
vsRngUniform(method, stream, n, r, a, b)

vdRngUniform(method, stream, n, r, a, b)

Discussion

This function generates pseudorandom numbers uniformly distributed over
the interval (a, b), where a, b are the left and right bounds of the
interval, respectively, and ; .

The probability density function is given by:

, .

Poisson i Poisson distribution.

NegBinomial i Negative binomial distribution, or Pascal distribution.

Table 8-3 Discrete Distribution Generators (continued)

Type of Distribution
Data
Types Description

a b, R∈ a b<

fa b, x()
1

b a–
------------ , x a(b),∈

0, x a(b),∉

= ∞– x +∞< <

Vector Generators of Statistical Distributions 8

8-25

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method; dummy and set to 0 in case of
uniform distribution.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN)for vsrnguniform.

DOUBLE PRECISION, INTENT(IN)for
vdrnguniform.

Left bound a.

b REAL, INTENT(IN)for vsrnguniform.

DOUBLE PRECISION, INTENT(IN)for
vdrnguniform.

Right bound b.

method int. Generation method; dummy and set to 0
in case of uniform distribution.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

Fa b, x()

0, x a<
x a–
b a–
------------ , a x≤ b<

1, x b≥

= ∞– x +∞< <

8-26

8 Intel® Math Kernel Library Reference Manual

Output Parameters

FORTRAN:

C:

Gaussian
Generates normally distributed
pseudorandom numbers.

Fortran:
call vsrnggaussian(method, stream, n, r, a, sigma)

n int. Number of random values to be
generated.

a float for vsRngUniform.

double for vdRngUniform.

Left bound a.

b float for vsRngUniform.

double for vdRngUniform.

Right bound b.

r REAL, INTENT(OUT)for vsrnguniform.

DOUBLE PRECISION, INTENT(OUT)for
vdrnguniform.

Vector of n pseudorandom numbers uniformly
distributed over the interval (a,b).

r float* for vsRngUniform.

double* for vdRngUniform.

Vector of n pseudorandom numbers uniformly
distributed over the interval (a,b).

Vector Generators of Statistical Distributions 8

8-27

call vdrnggaussian(method, stream, n, r, a, sigma)

C:
vsRngGaussian(method, stream, n, r, a, sigma)

vdRngGaussian(method, stream, n, r, a, sigma)

Discussion

This function generates pseudorandom numbers with normal (Gaussian)
distribution with mean value and standard deviation , where

; .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

The cumulative distribution function can be expressed in terms of
standard normal distribution as

.

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a σ
a σ, R∈ σ 0>

fa σ, x()
1

2πσ
------------- x a–()2

2σ2
-------------------–

exp= ∞– x +∞< <

Fa σ, x()
1

2πσ
------------- y a–()2

2σ2
-------------------–

exp yd

∞–

x

∫= ∞– x +∞< <

Fa σ, x()
Φ x()

Fa σ, x() Φ x a–() σ⁄()=

8-28

8 Intel® Math Kernel Library Reference Manual

C:

Output Parameters

FORTRAN:

a REAL, INTENT(IN)for vsrnggaussian.

DOUBLE PRECISION, INTENT(IN)for
vdrnggaussian.

Mean value a.

sigma REAL, INTENT(IN)for vsrnggaussian.

DOUBLE PRECISION, INTENT(IN)for
vdrnggaussian.

Standard deviation .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngGaussian.

double for vdRngGaussian.

Mean value a.

sigma float for vsRngGaussian.

double for vdRngGaussian.

Standard deviation .

r REAL, INTENT(OUT)for vsrnggaussian.

DOUBLE PRECISION, INTENT(OUT)for
vdrnggaussian.

Vector of n normally distributed
pseudorandom numbers.

σ

σ

Vector Generators of Statistical Distributions 8

8-29

C:

Exponential
Generates exponentially distributed
pseudorandom numbers.

Fortran:
call vsrngexponential(method, stream, n, r, a, beta)

call vdrngexponential(method, stream, n, r, a, beta)

C:
vsRngExponential(method, stream, n, r, a, beta)

vdRngExponential(method, stream, n, r, a, beta)

Discussion

This function generates pseudorandom numbers with exponential
distribution that has the displacement and scalefactor , where

; .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

r float* for vsRngGaussian.

double* for vdRngGaussian.

Vector of n normally distributed
pseudorandom numbers.

a β
a β, R∈ β 0>

fa β, x()
1
β
--- x a–()–() β⁄(), x a≥exp

0, x a<

= ∞– x +∞< <

Fa β, x()
1 x a–()–() β⁄(), x a≥exp–

0, x a<

= ∞– x +∞< <

8-30

8 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN)for
vsrngexponential.

DOUBLE PRECISION, INTENT(IN)for
vdrngexponential.

Displacement a.

beta REAL, INTENT(IN)for
vsrngexponential.

DOUBLE PRECISION, INTENT(IN)for
vdrngexponential.

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngExponential.

double for vdRngExponential.

Displacement a.

β

Vector Generators of Statistical Distributions 8

8-31

Output Parameters

FORTRAN:

C:

Laplace
Generates pseudorandom numbers with
Laplace distribution.

Fortran:
call vsrnglaplace(method, stream, n, r, a, beta)

call vdrnglaplace(method, stream, n, r, a, beta)

C:
vsRngLaplace(method, stream, n, r, a, beta)

vdRngLaplace(method, stream, n, r, a, beta)

beta float for vsRngExponential.

double for vdRngExponential.

Scalefactor .

r REAL, INTENT(OUT)for
vsrngexponential.

DOUBLE PRECISION, INTENT(OUT)for
vdrngexponential.

Vector of n exponentially distributed
pseudorandom numbers.

r float* for vsRngExponential.

double* for vdRngExponential.

Vector of n exponentially distributed
pseudorandom numbers.

β

8-32

8 Intel® Math Kernel Library Reference Manual

Discussion

This function generates pseudorandom numbers with Laplace distribution
with mean value (or average) and scalefactor , where

; . The scalefactor value determines the standard
deviation as

.

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). Descriptor
of the stream state structure.

n INTEGER, INTENT(IN). Number of random values to be
generated.

a REAL, INTENT(IN)for vsrnglaplace.

DOUBLE PRECISION, INTENT(IN)for vdrnglaplace.

Mean value a.

a β
a β, R∈ β 0>

σ β 2=

fa β, x()
1

2β
---------- x a–

β
---------------–

 exp= ∞– x +∞< <

Fa β, x()

1
2
--- x a–

β
---------------–

 , x a<exp

1
1
2
--- x a–

β
---------------–

 exp– , x a≥

= ∞– x +∞< <

Vector Generators of Statistical Distributions 8

8-33

C:

Output Parameters

FORTRAN:

C:

beta REAL, INTENT(IN)for vsrnglaplace.

DOUBLE PRECISION, INTENT(IN)for vdrnglaplace.

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state descriptor.

n int. Number of random values to be
generated.

a float for vsRngLaplace.

double for vdRngLaplace.

Mean value a.

beta float for vsRngLaplace.

double for vdRngLaplace.

Scalefactor .

r REAL, INTENT(OUT)for vsrnglaplace.

DOUBLE PRECISION, INTENT(OUT)for
vdrnglaplace.

Vector of n Laplace distributed pseudorandom
numbers.

r float* for vsRngLaplace.

double* for vdRngLaplace.

Vector of n Laplace distributed pseudorandom
numbers.

β

β

8-34

8 Intel® Math Kernel Library Reference Manual

Weibull
Generates Weibull distributed
pseudorandom numbers.

Fortran:
call vsrngweibull(method, stream, n, r, alpha, a, beta)

call vdrngweibull(method, stream, n, r, alpha, a, beta)

C:
vsRngWeibull(method, stream, n, r, alpha, a, beta)

vdRngWeibull(method, stream, n, r, alpha, a, beta)

Discussion

This function generates Weibull distributed pseudorandom numbers with
displacement , scalefactor , and shape , where ;

; .

The probability density function is given by:

The cumulative distribution function is as follows:

, .

a β α α β a, , R∈
α 0> β 0>

fa α β, , x()

α
βα
----- x a–()α 1– x a–

β

 α
–

 , x a≥exp

0, x a<

=

Fa α β, , x()
1

x a–
β

 α

–
 , x a≥exp–

0, x a<

= ∞– x +∞< <

Vector Generators of Statistical Distributions 8

8-35

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

alpha REAL, INTENT(IN)for vsrngweibull.

DOUBLE PRECISION, INTENT(IN)for
vdrngweibull.

Shape .

a REAL, INTENT(IN)for vsrngweibull.

DOUBLE PRECISION, INTENT(IN)for
vdrngweibull.

Displacement a.

beta REAL, INTENT(IN)for vsrngweibull.

DOUBLE PRECISION, INTENT(IN)for
vdrngweibull.

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

alpha float for vsRngWeibull.

double for vdRngWeibull.

Shape .

α

β

α

8-36

8 Intel® Math Kernel Library Reference Manual

Output Parameters

FORTRAN:

C:

Cauchy
Generates Cauchy distributed
pseudorandom values.

Fortran:
call vsrngcauchy(method, stream, n, r, a, beta)

call vdrngcauchy(method, stream, n, r, a, beta)

a float for vsRngWeibull.

double for vdRngWeibull.

Displacement a.

beta float for vsRngWeibull.

double for vdRngWeibull.

Scalefactor .

r REAL, INTENT(OUT)for vsrngweibull.

DOUBLE PRECISION, INTENT(OUT)for
vdrngweibull.

Vector of n Weibull distributed pseudorandom
numbers.

r float* for vsRngWeibull.

double* for vdRngWeibull.

Vector of n Weibull distributed pseudorandom
numbers.

β

Vector Generators of Statistical Distributions 8

8-37

C:
vsRngCauchy(method, stream, n, r, a, beta)

vdRngCauchy(method, stream, n, r, a, beta)

Discussion

This function generates Cauchy distributed pseudorandom numbers with
displacement and scalefactor , where ; .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN)for vsrngcauchy.

DOUBLE PRECISION, INTENT(IN)for
vdrngcauchy.

Displacement a.

a β a β, R∈ β 0>

fa β, x()
1

πβ 1
x a–

β

 2
+

--= ∞– x +∞< <

Fa β, x()
1
2
--- 1

π
---arctan

x a–
β

 += ∞– x +∞< <

8-38

8 Intel® Math Kernel Library Reference Manual

C:

Output Parameters

FORTRAN:

C:

beta REAL, INTENT(IN)for vsrngcauchy.

DOUBLE PRECISION, INTENT(IN)for
vdrngcauchy.

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngCauchy.

double for vdRngCauchy.

Displacement a.

beta float for vsRngCauchy.

double for vdRngCauchy.

Scalefactor .

r REAL, INTENT(OUT)for vsrngcauchy.

DOUBLE PRECISION, INTENT(OUT)for
vdrngcauchy.

Vector of n Cauchy distributed pseudorandom
numbers.

r float* for vsRngCauchy.

double* for vdRngCauchy.

Vector of n Cauchy distributed pseudorandom
numbers.

β

β

Vector Generators of Statistical Distributions 8

8-39

Rayleigh
Generates Rayleigh distributed
pseudorandom values.

Fortran:
call vsrngrayleigh(method, stream, n, r, a, beta)

call vdrngrayleigh(method, stream, n, r, a, beta)

C:
vsRngRayleigh(method, stream, n, r, a, beta)

vdRngRayleigh(method, stream, n, r, a, beta)

Discussion

This function generates Rayleigh distributed pseudorandom numbers with
displacement and scalefactor , where ; .

Rayleigh distribution is a special case of Weibull distribution, where the
shape parameter = 2.

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

a β a β, R∈ β 0>

α

fa β, x()

2 x a–()
β2

-------------------- x a–()
β2

2

–
 , x a≥exp

0, x a<

= ∞– x +∞< <

Fa β, x()
1

x a–()
β2

2

–
 , x a≥exp–

0, x a<

= ∞– x +∞< <

8-40

8 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN)for vsrngrayleigh.

DOUBLE PRECISION, INTENT(IN)for
vdrngrayleigh.

Displacement a.

beta REAL, INTENT(IN)for vsrngrayleigh.

DOUBLE PRECISION, INTENT(IN)for
vdrngrayleigh.

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngRayleigh.

double for vdRngRayleigh.

Displacement a.

beta float for vsRngRayleigh.

double for vdRngRayleigh.

Scalefactor .

β

β

Vector Generators of Statistical Distributions 8

8-41

Output Parameters

FORTRAN:

C:

Lognormal
Generates lognormally distributed
pseudorandom numbers.

Fortran:
call vsrnglognormal(method, stream, n, r, a, sigma, b,
beta)

call vdrnglognormal(method, stream, n, r, a, sigma, b,
beta)

C:
vsRngLognormal(method, stream, n, r, a, sigma, b, beta)

vdRngLognormal(method, stream, n, r, a, sigma, b, beta)

r REAL, INTENT(OUT)for vsrngrayleigh.

DOUBLE PRECISION, INTENT(OUT)for
vdrngrayleigh.

Vector of n Rayleigh distributed
pseudorandom numbers.

r float* for vsRngRayleigh.

double* for vdRngRayleigh.

Vector of n Rayleigh distributed
pseudorandom numbers.

8-42

8 Intel® Math Kernel Library Reference Manual

Discussion

This function generates lognormally distributed pseudorandom numbers
with average of distribution and standard deviation of subject normal
distribution, displacement , and scalefactor , where

; ; .

The probability density function is given by:

The cumulative distribution function is as follows:

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN)for vsrnglognormal.

DOUBLE PRECISION, INTENT(IN)for
vdrnglognormal.

Average a of the subject normal distribution.

a σ
b β

a σ b β, , , R∈ σ 0> β 0>

fa σ b β, , , x()
1

σ x b–() 2π
------------------------------ x b–() β⁄() a–ln[] 2

2σ2
--–

, x b>exp

0, x b≤

=

Fa σ b β, , , x()
Φ x b–() β⁄() a–ln() σ⁄(), x b>
0, x b≤

=

Vector Generators of Statistical Distributions 8

8-43

C:

sigma REAL, INTENT(IN)for vsrnglognormal.

DOUBLE PRECISION, INTENT(IN)for
vdrnglognormal.

Standard deviation of the subject normal
distribution.

b REAL, INTENT(IN)for vsrnglognormal.

DOUBLE PRECISION, INTENT(IN)for
vdrnglognormal.

Displacement b.

beta REAL, INTENT(IN)for vsrnglognormal.

DOUBLE PRECISION, INTENT(IN)for
vdrnglognormal.

Scalefactor value .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngLognormal.

double for vdRngLognormal.

Average a of the subject normal distribution.

sigma float for vsRngLognormal.

double for vdRngLognormal.

Standard deviation of the subject normal
distribution.

b float for vsRngLognormal.

double for vdRngLognormal.

Displacement b.

σ

β

σ

8-44

8 Intel® Math Kernel Library Reference Manual

Output Parameters

FORTRAN:

C:

Gumbel
Generates Gumbel distributed
pseudorandom values.

Fortran:
call vsrnggumbel(method, stream, n, r, a, beta)

call vdrnggumbel(method, stream, n, r, a, beta)

C:
vsRngGumbel(method, stream, n, r, a, beta)

vdRngGumbel(method, stream, n, r, a, beta)

beta float for vsRngLognormal.

double for vdRngLognormal.

Scalefactor value .

r REAL, INTENT(OUT)for vsrnglognormal.

DOUBLE PRECISION, INTENT(OUT)for
vdrnglognormal.

Vector of n lognormally distributed
pseudorandom numbers.

r float* for vsRngLognormal.

double* for vdRngLognormal.

Vector of n lognormally distributed
pseudorandom numbers.

β

Vector Generators of Statistical Distributions 8

8-45

Discussion

This function generates Gumbel distributed pseudorandom numbers with
displacement and scalefactor , where ; .

The probability density function is given by:

,
.

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream
state structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN)for vsrnggumbel.

DOUBLE PRECISION, INTENT(IN)for
vdrnggumbel.

Displacement a.

beta REAL, INTENT(IN)for vsrnggumbel.

DOUBLE PRECISION, INTENT(IN)for
vdrnggumbel.

Scalefactor .

method int. Generation method.

a β a β, R∈ β 0>

fa β, x()
1
β
--- x a–

β

 x a–() β⁄()exp–()expexp= ∞– x +∞< <

Fa β, x() 1 x a–() β⁄()exp–()exp–= ∞– x +∞< <

β

8-46

8 Intel® Math Kernel Library Reference Manual

Output Parameters

FORTRAN:

C:

Discrete Distributions

This section describes routines for generating pseudorandom numbers with
discrete distribution.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngGumbel.

double for vdRngGumbel.

Displacement a.

beta float for vsRngGumbel.

double for vdRngGumbel.

Scalefactor .

r REAL, INTENT(OUT)for vsrnggumbel.

DOUBLE PRECISION, INTENT(OUT)for
vdrnggumbel.

Vector of n pseudorandom values with
Gumbel distribution.

r float* for vsRngGumbel.

double* for vdRngGumbel.

Vector of n pseudorandom values with
Gumbel distribution.

β

Vector Generators of Statistical Distributions 8

8-47

Uniform
Generates pseudorandom numbers
uniformly distributed over the interval

.

Fortran:
call virnguniform(method, stream, n, r, a, b)

C:
viRngUniform(method, stream, n, r, a, b)

Discussion

This function generates pseudorandom numbers uniformly distributed over
the interval , where a, b are the left and right bounds of the
interval, respectively, and ; .

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

a b),[

a b),[
a b, Z∈ a b<

P X k=() 1
b a–
------------= k a a 1, …, b 1–+,{ }∈

Fa b, x()

0, x a<
x a– 1+

b a–
---------------------------- , a x b<≤

1, x b≥

= x R∈

8-48

8 Intel® Math Kernel Library Reference Manual

C:

Output Parameters

FORTRAN:

C:

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a INTEGER, INTENT(IN). Left interval
bound a.

b INTEGER, INTENT(IN). Right interval
bound b.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a int. Left interval bound a.

b int. Right interval bound b.

r INTEGER, INTENT(OUT). Vector of n
pseudorandom values uniformly distributed
over the interval [a,b).

r int*. Vector of n pseudorandom values
uniformly distributed over the interval [a,b).

Vector Generators of Statistical Distributions 8

8-49

UniformBits
Generates integer random values with
uniform bit distribution.

Fortran:
call virnguniformbits(method, stream, n, r)

C:
viRngUniformBits(method, stream, n, r)

Discussion

This function generates integer random values with uniform bit
distribution.The generators of uniformly distributed numbers can be
represented as recurrence relations over integer values in modular
arithmetic. Apparently, each integer can be treated as a vector of several
bits. In a truly random generator, these bits are random, while in
pseudorandom generators this randomness can be violated. For example, a
well known drawback of linear congruential generators is that lower bits are
less random than higher bits (for example, see [Knuth81]). For this reason,
care should be taken when using this function. Typically, in a 32-bit LCG
only 24 higher bits of an integer value can be considered truly random. See
VSLNotes for details.

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method. A dummy argument in
virnguniformbits. Should be zero.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

vslnotes.htm

8-50

8 Intel® Math Kernel Library Reference Manual

C:

Output Parameters

FORTRAN:

method int. Generation method. A dummy argument
in viRngUniformBits. Should be zero.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

r INTEGER, INTENT(OUT). Vector of n
pseudorandom integer numbers. If the
stream was generated by a 64 or a 128-bit
generator, each integer value is represented by
two or four elements of r respectively. The
number of bytes occupied by each integer is
contained in the field wordsize of the
structure VSL_BRNG_PROPERTIES. The total
number of bits that are actually used to store
the value are contained in the field nbits of
the same structure. See Advanced Service
Subroutines for a more detailed discussion of
VSL_BRNG_PROPERTIES.

Vector Generators of Statistical Distributions 8

8-51

C:

Bernoulli
Generates Bernoulli distributed
pseudorandom values.

Fortran:
call virngbernoulli(method, stream, n, r, p)

C:
viRngBernoulli(method, stream, n, r, p)

Discussion

This function generates Bernoulli distributed pseudorandom numbers with
probability of a single trial success, where

; .

A variate is called Bernoulli distributed, if after a trial it is equal to 1 with
probability of success p, and to 0 with probability 1–p.

r unsigned int*. Vector of n pseudorandom
integer numbers. If the stream was generated
by a 64 or a 128-bit generator, each integer
value is represented by two or four elements
of r respectively. The number of bytes
occupied by each integer is contained in the
field WordSize of the structure
VSLBrngProperties. The total number of
bits that are actually used to store the value are
contained in the field NBits of the same
structure. See Advanced Service Subroutines
for a more detailed discussion of
VSLBrngProperties.

p

p R∈ 0 p 1≤ ≤

8-52

8 Intel® Math Kernel Library Reference Manual

The probability distribution is given by:

,

.

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

p DOUBLE PRECISION, INTENT(IN).
Success probability p of a trial.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

p double. Success probability p of a trial.

P X 1=() p=

P X 0=() 1 p–=

Fp x()

0, x 0<
1 p– , 0 x 1<≤

1, x 1≥

= x R∈

Vector Generators of Statistical Distributions 8

8-53

Output Parameters

FORTRAN:

C:

Geometric
Generates geometrically distributed
pseudorandom values.

Fortran:
call virnggeometric(method, stream, n, r, p)

C:
viRngGeometric(method, stream, n, r, p)

Discussion

This function generates geometrically distributed pseudorandom numbers
with probability of a single trial success, where ; .

A geometrically distributed variate represents the number of independent
Bernoulli trials preceding the first success. The probability of a single
Bernoulli trial success is p.

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

r INTEGER, INTENT(OUT). Vector of n
Bernoulli distributed pseudorandom values.

r int*. Vector of n Bernoulli distributed
pseudorandom values.

p p R∈ 0 p 1< <

P X k=() p 1 p–()k⋅= k 0 1, 2, …,{ }∈

Fp x()
0, x 0<

1 1 p–() x 1+
– , x 0≥

= x R∈

8-54

8 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

p DOUBLE PRECISION, INTENT(IN).
Success probability p of a trial.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

p double. Success probability p of a trial.

r INTEGER, INTENT(OUT). Vector of n
geometrically distributed pseudorandom
values.

r int*. Vector of n geometrically distributed
pseudorandom values.

Vector Generators of Statistical Distributions 8

8-55

Binomial
Generates binomially distributed
pseudorandom numbers.

Fortran:
call virngbinomial(method, stream, n, r, ntrial, p)

C:
viRngBinomial(method, stream, n, r, ntrial, p)

Discussion

This function generates binomially distributed pseudorandom numbers with
number of independent Bernoulli trials , and with probability of a
single trial success, where ; , .

A binomially distributed variate represents the number of successes in m

independent Bernoulli trials with probability of a single trial success p.

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

m p
p R∈ 0 p 1≤ ≤ m N∈

P X k=() Cm
k p

k
1 p–()m k–

= k 0 1, … m,,{ }∈

Fm p, x()

0, x 0<

Cm
k p

k
1 p–()m k–

k 0=

x

∑ , 0 x m<≤

1, x m≥

= x R∈

8-56

8 Intel® Math Kernel Library Reference Manual

C:

Output Parameters

FORTRAN:

C:

n INTEGER, INTENT(IN). Number of
random values to be generated.

ntrial INTEGER, INTENT(IN). Number of
independent trials m.

p DOUBLE PRECISION, INTENT(IN).
Success probability p of a single trial.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

ntrial int. Number of independent trials m.

p double. Success probability p of a single
trial.

r INTEGER, INTENT(OUT). Vector of n
binomially distributed pseudorandom values.

r int*. Vector of n binomially distributed
pseudorandom values.

Vector Generators of Statistical Distributions 8

8-57

Hypergeometric
Generates hypergeometrically
distributed pseudorandom values.

Fortran:
call virnghypergeometric(method, stream, n, r, l, s, m)

C:
viRngHypergeometric(method, stream, n, r, l, s, m)

Discussion

This function generates hypergeometrically distributed pseudorandom
values with lot size , size of sampling , and number of marked elements
in the lot , where ; .

Consider a lot of l elements comprising m “marked” and l-m “unmarked“
elements. A trial sampling without replacement of exactly s elements from
this lot helps to define the hypergeometric distribution, which is the
probability that the group of s elements contains exactly k marked
elements.

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

l s
m l m s, , N 0{ }∪∈ l max s m,()≥

P X k=()
Cm

k Cl m–
s k–

Cl
s

---------------------= k max 0, s m l–+(), … min s m,(),{ }∈

Fl s m, , x()

0, x max 0, s m l–+()<

Cm
k Cl m–

s k–

Cl
s

k max 0 s m l–+,()=

x

∑ , max 0, s m l–+() x min s m,()≤ ≤

1, x min s m,()>

=

8-58

8 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

l INTEGER, INTENT(IN). Lot size l.

s INTEGER, INTENT(IN). Size of sampling
without replacement s.

m INTEGER, INTENT(IN). Number of marked
elements m.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

l int. Lot size l.

s int. Size of sampling without replacement s.

m int. Number of marked elements m.

r INTEGER, INTENT(OUT). Vector of n
hypergeometrically distributed pseudorandom
values.

Vector Generators of Statistical Distributions 8

8-59

C:

Poisson
Generates Poisson distributed
pseudorandom values.

Fortran:
call virngpoisson(method, stream, n, r, lambda)

C:
viRngPoisson(method, stream, n, r, lambda)

Discussion

This function generates Poisson distributed pseudorandom numbers with
distribution parameter , where ; .

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

r int*. Vector of n hypergeometrically
distributed pseudorandom values.

λ λ R∈ λ 0>

P X k=() λ k
e

λ–

k!
-------------= k 0, 1, 2, …{ }∈

Fλ x()
λ k

e
λ–

k!

k 0=

x

∑ , x 0≥

0, x 0<

= x R∈

8-60

8 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

lambda DOUBLE PRECISION, INTENT(IN).
Distribution parameter .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

lambda double. Distribution parameter .

r INTEGER, INTENT(OUT). Vector of n
Poisson distributed pseudorandom values.

r int*. Vector of n Poisson distributed values.

λ

λ

Vector Generators of Statistical Distributions 8

8-61

NegBinomial
Generates pseudorandom numbers with
negative binomial distribution.

Fortran:
call virngnegbinomial(method, stream, n, r, a, p)

C:
viRngNegBinomial(method, stream, n, r, a, p)

Discussion

This function generates pseudorandom numbers with negative binomial
distribution and distribution parameters and ., where ;

; .

If the first distribution parameter , this distribution is the same as
Pascal distribution. If , the distribution can be interpreted as the
expected time of -th success in a sequence of Bernoulli trials, when the
probability of success is .

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

a p p a, R∈
0 p 1< < a 0>

a N∈
a N∈

a
p

P X k=() Ca k 1–+
k p

a
1 p–()k

= k 0, 1, 2, …{ }∈

Fa p, x()
Ca k 1–+

k p
a

1 p–()k

k 0=

x

∑ , x 0≥

0, x 0<

= x R∈

8-62

8 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a DOUBLE PRECISION, INTENT(IN). The
first distribution parameter a.

p DOUBLE PRECISION, INTENT(IN). The
second distribution parameter p.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a double. The first distribution parameter a.

p double. The second distribution parameter p.

r INTEGER, INTENT(OUT). Vector of n
pseudorandom values with negative binomial
distribution.

r int*. Vector of n pseudorandom values with
negative binomial distribution.

Vector Generators of Statistical Distributions 8

8-63

Advanced Service Subroutines
This section describes service subroutines for registering a basic generator
and obtaining properties of the previously registered basic generators.

Data types

The subroutines of this section refer to a structure defining the properties of
the basic generator:

Table 8-4 Advanced Service Subroutines

Subroutine Short Description

RegisterBrng Registers a user-designed basic
generator.

GetBrngProperties Returns the structure with
properties of the basic generator
with a given number.

Example 8-5 Fortran Version

TYPE VSL_BRNG_PROPERTIES
INTEGER streamstatesize
INTEGER nseeds
INTEGER includeszero
INTEGER wordsize
INTEGER nbits
INTEGER initstream
INTEGER sbrng
INTEGER dbrng
INTEGER ibrng

END TYPE VSL_BRNG_PROPERTIES

Example 8-6 C Version

typedef struct _VSLBRngProperties {
int StreamStateSize;
int NSeeds;
int IncludesZero;
int WordSize;
int NBits;
InitStreamPtr InitStream;
sBRngPtr sBRng;
dBRngPtr dBRng;
iBRngPtr iBRng;

} VSLBRngProperties;

8-64

8 Intel® Math Kernel Library Reference Manual

Example 8-7 Pointers to Functions

typedef int (*InitStreamPtr)(int method, void * stream, int n,
const unsigned int params[]);

typedef void (*sBRngPtr)(void * stream, int n, float r[],
float a, float b);

typedef void (*dBRngPtr)(void * stream, int n, double r[],
double a, double b);

typedef void (*iBRngPtr)(void * stream, int n,
unsigned int r[]);

Table 8-5 Field Descriptions

Field Short Description

FORTRAN:

streamstatesize

C:

StreamStateSize

The size, in bytes, of the stream state structure
for a given basic generator.

FORTRAN:

nseeds

C:

NSeeds

The number of 32-bit initial conditions (seeds)
necessary to initialize the stream state structure
for a given basic generator.

FORTRAN:

includeszero

C:

IncludesZero

Flag value indicating whether the generator can
produce a pseudorandom 01.

FORTRAN:

wordsize

C:

WordSize

Machine word size, in bytes, used in
integer-value computations. Possible values: 4,
8, and 16 for 32, 64, and 128-bit generators,
respectively.

FORTRAN:

nbits

C:

NBits

The number of bits required to represent a
pseudorandom value in integer arithmetic. Note
that, for instance, 48-bit pseudorandom values
are stored to 64-bit (8 byte) memory locations.
In this case, WordSize is equal to 8 (number
of bytes used to store the pseudorandom value),
while NBits contains the actual number of bits
occupied by the value (in this example, 48).

Vector Generators of Statistical Distributions 8

8-65

FORTRAN:

initstream

C:

InitStream

Contains the pointer to the initialization
subroutine of a given basic generator.

FORTRAN:

sbrng

C:

sBRng

Contains the pointer to the basic generator of
single precision real numbers uniformly
distributed over the interval (a,b) (REAL in
FORTRAN and float in C).

FORTRAN:

dbrng

C:

dBRng

Contains the pointer to the basic generator of
double precision real numbers uniformly
distributed over the interval (a,b) (DOUBLE
PRECISION in FORTRAN and double in C).

FORTRAN:

ibrng

C:

iBRng

Contains the pointer to the basic generator of
integer numbers with uniform bit distribution2

(INTEGER in FORTRAN and unsigned int
in C).

1. Certain types of generators, for example, generalized feedback shift registers can potentially
generate a pseudorandom 0. On the other hand, generators like multiplicative congruential
generators never generate such a number. In most cases this information is irrelevant because the
probability of generating a zero value is extremely small. However, in certain non-uniform distribution
generators the possibility for a basic generator to produce a pseudorandom zero may lead to
generation of an infinitely large number (overflow). Even though the software handles overflows
correctly, so that they may be interpreted as + and , the user has to be careful and verify the
final results. If an infinitely large number may affect the computation, the user should either remove
such numbers from the generated vector, or use safe generators, which do not produce
pseudorandom 0.

2. A specific generator that permits operations over single bits and bit groups of pseudorandom
numbers.

Table 8-5 Field Descriptions (continued)

Field Short Description

∞ ∞–

8-66

8 Intel® Math Kernel Library Reference Manual

RegisterBrng
Registers user-defined basic generator.

Fortran:
brng = vslregisterbrng(properties)

C:
brng = vslRegisterBrng(properties)

Discussion

An example of a registration procedure can be found in the respective
directory vsl\examples.

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

properties TYPE (VSL_BRNG_PROPERTIES),

INTENT(IN). Structure containing
properties of the basic generator to be
registered.

properties VSLBrngProperties*. Structure
containing properties of the basic generator
to be registered.

brng INTEGER. The number (index) of the
registered basic generator; used for
identification. Negative values indicate the
registration error.

Vector Generators of Statistical Distributions 8

8-67

C:

GetBrngProperties
Returns structure with properties of a
given basic generator.

Fortran:
call vslgetbrngproperties(brng, properties)

C:
call vslGetBrngProperties(brng, properties)

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

brng int. The number (index) of the registered
basic generator; used for identification.
Negative values indicate the registration
error.

brng INTEGER, INTENT(IN). Number
(index) of the registered basic generator.

brng int. Number (index) of the registered
basic generator.

properties TYPE (VSL_BRNG_PROPERTIES),

INTENT(OUT). Structure containing
properties of the generator with number
brng.

8-68

8 Intel® Math Kernel Library Reference Manual

C:

Formats for User-Designed Generators
To register a user-designed basic generator using RegisterBrng function,
you need to pass the pointer iBrng to the integer-value implementation of
the generator; the pointers sBrng and dBrng to the generator
implementations for single and double precision values, respectively; and
pass the pointer InitStream to the stream initialization subroutine. This
section contains recommendations on defining such functions with input
and output arguments. An example of the registration procedure for a
user-designed generator can be found in the respective directory
vsl\examples.

InitStream

FORTRAN:

INTEGER FUNCTION mybrnginitstream(method, stream, n, params)

INTEGER, INTENT (IN) :: method

TYPE(MYSTREAM_STATE), INTENT (INOUT):: stream

INTEGER, INTENT (IN) :: n

INTEGER, INTENT (IN) :: params

! Initialize the stream

…

END SUBROUTINE mybrnginitstream

C:

int MyBrngInitStream(int method, VSLStreamStatePtr stream,

int n, const unsigned int params[])

{

/* Initialize the stream */

…

properties VSLBrngProperties*. Structure
containing properties of the generator with
number brng.

Vector Generators of Statistical Distributions 8

8-69

} /* MyBrngInitStream */

Discussion

The initialization subroutine of a user-designed generator must initialize
stream according to the specified initialization method, initial conditions
params and the argument n. The value of method determines the
initialization method to be used.

• If method is equal to 0, the initialization is by the standard generation
method, which must be supported by all basic generators. In this case
the function assumes that the stream structure was not previously
initialized. The value of n is used as the actual number of 32-bit values
passed as initial conditions through params. Note, that the situation
when the actual number of initial conditions passed to the function is
not sufficient to initialize the generator is not an error. Whenever it
occurs, the basic generator must initialize the missing conditions using
default settings.

• If method is equal to 1, the generation is by the leapfrog method,
where n specifies the number of computational nodes (independent
streams). Here the function assumes that the stream was previously
initialized by the standard generation method. In this case params
contains only one element, which identifies the computational node. If
the generator does not support the leapfrog method, the function must
return the error code VSL_ERROR_LEAPFROG_UNSUPPORTED.

• If method is equal to 2, the generation is by the block-splitting
method. Same as above, the stream is assumed to be previously
initialized by the standard generation method; params is not used, n
identifies the number of skipped elements. If the generator does not
support the block-splitting method, the function must return the error
code VSL_ERROR_SKIPAHEAD_UNSUPPORTED.

For a more detailed description of the leapfrog and the block-splitting
methods, refer to the description of LeapfrogStream and
SkipAheadStream, respectively.

Stream state structure is individual for every generator. However, each
structure has a number of fields that are the same for all the generators:

8-70

8 Intel® Math Kernel Library Reference Manual

FORTRAN:

type(mystream_state)

INTEGER*4 reserved1

INTEGER*4 reserved2

INTEGER*4 reserved3

INTEGER*4 reserved4

[fields specific for the given generator]

end type mystream_state

C:

typedef struct

{

uint64 Reserved1;

uint64 Reserved2;

[fields specific for the given generator]

} MyStreamState

The fields Reserved1 and Reserved2 are reserved for private needs only,
and must not be modified by the user. When including specific fields into
the structure, follow the rules below:

• The fields must fully describe the current state of the generator. For
example, the state of a linear congruential generator can be identified
by only one initial condition;

• If the generator can use both the leapfrog and the block-splitting
methods, additional fields should be introduced to identify the
independent streams. For example, in , apart from the
initial conditions, two more fields should be specified: the value of the
multiplier and the value of the increment .

For a more detailed discussion, refer to [Knuth81], and [Gentle98]. An
example of the registration procedure can be found in the respective
directory vsl\examples.

iBRng

FORTRAN:

SUBROUTINE imybrng(stream, n, r)

LCG a c m, ,()

ak ak 1–()c a 1–()⁄

Vector Generators of Statistical Distributions 8

8-71

TYPE(MYSTREAM_STATE), INTENT(INOUT):: stream

INTEGER, INTENT(IN) :: n

INTEGER, DIMENSION(*), INTENT(OUT) :: r

! Generating integer random numbers

! Pay attention to word size needed to

! store one random number

DO i = 1, n

R(I) = …

END DO

! Update stream state

END SUBROUTINE imybrng

C:

void iMyBrng(VSLStreamStatePtr stream, int n,

unsigned int r[])

{

int i; /* Loop variable */

/* Generating integer random numbers */

/* Pay attention to word size needed to

store only random number */

for(i = 0; i < n; i++)

{

r[i] = …

}

/* Update stream state */

…

} /* iMyBrng */

8-72

8 Intel® Math Kernel Library Reference Manual

sBRng

FORTRAN:

SUBROUTINE smybrng(stream, n, r, a, b)

TYPE(MYSTREAM_STATE), INTENT(INOUT):: stream

INTEGER, INTENT(IN) :: n

REAL, DIMENSION(n), INTENT(OUT) :: r

REAL, INTENT(IN) :: a

REAL, INTENT(IN) :: b

! Generating real (a,b) random numbers

DO i = 1, n

R(I) = …

END DO

! Update stream state

END SUBROUTINE smybrng

C:

void sMyBrng(VSLStreamStatePtr stream, int n, float r[],

float a, float b)

{

int i; /* Loop variable */

/* Generating float (a,b) random numbers */

for (i = 0; i < n; i++)

{

r[i] = …

}

/* Update stream state */

NOTE. When using 64 and 128-bit generators, consider digit capacity
to store the numbers to the pseudorandom vector r correctly. For
example, storing one 64-bit value requires two elements of r , the first to
store the lower 32 bits and the second to store the higher 32 bits.
Similarly, use 4 elements of r to store a 128-bit value.

Vector Generators of Statistical Distributions 8

8-73

…

} /* sMyBrng */

dBRng

FORTRAN:

SUBROUTINE dmybrng(stream, n, r, a, b)

TYPE(MYSTREAM_STATE), INTENT(INOUT) :: stream

INTEGER, INTENT(IN) :: n

DOUBLE PRECISION, DIMENSION(n), INTENT(OUT) :: r

REAL, INTENT(IN) :: a

REAL, INTENT(IN) :: b

! Generating double precision (a,b) random numbers

DO i = 1, n

R(I) = …

END DO

! Update stream state

…

END SUBROUTINE dmybrng

C:

void dMyBrng(VSLStreamStatePtr stream, int n, double r[],

double a, double b)

{

int i; /* Loop variable */

/* Generating double (a,b) random numbers */

for (i = 0; i < n; i++)

{

r[i] = …

}

/* Update stream state */

…

} /* dMyBrng */

9-1

Advanced DFT Functions 9
The Fast Fourier Transform (FFT) algorithm that calculates the Discrete
Fourier Transform (DFT) is an indispensable tool in a vast number of fields.
This chapter describes the set of new DFT functions implemented in
Intel® MKL, which present a uniform and easy-to-use Applications
Programmer Interface (API) providing fast computation of DFT via FFT.

The Discrete Fourier Transform function library of Intel MKL provides
one-dimensional, two-dimensional, and multi-dimensional (up to the order
of 7) routines.

Both Fortran- and C-interfaces exist for all transform functions.

Although Intel MKL still supports the FFT interface described in chapter 3
of this manual, users are encouraged to migrate to the new advanced DFT
functions in their application programs. Unlike the older FFT routines, the
DFT routines support transform lengths of other than powers of 2 mixed
radix.

The full list of DFT functions implemented in Intel MKL is given in the
table below:

Table 9-1 DFT Functions in Intel MKL

Function Name Operation

Descriptor Manipulation Functions

DftiCreateDescriptor Allocates memory for the descriptor data structure and
instantiates it with default configuration settings.

DftiCommitDescriptor Performs all initialization that facilitates the actual DFT
computation.

DftiCopyDescriptor Copies an existing descriptor.

DftiFreeDescriptor Frees memory allocated for a descriptor.

9-2

9 Intel® Math Kernel Library Reference Manual

Description of DFT functions is followed by discussion of configuration
settings (see Configuration Settings) and various configuration parameters
used.

Computing DFT
DFT functions described later in this chapter are implemented in Fortran
and C interface. Fortran stands for Fortran 95. DFT interface relies critically
on many modern features offered in Fortran 95 that have no counterpart in
Fortran 77

The materials presented in this chapter assume the availability of native
complex types in C as they are specified in C9X.

Before the presenting every function, a couple of usage examples are given.

DFT Computation Functions

DftiComputeForward Computes the forward DFT.

DftiComputeBackward Computes the backward DFT.

Descriptor Configuration Functions

DftiSetValue Sets one particular configuration parameter with the
specified configuration value.

DftiGetValue Gets the configuration value of one particular configuration
parameter.

Status Checking Functions

DftiErrorClass Checks if the status reflects an error of a predefined class.

DftiErrorMessage Generates an error message.

NOTE. Following the explicit function interface in Fortran, data array
must be defined as one-dimensional for any transformation type.

Table 9-1 DFT Functions in Intel MKL (continued)

Function Name Operation

Advanced DFT Functions 9

9-3

For most common situations, we expect a DFT computation can be effected
by four function calls. Here are the examples of two one-dimensional
computations.

Example 9-1 One-dimensional DFT (Fortran-interface)

! Fortran example.

! 1D complex to complex, and real to conjugate even

Use MKL_DFTI

Complex :: X(32)

Real :: Y(34)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status

...put input data into X(1),...,X(32); Y(1),...,Y(32)

! Perform a complex to complex transform

Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Status = DftiCommitDescriptor(My_Desc1_Handle)

Status = DftiComputeForward(My_Desc1_Handle, X)

Status = DftiFreeDescriptor(My_Desc1_Handle)
! result is given by {X(1),X(2),...,X(32)}

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
DFTI_REAL, 1, 32)

Status = DftiCommitDescriptor(My_Desc2_Handle)

Status = DftiComputeForward(My_Desc2_Handle, Y)

Status = DftiFreeDescriptor(My_Desc2_Handle)

! result is given by {Y(1)+iY(2), Y(3)+iY(4), ..., Y(33)+iY(34),

! Y(31)-iY(32), Y(29)-iY(30), ..., Y(3)-iY(4).

9-4

9 Intel® Math Kernel Library Reference Manual

The following is an example of two simple two-dimensional transforms.
Notice that the data and result parameters in computation functions are all
declared as assumed-size rank-1 array DIMENSION(0:*). Therefore
two-dimensional array must be transformed to one-dimensional array by
EQUIVALENCE statement or other facilities of Fortran.

Example 9-2 One-dimensional DFT (C-interface)

/* C example, float _Complex is defined in C9X */

#include "mkl_dfti.h"

float _Complex x[32];

float y[34];

DFTI_DESCRIPTOR *my_desc1_handle, *my_desc2_handle;

/* or alternatively

DFTI_DESCRIPTOR_HANDLE my_desc1_handle, my_desc2_handle; */

long status;

...put input data into x[0],...,x[31]; y[0],...,y[31]

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32);

status = DftiCommitDescriptor(my_desc1_handle);

status = DftiComputeForward(my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

/* result is x[0], ..., x[31] */

status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,
DFTI_REAL, 1, 32);

status = DftiCommitDescriptor(my_desc2_handle);

status = DftiComputeForward(my_desc2_handle, y);

status = DftiFreeDescriptor(&my_desc2_handle);

/* y[0]+iy[1], ..., y[32]+iy[33], y[30]-iy[31], ..., y[2]-iy[3] */

Advanced DFT Functions 9

9-5

Example 9-3 Two-dimensional DFT (Fortran-interface)

! Fortran example.

! 2D complex to complex, and real to conjugate even

Use MKL_DFTI

Complex :: X_2D(32,100)

Real :: Y_2D(34, 102)

Complex :: X(3200)

Real :: Y(3468)

Equivalence (X_2D, X)
Equivalence (Y_2D, Y)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status, L(2)

...put input data into X_2D(j,k), Y_2D(j,k), 1<=j=32,1<=k<=100

...set L(1) = 32, L(2) = 100

...the transform is a 32-by-100

! Perform a complex to complex transform

Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 2, L)

Status = DftiCommitDescriptor(My_Desc1_Handle)

Status = DftiComputeForward(My_Desc1_Handle, X)

Status = DftiFreeDescriptor(My_Desc1_Handle)

! result is given by X_2D(j,k), 1<=j<=32, 1<=k<=100

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
DFTI_REAL, 2, L)

Status = DftiCommitDescriptor(My_Desc2_Handle)

Status = DftiComputeForward(My_Desc2_Handle, Y)

Status = DftiFreeDescriptor(My_Desc2_Handle)

! result is given by the complex value z(j,k) 1<=j<=32; 1<=k<=100 where

! z(j,k) = Y_2D(2j-1,k) + iY_2D(2j,k) 1<=j<=17; 1<=k<=100

! z(j,k) = Y_2D(2(34-j)-1,k) - iY_2D(2(34-j),k) 18<=j<=32; 1<=k<=100

9-6

9 Intel® Math Kernel Library Reference Manual

The record of type DFTI_DESCRIPTOR, when created, contains information
about the length and domain of the DFT to be computed. Moreover, it
contains the setting of a rather large number of configuration parameters.
The examples above use the default settings for all of these parameters,
which include, for example, the following:

• the DFT to be computed does not have a scale factor;

Example 9-4 Two-dimensional DFT (C-interface)

/* C example */

#include "mkl_dfti.h"

float _Complex x[32][100];

float y[34][102];

DFTI_DESCRIPTOR_HANDLE my_desc1_handle, my_desc2_handle;

/* or alternatively

DFTI_DESCRIPTOR *my_desc1_handle, *my_desc2_handle; */

long status, l[2];

...put input data into x[j][k] 0<=j<=31, 0<=k<=99

...put input data into y[j][k] 0<=j<=31, 0<=k<=99

l[0] = 32; l[1] = 100;

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,
DFTI_COMPLEX, 2, l);

status = DftiCommitDescriptor(my_desc1_handle);

status = DftiComputeForward(my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

/* result is the complex value x[j][k], 0<=j<=31, 0<=k<=99 */

status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,
DFTI_REAL, 2, l);

status = DftiCommitDescriptor(my_desc2_handle);

status = DftiComputeForward(my_desc2_handle, y);

status = DftiFreeDescriptor(&my_desc2_handle);

/* result is the complex value z(j,k) 0<=j<=31; 0<=k<=99

/* z(j,k) = y[2j][k] + iy[2j+1][k] 0<=j<=16; 0<=k<=99 */

/* z(j,k) = y[2(32-j)][k] - iy[2(32-j)+1][k] 17<=j<=31; 1<=k<=100 */

Advanced DFT Functions 9

9-7

• there is only one set of data to be transformed;
• the data is stored contiguously in memory;
• the forward transform is defined to be the formula using

rather than ;
• complex data is stored in the native complex data type;
• the computed result overwrites (in place) the input data; etc.

Should any one of these many default settings be inappropriate, they can be
changed one-at-a-time through the function DftiSetValue. For example,
to preserve the input data after the DFT computation, the configuration of
the F should be changed to "not in place" from the default choice of "in
place." The code below illustrates how this can be done:

Example 9-5 Changing Default Settings (Fortran)

! Fortran example

! 1D complex to complex, not in place

Use MKL_DFTI

Complex :: X_in(32), X_out(32)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle

Integer :: Status

...put input data into X_in(j), 1<=j<=32

Status = DftiCreateDescriptor(My_Desc_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Status = DftiSetValue(My_Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(My_Desc_Handle)

Status = DftiComputeForward(My_Desc_Handle, X_in, X_out)

Status = DftiFreeDescriptor (My_Desc_Handle)

! result is X_out(1),X_out(2),...,X_out(32)

e i2πjk n⁄–

e+i2πjk n⁄

9-8

9 Intel® Math Kernel Library Reference Manual

The approach adopted in Intel MKL for DFT computation uses one single
data structure, the descriptor, to record flexible configuration whose
parameters can be changed independently. This results in enhanced
functionality and ease of use.

Example 9-6 Changing Default Settings (C)

/* C example */

#include "mkl_dfti.h"

float _Complex x_in[32], x_out[32];

DFTI_DESCRIPTOR_HANDLE my_desc_handle;

/* or alternatively

DFTI_DESCRIPTOR *my_desc_handle; */

long status;

...put input data into x_in[j], 0 <= j < 32

status = DftiCreateDescriptor(&my_desc_handle, DFTI_SINGLE,

DFTI_COMPLEX, 1, 32);

status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT,
DFTI_NOT_INPLACE);

status = DftiCommitDescriptor(my_desc_handle);

status = DftiComputeForward(my_desc_handle, x_in, x_out);

status = DftiFreeDescriptor(&my_desc_handle);

/* result is x_out[0], x_out[1], ..., x_out[31] */

Advanced DFT Functions 9

9-9

DFT Interface
To use the advanced DFT functions, the user needs to access the module
MKL_DFTI through the "use" statement in Fortran; or access the header file
mkl_dfti.h through "include" in C.

The Fortran interface provides a derived type DFTI_DESCRIPTOR; a
number of named constants representing various names of configuration
parameters and their possible values; and a number of overloaded functions
through the generic functionality of Fortran 95.

The C interface provides a structure type DFTI_DESCRIPTOR, a macro
definition

#define DFTI_DESCRIPTOR_HANDLE DFTI_DESCRIPTOR *;

a number of named constants of two enumeration types
DFTI_CONFIG_PARAM and DFTI_CONFIG_VALUE;
and a number of functions, some of which accept different number of input
arguments.

There are four main categories of DFT functions in Intel MKL:

1. Descriptor Manipulation. There are four functions in this category.
The first one creates a DFT descriptor whose storage is allocated
dynamically by the routine. This function configures the descriptor
with default settings corresponding to a few input values supplied by
the user.
The second "commits" the descriptor to all its setting. In practice, this
usually means that all the necessary precomputation will be
performed. This may include factorization of the input length and

NOTE. Some of the functions and/or functionality described in the
subsequent sections of this chapter may not be supported by the currently
available implementation of the library. You can find the complete list of
the implementation-specific exceptions in the release notes to your
version of the library.

9-10

9 Intel® Math Kernel Library Reference Manual

computation of all the required twiddle factors. The third function
makes an extra copy of a descriptor, and the fourth function frees up all
the memory allocated for the descriptor information.

2. DFT Computation. There are two functions in this category. The first
effects a forward DFT computation, and the second a backward DFT
computation.

3. Descriptor configuration. There are two functions in this category.
One function sets one specific value to one of the many configuration
parameters that are changeable (a few are not); the other gets the
current value of any one of these configuration parameters (all are
readable). These parameters, though many, are handled one-at-a-time.

4. Status Checking. The functions described in the three categories
return an integer value denoting the status of the operation.
In particular, a non-zero return value always indicates a problem of
some sort. Envisioned to be further enhanced in later releases of Intel
MKL, DFT interface at present provides for one logical status class
function and a simple status message generation function.

Status Checking Functions
All of the descriptor manipulation, DFT computation, and descriptor
configuration functions return an integer value denoting the status of the
operation. Two functions serve to check the status. The first function is a
logical function that checks if the status reflects an error of a predefined
class, and the second is an error message function that returns a character
string.

Advanced DFT Functions 9

9-11

ErrorClass
Checks if the status reflects an error of a
predefined class.

Usage
! Fortran

Predicate = DftiErrorClass(Status, Error_Class)

/* C */

predicate = DftiErrorClass(status, error_class);

Discussion

DFT interface in Intel MKL provides a set of predefined error class listed in
Table 9-2. These are named constants and have the type INTEGER in Fortran
and long in C.

Note that the correct usage is to check if the status returns .TRUE. or
.FALSE. through the use of DFTI_ERROR_CLASS with a specific error
class. Direct comparison of a status with the predefined class is an incorrect
usage.

Table 9-2 Predefined Error Class

Named Constants Comments

DFTI_NO_ERROR No error

DFTI_MEMORY_ERROR Usually associated with memory allocation

DFTI_INVALID_CONFIGURATION Invalid settings of one or more
configuration parameters

DFTI_INCONSISTENT_CONFIGURATION Inconsistent configuration or input
parameters

DFTI_MULTITHREADED_ERROR Usually associated with OMP routine’s
error return value

DFTI_BAD_DESCRIPTOR Descriptor is unusable for computation

DFTI_UNIMPLEMENTED Unimplemented legitimate settings;
implementation dependent

DFTI_MKL_INTERNAL_ERROR Internal library error

9-12

9 Intel® Math Kernel Library Reference Manual

Interface and prototype
//Fortran interface

INTERFACE DftiErrorClass

//Note that the body provided here is to illustrate the different

Example 9-7 Using Status Checking Function

from C language:

DFTI_DESCRIPTOR_HANDLE desc;
long status, class_error, value;
char* error_message;
. . . descriptor creation and other code
status = DftiGetValue(desc, DFTI_PRECISION, &value); //
//or any DFTI function

class_error = DftiErrorClass(status, DFTI_ERROR_CLASS);
if (! class_error) {
printf ("status is not a member of Predefined Error
Class\n");
} else {
error_message = DftiErrorMessage(status);
printf("error_message = %s \n", error_message);
}
. . .
from Fortran:

type(DFTI_DESCRIPTOR), POINTER :: desc
integer value, status
character(DFTI_MAX_MESSAGE_LENGTH) error_message
logical class_error
. . . descriptor creation and other code
status = DftiGetValue(desc, DFTI_PRECISION, value)

class_error = DftiErrorClass(status, DFTI_ERROR_CLASS)
if (.not. class_error) then
print *, 'status is not a member of Predefined Error
Class '
else
error_message = DftiErrorMessage(status)
print *, 'error_message = ', error_message
endif

Advanced DFT Functions 9

9-13

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_8(Status, Error_Class)

LOGICAL some_actual_function_8

INTEGER, INTENT(IN) :: Status, Error_Class

END FUNCTION some_actual_function_8

END INTERFACE DftiErrorClass

/* C prototype */

long DftiErrorClass(long , long);

ErrorMessage
Generates an error message.

Usage
! Fortran

ERROR_MESSAGE = DftiErrorMessage(Status)

/* C */

error_message = DftiErrorMessage(status);

Discussion

The error message function generates an error message character string. The
maximum length of the string in Fortran is given by the named constant
DFTI_MAX_MESSAGE_LENGTH. The actual error message is implementation
dependent. In Fortran, the user needs to use a character string of length
DFTI_MAX_MESSAGE_LENGTH as the target. In C, the function returns a
pointer to a character string, that is, a character array with the delimiter ' 0'.

Example 9-7 shows how this function can be implemented.

9-14

9 Intel® Math Kernel Library Reference Manual

Interface and prototype
//Fortran interface

INTERFACE DftiErrorMessage

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_9(Status, Error_Class)

CHARACTER(LEN=DFTI_MAX_MESSAGE_LENGTH) some_actual_function_9(Status)

INTEGER, INTENT(IN) :: Status

END FUNCTION some_actual_function_9

END INTERFACE DftiErrorMessage

/* C prototype */

char *DftiErrorMessage(long);

Advanced DFT Functions 9

9-15

Descriptor Manipulation
There are four functions in this category: create a descriptor, commit a
descriptor, copy a descriptor, and free a descriptor.

CreateDescriptor
Allocates memory for the descriptor
data structure and instantiates it with
default configuration settings.

Usage
! Fortran

Status = DftiCreateDescriptor(Desc_Handle, &
Precision, &
Forward_Domain, &
Dimension, &
Length)

/* C */

status = DftiCreateDescriptor(&desc_handle,
precision,
forward_domain,
dimension,
length);

Discussion

This function allocates memory for the descriptor data structure and
instantiates it with all the default configuration settings with respect to the
precision, domain, dimension, and length of the desired transform. The
domain is understood to be the domain of the forward transform. Since
memory is allocated dynamically, the result is actually a pointer to the
created descriptor. This function is slightly different from the
"initialization" routine in more traditional software packages or libraries
used for computing DFT. In all likelihood, this function will not perform

9-16

9 Intel® Math Kernel Library Reference Manual

any significant computation work such as twiddle factors computation, as
the default configuration settings can still be changed upon user's request
through the value setting function DftiSetValue.

The precision and (forward) domain are specified through named constants
provided in DFT interface for the configuration values. The choices for
precision are DFTI_SINGLE and DFTI_DOUBLE; and the choices for
(forward) domain are DFTI_COMPLEX, DFTI_REAL, and
DFTI_CONJUGATE_EVEN. See Table 9-5 for the complete table of named
constants for configuration values.

Dimension is a simple positive integer indicating the dimension of the
transform. Length is either a simple positive integer for one-dimensional
transform, or an integer array (pointer in C) containing the positive integers
corresponding to the lengths dimensions for multi-dimensional transform.

The function returns DFTI_NO_ERROR when completes successfully. See
“Status Checking Functions” for more information on returned status.

Interface and prototype
!Fortran interface.

INTERFACE DftiCreateDescriptor

!Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the

!keyword INTERFACE

FUNCTION some_actual_function_1D(Desc_Handle, Prec, Dom, Dim, Length)

INTEGER :: some_actual_function_1D

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Prec, Dom

INTEGER, INTENT(IN) :: Dim, Length

END FUNCTION some_actual_function_1D

FUNCTION some_actual_function_HIGHD(Desc_Handle, Prec, Dom, Dim, Length)

INTEGER :: some_actual_function_HIGHD

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Prec, Dom

INTEGER, INTENT(IN) :: Dim, Length(*)

Advanced DFT Functions 9

9-17

END FUNCTION some_actual_function_HIGHD

END INTERFACE DftiCreateDescriptor

Note that the function is overloaded as the actual argument for Length can
be a scalar or a a rank-one array.

/* C prototype */

long DftiCreateDescriptor(DFTI_DESCRIPTOR_HANDLE *,
DFTI_CONFIG_PARAM ,
DFTI_CONFIG_PARAM ,
long ,
...);

The variable arguments facility is used to cope with the argument for
lengths that can be a scalar (long), or an array (long *).

CommitDescriptor
Performs all initialization that
facilitates the actual DFT computation.

Usage
! Fortran

Status = DftiCommitDescriptor(Desc_Handle)

/* C */

status = DftiCommitDescriptor(desc_handle);

Discussion

The interface requires a function that commits a previously created
descriptor be invoked before the descriptor can be used for DFT
computations. Typically, this committal performs all initialization that
facilitates the actual DFT computation. For a modern implementation, it
may involve exploring many different factorizations of the input length to
search for highly efficient computation method.

9-18

9 Intel® Math Kernel Library Reference Manual

Any changes of configuration parameters of a committed descriptor via the
set value function (see “Descriptor Configuration”) requires a re-committal
of the descriptor before a computation function can be invoked. Typically,
this committal function call is immediately followed by a computation
function call (see “DFT Computation”).

The function returns DFTI_NO_ERROR when completes successfully. See
“Status Checking Functions” for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiCommitDescriptor

!Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the

!keyword INTERFACE

FUNCTION some_actual function_1 (Desc_Handle)

INTEGER :: some_actual function_1

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

END FUNCTION some_actual function_1

END INTERFACE DftiCommitDescriptor

/* C prototype */

long DftiCommitDescriptor(DFTI_DESCRIPTOR_HANDLE);

CopyDescriptor
Copies an existing descriptor.

Usage
! Fortran

Advanced DFT Functions 9

9-19

Status = DftiCopyDescriptor(Desc_Handle_Original,
Desc_Handle_Copy)

/* C */

status = DftiCopyDescriptor(desc_handle_original,
&desc_handle_copy);

Discussion

This function makes a copy of an existing descriptor and provides a pointer
to it. The purpose is that all information of the original descriptor will be
maintained even if the original is destroyed via the free descriptor function
DftiFreeDescriptor.

The function returns DFTI_NO_ERROR when completes successfully. See
“Status Checking Functions” for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiCopyDescriptor

! Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the

!keyword INTERFACE

FUNCTION some_actual_function_2(Desc_Handle_Original,
Desc_Handle_Copy)

INTEGER :: some_actual_function_2

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Original, Desc_Handle_Copy

END FUNCTION some_actual_function_2

END INTERFACE DftiCopyDescriptor

/* C prototype */

long DftiCopyDescriptor(DFTI_DESCRIPTOR_HANLDE, DFTI_DESCRIPTOR_HANDLE *);

9-20

9 Intel® Math Kernel Library Reference Manual

FreeDescriptor
Frees memory allocated for a
descriptor.

Usage
! Fortran

Status = DftiFreeDescriptor(Desc_Handle)

/* C */

status = DftiFreeDescriptor(&desc_handle);

Discussion

This function frees up all memory space allocated for a descriptor.

The function returns DFTI_NO_ERROR when completes successfully. See
“Status Checking Functions” for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiFreeDescriptor

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_3(Desc_Handle)

INTEGER :: some_actual_function_3

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

END FUNCTION some_actual_function_3

END INTERFACE DftiFreeDescriptor

/* C prototype */

long DftiFreeDescriptor(DFTI_DESCRIPTOR_HANDLE *);

Advanced DFT Functions 9

9-21

DFT Computation
There are two functions in this category: compute the forward transform,
and compute the backward transform.

ComputeForward
Computes the forward DFT.

Usage
! Fortran

Status = DftiComputeForward(Desc_Handle, X_inout)

Status = DftiComputeForward(Desc_Handle, X_in, X_out)

Status = DftiComputeForward(Desc_Handle, X_inout, Y_inout)

Status = DftiComputeForward(Desc_Handle, X_in, Y_in, X_out, Y_out)

/* C */

status = DftiComputeForward(desc_handle, x_inout);

status = DftiComputeForward(desc_handle, x_in, x_out);

status = DftiComputeForward(desc_handle, x_inout, y_inout);

status = DftiComputeForward(desc_handle, x_in, y_in, x_out, y_out);

Discussion

As soon as a descriptor is configured and committed successfully, actual
computation of DFT can be performed. The DftiComputeForward
function computes the forward DFT. By default, this is the transform using
the factor (instead of the one with a positive sign). Because of
the flexibility in configuration, input data can be represented in various
ways as well as output result can be placed differently. Consequently, the
number of input parameters as well as their type vary. This variation is
accommodated by the generic function facility of Fortran 95. Data and
result parameters are all declared as assumed-size rank-1 array
DIMENSION(0:*).

The function returns DFTI_NO_ERROR when completes successfully. See

e i2π n⁄–

9-22

9 Intel® Math Kernel Library Reference Manual

“Status Checking Functions” for more information on returned status.

Interface and prototype
//Fortran interface.

INTERFACE DftiComputeFoward

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

// One argument single precision complex

FUNCTION some_actual_function_4_C(Desc_Handle, X)

INTEGER :: some_actual_function_4_C

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_4_C

// One argument double precision complex

FUNCTION some_actual_function_4_Z(Desc_Handle, X)

INTEGER :: some_actual_function_4_Z

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX (Kind((0D0,0D0))), INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_4_Z

// One argument single precision real

FUNCTION some_actual_function_4_R(Desc_Handle, X)

INTEGER :: some_actual_function_4_R

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_4_R

// One argument double precision real

...

// Two argument single precision complex

...

...

// Four argument double precision real

FUNCTION some_actual_function_4_DDDD(Desc_Handle, X1_In, X2_In,
Y1_Out, Y2_Out)

Advanced DFT Functions 9

9-23

INTEGER :: some_actual_function_4_DDDD

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL (Kind(0D0)), INTENT(IN) :: X1_In(*), X2_In(*)

REAL (Kind(0D0)), INTENT(OUT) :: Y1_Out(*), Y2_Out(*)

END FUNCTION some_actual_function_4_DDDD

END INTERFACE DftiComputeFoward

/* C prototype */

long DftiComputeForward(DFTI_DESCRIPTOR_HANDLE,
void *,
...);

The implementations of DFT interface expect the data be treated as data
stored linearly in memory with a regular "stride" pattern (discussed more
fully in “Strides”, see also [3]). The function expects the starting address of
the first element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly
how many arguments and of what type should be present. The
implementation could use this information to check against possible input
inconsistency.

ComputeBackward
Computes the backward DFT.

Usage
! Fortran

Status = DftiComputeBackward(Desc_Handle, X_inout)

Status = DftiComputeBackward(Desc_Handle, X_in, X_out)

Status = DftiComputeBackward(Desc_Handle, X_inout, Y_inout)

Status = DftiComputeBackward(Desc_Handle, X_in, Y_in, X_out, Y_out)

/* C */

status = DftiComputeBackward(desc_handle, x_inout);

status = DftiComputeBackward(desc_handle, x_in, x_out);

9-24

9 Intel® Math Kernel Library Reference Manual

status = DftiComputeBackward(desc_handle, x_inout, y_inout);

status = DftiComputeBackward(desc_handle, x_in, y_in, x_out, y_out);

Discussion

As soon as a descriptor is configured and committed successfully, actual
computation of DFT can be performed. The DftiComputeBackward
function computes the backward DFT. By default, this is the transform
using the factor (instead of the one with a negative sign).
Because of the flexibility in configuration, input data can be represented in
various ways as well as output result can be placed differently.
Consequently, the number of input parameters as well as their type vary.
This variation is accommodated by the generic function facility of Fortran
95. Data and result parameters are all declared as assumed-size rank-1 array
DIMENSION(0:*).

The function returns DFTI_NO_ERROR when completes successfully. See
“Status Checking Functions” for more information on returned status.

Interface and prototype
//Fortran interface.

INTERFACE DftiComputeBackward

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

// One argument single precision complex

FUNCTION some_actual_function_5_C(Desc_Handle, X)

INTEGER :: some_actual_function_5_C

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_5_C

// One argument double precision complex

FUNCTION some_actual_function_5_Z(Desc_Handle, X)

INTEGER :: some_actual_function_5_Z

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX (Kind((0D0,0D0))), INTENT(INOUT) :: X(*)

ei2π n⁄

Advanced DFT Functions 9

9-25

END FUNCTION some_actual_function_5_Z

// One argument single precision real

FUNCTION some_actual_function_5_R(Desc_Handle, X)

INTEGER :: some_actual_function_5_R

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL, INTENT(INOUT) :: X(*)

END FUNCTION some_actual_function_5_R

// One argument double precision real

...

// Two argument single precision complex

...

...

// Four argument double precision real

FUNCTION some_actual_function_5_DDDD(Desc_Handle, X1_In, X2_In,
Y1_Out, Y2_Out)

INTEGER :: some_actual_function_5_DDDD

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL (Kind(0D0)), INTENT(IN) :: X1_In(*), X2_In(*)

REAL (Kind(0D0)), INTENT(OUT) :: Y1_Out(*), Y2_Out(*)

END FUNCTION some_actual_function_5_DDDD

END INTERFACE DftiComputeBackward

/* C prototype */

long DftiComputeBackward(DFTI_DESCRIPTOR_HANDLE,
void *,
...);

The implementations of DFT interface expect the data be treated as data
stored linearly in memory with a regular "stride" pattern (discussed more
fully in “Strides”, see also [3]). The function expects the starting address of
the first element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly
how many arguments and of what type should be present. The
implementation could use this information to check against possible input
inconsistency.

9-26

9 Intel® Math Kernel Library Reference Manual

Descriptor Configuration
There are two functions in this category: the value setting function
DftiSetValue sets one particular configuration parameter to an
appropriate value, and the value getting function DftiGetValue reads the
values of one particular configuration parameter. While all configuration
parameters are readable, a few of them cannot be set by user. Some of these
contain fixed information of a particular implementation such as version
number, or dynamic information, but nevertheless are derived by the
implementation during execution of one of the functions.

Table 9-3 Settable Configuration Parameters

Named Constants Value Type Comments

Most common configurations, no default, must be set explicitly

DFTI_PRECISION Named constant Precision of computation

DFTI_FORWARD_DOMAIN Named constant Domain for the forward transform

DFTI_DIMENSION Integer scalar Dimension of the transform

DFTI_LENGTHS Integer scalar/array Lengths of each dimension

Common configurations including multiple transform and data representation

DFTI_NUMBER_OF_TRANSFORMS Integer scalar For multiple number of transforms

DFTI_FORWARD_SIGN Named constant The definition for forward transform

DFTI_FORWARD_SCALE Floating-point scalar Scale factor for forward transform

DFTI_BACKWARD_SCALE Floating-point scalar Scale factor for backward transform

DFTI_PLACEMENT Named constant Placement of the computation result

DFTI_COMPLEX_STORAGE Named constant Storage method, complex domain
data

DFTI_REAL_STORAGE Named constant Storage method, real domain data

DFTI_CONJUGATE_EVEN_STORAGE Named constant Storage method, conjugate even
domain data

DFTI_DESCRIPTOR_NAME Character string No longer than
DFTI_MAX_NAME_LENGTH

DFTI_PACKED_FORMAT Named constant Packed format, real domain data

Advanced DFT Functions 9

9-27

Each of these configuration parameters is identified by a named constant in
the MKL_DFTI module. In C, these named constants have the enumeration
type DFTI_CONFIG_PARAM. The list of configuration parameters whose
values can be set by user is given in Table 9-3; the list of configuration
parameters that are read-only is given in Table 9-4. All parameters are
readable. Most of these parameters are self-explanatory, while some others
are discussed more fully in the description of the relevant functions.

Configurations regarding stride of data

DFTI_INPUT_DISTANCE Integer scalar Multiple transforms, distance of first
elements

DFTI_OUTPUT_DISTANCE Integer scalar Multiple transforms, distance of first
elements

DFTI_INPUT_STRIDES Integer array Stride information of input data

DFTI_OUTPUT_STRIDES Integer array Stride information of output data

Advanced configuration

DFTI_INITIALIZATION_EFFORT Named constant Dynamic search for computation
method

DFTI_ORDERING Named constant Scrambling of data order

DFTI_WORKSPACE Named constant Computation without auxiliary
storage

DFTI_TRANSPOSE Named constant Scrambling of dimension

Table 9-4 Read-Only Configuration Parameters

Named Constants Value Type Comments

DFTI_COMMIT_STATUS Name constant Whether descriptor has been committed

DFTI_VERSION String Intel MKL library version number

DFTI_FORWARD_ORDERING Integer pointer Pointer to an integer array (see “Ordering”)

DFTI_BACKWARD_ORDERING Integer pointer Pointer to an integer array (see “Ordering”)

Table 9-3 Settable Configuration Parameters (continued)

Named Constants Value Type Comments

9-28

9 Intel® Math Kernel Library Reference Manual

The configuration parameters are set by various values. Some of these
values are specified by native data types such as an integer value (for
example, number of simultaneous transforms requested), or a
single-precision number (for example, the scale factor one would like to
apply on a forward transform).

Other configuration values are discrete in nature (for example, the domain
of the forward transform) and are thus provided in the DFTI module as
named constants. In C, these named constants have the enumeration type
DFTI_CONFIG_VALUE. The complete list of named constants used for this
kind of configuration values is given in Table 9-5.

Table 9-5 Named Constant Configuration Values

Named Constant Comments

DFTI_SINGLE Single precision

DFTI_DOUBLE Double precision

DFTI_COMPLEX Complex domain

DFTI_REAL Real domain

DFTI_CONJUGATE_EVEN Conjugate even domain

DFTI_NEGATIVE Sign used to define the forward transform

DFTI_POSITIVE Sign used to define the forward transform

DFTI_INPLACE Output overwrites input

DFTI_NOT_INPLACE Output does not overwrite input

DFTI_COMPLEX_COMPLEX Storage method (see “Storage schemes”)

DFTI_REAL_REAL Storage method (see “Storage schemes”)

DFTI_COMPLEX_REAL Storage method (see “Storage schemes”)

DFTI_REAL_COMPLEX Storage method (see “Storage schemes”)

DFTI_HIGH A high setting, related to initialization effort

DFTI_MEDIUM A medium setting, related to initialization effort

DFTI_LOW A low setting, related to initialization effort

DFTI_COMMITTED Committal status of a descriptor

DFTI_UNCOMMITTED Committal status of a descriptor

DFTI_ORDERED Data ordered in both forward and backward domains

DFTI_BACKWARD_SCRAMBLED Data scrambled in backward domain (by forward transform)

Advanced DFT Functions 9

9-29

Table 9-6 lists the possible values for those configuration parameters that
are discrete in nature.

DFTI_FORWARD_SCRAMBLED Data scrambled in forward domain (by backward transform)

DFTI_ALLOW Allow certain request or usage if useful

DFTI_AVOID Avoid certain request or usage if practical

DFTI_NONE Used to specify no transposition

DFTI_CCS_FORMAT Packed format, real data (see “Packed formats”)

DFTI_PACK_FORMAT Packed format, real data (see “Packed formats”)

DFTI_PERM_FORMAT Packed format, real data (see “Packed formats”)

DFTI_VERSION_LENGTH Number of characters for library version length

DFTI_MAX_NAME_LENGTH Maximum descriptor name length

DFTI_MAX_MESSAGE_LENGTH Maximum status message length

Table 9-6 Settings for Discrete Configuration Parameters

Named Constant Possible Values

DFTI_PRECISION DFTI_SINGLE, or

DFTI_DOUBLE (no default)

DFTI_FORWARD_DOMAIN DFTI_COMPLEX, or

DFTI_REAL, or

DFTI_CONJUGATE_EVEN (no default)

DFTI_FORWARD_SIGN DFTI_NEGATIVE (default), or

DFTI_POSITIVE

DFTI_PLACEMENT DFTI_INPLACE (default), or

DFTI_NOT_INPLACE

DFTI_COMPLEX_STORAGE DFTI_COMPLEX_COMPLEX (default), or

DFTI_COMPLEX REAL, or

DFTI_REAL_REAL

DFTI_REAL_STORAGE DFTI_REAL_REAL (default), or

DFTI_REAL_COMPLEX

DFTI_CONJUGATE_EVEN_STORAGE DFTI_COMPLEX_COMPLEX, or

Table 9-5 Named Constant Configuration Values (continued)

Named Constant Comments

9-30

9 Intel® Math Kernel Library Reference Manual

Table 9-7 lists the default values of the settable configuration parameters.

DFTI_COMPLEX_REAL (default), or

DFTI_REAL_REAL (1-D transform only)

DFTI_PACKED_FORMAT DFTI_CCS_FORMAT (default) or,

DFTI_PACK_FORMAT or,

DFTI_PERM_FORMAT

Table 9-7 Default Configuration Values of Settable Parameters

Named Constants Default Value

DFTI_NUMBER_OF_TRANSFORMS 1

DFTI_FORWARD_SIGN DFTI_NEGATIVE

DFTI_FORWARD_SCALE 1.0

DFTI_BACKWARD_SCALE 1.0

DFTI_PLACEMENT DFTI_INPLACE

DFTI_COMPLEX_STORAGE DFTI_COMPLEX_COMPLEX

DFTI_REAL_STORAGE DFTI_REAL_REAL

DFTI_CONJUGATE_EVEN_STORAGE DFTI_COMPLEX_REAL

DFTI_PACKED_FORMAT DFTI_CCS_FORMAT

DFTI_DESCRIPTOR_NAME no name, string of zero length

DFTI_INPUT_DISTANCE 0

DFTI_OUTPUT_DISTANCE 0

DFTI_INPUT_STRIDES Tightly packed according to dimension, lengths, and
storage

DFTI_OUTPUT_STRIDES Same as above. See “Strides” for details

DFTI_INITIALIZATION_EFFORT DFTI_MEDIUM

DFTI_ORDERING DFTI_ORDERED

DFTI_WORKSPACE DFTI_ALLOW

DFTI_TRANSPOSE DFTI_NONE

Table 9-6 Settings for Discrete Configuration Parameters (continued)

Named Constant Possible Values

Advanced DFT Functions 9

9-31

SetValue
Sets one particular configuration
parameter with the specified configuration
value.

Usage
! Fortran

Status = DftiSetValue(Desc_Handle, &
Config_Param, &
Config_Val)

/* C */

status = DftiSetValue(desc_handle,
config_param,
config_val);

Discussion

This function sets one particular configuration parameter with the specified
configuration value. The configuration parameter is one of the named
constants listed in Table 9-3, and the configuration value is the
corresponding appropriate type, which can be a named constant or a native
type. See “Configuration Settings” for details of the meaning of the
setting.

The function returns DFTI_NO_ERROR when completes successfully. See
“Status Checking Functions” for more information on returned status.

Interface and prototype

! Fortran interface

INTERFACE DftiSetValue

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

9-32

9 Intel® Math Kernel Library Reference Manual

//keyword INTERFACE

FUNCTION some_actual_function_6_INTVAL(Desc_Handle, Config_Param,
INTVAL)

INTEGER :: some_actual_function_6_INTVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(IN) :: INTVAL

END FUNCTION some_actual_function_6_INTVAL

FUNCTION some_actual_function_6_SGLVAL(Desc_Handle, Config_Param,
SGLVAL)

INTEGER :: some_actual_function_6_SGLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL, INTENT(IN) :: SGLVAL

END FUNCTION some_actual_function_6_SGLVAL

FUNCTION some_actual_function_6_DBLVAL(Desc_Handle, Config_Param,
DBLVAL)

INTEGER :: some_actual_function_6_DBLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL (KIND(0D0)), INTENT(IN) :: DBLVAL

END FUNCTION some_actual_function_6_DBLVAL

FUNCTION some_actual_function_6_INTVEC(Desc_Handle, Config_Param,
INTVEC)

INTEGER :: some_actual_function_6_INTVEC

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(IN) :: INTVEC(*)

END FUNCTION some_actual_function_6_INTVEC

FUNCTION some_actual_function_6_CHARS(Desc_Handle, Config_Param,
CHARS)

INTEGER :: some_actual_function_6_CHARS

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

Advanced DFT Functions 9

9-33

INTEGER, INTENT(IN) :: Config_Param

CHARCTER(*), INTENT(IN) :: CHARS

END FUNCTION some_actual_function_6_CHARS

END INTERFACE DftiSetValue

/* C prototype */

long DftiSetValue(DFTI_DESCRIPTOR_HANDLE,
DFTI_CONFIG_PARAM ,
...);

GetValue
Gets the configuration value of one
particular configuration parameter.

Usage
! Fortran

Status = DftiGetValue(Desc_Handle, &
Config_Param, &
Config_Val)

/* C */

status = DftiGetValue(desc_handle,
config_param,
&config_val);

Discussion

This function gets the configuration value of one particular configuration
parameter. The configuration parameter is one of the named constants listed
in Table 9-3 and Table 9-4, and the configuration value is the corresponding
appropriate type, which can be a named constant or a native type.

The function returns DFTI_NO_ERROR when completes successfully. See
“Status Checking Functions” for more information on returned status.

9-34

9 Intel® Math Kernel Library Reference Manual

Interface and prototype
! Fortran interface

INTERFACE DftiGetValue

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

FUNCTION some_actual_function_7_INTVAL(Desc_Handle, Config_Param,
INTVAL)

INTEGER :: some_actual_function_7_INTVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(OUT) :: INTVAL

END FUNCTION DFTI_GET_VALUE_INTVAL

FUNCTION some_actual_function_7_SGLVAL(Desc_Handle, Config_Param,
SGLVAL)

INTEGER :: some_actual_function_7_SGLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL, INTENT(OUT) :: SGLVAL

END FUNCTION some_actual_function_7_SGLVAL

FUNCTION some_actual_function_7_DBLVAL(Desc_Handle, Config_Param,
DBLVAL)

INTEGER :: some_actual_function_7_DBLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL (KIND(0D0)), INTENT(OUT) :: DBLVAL

END FUNCTION some_actual_function_7_DBLVAL

FUNCTION some_actual_function_7_INTVEC(Desc_Handle, Config_Param,
INTVEC)

INTEGER :: some_actual_function_7_INTVEC

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

Advanced DFT Functions 9

9-35

INTEGER, INTENT(OUT) :: INTVEC(*)

END FUNCTION some_actual_function_7_INTVEC

FUNCTION some_actual_function_7_INTPNT(Desc_Handle, Config_Param,
INTPNT)

INTEGER :: some_actual_function_7_INTPNT

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, DIMENSION(*), POINTER :: INTPNT

END FUNCTION some_actual_function_7_INTPNT

FUNCTION some_actual_function_7_CHARS(Desc_Handle, Config_Param,
CHARS)

INTEGER :: some_actual_function_7_CHARS

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

CHARCTER(*), INTENT(OUT):: CHARS

END FUNCTION some_actual_function_7_CHARS

END INTERFACE DftiGetValue

/* C prototype */

long DftiGetValue(DFTI_DESCRIPTOR_HANDLE,
DFTI_CONFIG_PARAM ,
...);

Configuration Settings

Precision of transform

The configuration parameter DFTI_PRECISION denotes the floating-point
precision in which the transform is to be carried out. A setting of
DFTI_SINGLE stands for single precision, and a setting of DFTI_DOUBLE
stands for double precision. The data is meant to be presented in this
precision; the computation will be carried out in this precision; and the result
will be delivered in this precision. This is one of the four settable
configuration parameters that do not have default values. The user must set
them explicitly, most conveniently at the call to descriptor creation function
DftiCreateDescriptor.

9-36

9 Intel® Math Kernel Library Reference Manual

Forward domain of transform

The general form of the discrete Fourier transform is

(7.1)

for , where is an arbitrary real-valued scale factor and
. By default, the forward transform is defined by and .

In most common situations, the domain of the forward transform, that is, the
set where the input (periodic) sequence belongs, can be
either the set of complex-valued sequences, real-valued sequences, and
complex-valued conjugate even sequences. The configuration parameter
DFTI_FORWARD_DOMAIN indicates the domain for the forward transform.
Note that this implicitly specifies the domain for the backward transform
because of mathematical property of the DFT. See Table 9-8 for details.

On transforms in the real domain, some software packages only offer one
"real-to-complex" transform. This in essence omits the conjugate even
domain for the forward transform. The forward domain configuration
parameter DFTI_FORWARD_DOMAIN is the second of four configuration
parameters without default value.

Transform dimension and lengths

The dimension of the transform is a positive integer value represented in an
integer scalar of type Integer. For one-dimensional transform, the
transform length is specified by a positive integer value represented in an
integer scalar of type Integer. For multi-dimensional (≥ 2) transform, the

Table 9-8 Correspondence of Forward and Backward Domain

Forward Domain Implied Backward Domain

Complex (DFTI_COMPLEX) Complex

Real (DFTI_REAL) Conjugate Even

Conjugate Even (DFTI_CONJUGATE_EVEN) Real

zk1 k2 … kd, , , σ … wj1 j2 … jd, , ,
j1 0=

n1 1–

∑
j2 0=

n2 1–

∑
jd 0=

nd 1–

∑× δi2π jlkl nl⁄
l 1=

d

∑

exp=

kl 0 1 2 …,±,±,= σ
δ 1±= σ 1= δ 1–=

wj1 j2 … jd, , ,{ }

Advanced DFT Functions 9

9-37

lengths of each of the dimension is supplied in an integer array.
DFTI_DIMENSION and DFTI_LENGTHS are the remaining two of four
configuration parameters without default.

As mentioned, these four configuration parameters do not have default
value. They are most conveniently set at the descriptor creation function.
For dimension and length configuration, they can only be set in the
descriptor creation function, and not by the function DftiSetValue. The
other two configuration values can be changed through the function
DftiSetValue, although this is not deemed common.

Number of transforms

In some situations, the user may need to perform a number of DFT
transforms of the same dimension and lengths. The most common situation
would be to transform a number of one-dimensional data of the same
length. This parameter has the default value of 1, and can be set to positive
integer value by an Integer data type in Fortran and long data type in C.
Data sets have no common elements. The distance parameter is obligatory if
multiple number is more than one.

Sign and scale

The general form of the discrete Fourier transform is given by (7.1), for
, where is an arbitrary real-valued scale factor and

. By default, the forward transform is defined by and ,
and the backward transform is defined by and . The user can
change the definition of forward transform via setting the sign to be
DFTI_NEGATIVE (default) or DFTI_POSITIVE. The sign of the backward
transform is implicitly defined to be the negative of the sign for the forward
transform.

CAUTION. Changing the dimension and length would likely render the
stride value inappropriate. Unless certain of otherwise, the user is
advised to reconfigure the stride (see “Strides”).

kl 0 1 2 …,±,±,= σ
δ 1±= σ 1= δ 1–=

σ 1= δ 1=

δ

9-38

9 Intel® Math Kernel Library Reference Manual

The forward transform and backward transform are each associated with a
scale factor of its own with default value of 1. The user can set one or
both of them via the two configuration parameters DFTI_FORWARD_SCALE
and DFTI_BACKWARD_SCALE. For example, for a one-dimensional
transform of length n, one can use the default scale of 1 for the forward
transform while setting the scale factor for backward transform to be 1/n,
making the backward transform the inverse of the forward transform.

The scale factor configuration parameter should be set by a real
floating-point data type of the same precision as the value for
DFTI_PRECISION.

Placement of result

By default, the computational functions overwrite the input data with the
output result. That is, the default setting of the configuration parameter
DFTI_PLACEMENT is DFTI_INPLACE. The user can change that by setting
it to DFTI_NOT_INPLACE.

Packed formats

The result of the forward transform (i.e. in the frequency-domain) of real
data is represented in several possible packed formats: Pack, Perm, or CCS.
The data can be packed due to the symmetry property of the DFT transform
of a real data.

The CCS format stores the values of the first half of the output complex
signal resulted from the forward DFT. Note that the signal stored in CCS

format is one complex element longer. In CCS format, the output samples of
the DFT are arranged as shown in Table 9-9.

NOTE. The sign configuration is not supported. The forward transform
is defined as .

σ

δ 1–=

Advanced DFT Functions 9

9-39

The Pack format is a compact representation of a complex
conjugate-symmetric sequence. The disadvantage of this format is that it is
not the natural format used by the real DFT algorithms (“natural” in the
sense that array is natural for complex DFTs). In Pack format, the output
samples of the DFT are arranged as shown in Table 9-9.

The Perm format is an arbitrary permutation of the Pack format for even
lengths and one is the same as the Pack format for odd lengths. In Perm

format, the output samples of the DFT are arranged as shown in Table 9-9.

See also Table 9-10 and Table 9-11.

Storage schemes

For each of the three domains DFTI_COMPLEX, DFTI_REAL, and
DFTI_CONJUGATE_EVEN (for the forward as well as the backward operator),
a subset of the four storage schemes DFTI_COMPLEX_COMPLEX,
DFTI_COMPLEX_REAL, DFTI_REAL_COMPLEX, and DFTI_REAL_REAL.
Specific examples are presented here to illustrate the storage schemes. See the
document [3] for the rationale behind this definition of the storage schemes.

Table 9-9 Packed Format Output Samples

For (N = S*2)

DFT Real 0 1 2 3 ... N-2 N-1 N N+1

0 1 (2S-1) 2S (2S+1)

CCS R0 0 R1 I1 ... RN/2-1 IN/2-1 RN/2 0

Pack R0 R1 I1 R2 ... IN/2-1 RN/2

Perm R0 Rn/2 R1 I1 ... RN/2-1 IN/2-1

For (N = S*2 + 1)

DFT
Real 0 1 2 3 ... N-4 N-3 N-2 N-1 N N+1

0 1 2S (2S+1)

CCS R0 0 R1 I1 ... IS_2 RS-1 IS_1 RS IS
Pack R0 R1 I1 R2 ... RS-1 IS_1 RS-1 IS
Perm R0 R1 I1 R2 ... RS-1 IS_1 RS-1 IS

9-40

9 Intel® Math Kernel Library Reference Manual

Storage scheme for complex domain

This setting is recorded in the configuration parameter
DFTI_COMPLEX_STORAGE. The three values that can be set are
DFTI_COMPLEX_COMPLEX, DFTI_COMPLEX_REAL, and
DFTI_REAL_REAL. Consider a one-dimensional n-length transform of the
form

, C .

Assume the stride has default value (unit stride) and DFTI_PLACEMENT has
the default in-place setting.

1. DFTI_COMPLEX_COMPLEX storage scheme. A typical usage will be as
follows.

COMPLEX :: X(0:n-1)

...some other code...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

X(k) = zk , k = 0,1,...,n-1 .

2. DFTI_COMPLEX_REAL storage scheme. A typical usage will be as
follows.

REAL :: X(0:2*n-1)

...some other code...

Status = DftiComputeForward(Desc_Handle, X)

On input,

NOTE. The data is stored in the Fortran style only, that is, the real and
imaginary parts are stored side by side.

zk wje
i2πjk n⁄–

j 0=

n 1–

∑= wj zk ∈,

Advanced DFT Functions 9

9-41

X(2*j) = Re(wj) , X(2*j+1) = Im(wj) , j = 0,1,...,n-1 .

On output,

X(2*k) = Re(zk) , X(2*k+1) = Im(zk) , k = 0,1,...,n-1 .

The notations Re(wj) and Im(wj) are the real and imaginary parts of the
complex number wj.

3. DFTI_REAL_REAL storage scheme. A typical usage will be as follows.

REAL :: X(0:n-1), Y(0:n-1)

...some other code...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = Re(wj) , Y(j) = Im(wj) , j = 0,1,...,n-1 .

On output,

X(k) = Re(zk) , Y(k) = Im(zk) , k = 0,1,...,n-1 .

Storage scheme for the real and conjugate even domains

This setting for the storage schemes for these domains are recorded in the
configuration parameters DFTI_REAL_STORAGE and
DFTI_CONJUGATE_EVEN. Since a forward real domain corresponds to a
conjugate even backward domain, they are considered together. The
example uses a one-dimensional real to conjugate even transform. In-place
computation is assumed whenever possible (that is, when the input data
type matches with the output data type).

Consider a one-dimensional n-length transform of the form

, R, C .

There is a symmetry:

For even n: z(n/2+i) = conjg(z(n/2-i)), , and moreover
z(0) and z(n/2) are real values.

For odd n: z(m+i) = conjg(z(m-i+1)), , and moreover z(0) is
real value.

zk wje
i2πjk n⁄–

j 0=

n 1–

∑= wj ∈ zk ∈

1 i n 2 1–⁄≤ ≤

1 i m≤ ≤

9-42

9 Intel® Math Kernel Library Reference Manual

m = floor(n/2).

Table 9-10 Comparison of the Storage Effects of Complex-to-Complex and
Real-to-Complex DFTs for Forward Transform

N=8

Input Vectors Output Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

w0 0.000000 w0 z0 0.000000 z0 z0 z0

w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) z4

w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Re(z1)

w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Im(z1)

w4 0.000000 w4 z4 0.000000 Re(z2) Im(z2) Re(z2)

w5 0.000000 w5 Re(z3) -Im(z3) Im(z2) Re(z3) Im(z2)

w6 0.000000 w6 Re(z2) -Im(z2) Re(z3) Im(z3) Re(z3)

w7 0.000000 w7 Re(z1) -Im(z1) Im(z3) z4 Im(z3)

z4

0.000000

N=7

Input Vectors Output Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

w0 0.000000 w0 z0 0.000000 z0 z0 z0

w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) Re(z1)

w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Im(z1)

Advanced DFT Functions 9

9-43

w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Re(z2)

w4 0.000000 w4 Re(z3) -Im(z3) Re(z2) Im(z2) Im(z2)

w5 0.000000 w5 Re(z2) -Im(z2) Im(z2) Re(z3) Re(z3)

w6 0.000000 w6 Re(z1) -Im(z1) Re(z3) Im(z3) Im(z3)

Im(z3)

N=7

Input Vectors Output Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

9-44

9 Intel® Math Kernel Library Reference Manual

Table 9-11 Comparison of the Storage Effects of Complex-to-Complex and
Complex-to-Real DFTs for Backward Transform

N=8

Output Vectors Input Vectors

Complex DFT
Real
DFT complex DFT

Complex Data
Real
Data Complex Data

Real Imaginary Real Imaginary CCS Pack Perm

w0 0.000000 w0 z0 0.000000 z0 z0 z0

w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) z4

w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Re(z1)

w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Im(z1)

w4 0.000000 w4 z4 Re(z2) Im(z2) Re(z2)

w5 0.000000 w5 Re(z3) -Im(z3) Im(z2) Re(z3) Im(z2)

w6 0.000000 w6 Re(z2) -Im(z2) Re(z3) Im(z3) Re(z3)

w7 0.00000 w7 Re(z1) -Im(z1) Im(z3) z4 Im(z3)

z4

0.000000

N=7

Output Vectors Input Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

w0 0.000000 w0 z0 0.000000 z0 z0 z0

w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) Re(z1)

w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Im(z1)

w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Re(z2)

w4 0.000000 w4 Re(z3) -Im(z3) Re(z2) Im(z2) Im(z2)

w5 0.000000 w5 Re(z2) -Im(z2) Im(z2) Re(z3) Re(z3)

Advanced DFT Functions 9

9-45

Assume that the stride has the default value (unit stride).

This complex conjugate-symmetric vector can be stored in the complex
array of size m+1 or in the real array of size 2m+2 or 2m depending on
packed format.

1. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_COMPLEX for
conjugate even domain. A typical usage will be as follows.

// m = floor(n/2)

REAL :: X(0:n-1)

COMPLEX :: Y(0:m)

...some other code...

...out of place transform...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Y(k) = zk , k = 0,1,...,m .

2. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REAL for
conjugate even domain. A typical usage will be as follows.

// m = floor(n/2)

REAL :: X(0:2*m+1)

...some other code...

...assuming inplace...

Status = DftiComputeForward(Desc_Handle, X)

w6 0.000000 w6 Re(z1) -Im(z1) Re(z3) Im(z3) Im(z3)

Im(z3)

N=7

Output Vectors Input Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

9-46

9 Intel® Math Kernel Library Reference Manual

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Output data stored in one of formats: Pack, Perm or CCS (see “Packed
formats”).

CCS format: X(2*k) = Re(zk) , X(2*k+1) = Im(zk) , k = 0,1,...,m .

Pack format: even n: X(0) = Re(z0), X(2*k-1) = Re(zk), X(2*k) = Im(zk),
k = 1,...,m-1, and X(n-1) = Re(zm)

odd n: X(0) = Re(z0), X(2*k-1) = Re(zk), X(2*k) = Im(zk), k = 1,...,m

Perm format: even n: X(0) = Re(z0), X(1) = Re(zm), X(2*k) = Re(zk) ,
X(2*k+1) = Im(zk) , k = 1,...,m-1,

odd n: X(0) = Re(z0), X(2*k-1) = Re(zk), X(2*k) = Im(zk), k = 1,...,m.

3. DFTI_REAL_REAL for real domain, DFTI_REAL_REAL for conjugate
even domain. This storage scheme for conjugate even domain is applicable
for one-dimensional transform only. A typical usage will be as follows.

// m = floor(n/2)

REAL :: X(0:n-1)

...some other code...

...assuming inplace...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

X(k) = Re(zk) , k = 0,1,...,m .

and

X(n-k) = Im(zk) , k = 1,2,...,m-1 .

4. DFTI_REAL_COMPLEX for real domain, DFTI_COMPLEX_COMPLEX for
conjugate even domain. A typical usage will be as follows.

// m = floor(n/2)

COMPLEX :: X(0:n-1)

...some other code...

...inplace transform...

Advanced DFT Functions 9

9-47

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj , j = 0,1,...,n-1 .

That is, the imaginary parts of X(j) are zero. On output,

Y(k) = zk , k = 0,1,...,m .

where m is .

5. DFTI_REAL_COMPLEX for real domain, DFTI_COMPLEX_REAL for
conjugate even domain. A typical usage will be as follows.

// m = floor(n/2)

COMPLEX :: X(0:n-1)

REAL :: Y(0:2*m+1)

...some other code...

...not inplace...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Output data stored in one of formats: Pack, Perm or CCS (see “Packed
formats”).

CCS format: Y(2*k) = Re(zk) , Y(2*k+1) = Im(zk) , k = 0,1,...,m .

Pack format: even n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk),
k = 1,...,m-1, and Y(n-1) = Re(zm)

odd n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m

Perm format: even n: Y(0) = Re(z0), Y(1) = Re(zm), Y(2*k) = Re(zk) ,
Y(2*k+1) = Im(zk) , k = 1,...,m-1,

odd n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m.

6. DFTI_REAL_COMPLEX for real domain, DFTI_REAL_REAL for
conjugate even domain. This storage scheme for conjugate even domain is
applicable for one-dimensional transform only. A typical usage will be as
follows.

// m = floor(n/2)

COMPLEX :: X(0:n-1)

n 2⁄

9-48

9 Intel® Math Kernel Library Reference Manual

REAL :: Y(0:n-1)

...some other code...

...not inplace...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Y(k) = Re(zk) , k = 0,1,...,m .

and

Y(n-k) = Im(zk) , k = 1,2,...,m-1 .

Input and output distances

DFT interface in Intel MKL allows the computation of multiple number of
transforms. Consequently, the user needs to be able to specify the data
distribution of these multiple sets of data. This is accomplished by the
distance between the first data element of the consecutive data sets. This
parameter is obligatory if multiple number is more than one. Data sets don’t
have any common elements.The following example illustrates the
specification. Consider computing the forward DFT on three 32-length
complex sequences stored in X(0:31, 1), X(0:31, 2), and X(0:31, 3).
Suppose the results are to be stored in the locations Y(0:31, k), k = 1, 2,
3, of the array Y(0:63, 3). Thus the input distance is 32, while the output
distance is 64. Notice that the data and result parameters in computation
functions are all declared as assumed-size rank-1 array DIMENSION(0:*).
Therefore two-dimensional array must be transformed to one-dimensional
array by EQUIVALENCE statement or other facilities of Fortran. Here is the
code fragment:

Complex :: X_2D(0:31,3), Y_2D(0:63, 3)

Complex :: X(96), Y(192)

Equivalence (X_2D, X)

Equivalence (Y_2D, Y)

...................

Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Status = DftiSetValue(Desc_Handle, DFTI_NUMBER_OF_TRANSFORM, 3)

Advanced DFT Functions 9

9-49

Status = DftiSetValue(Desc_Handle, DFTI_INPUT_DISTANCE, 32)

Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_DISTANCE, 64)

Status = DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(Desc_Handle)

Status = DftiComputeForward(Desc_Handle, X, Y)

Status = DftiFreeDescriptor(Desc_Handle)

Strides

In addition to supporting transforms of multiple number of datasets, DFT
interface supports non-unit stride distribution of data within each data set.
Consider the following situation where a 32-length DFT is to be computed
on the sequence xj , 0 ≤j < 32. The actual location of these values are in
X(5), X(7), ..., X(67) of an array X(1:68). The stride accommodated by
DFT interface consists of a displacement from the first element of the data
array L0, (4 in this case), and a constant distance of consecutive elements L1
(2 in this case). Thus for the Fortran array X

xj = X(1 + L0 + L1 * j) = X(5 + L1 * j) .

This stride vector (4,2) is provided by a length-2 rank-1 integer array:

COMPLEX :: X(68)

INTEGER :: Stride(2)

...................

Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Stride = (/ 4, 2 /)

Status = DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDE, Stride)

Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDE, Stride)

Status = DftiCommitDescriptor(Desc_Handle)

Status = DftiComputeForward(Desc_Handle, X)

Status = DftiFreeDescriptor(Desc_Handle)

In general, for a d-dimensional transform, the stride is provided by a
d +1-length integer vector (L0, L1, L2, ..., Ld) with the meaning:

L0 = displacement from the first array element

L1 = distance between consecutive data elements in the first dimension

L2 = distance between consecutive data elements in the second dimension

9-50

9 Intel® Math Kernel Library Reference Manual

... = ...

Ld = distance between consecutive data elements in the d-th dimension.

A d-dimensional data sequence

, 0 ≤ ji < Ji , 1 ≤i ≤d

will be stored in the rank-1 array X by the mapping

= X(first index + L0 + j1L1 + j2L2 + ... + jdLd) .

For multiple transforms, the value L0 applies to the first data sequence, and
Lj , j = 1, 2,..., d apply to all the data sequences.

In the case of a single one-dimensional sequence, L1 is simply the usual
stride. The default setting of strides in the general multi-dimensional
situation corresponds to the case where the sequences are distributed tightly
into the array:

L1 = 1, L2= J1, L3 = J1J2 ,..., Ld =

Both the input data and output data have a stride associated with it. The
default is set in accordance with the data to be stored contiguously in
memory in a way that is natural to the language.

Finally, consider a contrived example where a 20-by-40 two-dimensional
DFT is computed explicitly using one-dimensional transforms. Notice that
the data and result parameters in computation functions are all declared as
assumed-size rank-1 array DIMENSION(0:*). Therefore two-dimensional
array must be transformed to one-dimensional array by EQUIVALENCE

statement or other facilities of Fortran.

! Fortran

Complex :: X_2D(20,40),

Complex :: X(800)

Equivalence (X_2D, X)

INTEGER :: STRIDE(2)

type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim1

type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim2

...

Status = DftiCreateDescriptor(Desc_Handle_Dim1, DFTI_SINGLE,
DFTI_COMPLEX, 1, 20)

xj1 j2 … jd, , ,

xj1 j2 … jd, , ,

Ji

i 1=

d 1–

∏

Advanced DFT Functions 9

9-51

Status = DftiCreateDescriptor(Desc_Handle_Dim2, DFTI_SINGLE,
DFTI_COMPLEX, 1, 40)

! perform 40 one-dimensional transforms along 1st dimension

Status = DftiSetValue(Desc_Handle_Dim1, DFTI_NUMBER_OF_TRANSFORMS, 40)

Status = DftiSetValue(Desc_Handle_Dim1, DFTI_INPUT_DISTANCE, 20)

Status = DftiSetValue(Desc_Handle_Dim1, DFTI_OUTPUT_DISTANCE, 20)

Status = DftiCommitDescriptor(Desc_Handle_Dim1)

Status = DftiComputeForward(Desc_Handle_Dim1, X)

! perform 20 one-dimensional transforms along 2nd dimension

Stride(1) = 0; Stride(2) = 20

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_NUMBER_OF_TRANSFORMS, 20)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_INPUT_DISTANCE, 1)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_OUTPUT_DISTANCE, 1)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_INPUT_STRIDES, Stride)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_OUTPUT_STRIDES, Stride)

Status = DftiCommitDescriptor(Desc_Handle_Dim2)

Status = DftiComputeForward(Desc_Handle_Dim2, X)
Status = DftiFreeDescriptor(Desc_Handle_Dim1)

Status = DftiFreeDescriptor(Desc_Handle_Dim2)

/* C */

float _Complex x[20][40];

long stride[2];

DFTI_DESCRIPTOR_HANDLE Desc_Handle_Dim1;

DFTI_DESCRIPTOR_HANDLE Desc_Handle_Dim2;

...

status = DftiCreateDescriptor(&desc_handle_dim1, DFTI_SINGLE,
DFTI_COMPLEX, 1, 20);

status = DftiCreateDescriptor(&desc_handle_dim2, DFTI_SINGLE,
DFTI_COMPLEX, 1, 40);

/* perform 40 one-dimensional transforms along 1st dimension */

/* note that the 1st dimension data are not unit-stride */

stride[0] = 0; stride[1] = 40;

status = DftiSetValue(desc_handle_dim1, DFTI_NUMBER_OF_TRANSFORMS, 40);

9-52

9 Intel® Math Kernel Library Reference Manual

status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_DISTANCE, 1);

status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_DISTANCE, 1);

status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_STRIDES, stride);

status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_STRIDES, stride);

status = DftiCommitDescriptor(desc_handle_dim1);

status = DftiComputeForward(desc_handle_dim1, x);

/* perform 20 one-dimensional transforms along 2nd dimension */

/* note that the 2nd dimension is unit stride */

status = DftiSetValue(desc_handle_dim2, DFTI_NUMBER_OF_TRANSFORMS, 20);

status = DftiSetValue(desc_handle_dim2, DFTI_INPUT_DISTANCE, 40);

status = DftiSetValue(desc_handle_dim2, DFTI_OUTPUT_DISTANCE, 40);

status = DftiCommitDescriptor(desc_handle_dim2);

status = DftiComputeForward(desc_handle_dim2, x);

status = DftiFreeDescriptor(&Desc_Handle_Dim1);

status = DftiFreeDescriptor(&Desc_Handle_Dim2);

Initialization Effort

In modern approaches to constructing fast algorithms (FFT) for DFT
computations, one often has a flexibility of spending more effort in
initializing (preparing for) an FFT algorithm to buy higher efficiency in the
computation on actual data to follow. Advanced DFT functions in Intel
MKL accommodate this situation through the configuration parameter
DFTI_INITIALIZATION_EFFORT. The three configuration values are
DFTI_LOW, DFTI_MEDIUM (default), and DFTI_HIGH. Note that specific
implementations of DFT interface may or may not make use of this setting
(see MKL Release Notes for implementation details).

Ordering

It is well known that a number of FFT algorithms apply an explicit
permutation stage that is time consuming [4]. The exclusion of this step is
similar to applying DFT to input data whose order is scrambled, or allowing
a scrambled order of the DFT results. In applications such as convolution
and power spectrum calculation, the order of result or data is unimportant
and thus permission of scrambled order is attractive if it leads to higher
performance. Three following options are available in Intel MKL:

Advanced DFT Functions 9

9-53

1. DFTI_ORDERED: Forward transform data ordered, backward transform
data ordered (default option).

2. DFTI_BACKWARD_SCRAMBLED: Forward transform data ordered,
backward transform data scrambled.

3. DFTI_FORWARD_SCRAMBLED: Forward transform data scrambled,
backward transform data ordered.

Table 9-12 tabulates the effect on this configuration setting.

Note that meaning of the latter two options are "allow scrambled order if
practical." There are situations where in fact allowing out of order data
gives no performance advantage, and thus an implementation may choose
to ignore the suggestion. Strictly speaking, the normal order is also a
scrambled order, the trivial one.

When the ordering setting is other than the default DFTI_ORDERED, the user
may need to know the actual ordering of the input and output data. The
ordering of the data in the forward domain is obtained through reading
(getting) the configuration parameter DFTI_FORWARD_ORDERING; and the
ordering of the data in the reverse domain is obtained through reading
(getting) the configuration parameter DFTI_BACKWARD_ORDERING. The
configuration values are integer vectors, thus provided by pointer to any
integer array. We now describe how these integer values specify the actual
scrambling of data.

All scramblings involved are digit reversal along one single dimension.
Precisely, a length J is factored into K ordered factors D1, D2, ..., DK. Any
index i, 0 ≤ i < n, can be expressed uniquely as K digits i1, i2, ..., iK where
0 ≤ il < Dl and

i =i1 + i2D1 + i3D1D2 +... + iKD1D2 ... DK-1 .

Table 9-12 Scrambled Order Transform

DftiComputeForward DftiComputeBackward

DFTI_ORDERING Input →Output Input →Output

DFTI_ORDERED ordered →ordered ordered →ordered

DFTI_BACKWARD_SCRAMBLED ordered →scrambled scrambled →ordered

DFTI_FORWARD_SCRAMBLED scrambled →ordered ordered →scrambled

9-54

9 Intel® Math Kernel Library Reference Manual

A digit reversal permutation scram(i) is given by

scram(i) = iK +iK-1DK + iK-2DKDK-1 +... +i1DKDK-1 ... D2

Factoring J into one factor J leads to no scrambling at all, that is,
scram(i) = i. Note that the factoring does not need to correspond exactly to
the number of "butterfly" stages to be carried out. In fact, the computation
routine in its initialization stage determines if a scrambled order in some or
all of the dimensions can result in performance gain. The digits of the digit
reversal are recorded and stored in the descriptor. These digits can be
obtained by calling a corresponding inquiry routine that returns a pointer to
an integer array. The first element is K (1), which is the number of digits for
the first dimension, followed by K (1) values of the corresponding digits. If
the dimension is higher than one, the next integer value is K (2), etc.

Simple permutation such as mod-p sort [4] is a special case of digit reversal.
Hence this option could be useful for high-performance implementation of
one-dimensional DFT via a "six-step" or "four-step" framework [4].

The user can check the scrambling setting on the forward data and reverse
data. This information is returned as an integer vector containing a number
of sequence (K, D1, D2,..., DK), one for each dimension. Thus the first
element indicates how many D's will follow. The inquiry routine allocates
memory, fills it will this information, and returns a pointer to the memory
location.

Workspace

Some FFT algorithms do not require a scratch space for permutation
purposes. The user can choose between the setting of DFTI_ALLOW
(default) and DFTI_AVOID for the option DFTI_WORKSPACE. Note that the
setting DFTI_AVOID is meant to be "avoid if practical," hence allowing the
implementation the flexibility to use workspace regardless of the setting.

Transposition

This is an option that allows for the result of a high-dimensional transform
to be presented in a transposed manner. The default setting is DFTI_NONE
and can be set to DFTI_ALLOW. Similar to that of scrambled order,
sometimes in higher dimension transform, performance can be gained if the

Advanced DFT Functions 9

9-55

result is delivered in a transposed manner. DFT interface offers an option
for the output be returned in a transposed form if performance gain is
possible. Since the generic stride specification is naturally suited for
representation of transposition, this option allows the strides for the output
to be possibly different from those originally specified by the user. Consider
an example where a two-dimensional result , 0 ≤ji < ni, is
expected. Originally the user specified that the result be distributed in the
(flat) array Y in with generic strides L1 = 1 and L2 = n1. With the
transposition option, the computation may actually return the result into Y

with stride L1 = n2 and L2 = 1. These strides can be obtained from an
appropriate inquiry function. Note also that in dimension 3 and above,
transposition means an arbitrary permutation of the dimension.

yj1 j2,

A-1

Routine and Function
Arguments A

The major arguments in the BLAS routines are vector and matrix, whereas
VML functions work on vector arguments only.
The sections that follow discuss each of these arguments and provide
examples.

Vector Arguments in BLAS
Vector arguments are passed in one-dimensional arrays. The array
dimension (length) and vector increment are passed as integer variables.
The length determines the number of elements in the vector. The increment
(also called stride) determines the spacing between vector elements and the
order of the elements in the array in which the vector is passed.

A vector of length n and increment incx is passed in a one-dimensional
array x whose values are defined as

x(1), x(1+|incx|), ..., x(1+(n-1)* |incx|)

If incx is positive, then the elements in array x are stored in increasing
order. If incx is negative, the elements in array x are stored in decreasing
order with the first element defined as x(1+(n-1)* |incx|). If incx is
zero, then all elements of the vector have the same value, x(1). The
dimension of the one-dimensional array that stores the vector must always
be at least

idimx = 1 + (n-1)* |incx |

A-2

A Intel® Math Kernel Library Reference Manual

Example A-1 One-dimensional Real Array

Let x(1:7) be the one-dimensional real array
x = (1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0).
If incx =2 and n = 3, then the vector argument with elements in
order from first to last is (1.0, 5.0, 9.0).
If incx = -2 and n = 4, then the vector elements in order from first
to last is (13.0, 9.0, 5.0, 1.0).
If incx = 0 and n = 4, then the vector elements in order from first to
last is (1.0, 1.0, 1.0, 1.0).

One-dimensional substructures of a matrix, such as the rows, columns, and
diagonals, can be passed as vector arguments with the starting address and
increment specified. In Fortran, storing the m by n matrix is based on
column-major ordering where the increment between elements in the same
column is 1, the increment between elements in the same row is m, and the
increment between elements on the same diagonal is m + 1.

Example A-2 Two-dimensional Real Matrix

Let a be the real 5 x 4 matrix declared as REAL A (5,4).
To scale the third column of a by 2.0, use the BLAS routine sscal
with the following calling sequence:
call sscal (5, 2.0, a(1,3), 1).
To scale the second row, use the statement:
call sscal (4, 2.0, a(2,1), 5).
To scale the main diagonal of A by 2.0, use the statement:
call sscal (5, 2.0, a(1,1), 6).

NOTE. The default vector argument is assumed to be 1.

Routine and Function Arguments A

A-3

Vector Arguments in VML
Vector arguments of VML mathematical functions are passed in
one-dimensional arrays with unit vector increment. It means that a vector of
length n is passed contiguously in an array a whose values are defined as
a[0], a[1], ..., a[n-1] (for C- interface).
To accommodate for arrays with other increments, or more complicated
indexing, VML contains auxiliary pack/unpack functions that gather the
array elements into a contiguous vector and then scatter them after the
computation is complete.

Generally, if the vector elements are stored in a one-dimensional array a as

a[m0], a[m1], ..., a[mn-1]

and need to be regrouped into an array y as

y[k0], y[k1], ..., y[kn-1],

VML pack/unpack functions can use one of the following indexing methods:

Positive Increment Indexing

kj = incy * j, mj = inca * j, j = 0 ,…, n-1

Constraint: incy > 0 and inca > 0.
For example, setting incy = 1 specifies gathering array elements into a
contiguous vector.

This method is similar to that used in BLAS, with the exception that negative
and zero increments are not permitted.

Index Vector Indexing

kj = iy[j], mj = ia[j], j = 0 ,…, n-1,

where ia and iy are arrays of length n that contain index vectors for the
input and output arrays a and y, respectively.

Mask Vector Indexing

Indices kj, mj are such that:

my[kj] ≠ 0, ma[mj] ≠ 0 , j = 0,…, n-1,

where ma and my are arrays that contain mask vectors for the input and
output arrays a and y, respectively.

A-4

A Intel® Math Kernel Library Reference Manual

Matrix Arguments
Matrix arguments of the Intel® Math Kernel Library routines can be stored
in either one- or two-dimensional arrays, using the following storage
schemes:

• conventional full storage (in a two-dimensional array)
• packed storage for Hermitian, symmetric, or triangular matrices

(in a one-dimensional array)
• band storage for band matrices (in a two-dimensional array).

Full storage is the following obvious scheme: a matrix A is stored in a
two-dimensional array a, with the matrix element aij stored in the array
element a(i,j).

If a matrix is triangular (upper or lower, as specified by the argument
uplo), only the elements of the relevant triangle are stored; the remaining
elements of the array need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the
upper or lower triangle of the matrix to be stored in the corresponding
elements of the array:

if uplo ='U', aij is stored in a(i,j) for i ≤ j,
other elements of a need not be set.

if uplo ='L', aij is stored in a(i,j) for j ≤ i,
other elements of a need not be set.

Packed storage allows you to store symmetric, Hermitian, or triangular
matrices more compactly: the relevant triangle (again, as specified by the
argument uplo) is packed by columns in a one-dimensional array ap:

if uplo ='U', aij is stored in ap(i+j(j-1)/2) for i ≤ j

if uplo ='L', aij is stored in ap(i+(2*n-j)*(j-1)/2) for j ≤ i.

In descriptions of LAPACK routines, arrays with packed matrices have
names ending in p.

Band storage is as follows: an m by n band matrix with kl non-zero
sub-diagonals and ku non-zero super-diagonals is stored compactly in a
two-dimensional array ab with kl+ku+1 rows and n columns. Columns of
the matrix are stored in the corresponding columns of the array, and
diagonals of the matrix are stored in rows of the array. Thus,

Routine and Function Arguments A

A-5

aij is stored in ab(kl+ku+1+i-j,j) for max(n,j-ku) ≤ i ≤min(n,j+kl).

Use the band storage scheme only when kl and ku are much less than the
matrix size n. (Although the routines work correctly for all values of kl and ku,
it’s inefficient to use the band storage if your matrices are not really banded).

When a general band matrix is supplied for LU factorization, space must be
allowed to store kl additional super-diagonals generated by fill-in as a result of
row interchanges. This means that the matrix is stored according to the above
scheme, but with kl + ku super-diagonals.

The band storage scheme is illustrated by the following example, when
m = n = 6, kl = 2, ku = 1:

Array elements marked * are not used by the routines; elements marked + need
not be set on entry, but are required by the LU factorization routines to store the
results. The input array will be overwritten on exit by the details of the LU
factorization as follows:

where uij are the elements of the upper triangular matrix U, and mij are the
multipliers used during factorization.

a11 a12 0 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 a34 0 0

0 a42 a43 a44 a45 0

0 0 a53 a54 a55 a56

0 0 0 a64 a65 a66

* * * + + +

* * + + + +

* a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 *
a31 a42 a53 a64 * *

Banded matrix A Band storage of A

* * * u14 u25 u36

* * u13 u24 u35 u46

* u12 u23 u34 u45 u56

u11 u22 u33 u44 u55 u66

m21 m32 m43 m54 m65 *
m31 m42 m53 m64 * *

A-6

A Intel® Math Kernel Library Reference Manual

Triangular band matrices are stored in the same format, with either kl= 0 if
upper triangular, or ku = 0 if lower triangular. For symmetric or Hermitian
band matrices with k sub-diagonals or super-diagonals, you need to store
only the upper or lower triangle, as specified by the argument uplo:

if uplo ='U', aij is stored in ab(k+1+i-j,j) for max(1,j-k) ≤i ≤ j
if uplo ='L', aij is stored in ab(1+i-j,j) for j ≤ i ≤min(n,j+k).

In descriptions of LAPACK routines, arrays that hold matrices in band
storage have names ending in b.

In Fortran, column-major ordering of storage is assumed. This means that
elements of the same column occupy successive storage locations.

Three quantities are usually associated with a two-dimensional array
argument: its leading dimension, which specifies the number of storage
locations between elements in the same row, its number of rows, and its
number of columns. For a matrix in full storage, the leading dimension of
the array must be at least as large as the number of rows in the matrix.

A character transposition parameter is often passed to indicate whether the
matrix argument is to be used in normal or transposed form or, for a
complex matrix, if the conjugate transpose of the matrix is to be used.
The values of the transposition parameter for these three cases are the
following:

'N' or 'n' normal (no conjugation, no transposition)

'T' or 't' transpose

'C' or 'c' conjugate transpose.

Routine and Function Arguments A

A-7

Example A-3 Two-Dimensional Complex Array

Suppose A (1:5, 1:4) is the complex two-dimensional array
presented by matrix

Let transa be the transposition parameter, m be the number of rows, n
be the number of columns, and lda be the leading dimension. Then if
transa = 'N', m = 4, n = 2, and lda = 5, the matrix argument
would be

If transa = 'T', m = 4, n = 2, and lda =5,
the matrix argument would be

If transa = 'C', m = 4, n = 2, and lda =5,
the matrix argument would be

Note that care should be taken when using a leading dimension value which
is different from the number of rows specified in the declaration of the
two-dimensional array. For example, suppose the array A above is declared
as COMPLEX A (5,4).

continued *

1.1 0.11,() 1.2 0.12,() 1.3 0.13,() 1.4 0.14,()
2.1 0.21,() 2.2 0.22,() 2.3 0.23,() 2.4 0.24,()
3.1 0.31,() 3.2 0.32,() 3.3 0.33,() 3.4 0.34,()
4.1 0.41,() 4.2 0.42,() 4.3 0.43,() 4.4 0.44,()
5.1 0.51,() 5.2 0.52,() 5.3 0.53,() 5.4 0.54,()

1.1 0.11,() 1.2 0.12,()
2.1 0.21,() 2.2 0.22,()
3.1 0.31,() 3.2 0.32,()
4.1 0.41,() 4.2 0.42,()

1.1 0.11,() 2.1 0.21,() 3.1 0.31,() 4.1 0.41,()
1.2 0.12,() 2.2 0.22,() 3.2 0.32,() 4.2 0.42,()

1.1 0.11–,() 2.1 0.21–,() 3.1 0.31–,() 4.1 0.41–,()
1.2 0.12–,() 2.2 0.22–,() 3.2 0.32–,() 4.2 0.42–,()

A-8

A Intel® Math Kernel Library Reference Manual

Then if transa = 'N', m = 3, n = 4, and lda = 4, the matrix argument will
be

1.1 0.11,() 5.1 0.51,() 4.2 0.42,() 3.3 0.33,()
2.1 0.21,() 1.2 0.12,() 5.2 0.52,() 4.3 0.43,()
3.1 0.31,() 2.2 0.22,() 1.3 0.13,() 5.3 0.53,()

B-1

Code Examples B
This appendix presents code examples of using BLAS routines and
functions.

Example B-1 Using BLAS Level 1 Function

The following example illustrates a call to the BLAS Level 1 function
sdot. This function performs a vector-vector operation of computing a
scalar product of two single-precision real vectors x and y.

Parameters

n Specifies the order of vectors x and y.

incx Specifies the increment for the elements of x.

incy Specifies the increment for the elements of y.

program dot_main
real x(10), y(10), sdot, res
integer n, incx, incy, i
external sdot

n = 5
incx = 2
incy = 1

do i = 1, 10
x(i) = 2.0e0
y(i) = 1.0e0

end do

continued *

?dot
description

B-2

B Intel® Math Kernel Library Reference Manual

Example B-1 Using BLAS Level 1 Function (continued)

res = sdot (n, x, incx, y, incy)

print*, ‘SDOT = ‘, res

end

As a result of this program execution, the following line is printed:

SDOT = 10.000

Example B-2 Using BLAS Level 1 Routine

The following example illustrates a call to the BLAS Level 1 routine scopy.
This routine performs a vector-vector operation of copying a
single-precision real vector x to a vector y.

Parameters

n Specifies the order of vectors x and y.

incx Specifies the increment for the elements of x.

incy Specifies the increment for the elements of y.

program copy_main
real x(10), y(10)
integer n, incx, incy, i

n = 3

incx = 3

incy = 1

do i = 1, 10

x(i) = i

end do

call scopy (n, x, incx, y, incy)

print*, ‘Y = ‘, (y(i), i = 1, n)

end

As a result of this program execution, the following line is printed:

Y = 1.00000 4.00000 7.00000

?copy
description

Code Examples B

B-3

Example B-3 Using BLAS Level 2 Routine

The following example illustrates a call to the BLAS Level 2 routine sger.
This routine performs a matrix-vector operation

a := alpha*x*y' + a.

Parameters

alpha Specifies a scalar alpha.

x m-element vector.

y n-element vector.

a m by n matrix.

program ger_main
real a(5,3), x(10), y(10), alpha
integer m, n, incx, incy, i, j, lda

m = 2
n = 3
lda = 5
incx = 2
incy = 1
alpha = 0.5
do i = 1, 10

x(i) = 1.0
y(i) = 1.0

end do

do i = 1, m
do j = 1, n

a(i,j) = j
end do

end do

call sger (m, n, alpha, x, incx, y, incy, a, lda)

print*, ‘Matrix A: ‘

do i = 1, m

print*, (a(i,j), j = 1, n)

end do

end

continued *

?ger
description

B-4

B Intel® Math Kernel Library Reference Manual

Example B-3 Using BLAS Level 2 Routine (continued)

As a result of this program execution, matrix a is printed as follows:

Matrix A:

1.50000 2.50000 3.50000

1.50000 2.50000 3.50000

Example B-4 Using BLAS Level 3 Routine

The following example illustrates a call to the BLAS Level 3 routine
ssymm. This routine performs a matrix-matrix operation

c := alpha*a*b' + beta*c.

Parameters

alpha Specifies a scalar alpha.

beta Specifies a scalar beta.

a Symmetric matrix.

b m by n matrix.

c m by n matrix.

program symm_main
real a(3,3), b(3,2), c(3,3), alpha, beta
integer m, n, lda, ldb, ldc, i, j

character uplo, side

uplo = 'u'
side = 'l'
m = 3
n = 2
lda = 3
ldb = 3
ldc = 3
alpha = 0.5
beta = 2.0

continued *

?symm
description

Code Examples B

B-5

Example B-4 Using BLAS Level 3 Routine (continued)

do i = 1, m
do j = 1, m

a(i,j) = 1.0

end do

end do

do i = 1, m

do j = 1, n

c(i,j) = 1.0

b(i,j) = 2.0

end do

end do

call ssymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)

print*, ‘Matrix C: ‘

do i = 1, m

print*, (c(i,j), j = 1, n)

end do

end

As a result of this program execution, matrix c is printed as follows:

Matrix C:

5.00000 5.00000

5.00000 5.00000

5.00000 5.00000

B-6

B Intel® Math Kernel Library Reference Manual

Example B-5 Calling a Complex BLAS Level 1 Function from C

The following example illustrates a call from a C program to the complex
BLAS Level 1 function zdotc(). This function computes the dot product
of two double-precision complex vectors.

In this example, the complex dot product is returned in the structure c.

#define N 5
void main()
{

int n, inca = 1, incb = 1, i;
typedef struct{ double re; double im; } complex16;
complex16 a[N], b[N], c;
void zdotc();
n = N;
for(i = 0; i < n; i++){

a[i].re = (double)i; a[i].im = (double)i * 2.0;
b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;

}
zdotc(&c, &n, a, &inca, b, &incb);
printf("The complex dot product is: (%6.2f, %6.2f

)\n", c.re, c.im);
}

NOTE. Instead of calling BLAS directly from C programs, you might
wish to use the CBLAS interface; this is the supported way of calling
BLAS from C. For more information about CBLAS, see Appendix C,
“CBLAS Interface to the BLAS”.

C-1

CBLAS Interface
to the BLAS C

This appendix presents CBLAS, the C interface to the Basic Linear Algebra
Subprograms (BLAS) implemented in Intel® MKL.

Similar to BLAS, the CBLAS interface includes the following levels of
functions:

• Level 1 CBLAS (vector-vector operations)
• Level 2 CBLAS (matrix-vector operations)
• Level 3 CBLAS (matrix-matrix operations).
• Sparse CBLAS (operations on sparse vectors).

To obtain the C interface, the Fortran routine names are prefixed with
cblas_ (for example, dasum becomes cblas_dasum). Names of all
CBLAS functions are in lowercase letters.

Complex functions ?dotc and ?dotu become CBLAS subroutines (void
functions); they return the complex result via a void pointer, added as the
last parameter. CBLAS names of these functions are suffixed with _sub. For
example, the BLAS function cdotc corresponds to cblas_cdotc_sub.

CBLAS Arguments
The arguments of CBLAS functions obey the following rules:

• Input arguments are declared with the const modifier.
• Non-complex scalar input arguments are passed by value.
• Complex scalar input arguments are passed as void pointers.
• Array arguments are passed by address.
• Output scalar arguments are passed by address.

C-2

C Intel® Math Kernel Library Reference Manual

• BLAS character arguments are replaced by the appropriate enumerated
type.

• Level 2 and Level 3 routines acquire an additional parameter of type
CBLAS_ORDER as their first argument. This parameter specifies
whether two-dimensional arrays are row-major (CblasRowMajor) or
column-major (CblasColMajor).

Enumerated Types

The CBLAS interface uses the following enumerated types:

enum CBLAS_ORDER {
CblasRowMajor=101, /* row-major arrays */
CblasColMajor=102}; /* column-major arrays */

enum CBLAS_TRANSPOSE {
CblasNoTrans=111, /* trans='N' */
CblasTrans=112, /* trans='T' */
CblasConjTrans=113}; /* trans='C' */

enum CBLAS_UPLO {
CblasUpper=121, /* uplo ='U' */
CblasLower=122}; /* uplo ='L' */

enum CBLAS_DIAG {
CblasNonUnit=131, /* diag ='N' */
CblasUnit=132}; /* diag ='U' */

enum CBLAS_SIDE {
CblasLeft=141, /* side ='L' */
CblasRight=142}; /* side ='R' */

CBLAS Interface to the BLAS C

C-3

Level 1 CBLAS
This is an interface to BLAS Level 1 Routines and Functions, which
perform basic vector-vector operations.

?asum
float cblas_sasum(const int N, const float *X, const int incX);

double cblas_dasum(const int N, const double *X, const int
incX);

float cblas_scasum(const int N, const void *X, const int incX);

double cblas_dzasum(const int N, const void *X, const int
incX);

?axpy
void cblas_saxpy(const int N, const float alpha, const float
*X, const int incX, float *Y, const int incY);

void cblas_daxpy(const int N, const double alpha, const double
*X, const int incX, double *Y, const int incY);

void cblas_caxpy(const int N, const void *alpha, const void *X,
const int incX, void *Y, const int incY);

void cblas_zaxpy(const int N, const void *alpha, const void *X,
const int incX, void *Y, const int incY);

?copy
void cblas_scopy(const int N, const float *X, const int incX,
float *Y, const int incY);

void cblas_dcopy(const int N, const double *X, const int incX,
double *Y, const int incY);

void cblas_ccopy(const int N, const void *X, const int incX,
void *Y, const int incY);

void cblas_zcopy(const int N, const void *X, const int incX,
void *Y, const int incY);

?dot
float cblas_sdot(const int N, const float *X, const int incX,
const float *Y, const int incY);

double cblas_ddot(const int N, const double *X, const int incX,
const double *Y, const int incY);

?sdot
float cblas_sdsdot(const int N, const float *SB, const float
*SX, const int incX, const float *SY, const int incY);

C-4

C Intel® Math Kernel Library Reference Manual

double cblas_dsdot(const int N, const float *SX, const int
incX, const float *SY, const int incY);

?dotc
void cblas_cdotc_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotc);

void cblas_zdotc_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotc);

?dotu
void cblas_cdotu_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotu);

void cblas_zdotu_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotu);

?nrm2
float cblas_snrm2(const int N, const float *X, const int incX);

double cblas_dnrm2(const int N, const double *X, const int
incX);

float cblas_scnrm2(const int N, const void *X, const int incX);

double cblas_dznrm2(const int N, const void *X, const int
incX);

?rot
void cblas_srot(const int N, float *X, const int incX, float
*Y, const int incY, const float c, const float s);

void cblas_drot(const int N, double *X, const int incX, double
*Y,const int incY, const double c, const double s);

?rotg
void cblas_srotg(float *a, float *b, float *c, float *s);

void cblas_drotg(double *a, double *b, double *c, double *s);

?rotm
void cblas_srotm(const int N, float *X, const int incX, float
*Y, const int incY, const float *P);

void cblas_drotm(const int N, double *X, const int incX, double
*Y, const int incY, const double *P);

?rotmg
void cblas_srotmg(float *d1, float *d2, float *b1, const float
b2, float *P);

void cblas_drotmg(double *d1, double *d2, double *b1, const
double b2, double *P);

CBLAS Interface to the BLAS C

C-5

?scal
void cblas_sscal(const int N, const float alpha, float *X,
const int incX);

void cblas_dscal(const int N, const double alpha, double *X,
const int incX);

void cblas_cscal(const int N, const void *alpha, void *X, const
int incX);

void cblas_zscal(const int N, const void *alpha, void *X, const
int incX);

void cblas_csscal(const int N, const float alpha, void *X,
const int incX);

void cblas_zdscal(const int N, const double alpha, void *X,
const int incX);

?swap
void cblas_sswap(const int N, float *X, const int incX, float
*Y, const int incY);

void cblas_dswap(const int N, double *X, const int incX, double
*Y, const int incY);

void cblas_cswap(const int N, void *X, const int incX, void *Y,
const int incY);

void cblas_zswap(const int N, void *X, const int incX, void *Y,
const int incY);

i?amax
CBLAS_INDEX cblas_isamax(const int N, const float *X, const int
incX);

CBLAS_INDEX cblas_idamax(const int N, const double *X, const
int incX);

CBLAS_INDEX cblas_icamax(const int N, const void *X, const int
incX);

CBLAS_INDEX cblas_izamax(const int N, const void *X, const int
incX);

i?amin
CBLAS_INDEX cblas_isamin(const int N, const float *X, const int
incX);

CBLAS_INDEX cblas_idamin(const int N, const double *X, const
int incX);

CBLAS_INDEX cblas_icamin(const int N, const void *X, const int
incX);

CBLAS_INDEX cblas_izamin(const int N, const void *X, const int
incX);

C-6

C Intel® Math Kernel Library Reference Manual

Level 2 CBLAS
This is an interface to BLAS Level 2 Routines, which perform basic
matrix-vector operations. Each C routine in this group has an additional
parameter of type CBLAS_ORDER (the first argument) that determines
whether the two-dimensional arrays use column-major or row-major
storage.

?gbmv
void cblas_sgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const float alpha, const float *A, const int lda,
const float *X, const int incX, const float beta, float *Y,
const int incY);

void cblas_dgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const double alpha, const double *A, const int
lda, const double *X, const int incX, const double beta, double
*Y, const int incY);

void cblas_cgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const void *alpha, const void *A, const int lda,
const void *X, const int incX, const void *beta, void *Y, const
int incY);

void cblas_zgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const void *alpha, const void *A, const int lda,
const void *X, const int incX, const void *beta, void *Y, const
int incY);

?gemv
void cblas_sgemv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const float
alpha, const float *A, const int lda, const float *X, const int
incX, const float beta, float *Y, const int incY);

void cblas_dgemv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const double
alpha, const double *A, const int lda, const double *X, const
int incX, const double beta, double *Y, const int incY);

void cblas_cgemv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const void
*alpha, const void *A, const int lda, const void *X, const int
incX, const void *beta, void *Y, const int incY);

CBLAS Interface to the BLAS C

C-7

void cblas_zgemv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const void
*alpha, const void *A, const int lda, const void *X, const int
incX, const void *beta, void *Y, const int incY);

?ger
void cblas_sger(const enum CBLAS_ORDER order, const int M,
const int N, const float alpha, const float *X, const int incX,
const float *Y, const int incY, float *A, const int lda);

void cblas_dger(const enum CBLAS_ORDER order, const int M,
const int N, const double alpha, const double *X, const int
incX, const double *Y, const int incY, double *A, const int
lda);

?gerc
void cblas_cgerc(const enum CBLAS_ORDER order, const int M,
const int N, const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);

void cblas_zgerc(const enum CBLAS_ORDER order, const int M,
const int N, const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);

?geru
void cblas_cgeru(const enum CBLAS_ORDER order, const int M,
const int N, const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);

void cblas_zgeru(const enum CBLAS_ORDER order, const int M,
const int N, const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);

?hbmv
void cblas_chbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const int K, const void *alpha,
const void *A, const int lda, const void *X, const int incX,
const void *beta, void *Y, const int incY);

void cblas_zhbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const int K, const void *alpha,
const void *A, const int lda, const void *X, const int incX,
const void *beta, void *Y, const int incY);

?hemv
void cblas_chemv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A,
const int lda, const void *X, const int incX, const void *beta,
void *Y, const int incY);

C-8

C Intel® Math Kernel Library Reference Manual

void cblas_zhemv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A,
const int lda, const void *X, const int incX, const void *beta,
void *Y, const int incY);

?her
void cblas_cher(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const void *X,
const int incX, void *A, const int lda);

void cblas_zher(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const void
*X, const int incX, void *A, const int lda);

?her2
void cblas_cher2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X,
const int incX, const void *Y, const int incY, void *A, const
int lda);

void cblas_zher2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X,
const int incX, const void *Y, const int incY, void *A, const
int lda);

?hpmv
void cblas_chpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void
*Ap, const void *X, const int incX, const void *beta, void *Y,
const int incY);

void cblas_zhpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void
*Ap, const void *X, const int incX, const void *beta, void *Y,
const int incY);

?hpr
void cblas_chpr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const void *X,
const int incX, void *A);

void cblas_zhpr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const void
*X, const int incX, void *A);

?hpr2
void cblas_chpr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X,
const int incX, const void *Y, const int incY, void *Ap);

CBLAS Interface to the BLAS C

C-9

void cblas_zhpr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X,
const int incX, const void *Y, const int incY, void *Ap);

?sbmv
void cblas_ssbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const int K, const float alpha,
const float *A, const int lda, const float *X, const int incX,
const float beta, float *Y, const int incY);

void cblas_dsbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const int K, const double alpha,
const double *A, const int lda, const double *X, const int
incX, const double beta, double *Y, const int incY);

?spmv
void cblas_sspmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*Ap, const float *X, const int incX, const float beta, float
*Y, const int incY);

void cblas_dspmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*Ap, const double *X, const int incX, const double beta, double
*Y, const int incY);

?spr
void cblas_sspr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*X, const int incX, float *Ap);

void cblas_dspr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*X, const int incX, double *Ap);

?spr2
void cblas_sspr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*X, const int incX, const float *Y, const int incY, float *A);

void cblas_dspr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*X, const int incX, const double *Y, const int incY, double
*A);

C-10

C Intel® Math Kernel Library Reference Manual

?symv
void cblas_ssymv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*A, const int lda, const float *X, const int incX, const float
beta, float *Y, const int incY);

void cblas_dsymv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*A, const int lda, const double *X, const int incX, const
double beta, double *Y, const int incY);

?syr
void cblas_ssyr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*X, const int incX, float *A, const int lda);

void cblas_dsyr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*X, const int incX, double *A, const int lda);

?syr2
void cblas_ssyr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*X, const int incX, const float *Y, const int incY, float *A,
const int lda);

void cblas_dsyr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*X, const int incX, const double *Y, const int incY, double *A,
const int lda);

?tbmv
void cblas_stbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const float *A,
const int lda, float *X, const int incX);

void cblas_dtbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const double *A,
const int lda, double *X, const int incX);

void cblas_ctbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const void *A, const
int lda, void *X, const int incX);

CBLAS Interface to the BLAS C

C-11

void cblas_ztbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const void *A, const
int lda, void *X, const int incX);

?tbsv
void cblas_stbsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const float *A,
const int lda, float *X, const int incX);

void cblas_dtbsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const double *A,
const int lda, double *X, const int incX);

void cblas_ctbsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const void *A, const
int lda, void *X, const int incX);

void cblas_ztbsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const void *A, const
int lda, void *X, const int incX);

?tpmv
void cblas_stpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const float *Ap, float *X, const
int incX);

void cblas_dtpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const double *Ap, double *X,
const int incX);

void cblas_ctpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *Ap, void *X, const int
incX);

void cblas_ztpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *Ap, void *X, const int
incX);

C-12

C Intel® Math Kernel Library Reference Manual

?tpsv
void cblas_stpsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const float *Ap, float *X, const
int incX);

void cblas_dtpsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const double *Ap, double *X, const
int incX);

void cblas_ctpsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *Ap, void *X, const int
incX);

void cblas_ztpsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *Ap, void *X, const int
incX);

?trmv
void cblas_strmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const float *A, const int lda,
float *X, const int incX);

void cblas_dtrmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const double *A, const int lda,
double *X, const int incX);

void cblas_ctrmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *A, const int lda, void
*X, const int incX);

void cblas_ztrmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *A, const int lda, void
*X, const int incX);

?trsv
void cblas_strsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const float *A, const int lda,
float *X, const int incX);

CBLAS Interface to the BLAS C

C-13

void cblas_dtrsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const double *A, const int lda,
double *X, const int incX);

void cblas_ctrsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *A, const int lda, void
*X, const int incX);

void cblas_ztrsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *A, const int lda, void
*X, const int incX);

C-14

C Intel® Math Kernel Library Reference Manual

Level 3 CBLAS
This is an interface to BLAS Level 3 Routines, which perform basic
matrix-matrix operations. Each C routine in this group has an additional
parameter of type CBLAS_ORDER (the first argument) that determines
whether the two-dimensional arrays use column-major or row-major
storage.

?gemm
void cblas_sgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const float alpha, const
float *A, const int lda, const float *B, const int ldb, const
float beta, float *C, const int ldc);

void cblas_dgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const double alpha,
const double *A, const int lda, const double *B, const int ldb,
const double beta, double *C, const int ldc);

void cblas_cgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);

void cblas_zgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);

?hemm
void cblas_chemm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const void *alpha, const void *A, const int lda, const
void *B, const int ldb, const void *beta, void *C, const int
ldc);

void cblas_zhemm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const void *alpha, const void *A, const int lda, const
void *B, const int ldb, const void *beta, void *C, const int
ldc);

CBLAS Interface to the BLAS C

C-15

?herk
void cblas_cherk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const float alpha, const void *A, const int lda,
const float beta, void *C, const int ldc);

void cblas_zherk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const double alpha, const void *A, const int lda,
const double beta, void *C, const int ldc);

?her2k
void cblas_cher2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const float beta, void *C, const
int ldc);

void cblas_zher2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const double beta, void *C, const
int ldc);

?symm
void cblas_ssymm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const float alpha, const float *A, const int lda, const
float *B, const int ldb, const float beta, float *C, const int
ldc);

void cblas_dsymm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const double alpha, const double *A, const int lda,
const double *B, const int ldb, const double beta, double *C,
const int ldc);

void cblas_csymm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const void *alpha, const void *A, const int lda, const
void *B, const int ldb, const void *beta, void *C, const int
ldc);

void cblas_zsymm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const void *alpha, const void *A, const int lda, const
void *B, const int ldb, const void *beta, void *C, const int
ldc);

C-16

C Intel® Math Kernel Library Reference Manual

?syrk
void cblas_ssyrk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const float alpha, const float *A, const int lda,
const float beta, float *C, const int ldc);

void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const double alpha, const double *A, const int
lda, const double beta, double *C, const int ldc);

void cblas_csyrk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const void *alpha, const void *A, const int lda,
const void *beta, void *C, const int ldc);

void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const void *alpha, const void *A, const int lda,
const void *beta, void *C, const int ldc);

?syr2k
void cblas_ssyr2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const float alpha,const float *A, const int lda,
const float *B, const int ldb, const float beta, float *C,
const int ldc);

void cblas_dsyr2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const double alpha, const double *A, const int
lda, const double *B, const int ldb, const double beta, double
*C, const int ldc);

void cblas_csyr2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSP SE Trans, const int N,
const int K, const void *alpha,const void *A, const int lda,
const void *B, const int ldb, const void *beta, void *C, const
int ldc);

void cblas_zsyr2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const void *beta, void *C, const
int ldc);

CBLAS Interface to the BLAS C

C-17

?trmm
void cblas_strmm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const float alpha, const float *A, const int
lda, float *B, const int ldb);

void cblas_dtrmm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const double alpha, const double *A, const int
lda, double *B, const int ldb);

void cblas_ctrmm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const void *alpha, const void *A, const int
lda, void *B, const int ldb);

void cblas_ztrmm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const void *alpha, const void *A, const int
lda, void *B, const int ldb);

?trsm
void cblas_strsm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const float alpha, const float *A, const int
lda, float *B, const int ldb);

void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const double alpha, const double *A, const int
lda, double *B, const int ldb);

void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const void *alpha, const void *A, const int
lda, void *B, const int ldb);

void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const void *alpha, const void *A, const int
lda, void *B, const int ldb);

C-18

C Intel® Math Kernel Library Reference Manual

Sparse CBLAS
This is an interface to Sparse BLAS Routines and Functions, which perform
a number of common vector operations on sparse vectors stored in
compressed form.

Note that all index parameters, indx, are in C-type notation and vary in the
range [0..N-1].

?axpyi
void cblas_saxpyi(const int N, const float alpha,
const float *X, const int *indx, float *Y);

void cblas_daxpyi(const int N, const double alpha,
const double *X, const int *indx, double *Y);

void cblas_caxpyi(const int N, const void *alpha,
const void *X, const int *indx, void *Y);

void cblas_zaxpyi(const int N, const void *alpha,
const void *X, const int *indx, void *Y);

?doti
float cblas_sdoti(const int N, const float *X,
const int *indx, const float *Y);

double cblas_ddoti(const int N, const double *X,
const int *indx, const double *Y);

?dotci
void cblas_cdotci_sub(const int N, const void *X, const int
*indx, const void *Y, void *dotui);

void cblas_zdotci_sub(const int N, const void *X, const int
*indx, const void *Y, void *dotui);

?dotui
void cblas_cdotui_sub(const int N, const void *X, const int
*indx, const void *Y, void *dotui);

void cblas_zdotui_sub(const int N, const void *X, const int
*indx, const void *Y, void *dotui);

?gthr
void cblas_sgthr(const int N, const float *Y, float *X,
const int *indx);

void cblas_dgthr(const int N, const double *Y, double *X,
const int *indx);

CBLAS Interface to the BLAS C

C-19

void cblas_cgthr(const int N, const void *Y, void *X,
const int *indx);

void cblas_zgthr(const int N, const void *Y, void *X,
const int *indx);

?gthrz
void cblas_sgthrz(const int N, float *Y, float *X,
const int *indx);

void cblas_dgthrz(const int N, double *Y, double *X,
const int *indx);

void cblas_cgthrz(const int N, void *Y, void *X,
const int *indx);

void cblas_zgthrz(const int N, void *Y, void *X,
const int *indx);

?roti
void cblas_sroti(const int N, float *X, const int *indx,
float *Y, const float c, const float s);

void cblas_droti(const int N, double *X, const int *indx,
double *Y, const double c, const double s);

?sctr
void cblas_ssctr(const int N, const float *X, const int *indx,
float *Y);

void cblas_dsctr(const int N, const double *X, const int *indx,
double *Y);

void cblas_csctr(const int N, const void *X, const int *indx,
void *Y);

void cblas_zsctr(const int N, const void *X, const int *indx,
void *Y);

Glossary-1

Glossary

AH Denotes the conjugate of a general matrix A.
See also conjugate matrix.

AT Denotes the transpose of a general matrix A.
See also transpose.

band matrix A general m by n matrix A such that aij = 0 for
| i −j| > l, where 1 < l < min(m, n). For example, any
tridiagonal matrix is a band matrix.

band storage A special storage scheme for band matrices.
A matrix is stored in a two-dimensional array:
columns of the matrix are stored in the
corresponding columns of the array, and diagonals
of the matrix are stored in rows of the array.

BLAS Abbreviation for Basic Linear Algebra
Subprograms. These subprograms implement
vector, matrix-vector, and matrix-matrix operations.

Bunch-Kaufman
factorization

Representation of a real symmetric or complex
Hermitian matrix A in the form A = PUDUHPT

(or A = PLDLHPT) where P is a permutation matrix,
U and L are upper and lower triangular matrices
with unit diagonal, and D is a Hermitian
block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal
blocks corresponding to the 2-by-2 blocks of D.

Glossary-2

Intel® Math Kernel Library Reference Manual

c When found as the first letter of routine names,
c indicates the usage of single-precision complex
data type.

CBLAS C interface to the BLAS. See BLAS.

Cholesky factorization Representation of a symmetric positive-definite or,
for complex data, Hermitian positive-definite matrix
A in the form A = UHU or A = LLH, where L is a
lower triangular matrix and U is an upper triangular
matrix.

condition number The number κ(A) defined for a given square matrix
A as follows: κ(A) = | | A| | | |A−1| | .

conjugate matrix The matrix AH defined for a given general matrix A
as follows: (AH)ij = (aji)

*.

conjugate number The conjugate of a complex number z = a + bi is
z*= a −bi.

d When found as the first letter of routine names,
d indicates the usage of double-precision real data
type.

dot product The number denoted x · y and defined for given
vectors x and y as follows: x · y = Σi xiyi.
Here xi and yi stand for the ith elements of x and y,
respectively.

double precision A floating-point data type. On Intel® processors,
this data type allows you to store real numbers x
such that 2.23*10−308< | x | < 1.79*10308.
For this data type, the machine precision ε is
approximately 10−15, which means that
double-precision numbers usually contain no more
than 15 significant decimal digits.
For more information, refer to Pentium® Processor
Family Developer’s Manual, Volume 3: Architecture
and Programming Manual.

eigenvalue See eigenvalue problem.

Glossary

Glossary-3

eigenvalue problem A problem of finding non-zero vectors x and
numbers λ (for a given square matrix A) such that Ax
= λx. Here the numbers λ are called the eigenvalues
of the matrix A and the vectors x are called the
eigenvectors of the matrix A.

eigenvector See eigenvalue problem.

elementary reflector
(Householder matrix)

Matrix of a general form H = I −τ vvT, where v is a
column vector and τ is a scalar.
In LAPACK elementary reflectors are used, for
example, to represent the matrix Q in the QR
factorization (the matrix Q is represented as a
product of elementary reflectors).

factorization Representation of a matrix as a product of matrices.
See also Bunch-Kaufman factorization, Cholesky
factorization, LU factorization, LQ factorization, QR
factorization, Schur factorization.

FFTs Abbreviation for Fast Fourier Transforms. See
Chapter 3 of this book.

full storage A storage scheme allowing you to store matrices of
any kind. A matrix A is stored in a two-dimensional
array a, with the matrix element aij stored in the
array element a(i,j).

Hermitian matrix A square matrix A that is equal to its conjugate
matrix AH. The conjugate AH is defined as follows:
(AH)ij = (aji)

*.

I See identity matrix.

identity matrix A square matrix I whose diagonal elements are 1,
and off-diagonal elements are 0. For any matrix A,
AI = A and IA = A.

in-place Qualifier of an operation. A function that performs
its operation in-place takes its input from an array
and returns its output to the same array.

Glossary-4

Intel® Math Kernel Library Reference Manual

inverse matrix The matrix denoted as A−1 and defined for a given
square matrix A as follows: AA−1 = A−1A = I.
A−1 does not exist for singular matrices A.

LQ factorization Representation of an m by n matrix A as A = LQ or
A = (L 0)Q. Here Q is an n by n orthogonal (unitary)
matrix. For m ≤n, L is an m by m lower triangular
matrix with real diagonal elements; for m > n,

where L1 is an n by n lower triangular matrix, and
L2 is a rectangular matrix.

LU factorization Representation of a general m by n matrix A as
A = PLU, where P is a permutation matrix, L is
lower triangular with unit diagonal elements (lower
trapezoidal if m > n) and U is upper triangular
(upper trapezoidal if m < n).

machine precision The number ε determining the precision of the
machine representation of real numbers. For Intel®

architecture, the machine precision is approximately
10−7 for single-precision data, and approximately
10−15 for double-precision data. The precision also
determines the number of significant decimal digits
in the machine representation of real numbers. See
also double precision and single precision.

MKL Abbreviation for Math Kernel Library.

orthogonal matrix A real square matrix A whose transpose and inverse
are equal, that is, AT = A-1, and therefore
AAT = ATA = I. All eigenvalues of an orthogonal
matrix have the absolute value 1.

packed storage A storage scheme allowing you to store symmetric,
Hermitian, or triangular matrices more compactly.
The upper or lower triangle of a matrix is packed by
columns in a one-dimensional array.

L
L1

L2

=

Glossary

Glossary-5

positive-definite
matrix

A square matrix A such that Ax · x > 0 for any
non-zero vector x. Here · denotes the dot product.

QR factorization Representation of an m by n matrix A as A = QR,
where Q is an m by m orthogonal (unitary) matrix,
and R is n by n upper triangular with real diagonal
elements (if m ≥ n) or trapezoidal (if m < n) matrix.

s When found as the first letter of routine names,
s indicates the usage of single-precision real data
type.

Schur factorization Representation of a square matrix A in the form
A = ZTZH. Here T is an upper quasi-triangular
matrix (for complex A, triangular matrix) called the
Schur form of A; the matrix Z is orthogonal (for
complex A, unitary). Columns of Z are called Schur
vectors.

single precision A floating-point data type. On Intel® processors,
this data type allows you to store real numbers x
such that 1.18*10−38 < | x | < 3.40*1038.
For this data type, the machine precision (ε) is
approximately 10−7, which means that
single-precision numbers usually contain no more
than 7 significant decimal digits. For more
information, refer to Pentium® Processor Family
Developer’s Manual, Volume 3: Architecture and
Programming Manual.

singular matrix A matrix whose determinant is zero. If A is a
singular matrix, the inverse A-1 does not exist, and
the system of equations Ax = b does not have a
unique solution (that is, there exist no solutions or
an infinite number of solutions).

singular value The numbers defined for a given general matrix A as
the eigenvalues of the matrix AAH. See also SVD.

SMP Abbreviation for Symmetric MultiProcessing. The
MKL offers performance gains through parallelism
provided by the SMP feature.

Glossary-6

Intel® Math Kernel Library Reference Manual

sparse BLAS Routines performing basic vector operations on
sparse vectors. Sparse BLAS routines take
advantage of vectors’ sparsity: they allow you to
store only non-zero elements of vectors. See BLAS.

sparse vectors Vectors in which most of the components are zeros.

storage scheme The way of storing matrices. See full storage,
packed storage, and band storage.

SVD Abbreviation for Singular Value Decomposition.
See also Singular value decomposition section in
Chapter 5.

symmetric matrix A square matrix A such that aij = aji.

transpose The transpose of a given matrix A is a matrix AT

such that (AT)ij = aji (rows of A become columns of
AT, and columns of A become rows of AT).

trapezoidal matrix A matrix A such that A = (A1A2), where A1 is an
upper triangular matrix, A2 is a rectangular matrix.

triangular matrix A matrix A is called an upper (lower) triangular
matrix if all its subdiagonal elements (superdiagonal
elements) are zeros. Thus, for an upper triangular
matrix aij = 0 when i > j; for a lower triangular
matrix aij = 0 when i < j.

tridiagonal matrix A matrix whose non-zero elements are in three
diagonals only: the leading diagonal, the first
subdiagonal, and the first super-diagonal.

unitary matrix A complex square matrix A whose conjugate and
inverse are equal, that is, that is, AH = A-1, and
therefore AAH = AHA = I. All eigenvalues of a
unitary matrix have the absolute value 1.

VML Abbreviation for Vector Mathematical Library.
See Chapter 6 of this book.

z When found as the first letter of routine names,
z indicates the usage of double-precision complex
data type.

Index-1

Index
Routines

?asum, 2-5

?axpy, 2-6

?axpyi, 2-116

?bdsqr, 5-94, 5-98

?copy, 2-7

?dot, 2-8

?dotc, 2-9

?dotci, 2-119

?doti, 2-118

?dotu, 2-10

?dotui, 2-120

?fft1d, 3-4, 3-8

?fft1dc, 3-5, 3-10, 3-15

?fft2d, 3-19, 3-22, 3-28

?fft2dc, 3-20, 3-24, 3-29

?gbbrd, 5-79

?gbcon, 4-65

?gbmv, 2-24

?gbrfs, 4-95

?gbtf2, 6-21

?gbtrf, 4-10

?gbtrs, 4-36

?gebak, 5-193

?gebal, 5-190

?gebd2, 6-23

?gebrd, 5-76

?gecon, 4-63

?gees, 5-379

?geesx, 5-384

?geev, 5-390

?geevx, 5-394

?gehd2, 6-26

?gehrd, 5-178

?gelq2, 6-29

?gelqf, 5-25, 5-36

?gels, 5-279

?gelsd, 5-289

?gelss, 5-286

?gelsy, 5-282

?gemm, 2-83

?gemv, 2-27

?geql2, 6-31

?geqpf, 5-11, 5-14

?geqr2, 6-33

?geqrf, 5-8, 5-48, 5-60, 5-68, 5-71

?ger, 2-30

?gerc, 2-31

?gerfs, 4-92, 4-98

?gerq2, 6-35

?geru, 2-33

?gesc2, 6-37

Intel® Math Kernel Library Reference Manual

Index-2

?gesdd, 5-405

?gesvd, 5-400

?getc2, 6-39

?getf2, 6-40

?getrf, 4-7

?getri, 4-133

?getrs, 4-34

?ggbak, 5-233

?ggbal, 5-230

?gges, 5-482

?ggesx, 5-489

?ggev, 5-497

?ggevx, 5-502

?ggglm, 5-296

?gghrd, 5-226

?gglse, 5-293

?ggsvd, 5-409

?ggsvp, 5-267

?gtcon, 4-67

?gthr, 2-121

?gthrz, 2-122

?gttrf, 4-12

?gttrs, 4-38, 6-42

?hbev, 5-348

?hbevd, 5-353

?hbevx, 5-361

?hbgst, 5-169

?hbgv, 5-463

?hbgvd, 5-469

?hbgvx, 5-477

?hbtrd, 5-130

?hecon, 4-80

?heev, 5-301

?heevd, 5-306

?heevr, 5-322

?heevx, 5-313

?hegst, 5-160

?hegv, 5-419

?hegvd, 5-425

?hegvx, 5-434

?hemm, 2-86

?hemv, 2-38

?her, 2-40

?her2, 2-42

?her2k, 2-92

?herfs, 4-116

?herk, 2-89

?hetrd, 5-111

?hetrf, 4-25

?hetri, 4-141

?hetrs, 4-51

?hgeqz, 5-235

?hpcon, 4-84

?hpev, 5-329

?hpevd, 5-334

?hpevx, 5-342

?hpgst, 5-164

?hpgv, 5-442

?hpgvd, 5-448

?hpgvx, 5-456

?hpmv, 2-44

?hpr, 2-47

?hpr2, 2-49

?hprfs, 4-122

?hptrd, 5-122

?hptrf, 4-31

?hptri, 4-145

?hptrs, 4-55

?hsein, 5-199

?hseqr, 5-195

?labrd, 6-45

?lacgv, 6-1

?lacon, 6-48

?lacpy, 6-50

Index

Index-3

?lacrm, 6-2

?lacrt, 6-3

?ladiv, 6-51

?lae2, 6-52

?laebz, 6-54

?laed0, 6-60

?laed1, 6-64

?laed2, 6-67

?laed3, 6-70

?laed4, 6-73

?laed5, 6-74

?laed6, 6-75

?laed7, 6-78

?laed8, 6-83

?laed9, 6-87

?laeda, 6-89

?laein, 6-92

?laesy, 6-4

?laev2, 6-95

?laexc, 6-98

?lag2, 6-100

?lags2, 6-103

?lagtf, 6-105

?lagtm, 6-108

?lagts, 6-110

?lagv2, 6-113

?lahqr, 6-115

?lahrd, 6-118

?laic1, 6-121

?laln2, 6-124

?lals0, 6-127

?lalsa, 6-132

?lalsd, 6-136

?lamc1, 6-140

?lamc2, 6-141

?lamc3, 6-142

?lamc4, 6-143

?lamc5, 6-144

?lamch, 6-139

?lamrg, 6-145

?langb, 6-146

?lange, 6-148

?langt, 6-149

?lanhb, 6-154

?lanhe, 6-163

?lanhp, 6-158

?lanhs, 6-151

?lansb, 6-152

?lansp, 6-156

?lanst/?lanht, 6-159

?lansy, 6-161

?lantb, 6-164

?lantp, 6-167

?lantr, 6-169

?lanv2, 6-171

?lapll, 6-172

?lapmt, 6-174

?lapy2, 6-175

?lapy3, 6-176

?laqgb, 6-176

?laqge, 6-179

?laqp2, 6-181

?laqps, 6-183

?laqsb, 6-185

?laqsp, 6-187

?laqsy, 6-189

?laqtr, 6-191

?lar1v, 6-194

?lar2v, 6-196

?larf, 6-198

?larfb, 6-200

?larfg, 6-202

?larft, 6-204

?larfx, 6-207

Intel® Math Kernel Library Reference Manual

Index-4

?largv, 6-208

?larnv, 6-210

?larrb, 6-212

?larre, 6-214

?larrf, 6-216

?larrv, 6-218

?lartg, 6-221

?lartv, 6-223

?laruv, 6-224

?larz, 6-225

?larzb, 6-227

?larzt, 6-230

?las2, 6-233

?lascl, 6-234

?lasd0, 6-236

?lasd1, 6-238

?lasd2, 6-241

?lasd3, 6-246

?lasd4, 6-249

?lasd5, 6-251

?lasd6, 6-252

?lasd7, 6-257

?nrm2, 2-11

?opgtr, 5-119

?opmtr, 5-120

?orgbr, 5-82

?orghr, 5-180

?orglq, 5-28, 5-38, 5-40

?orgqr, 5-17, 5-50, 5-52

?orgtr, 5-107

?ormbr, 5-85

?ormhr, 5-182

?ormlq, 5-30, 5-42, 5-45, 5-54, 5-57, 5-62, 5-65

?ormqr, 5-19

?ormtr, 5-109

?pbcon, 4-74

?pbrfs, 4-107

?pbstf, 5-172

?pbtrf, 4-18

?pbtrs, 4-45

?pocon, 4-70

?porfs, 4-101, 4-110

?potrf, 4-14

?potri, 4-135

?potrs, 4-41

?ppcon, 4-72

?pprfs, 4-104

?pptrf, 4-16

?pptri, 4-137

?pptrs, 4-43

?ptcon, 4-76

?pteqr, 5-146

?pttrf, 4-20

?pttrs, 4-47

?rot, 2-12

?rot (complex), 6-6

?rotg, 2-14

?roti, 2-123

?rotm, 2-15

?rotmg, 2-17

?sbev, 5-346

?sbevd, 5-350

?sbevx, 5-357

?sbgst, 5-166

?sbgv, 5-460

?sbgvd, 5-466

?sbgvx, 5-473

?sbmv, 2-51

?sbtrd, 5-128

?scal, 2-18

?sctr, 2-124

?spcon, 4-82

?spev, 5-327

?spevd, 5-331

Index

Index-5

?spevx, 5-338

?spgst, 5-162

?spgv, 5-439

?spgvd, 5-445

?spgvx, 5-452

?spmv, 2-54, 6-7

?spr, 2-56, 6-9

?spr2, 2-58

?sprfs, 4-119

?sptrd, 5-117

?sptrf, 4-28

?sptri, 4-143

?sptrs, 4-53

?stebz, 5-141, 5-149

?stein, 5-152

?steqr, 5-134, 5-137

?sterf, 5-132

?stev, 5-365

?stevd, 5-367

?stevr, 5-374

?stevx, 5-370

?sum1, 6-20

?swap, 2-20

?sycon, 4-78, 5-154

?syev, 5-299

?syevd, 5-303

?syevr, 5-317

?syevx, 5-309

?sygst, 5-158

?sygv, 5-416

?sygvd, 5-422

?sygvx, 5-429

?symm, 2-96

?symv, 2-60

?symv (complex), 6-11

?syr, 2-62

?syr (complex), 6-13

?syr2, 2-64

?syr2k, 2-103

?syrfs, 4-113

?syrk, 2-100

?sytrd, 5-105

?sytrf, 4-22

?sytri, 4-139

?sytrs, 4-49

?tbcon, 4-90

?tbmv, 2-66

?tbsv, 2-69

?tbtrs, 4-61

?tgevc, 5-242

?tgexc, 5-247

?tgsen, 5-250

?tgsja, 5-271

?tgsna, 5-261

?tgsyl, 5-256

?tpcon, 4-88

?tpmv, 2-72

?tprfs, 4-127

?tpsv, 2-75

?tptri, 4-148

?tptrs, 4-59

?trcon, 4-86

?trevc, 5-205

?trexc, 5-215

?trmm, 2-107

?trmv, 2-77

?trrfs, 4-124

?trsen, 5-217

?trsm, 2-110

?trsna, 5-210

?trsv, 2-79

?trsyl, 5-222

?trtri, 4-147

?trtrs, 4-57

Intel® Math Kernel Library Reference Manual

Index-6

?ungbr, 5-88

?unghr, 5-185

?unglq, 5-32

?ungqr, 5-21

?ungtr, 5-113

?unmbr, 5-91

?unmhr, 5-187

?unmlq, 5-34

?unmqr, 5-23

?unmtr, 5-115

?upgtr, 5-124

?upmtr, 5-125

A

absolute value of a vector element
largest, 2-21
smallest, 2-22

accuracy modes, in VML, 7-2

adding magnitudes of the vector elements, 2-5

arguments
matrix, A-4
sparse vector, 2-114
vector, A-1

B

balancing a matrix, 5-190

band storage scheme, A-4

Bernoulli, 8-48

bidiagonal matrix, 5-74

Binomial, 8-52

BLAS Level 1 functions
?asum, 2-4, 2-5
?dot, 2-4, 2-8
?dotc, 2-4, 2-9
?dotu, 2-4, 2-10
?nrm2, 2-4, 2-11
code example, B-1, B-2
i?amax, 2-4, 2-21

i?amin, 2-4, 2-22

BLAS Level 1 routines
?axpy, 2-4, 2-6
?copy, 2-4, 2-7
?rot, 2-4, 2-12
?rotg, 2-4, 2-14
?rotm, 2-15
?rotmg, 2-17
?scal, 2-4, 2-18
?swap, 2-4, 2-20
code example, B-2

BLAS Level 2 routines
?gbmv, 2-23, 2-24
?gemv, 2-23, 2-27
?ger, 2-23, 2-30
?gerc, 2-23, 2-31
?geru, 2-23, 2-33
?hbmv, 2-23, 2-35
?hemv, 2-23, 2-38
?her, 2-23, 2-40
?her2, 2-23, 2-42
?hpmv, 2-23, 2-44
?hpr, 2-23, 2-47
?hpr2, 2-23, 2-49
?sbmv, 2-23, 2-51
?spmv, 2-23, 2-54
?spr, 2-23, 2-56
?spr2, 2-23, 2-58
?symv, 2-23, 2-60
?syr, 2-23, 2-62
?syr2, 2-23, 2-64
?tbmv, 2-24, 2-66
?tbsv, 2-24, 2-69
?tpmv, 2-24, 2-72
?tpsv, 2-24, 2-75
?trmv, 2-24, 2-77
?trsv, 2-24, 2-79
code example, B-3, B-4

BLAS Level 3 routines
?gemm, 2-82, 2-83
?hemm, 2-82, 2-86
?her2k, 2-82, 2-92
?herk, 2-82, 2-89

Index

Index-7

?symm, 2-82, 2-96
?syr2k, 2-82, 2-103
?syrk, 2-82, 2-100
?trmm, 2-82, 2-107
?trsm, 2-82, 2-110
code example, B-4, B-5

BLAS routines
matrix arguments, A-4
routine groups, 1-6, 2-1
vector arguments, A-1

block-splitting method, 8-6

Bunch-Kaufman factorization, 4-7
Hermitian matrix, 4-25

packed storage, 4-31
symmetric matrix, 4-22

packed storage, 4-28

C

C interface, 3-3

Cauchy, 8-33

CBLAS, 1
arguments, 1
level 1 (vector operations), 3
level 2 (matrix-vector operations), 6
level 3 (matrix-matrix operations), 14
sparse BLAS, 18

Cholesky factorization
Hermitian positive-definite matrix, 4-14

band storage, 4-18
packed storage, 4-16

symmetric positive-definite matrix, 4-14
band storage, 4-18
packed storage, 4-16

code examples
BLAS Level 1 function, B-1
BLAS Level 1 routine, B-2
BLAS Level 2 routine, B-3
BLAS Level 3 routine, B-4

CommitDescriptor, 9-17

complex-to-complex one-dimensional FFTs, 3-3

complex-to-complex two-dimensional FFTs,

3-18

complex-to-real one-dimensional FFTs, 3-12

complex-to-real two-dimensional FFTs, 3-27

Computational Routines, 5-6

ComputeBackward, 9-23

ComputeForward, 9-21

condition number
band matrix, 4-65
general matrix, 4-63
Hermitian matrix, 4-80

packed storage, 4-84
Hermitian positive-definite matrix, 4-70

band storage, 4-74
packed storage, 4-72
tridiagonal, 4-76

symmetric matrix, 4-78, 5-154
packed storage, 4-82

symmetric positive-definite matrix, 4-70
band storage, 4-74
packed storage, 4-72
tridiagonal, 4-76

triangular matrix, 4-86
band storage, 4-90
packed storage, 4-88

tridiagonal matrix, 4-67

configuration parameters, in DFTI, 9-6

Continuous Distribution Generators, 8-20

converting a sparse vector into compressed
storage form, 2-121

and writing zeros to the original vector,
2-122

converting compressed sparse vectors into full
storage form, 2-124

CopyDescriptor, 9-18

copying vectors, 2-7

CopyStream, 8-12

CreateDescriptor, 9-15

D

data structure requirements for FFTs, 3-3

Intel® Math Kernel Library Reference Manual

Index-8

data type
in VML, 7-2
shorthand, 1-8

DeleteStream, 8-11

Descriptor configuration, in DFTI, 9-10

Descriptor Manipulation, in DFTI, 9-9

DFT computation, 9-10

DFT routines
descriptor configuration

GetValue, 9-33
SetValue, 9-31

descriptor manipulation
CommitDescriptor, 9-17
CopyDescriptor, 9-18
CreateDescriptor, 9-15
FreeDescriptor, 9-20

DFT computation
ComputeBackward, 9-23
ComputeForward, 9-21

status checking
ErrorClass, 9-11
ErrorMessage, 9-13

dimension, A-1

Discrete Distribution Generators, 8-20

Discrete Fourier Transform
CommitDescriptor, 9-17
ComputeBackward, 9-23
ComputeForward, 9-21
CopyDescriptor, 9-18
CreateDescriptor, 9-15
ErrorClass, 9-11
ErrorMessage, 9-13
FreeDescriptor, 9-20
GetValue, 9-33
SetValue, 9-31

dot product
complex vectors, conjugated, 2-9
complex vectors, unconjugated, 2-10
real vectors, 2-8
sparse complex vectors, 2-120
sparse complex vectors, conjugated, 2-119
sparse real vectors, 2-118

Driver Routines, 5-278

E

eigenvalue problems
general matrix, 5-174, 5-225
generalized form, 5-157
Hermitian matrix, 5-101
symmetric matrix, 5-101

eigenvalues. See eigenvalue problems

eigenvectors. See eigenvalue problems

error diagnostics, in VML, 7-6

Error reporting routine, XERBLA, 2-1

ErrorClass, 9-11

ErrorMessage, 9-13

errors in solutions of linear equations
general matrix, 4-92, 4-98

band storage, 4-95
Hermitian matrix, 4-116

packed storage, 4-122
Hermitian positive-definite matrix, 4-101,

4-110
band storage, 4-107
packed storage, 4-104

symmetric matrix, 4-113
packed storage, 4-119

symmetric positive-definite matrix, 4-101,
4-110

band storage, 4-107
packed storage, 4-104

triangular matrix, 4-124
band storage, 4-130
packed storage, 4-127

Euclidean norm
of a vector, 2-11

Exponential, 8-26

F

factorization
See also triangular factorization
Bunch-Kaufman, 4-7

Index

Index-9

Cholesky, 4-7
LU, 4-7
orthogonal (LQ, QR), 5-7

fast Fourier transforms, 1-3, 9-1
C interface, 3-3
data storage types, 3-2
data structure requirements, 3-3
routines

?fft1d, 3-4, 3-8, 3-13
?fft1dc, 3-5, 3-10, 3-15
?fft2d, 3-19, 3-22, 3-28
?fft2dc, 3-20, 3-24, 3-29

FFT. See fast Fourier transforms

finding
element of a vector with the largest absolute

value, 2-21
element of a vector with the smallest

absolute value, 2-22

font conventions, 1-8

forward or inverse FFTs, 3-4, 3-5, 3-19, 3-20

Fourier transforms
mixed radix, 9-1
multi-dimensional, 9-1

FreeDescriptor, 9-20

full storage scheme, A-4

function name conventions, in VML, 7-2

G

gathering sparse vector’s elements into
compressed form, 2-121

and writing zeros to these elements, 2-122

Gaussian, 8-23

general matrix
eigenvalue problems, 5-174, 5-225
estimating the condition number, 4-63

band storage, 4-65
inverting the matrix, 4-133
LQ factorization, 5-25, 5-36
LU factorization, 4-7

band storage, 4-10
matrix-vector product, 2-27

band storage, 2-24
QR factorization, 5-8, 5-48, 5-60, 5-68, 5-71

with pivoting, 5-11, 5-14
rank-l update, 2-30
rank-l update, conjugated, 2-31
rank-l update, unconjugated, 2-33
scalar-matrix-matrix product, 2-83
solving systems of linear equations, 4-34

band storage, 4-36

generalized eigenvalue problems, 5-157
See also LAPACK routines, generalized

eigenvalue problems
complex Hermitian-definite problem, 5-160

band storage, 5-169
packed storage, 5-164

real symmetric-definite problem, 5-158
band storage, 5-166
packed storage, 5-162

Geometric, 8-50

GetBrngProperties, 8-63

GetStreamStateBrng, 8-19

GetValue, 9-33

GFSR, 8-4

Givens rotation
modified Givens transformation parameters,

2-17
of sparse vectors, 2-123
parameters, 2-14

Gumbel, 8-41

H

Hermitian matrix, 5-101, 5-157
Bunch-Kaufman factorization, 4-25

packed storage, 4-31
estimating the condition number, 4-80

packed storage, 4-84
generalized eigenvalue problems, 5-157
inverting the matrix, 4-141

packed storage, 4-145
matrix-vector product, 2-38

band storage, 2-35

Intel® Math Kernel Library Reference Manual

Index-10

packed storage, 2-44
rank-1 update, 2-40

packed storage, 2-47
rank-2 update, 2-42

packed storage, 2-49
rank-2k update, 2-92
rank-n update, 2-89
scalar-matrix-matrix product, 2-86
solving systems of linear equations, 4-51

packed storage, 4-55

Hermitian positive-definite matrix
Cholesky factorization, 4-14

band storage, 4-18
packed storage, 4-16

estimating the condition number, 4-70
band storage, 4-74
packed storage, 4-72

inverting the matrix, 4-135
packed storage, 4-137

solving systems of linear equations, 4-41
band storage, 4-45
packed storage, 4-43

Hypergeometric, 8-54

I

i?amax, 2-21

i?amin, 2-22

i?max1, 6-15

ilaenv, 6-16

increment, A-1

inverse matrix. See inverting a matrix

inverting a matrix
general matrix, 4-133
Hermitian matrix, 4-141

packed storage, 4-145
Hermitian positive-definite matrix, 4-135

packed storage, 4-137
symmetric matrix, 4-139

packed storage, 4-143
symmetric positive-definite matrix, 4-135

packed storage, 4-137

triangular matrix, 4-147
packed storage, 4-148

L

LAPACK routines
condition number estimation

?gbcon, 4-65
?gecon, 4-63
?gtcon, 4-67
?hecon, 4-80
?hpcon, 4-84
?pbcon, 4-74
?pocon, 4-70
?ppcon, 4-72
?ptcon, 4-76
?spcon, 4-82
?sycon, 4-78, 5-154
?tbcon, 4-90
?tpcon, 4-88
?trcon, 4-86

generalized eigenvalue problems
?hbgst, 5-169
?hegst, 5-160
?hpgst, 5-164
?pbstf, 5-172
?sbgst, 5-166
?spgst, 5-162
?sygst, 5-158

LQ factorization
?gelqf, 5-25, 5-36
?orglq, 5-28, 5-38, 5-40
?ormlq, 5-30, 5-42, 5-45, 5-54, 5-57,

5-62, 5-65
?unglq, 5-32
?unmlq, 5-34

matrix inversion
?getri, 4-133
?hetri, 4-141
?hptri, 4-145
?potri, 4-135
?pptri, 4-137
?sptri, 4-143
?sytri, 4-139

Index

Index-11

?tptri, 4-148
?trtri, 4-147

nonsymmetric eigenvalue problems
?gebak, 5-193
?gebal, 5-190
?gehrd, 5-178
?hsein, 5-199
?hseqr, 5-195
?orghr, 5-180
?ormhr, 5-182
?trevc, 5-205
?trexc, 5-215
?trsen, 5-217
?trsna, 5-210
?unghr, 5-185
?unmhr, 5-187

QR factorization
?geqpf, 5-11, 5-14
?geqrf, 5-8, 5-48, 5-60, 5-68, 5-71
?orgqr, 5-17, 5-50, 5-52
?ormqr, 5-19
?ungqr, 5-21
?unmqr, 5-23

singular value decomposition
?bdsqr, 5-94, 5-98
?gbbrd, 5-79
?gebrd, 5-76
?orgbr, 5-82
?ormbr, 5-85
?ungbr, 5-88
?unmbr, 5-91

solution refinement and error estimation
?gbrfs, 4-95
?gerfs, 4-92, 4-98
?herfs, 4-116
?hprfs, 4-122
?pbrfs, 4-107
?porfs, 4-101, 4-110
?pprfs, 4-104
?sprfs, 4-119
?syrfs, 4-113
?tbrfs, 4-130
?tprfs, 4-127
?trrfs, 4-124

solving linear equations
?gbtrs, 4-36
?getrs, 4-34
?gttrs, 4-38, 6-42
?hetrs, 4-51
?hptrs, 4-55
?pbtrs, 4-45
?potrs, 4-41
?pptrs, 4-43
?pttrs, 4-47
?sptrs, 4-53
?sytrs, 4-49
?tbtrs, 4-61
?tptrs, 4-59
?trtrs, 4-57

Sylvester’s equation
?trsyl, 5-222

symmetric eigenvalue problems
?hbevd, 5-353
?hbtrd, 5-130
?heevd, 5-306
?hetrd, 5-111
?hpevd, 5-334
?hptrd, 5-122
?opgtr, 5-119
?opmtr, 5-120
?orgtr, 5-107
?ormtr, 5-109
?pteqr, 5-146
?sbevd, 5-350
?sbtrd, 5-128
?spevd, 5-331
?sptrd, 5-117
?stebz, 5-141, 5-149
?stein, 5-152
?steqr, 5-134, 5-137
?sterf, 5-132
?stevd, 5-367
?syevd, 5-303
?sytrd, 5-105
?ungtr, 5-113
?unmtr, 5-115
?upgtr, 5-124
?upmtr, 5-125

Intel® Math Kernel Library Reference Manual

Index-12

triangular factorization
?gbtrf, 4-10
?getrf, 4-7
?gttrf, 4-12
?hetrf, 4-25
?hptrf, 4-31
?pbtrf, 4-18
?potrf, 4-14
?pptrf, 4-16
?pttrf, 4-20
?sptrf, 4-28
?sytrf, 4-22

Laplace, 8-28

leading dimension, A-6

leapfrog method, 8-6

LeapfrogStream, 8-13

length. See dimension

linear combination of vectors, 2-6

Linear Congruential Generator, 8-3

linear equations, solving
general matrix, 4-34

band storage, 4-36
Hermitian matrix, 4-51

packed storage, 4-55
Hermitian positive-definite matrix, 4-41

band storage, 4-45
packed storage, 4-43

symmetric matrix, 4-49
packed storage, 4-53

symmetric positive-definite matrix, 4-41
band storage, 4-45
packed storage, 4-43

triangular matrix, 4-57
band storage, 4-61
packed storage, 4-59

tridiagonal matrix, 4-38, 4-47, 6-42

Lognormal, 8-38

LQ factorization, 5-6
computing the elements of

orthogonal matrix Q, 5-28, 5-38, 5-40
unitary matrix Q, 5-32

lsame, 6-18

lsamen, 6-19

LU factorization, 4-7
band matrix, 4-10
tridiagonal matrix, 4-12

M

matrix arguments, A-4
column-major ordering, A-2, A-6
example, A-7
leading dimension, A-6
number of columns, A-6
number of rows, A-6
transposition parameter, A-6

matrix equation
AX = B, 2-110, 4-5, 4-33

matrix one-dimensional substructures, A-2

matrix-matrix operation
product

general matrix, 2-83
rank-2k update

Hermitian matrix, 2-92
symmetric matrix, 2-103

rank-n update
Hermitian matrix, 2-89
symmetric matrix, 2-100

scalar-matrix-matrix product
Hermitian matrix, 2-86
symmetric matrix, 2-96
triangular matrix, 2-107

matrix-vector operation
product, 2-24, 2-27

Hermitian matrix, 2-38
band storage, 2-35

packed storage, 2-44

symmetric matrix, 2-60
band storage, 2-51

packed storage, 2-54

triangular matrix, 2-77
band storage, 2-66

packed storage, 2-72

Index

Index-13

rank-1 update, 2-30, 2-31, 2-33
Hermitian matrix, 2-40

packed storage, 2-47

symmetric matrix, 2-62
packed storage, 2-56

rank-2 update
Hermitian matrix, 2-42

packed storage, 2-49

symmetric matrix, 2-64
packed storage, 2-58

mixed radix Fourier transforms, 9-1

multi-dimensional Fourier transforms, 9-1

Multiplicative Congruential Generator, 8-4

N

naming conventions, 1-8
BLAS, 2-2
LAPACK, 4-2, 5-4
Sparse BLAS, 2-115
VML, 7-2

NegBinomial, 8-57

NewStream, 8-9

NewStreamEx, 8-10

O

one-dimensional FFTs, 3-1
complex sequence, 3-10, 3-11, 3-14, 3-16
complex-to-complex, 3-3
complex-to-real, 3-12
computing a forward FFT, real input data,

3-8, 3-10
computing a forward or inverse FFT of a

complex vector, 3-4, 3-5
groups, 3-2
performing an inverse FFT, complex input

data, 3-13, 3-15
real-to-complex, 3-7
storage effects, 3-8, 3-13, 9-42, 9-44

orthogonal matrix, 5-74, 5-101, 5-174, 5-225

P

Packed formats, 9-38

packed storage scheme, A-4

parameters
for a Givens rotation, 2-14
modified Givens transformation, 2-17

platforms supported, 1-5

points
rotation in the modified plane, 2-15
rotation in the plane, 2-12

Poisson, 8-56

positive-definite matrix
generalized eigenvalue problems, 5-158

product
See also dot product
matrix-vector

general matrix, 2-27
band storage, 2-24

Hermitian matrix, 2-38
band storage, 2-35

packed storage, 2-44

symmetric matrix, 2-60
band storage, 2-51

packed storage, 2-54

triangular matrix, 2-77
band storage, 2-66

packed storage, 2-72

scalar-matrix
general matrix, 2-83
Hermitian matrix, 2-86

scalar-matrix-matrix
general matrix, 2-83
Hermitian matrix, 2-86
symmetric matrix, 2-96
triangular matrix, 2-107

vector-scalar, 2-18

pseudorandom numbers, 8-1

Q

QR factorization, 5-6
computing the elements of

Intel® Math Kernel Library Reference Manual

Index-14

orthogonal matrix Q, 5-17, 5-50, 5-52
unitary matrix Q, 5-21

with pivoting, 5-11, 5-14

quasi-triangular matrix, 5-174, 5-225

R

Random Number Generators, 8-1

random stream, 8-2

rank-1 update
conjugated, general matrix, 2-31
general matrix, 2-30
Hermitian matrix, 2-40

packed storage, 2-47
symmetric matrix, 2-62

packed storage, 2-56
unconjugated, general matrix, 2-33

rank-2 update
Hermitian matrix, 2-42

packed storage, 2-49
symmetric matrix, 2-64

packed storage, 2-58

rank-2k update
Hermitian matrix, 2-92
symmetric matrix, 2-103

rank-n update
Hermitian matrix, 2-89
symmetric matrix, 2-100

Rayleigh, 8-36

real-to-complex one-dimensional FFTs, 3-7,
9-21

real-to-complex two-dimensional FFTs, 3-21,
9-21

reducing generalized eigenvalue problems,
5-158

refining solutions of linear equations
band matrix, 4-95
general matrix, 4-92, 4-98
Hermitian matrix, 4-116

packed storage, 4-122
Hermitian positive-definite matrix, 4-101,

4-110

band storage, 4-107
packed storage, 4-104

symmetric matrix, 4-113
packed storage, 4-119

symmetric positive-definite matrix, 4-101,
4-110

band storage, 4-107
packed storage, 4-104

RegisterBrng, 8-62

registering a basic generator, 8-59

rotation
of points in the modified plane, 2-15
of points in the plane, 2-12
of sparse vectors, 2-123
parameters for a Givens rotation, 2-14
parameters of modified Givens

transformation, 2-17

routine name conventions
BLAS, 2-2
Sparse BLAS, 2-115

S

scalar-matrix product, 2-83, 2-86, 2-96

scalar-matrix-matrix product, 2-86
general matrix, 2-83
symmetric matrix, 2-96
triangular matrix, 2-107

scattering compressed sparse vector’s elements
into full storage form, 2-124

SetValue, 9-31

singular value decomposition, 5-74
See also LAPACK routines, singular value

decomposition

SkipAheadStream, 8-16

smallest absolute value of a vector element, 2-22

solving linear equations. See linear equations

Sparse BLAS, 2-114
data types, 2-115
naming conventions, 2-115

Sparse BLAS routines and functions, 2-115

Index

Index-15

?axpyi, 2-116
?dotci, 2-119
?doti, 2-118
?dotui, 2-120
?gthr, 2-121
?gthrz, 2-122
?roti, 2-123
?sctr, 2-124

sparse vectors, 2-114
adding and scaling, 2-116
complex dot product, conjugated, 2-119
complex dot product, unconjugated, 2-120
compressed form, 2-114
converting to compressed form, 2-121, 2-122
converting to full-storage form, 2-124
full-storage form, 2-114
Givens rotation, 2-123
norm, 2-116
passed to BLAS level 1 routines, 2-116
real dot product, 2-118
scaling, 2-116

split Cholesky factorization (band matrices),
5-172

Status Checking, in DFTI, 9-10

stream descriptor, 8-2

stream state, 8-7

stride. See increment

sum
of magnitudes of the vector elements, 2-5
of sparse vector and full-storage vector,

2-116
of vectors, 2-6

SVD (singular value decomposition), 5-74

swapping vectors, 2-20

Sylvester’s equation, 5-222

symmetric matrix, 5-101, 5-157
Bunch-Kaufman factorization, 4-22

packed storage, 4-28
estimating the condition number, 4-78,

5-154
packed storage, 4-82

generalized eigenvalue problems, 5-157

inverting the matrix, 4-139
packed storage, 4-143

matrix-vector product, 2-60
band storage, 2-51
packed storage, 2-54

rank-1 update, 2-62
packed storage, 2-56

rank-2 update, 2-64
packed storage, 2-58

rank-2k update, 2-103
rank-n update, 2-100
scalar-matrix-matrix product, 2-96
solving systems of linear equations, 4-49

packed storage, 4-53

symmetric positive-definite matrix
Cholesky factorization, 4-14

band storage, 4-18
packed storage, 4-16

estimating the condition number, 4-70
band storage, 4-74
packed storage, 4-72
tridiagonal matrix, 4-76

inverting the matrix, 4-135
packed storage, 4-137

solving systems of linear equations, 4-41
band storage, 4-45
packed storage, 4-43

system of linear equations
with a triangular matrix, 2-79

band storage, 2-69
packed storage, 2-75

systems of linear equations. See linear equations

T

transforms, Fourier (advanced), 9-1

transposition parameter, A-6

triangular factorization
band matrix, 4-10
general matrix, 4-7
Hermitian matrix, 4-25

packed storage, 4-31
Hermitian positive-definite matrix, 4-14

Intel® Math Kernel Library Reference Manual

Index-16

band storage, 4-18
packed storage, 4-16
tridiagonal matrix, 4-20

symmetric matrix, 4-22
packed storage, 4-28

symmetric positive-definite matrix, 4-14
band storage, 4-18
packed storage, 4-16
tridiagonal matrix, 4-20

tridiagonal matrix, 4-12

triangular matrix, 5-174, 5-225
estimating the condition number, 4-86

band storage, 4-90
packed storage, 4-88

inverting the matrix, 4-147
packed storage, 4-148

matrix-vector product, 2-77
band storage, 2-66
packed storage, 2-72

scalar-matrix-matrix product, 2-107
solving systems of linear equations, 2-79,

4-57
band storage, 2-69, 4-61
packed storage, 2-75, 4-59

tridiagonal matrix, 5-101
estimating the condition number, 4-67
solving systems of linear equations, 4-38,

4-47, 6-42

two-dimensional FFTs, 3-17, 9-21
complex-to-complex, 3-18
complex-to-real, 3-27
computing a forward FFT, real input data,

3-22, 3-24
computing a forward or inverse FFT, 3-19,

3-20
computing an inverse FFT, complex input

data, 3-28, 3-29
data storage types, 3-18
data structure requirements, 3-18
equations, 3-18
groups, 3-17
real-to-complex, 3-21

U

Uniform (continuous), 8-21

Uniform (discrete), 8-44

UniformBits, 8-46

unitary matrix, 5-74, 5-101, 5-174, 5-225

updating
rank-1

general matrix, 2-30
Hermitian matrix, 2-40

packed storage, 2-47

symmetric matrix, 2-62
packed storage, 2-56

rank-1, conjugated
general matrix, 2-31

rank-1, unconjugated
general matrix, 2-33

rank-2
Hermitian matrix, 2-42

packed storage, 2-49

symmetric matrix, 2-64
packed storage, 2-58

rank-2k
Hermitian matrix, 2-92
symmetric matrix, 2-103

rank-n
Hermitian matrix, 2-89
symmetric matrix, 2-100

upper Hessenberg matrix, 5-174, 5-225

V

vector arguments, A-1
array dimension, A-1
default, A-2
examples, A-2
increment, A-1
length, A-1
matrix one-dimensional substructures, A-2
sparse vector, 2-114

vector indexing, 7-6

Index

Index-17

vector mathematical functions, 7-8
cosine, 7-23
cube root, 7-15
denary logarithm, 7-22
division, 7-11
error function value, 7-40
exponential, 7-20
four-quadrant arctangent, 7-31
hyperbolic cosine, 7-32
hyperbolic sine, 7-34
hyperbolic tangent, 7-35
inverse cosine, 7-28
inverse cube root, 7-16
inverse hyperbolic cosine, 7-36
inverse hyperbolic sine, 7-37
inverse hyperbolic tangent, 7-39
inverse sine, 7-29
inverse square root, 7-13
inverse tangent, 7-30
inversion, 7-10
natural logarithm, 7-21
power, 7-17
power (constant), 7-18
sine, 7-24
sine and cosine, 7-25
square root, 7-12
tangent, 7-27

vector pack function, 7-42

vector statistics functions
Bernoulli, 8-48
Binomial, 8-52
Cauchy, 8-33
CopyStream, 8-12
DeleteStream, 8-11
Exponential, 8-26
Gaussian, 8-23
Geometric, 8-50
GetBrngProperties, 8-63
GetStreamStateBrng, 8-19
Gumbel, 8-41
Hypergeometric, 8-54
Laplace, 8-28
LeapfrogStream, 8-13
Lognormal, 8-38

NegBinomial, 8-57
NewStream, 8-9
NewStreamEx, 8-10
Poisson, 8-56
Rayleigh, 8-36
RegisterBrng, 8-62
SkipAheadStream, 8-16
Uniform (continuous), 8-21
Uniform (discrete), 8-44
UniformBits, 8-46
Weibull, 8-31

vector unpack function, 7-44

vectors
adding magnitudes of vector elements, 2-5
copying, 2-7
dot product

complex vectors, 2-10
complex vectors, conjugated, 2-9
real vectors, 2-8

element with the largest absolute value, 2-21
element with the smallest absolute value,

2-22
Euclidean norm, 2-11
Givens rotation, 2-14
linear combination of vectors, 2-6
modified Givens transformation parameters,

2-17
rotation of points, 2-12
rotation of points in the modified plane, 2-15
sparse vectors, 2-115
sum of vectors, 2-6
swapping, 2-20
vector-scalar product, 2-18

vector-scalar product, 2-18
sparse vectors, 2-116

VML, 7-1

VML functions
mathematical functions

Acos, 7-28
Acosh, 7-36
Asin, 7-29
Asinh, 7-37
Atan, 7-30

Intel® Math Kernel Library Reference Manual

Index-18

Atan2, 7-31
Atanh, 7-39
Cbrt, 7-15
Cos, 7-23
Cosh, 7-32
Div, 7-11
Erf, 7-40
Exp, 7-20
Inv, 7-10
InvCbrt, 7-16
InvSqrt, 7-13
Ln, 7-21
Log10, 7-22
Pow, 7-17
Powx, 7-18
Sin, 7-24
SinCos, 7-25
Sinh, 7-34
Sqrt, 7-12
Tan, 7-27
Tanh, 7-35

pack/unpack functions
Pack, 7-42
Unpack, 7-44

service functions
ClearErrorCallBack, 7-58
ClearErrStatus, 7-54
GetErrorCallBack, 7-57
GetErrStatus, 7-53
GetMode, 7-50
SetErrorCallBack, 7-55
SetErrStatus, 7-51
SetMode, 7-47

VSL functions
advanced service subroutines

GetBrngProperties, 8-63
RegisterBrng, 8-62

generator subroutines
, 8-57
Bernoulli, 8-48
Binomial, 8-52
Cauchy, 8-33
Exponential, 8-26
Gaussian, 8-23

Geometric, 8-50
Gumbel, 8-41
Hypergeometric, 8-54
Laplace, 8-28
Lognormal, 8-38
Poisson, 8-56
Rayleigh, 8-36
Uniform (continuous), 8-21
Uniform (discrete), 8-44
UniformBits, 8-46
Weibull, 8-31

sevice subroutines
CopyStream, 8-12
DeleteStream, 8-11
GetStreamStateBrng, 8-19
LeapfrogStream, 8-13
NewStream, 8-9
NewStreamEx, 8-10
SkipAheadStream, 8-16

W

Weibull, 8-31

X

XERBLA, error reporting routine, 2-1

	Intel ® Math Kernel Library
	Version Information
	Legal Information
	Contents
	1. Overview
	About This Software
	Technical Support
	BLAS Routines
	Sparse BLAS Routines
	Fast Fourier Transforms
	LAPACK Routines
	VML Functions
	VSL Functions
	DFT Functions
	Performance Enhancements
	Parallelism
	Platforms Supported

	About This Manual
	Audience for This Manual
	Manual Organization
	Notational Conventions
	Routine Name Shorthand
	Font Conventions

	Related Publications

	2. BLAS and Sparse BLAS Routines
	Routine Naming Conventions
	Matrix Storage Schemes
	BLAS Level 1 Routines and Functions
	?asum
	?axpy
	?copy
	?dot
	?sdot
	?dotc
	?dotu
	?nrm2
	?rot
	?rotg
	?rotm
	?rotmg
	?scal
	?swap
	i?amax
	i?amin

	BLAS Level 2 Routines
	?gbmv
	?gemv
	?ger
	?gerc
	?geru
	?hbmv
	?hemv
	?her
	?her2
	?hpmv
	?hpr
	?hpr2
	?sbmv
	?spmv
	?spr
	?spr2
	?symv
	?syr
	?syr2
	?tbmv
	?tbsv
	?tpmv
	?tpsv
	?trmv
	?trsv

	BLAS Level 3 Routines
	Symmetric Multiprocessing Version of Intel® MKL
	?gemm
	?hemm
	?herk
	?her2k
	?symm
	?syrk
	?syr2k
	?trmm
	?trsm

	Sparse BLAS Routines and Functions
	Vector Arguments in Sparse BLAS
	Naming Conventions in Sparse BLAS
	Routines and Data Types in Sparse BLAS
	BLAS Routines That Can Work With Sparse Vectors
	?axpyi
	?doti
	?dotci
	?dotui
	?gthr
	?gthrz
	?roti
	?sctr

	3. Fast Fourier Transforms
	One-dimensional FFTs
	Data Storage Types
	Data Structure Requirements
	Complex-to-Complex One-dimensional FFTs
	cfft1d/zfft1d
	cfft1dc/zfft1dc

	Real-to-Complex One-dimensional FFTs
	scfft1d/dzfft1d
	scfft1dc/dzfft1dc

	Complex-to-Real One-dimensional FFTs
	csfft1d/zdfft1d
	csfft1dc/zdfft1dc

	Two-dimensional FFTs
	Complex-to-Complex Two-dimensional FFTs
	cfft2d/zfft2d
	cfft2dc/zfft2dc

	Real-to-Complex Two-dimensional FFTs
	scfft2d/dzfft2d
	scfft2dc/dzfft2dc

	Complex-to-Real Two-dimensional FFTs
	csfft2d/zdfft2d
	csfft2dc/zdfft2dc

	4. LAPACK Routines: Linear Equations
	Routine Naming Conventions
	Matrix Storage Schemes
	Mathematical Notation
	Error Analysis
	Computational Routines
	Routines for Matrix Factorization
	?getrf
	?gbtrf
	?gttrf
	?potrf
	?pptrf
	?pbtrf
	?pttrf
	?sytrf
	?hetrf
	?sptrf
	?hptrf

	Routines for Solving Systems of Linear Equations
	?getrs
	?gbtrs
	?gttrs
	?potrs
	?pptrs
	?pbtrs
	?pttrs
	?sytrs
	?hetrs
	?sptrs
	?hptrs
	?trtrs
	?tptrs
	?tbtrs

	Routines for Estimating the Condition Number
	?gecon
	?gbcon
	?gtcon
	?pocon
	?ppcon
	?pbcon
	?ptcon
	?sycon
	?hecon
	?spcon
	?hpcon
	?trcon
	?tpcon
	?tbcon

	Refining the Solution and Estimating Its Error
	?gerfs
	?gbrfs
	?gtrfs
	?porfs
	?pprfs
	?pbrfs
	?ptrfs
	?syrfs
	?herfs
	?sprfs
	?hprfs
	?trrfs
	?tprfs
	?tbrfs

	Routines for Matrix Inversion
	?getri
	?potri
	?pptri
	?sytri
	?hetri
	?sptri
	?hptri
	?trtri
	?tptri

	Routines for Matrix Equilibration
	?geequ
	?gbequ
	?poequ
	?ppequ
	?pbequ

	Driver Routines
	?gesv
	?gesvx
	?gbsv
	?gbsvx
	?gtsv
	?gtsvx
	?posv
	?posvx
	?ppsv
	?ppsvx
	?pbsv
	?pbsvx
	?ptsv
	?ptsvx
	?sysv
	?sysvx
	?hesvx
	?hesv
	?spsv
	?spsvx
	?hpsvx
	?hpsv

	5. LAPACK Routines: Least Squares and Eigenvalue Problems
	Routine Naming Conventions
	Matrix Storage Schemes
	Mathematical Notation
	Computational Routines
	Orthogonal Factorizations
	?geqrf
	?geqpf
	?geqp3
	?orgqr
	?ormqr
	?ungqr
	?unmqr
	?gelqf
	?orglq
	?ormlq
	?unglq
	?unmlq
	?geqlf
	?orgql
	?ungql
	?ormql
	?unmql
	?gerqf
	?orgrq
	?ungrq
	?ormrq
	?unmrq
	?tzrzf
	?ormrz
	?unmrz
	?ggqrf
	?ggrqf

	Singular Value Decomposition
	?gebrd
	?gbbrd
	?orgbr
	?ormbr
	?ungbr
	?unmbr
	?bdsqr
	?bdsdc

	Symmetric Eigenvalue Problems
	?sytrd
	?orgtr
	?ormtr
	?hetrd
	?ungtr
	?unmtr
	?sptrd
	?opgtr
	?opmtr
	?hptrd
	?upgtr
	?upmtr
	?sbtrd
	?hbtrd
	?sterf
	?steqr
	?stedc
	?stegr
	?pteqr
	?stebz
	?stein
	?disna

	Generalized Symmetric-Definite Eigenvalue Problems
	?sygst
	?hegst
	?spgst
	?hpgst
	?sbgst
	?hbgst
	?pbstf

	Nonsymmetric Eigenvalue Problems
	?gehrd
	?orghr
	?ormhr
	?unghr
	?unmhr
	?gebal
	?gebak
	?hseqr
	?hsein
	?trevc
	?trsna
	?trexc
	?trsen
	?trsyl

	Generalized Nonsymmetric Eigenvalue Problems
	?gghrd
	?ggbal
	?ggbak
	?hgeqz
	?tgevc
	?tgexc
	?tgsen
	?tgsyl
	?tgsna

	Generalized Singular Value Decomposition
	?ggsvp
	?tgsja

	Driver Routines
	Linear Least Squares (LLS) Problems
	?gels
	?gelsy
	?gelss
	?gelsd

	Generalized LLS Problems
	?gglse
	?ggglm

	Symmetric Eigenproblems
	?syev
	?heev
	?syevd
	?heevd
	?syevx
	?heevx
	?syevr
	?heevr
	?spev
	?hpev
	?spevd
	?hpevd
	?spevx
	?hpevx
	?sbev
	?hbev
	?sbevd
	?hbevd
	?sbevx
	?hbevx
	?stev
	?stevd
	?stevx
	?stevr

	Nonsymmetric Eigenproblems
	?gees
	?geesx
	?geev
	?geevx

	Singular Value Decomposition
	?gesvd
	?gesdd
	?ggsvd

	Generalized Symmetric Definite Eigenproblems
	?sygv
	?hegv
	?sygvd
	?hegvd
	?sygvx
	?hegvx
	?spgv
	?hpgv
	?spgvd
	?hpgvd
	?spgvx
	?hpgvx
	?sbgv
	?hbgv
	?sbgvd
	?hbgvd
	?sbgvx
	?hbgvx

	Generalized Nonsymmetric Eigenproblems
	?gges
	?ggesx
	?ggev
	?ggevx

	References

	6. LAPACK Auxiliary Routines
	?lacgv
	?lacrm
	?lacrt
	?laesy
	?rot
	?spmv
	?spr
	?symv
	?syr
	i?max1
	ilaenv
	lsame
	lsamen
	?sum1
	?gbtf2
	?gebd2
	?gehd2
	?gelq2
	?geql2
	?geqr2
	?gerq2
	?gesc2
	?getc2
	?getf2
	?gtts2
	?labad
	?labrd
	?lacon
	?lacpy
	?ladiv
	?lae2
	?laebz
	?laed0
	?laed1
	?laed2
	?laed3
	?laed4
	?laed5
	?laed6
	?laed7
	?laed8
	?laed9
	?laeda
	?laein
	?laev2
	?laexc
	?lag2
	?lags2
	?lagtf
	?lagtm
	?lagts
	?lagv2
	?lahqr
	?lahrd
	?laic1
	?laln2
	?lals0
	?lalsa
	?lalsd
	?lamch
	?lamc1
	?lamc2
	?lamc3
	?lamc4
	?lamc5
	?lamrg
	?langb
	?lange
	?langt
	?lanhs
	?lansb
	?lanhb
	?lansp
	?lanhp
	?lanst/?lanht
	?lansy
	?lanhe
	?lantb
	?lantp
	?lantr
	?lanv2
	?lapll
	?lapmt
	?lapy2
	?lapy3
	?laqgb
	?laqge
	?laqp2
	?laqps
	?laqsb
	?laqsp
	?laqsy
	?laqtr
	?lar1v
	?lar2v
	?larf
	?larfb
	?larfg
	?larft
	?larfx
	?largv
	?larnv
	?larrb
	?larre
	?larrf
	?larrv
	?lartg
	?lartv
	?laruv
	?larz
	?larzb
	?larzt
	?las2
	?lascl
	?lasd0
	?lasd1
	?lasd2
	?lasd3
	?lasd4
	?LASD5
	?LASD6
	?lasd7
	?lasd8
	?lasd9
	?lasda
	?lasdq
	?lasdt
	?laset
	?lasq1
	?lasq2
	?lasq3
	?lasq4
	?lasq5
	?lasq6
	?lasr
	?lasrt
	?lassq
	?lasv2
	?laswp
	?lasy2
	?lasyf
	?lahef
	?latbs
	?latdf
	?latps
	?latrd
	?latrs
	?latrz
	?lauu2
	?lauum
	?org2l/?ung2l
	?org2r/?ung2r
	?orgl2/?ungl2
	?orgr2/?ungr2
	?orm2l/?unm2l
	?orm2r/?unm2r
	?orml2/?unml2
	?ormr2/?unmr2
	?ormr3/?unmr3
	?pbtf2
	?potf2
	?ptts2
	?rscl
	?sygs2/?hegs2
	?sytd2/?hetd2
	?sytf2
	?hetf2
	?tgex2
	?tgsy2
	?trti2
	xerbla

	7. Vector Mathematical Functions
	Data Types and Accuracy Modes
	Function Naming Conventions
	Functions Interface

	Vector Indexing Methods
	Error Diagnostics
	VML Mathematical Functions
	Inv
	Div
	Sqrt
	InvSqrt
	Cbrt
	InvCbrt
	Pow
	Powx
	Exp
	Ln
	Log10
	Cos
	Sin
	SinCos
	Tan
	Acos
	Asin
	Atan
	Atan2
	Cosh
	Sinh
	Tanh
	Acosh
	Asinh
	Atanh
	Erf
	Erfc

	VML Pack/Unpack Functions
	Pack
	Unpack

	VML Service Functions
	SetMode
	GetMode
	SetErrStatus
	GetErrStatus
	ClearErrStatus
	SetErrorCallBack
	GetErrorCallBack
	ClearErrorCallBack

	8. Vector Generators of Statistical Distributions
	Conventions
	Mathematical Notation
	Naming Conventions

	Basic Pseudorandom Generators
	Random Streams
	Data Types

	Service Subroutines
	NewStream
	NewStreamEx
	DeleteStream
	CopyStream
	CopyStreamState
	LeapfrogStream
	SkipAheadStream
	GetStreamStateBrng
	GetNumRegBrng

	Pseudorandom Generators
	Continuous Distributions
	Uniform
	Gaussian
	Exponential
	Laplace
	Weibull
	Cauchy
	Rayleigh
	Lognormal
	Gumbel

	Discrete Distributions
	Uniform
	UniformBits
	Bernoulli
	Geometric
	Binomial
	Hypergeometric
	Poisson
	NegBinomial

	Advanced Service Subroutines
	Data types
	RegisterBrng
	GetBrngProperties

	Formats for User-Designed Generators
	iBRng
	sBRng
	dBRng

	9. Advanced DFT Functions
	Computing DFT
	DFT Interface
	Status Checking Functions
	ErrorClass
	ErrorMessage

	Descriptor Manipulation
	CreateDescriptor
	CommitDescriptor
	CopyDescriptor
	FreeDescriptor

	DFT Computation
	ComputeForward
	ComputeBackward

	Descriptor Configuration
	SetValue
	GetValue
	Configuration Settings
	Precision of transform
	Forward domain of transform
	Transform dimension and lengths
	Number of transforms
	Sign and scale
	Placement of result
	Packed formats
	Storage schemes
	Input and output distances
	Strides
	Initialization Effort

	Ordering
	Workspace
	Transposition

	A. Routine and Function Arguments
	Vector Arguments in BLAS
	Vector Arguments in VML
	Matrix Arguments

	B. Code Examples
	C. CBLAS Interface to the BLAS
	CBLAS Arguments
	Enumerated Types

	Level 1 CBLAS
	Level 2 CBLAS
	Level 3 CBLAS
	Sparse CBLAS

	Glossary
	Index
	Routines
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

