intel.

Intel ${ }^{\circledR}$ Math Kernel Library

Reference Manual

Copyright © 1994-2003 Intel Corporation All Rights Reserved
Issued in U.S.A.
Document Number: 630813-6004
World Wide Web: http://developer.intel.com

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Revision	Revision History	Date
-001	Original Issue.	11/94
-002	Added functions crotg, zrotg. Documented versions of functions ?her2k, ?symm, ?syrk, and ?syr2k not previously described. Pagination revised.	5/95
-003	Changed the title; former title: "Intel BLAS Library for the Pentium ${ }^{\circledR}$ Processor Reference Manual." Added functions ?rotm,?rotmg and updated Appendix C.	1/96
-004	Documents Intel Math Kernel library release 2.0 with the parallelism capability. Information on parallelism has been added in Chapter 1 and in section "BLAS Level 3 Routines" in Chapter 2.	11/96
-005	Two-dimensional FFTs have been added. C interface has been added to both one- and two-dimensional FFTs.	8/97
-006	Documents Intel Math Kernel Library release 2.1. Sparse BLAS section has been added in Chapter 2.	1/98
-007	Documents Intel Math Kernel Library release 3.0. Descriptions of LAPACK routines (Chapters 4 and 5) and CBLAS interface (Appendix C) have been added. Quick Reference has been excluded from the manual; MKL 3.0 Quick Reference is now available in HTML format.	1/99
-008	Documents Intel Math Kernel Library release 3.2. Description of FFT routines have been revised. In Chapters 4 and 5 NAG names for LAPACK routines have been excluded.	6/99
-009	New LAPACK routines for eigenvalue problems have been added inchapter 5 .	11/99
-010	Documents Intel Math Kernel Library release 4.0. Chapter 6 describing the VML functions has been added.	06/00
-011	Documents Intel Math Kernel Library release 5.1. LAPACK section has been extended to include the full list of computational and driver routines .	04/01
-6001	Documents Intel Math Kernel Library release 6.0 beta. New DFT interface (chapter 8) and Vector Statistical Library functions (chapter 7) have been added.	07/02
-6002	Documents Intel Math Kernel Library 6.0 beta update. DFT functions description (chapter 8) has been updated. CBLAS interface description was extended.	12/02
-6003	Documents Intel Math Kernel Library 6.0 gold. DFT functions have been updated. Auxiliary LAPACK routines' descriptions were added to the manual.	03/03
-6004	Documents Intel Math Kernel Library release 6.1.	07/03

This manual as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation.

Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL ${ }^{\circledR}$ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available upon request.

Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 1994-2003, Intel Corporation. All Rights Reserved.
Chapters 4 and 5 include derivative work portions that have been copyrighted: © 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.

Contents

Chapter 1 Overview
About This Software 1-1
Technical Support 1-2
BLAS Routines 1-2
Sparse BLAS Routines 1-3
Fast Fourier Transforms 1-3
LAPACK Routines 1-3
VML Functions 1-3
VSL Functions. 1-4
DFT Functions 1-4
Performance Enhancements 1-4
Parallelism. 1-5
Platforms Supported 1-5
About This Manual. 1-6
Audience for This Manual 1-6
Manual Organization 1-6
Notational Conventions 1-8
Routine Name Shorthand 1-8
Font Conventions 1-8
Related Publications 1-9
Chapter 2 BLAS and Sparse BLAS Routines
Routine Naming Conventions 2-2
Matrix Storage Schemes 2-3
BLAS Level 1 Routines and Functions 2-4
?asum 2-5
?axpy 2-6
?copy 2-7
?dot 2-8
?dotc 2-9
?dotu 2-10
?nrm2 2-11
?rot 2-12
?rotg 2-14
?rotm 2-15
?rotmg 2-17
?scal 2-18
?swap 2-20
i?amax 2-21
i?amin 2-22
BLAS Level 2 Routines 2-23
?gbmv 2-24
?gemv 2-27
?ger 2-30
?gerc 2-31
?geru 2-33
?hbmv 2-35
?hemv 2-38
?her 2-40
?her2 2-42
?hpmv 2-44
?hpr 2-47
?hpr2 2-49
?sbmv 2-51
?spmv 2-54
?spr 2-56
?spr2 2-58
?symv 2-60
?syr 2-62
?syr2 2-64
?tbmv 2-66
?tbsv 2-69
?tpmv 2-72
?tpsv 2-75
?trmv 2-77
?trsv 2-79
BLAS Level 3 Routines 2-82
Symmetric Multiprocessing Version of Intel® MKL 2-82
?gemm 2-83
?hemm 2-86
?herk 2-89
?her2k 2-92
?symm 2-96
?syrk 2-100
?syr2k 2-103
?trmm 2-107
?trsm 2-110
Sparse BLAS Routines and Functions 2-114
Vector Arguments in Sparse BLAS 2-114
Naming Conventions in Sparse BLAS 2-115
Routines and Data Types in Sparse BLAS 2-115
BLAS Routines That Can Work With Sparse Vectors 2-116
? axpyi 2-116
?doti 2-118
?dotci 2-119
?dotui 2-120
?gthr 2-121
?gthrz 2-122
?roti 2-123
?sctr 2-124
Chapter 3 Fast Fourier Transforms
One-dimensional FFTs 3-1
Data Storage Types 3-2
Data Structure Requirements 3-3
Complex-to-Complex One-dimensional FFTs 3-3
cfft1d/zfft1d 3-4
cfft1dc/zfft1dc 3-5
Real-to-Complex One-dimensional FFTs 3-7
scfft1d/dzfft1d 3-8
scfft1dc/dzfft1dc 3-10
Complex-to-Real One-dimensional FFTs 3-12
csfft1d/zdfft1d 3-13
csfft1dc/zdfft1dc 3-15
Two-dimensional FFTs 3-17
Complex-to-Complex Two-dimensional FFTs 3-18
cfft2d/zfft2d 3-19
cfft2dc/zfft2dc 3-20
Real-to-Complex Two-dimensional FFTs 3-21
scfft2d/dzfft2d 3-22
scfft2dc/dzfft2dc 3-24
Complex-to-Real Two-dimensional FFTs 3-27
csfft2d/zdfft2d 3-28
csfft2dc/zdfft2dc 3-29
Chapter 4 LAPACK Routines: Linear Equations
Routine Naming Conventions 4-2
Matrix Storage Schemes 4-3
Mathematical Notation 4-3
Error Analysis 4-4
Computational Routines 4-5
Routines for Matrix Factorization 4-7
?getrf 4-7
? gbtrf 4-10
?gttrf 4-12
?potrf 4-14
?pptrf 4-16
?pbtrf 4-18
?pttrf 4-20
?sytrf 4-22
?hetrf 4-25
?sptrf 4-28
?hptrf 4-31
Routines for Solving Systems of Linear Equations 4-33
?getrs 4-34
? gbtrs 4-36
? gttrs 4-38
?potrs 4-41
?pptrs 4-43
?pbtrs 4-45
?pttrs 4-47
?sytrs 4-49
?hetrs 4-51
?sptrs 4-53
?hptrs 4-55
? trtrs 4-57
?tptrs 4-59
?tbtrs 4-61
Routines for Estimating the Condition Number 4-63
?gecon 4-63
?gbcon 4-65
?gtcon 4-67
?pocon 4-70
?ppcon 4-72
?pbcon 4-74
?ptcon 4-76
?sycon 4-78
?hecon 4-80
?spcon 4-82
?hpcon 4-84
?trcon 4-86
?tpcon 4-88
?tbcon 4-90
Refining the Solution and Estimating Its Error 4-92
? gerfs 4-92
?gbrfs 4-95
?gtrfs 4-98
?porfs 4-101
?pprfs 4-104
?pbrfs 4-107
?ptrfs 4-110
?syrfs 4-113
?herfs 4-116
?sprfs 4-119
?hprfs 4-122
?trifs 4-124
?tprfs 4-127
?tbrfs 4-130
Routines for Matrix Inversion 4-133
?getri 4-133
?potri 4-135
?pptri 4-137
?sytri 4-139
?hetri 4-141
?sptri 4-143
?hptri 4-145
?trtri 4-147
?tptri 4-148
Routines for Matrix Equilibration 4-150
?geequ 4-150
?gbequ 4-153
?poequ 4-155
?ppequ 4-157
?pbequ 4-159
Driver Routines 4-161
?gesv 4-162
?gesvx 4-163
?gbsv 4-170
?gbsvx 4-172
?gtsv 4-179
?gtsvx 4-181
?posv 4-186
?posvx 4-188
?ppsv 4-193
?ppsvx 4-195
?pbsv 4-200
?pbsvx 4-202
?ptsv 4-207
?ptsvx 4-209
?sysv 4-212
?sysvx 4-215
?hesvx 4-220
?hesv 4-224
?spsv 4-227
?spsvx 4-230
?hpsvx 4-235
?hpsv 4-239
Chapter 5 LAPACK Routines:
Least Squares and Eigenvalue Problems
Routine Naming Conventions 5-4
Matrix Storage Schemes 5-5
Mathematical Notation 5-5
Computational Routines 5-6
Orthogonal Factorizations 5-6
?geqrf 5-8
?geqpf 5-11
?geqp3 5-14
? orgqr 5-17
?ormqr 5-19
?ungqr 5-21
?unmqr 5-23
?gelqf 5-25
?orglq 5-28
?ormlq 5-30
?unglq 5-32
?unmlq 5-34
?geqlf 5-36
?orgql 5-38
?ungql 5-40
?ormql 5-42
?unmql 5-45
?gerqf 5-48
?orgrq 5-50
?ungrq 5-52
?ormrq 5-54
?unmrq 5-57
?tzrzf 5-60
?ormrz 5-62
?unmrz 5-65
? ggqrf 5-68
?ggrqf 5-71
Singular Value Decomposition 5-74
?gebrd 5-76
?gbbrd 5-79
? orgbr 5-82
?ormbr 5-85
?ungbr 5-88
?unmbr 5-91
?bdsqr 5-94
?bdsdc 5-98
Symmetric Eigenvalue Problems 5-101
?sytrd 5-105
?orgtr 5-107
?ormtr 5-109
?hetrd 5-111
?ungtr 5-113
?unmtr 5-115
?sptrd 5-117
?opgtr 5-119
?opmtr 5-120
?hptrd 5-122
?upgtr 5-124
?upmtr 5-125
?sbtrd 5-128
?hbtrd 5-130
?sterf 5-132
?steqr 5-134
?stedc 5-137
?stegr 5-141
?pteqr 5-146
?stebz 5-149
?stein 5-152
?disna 5-154
Generalized Symmetric-Definite Eigenvalue Problems. 5-157
?sygst 5-158
?hegst 5-160
?spgst 5-162
?hpgst 5-164
?sbgst 5-166
?hbgst 5-169
?pbstf 5-172
Nonsymmetric Eigenvalue Problems 5-174
?gehrd 5-178
?orghr 5-180
?ormhr 5-182
?unghr 5-185
?unmhr 5-187
?gebal 5-190
?gebak 5-193
?hseqr 5-195
?hsein 5-199
?trevc 5-205
?trsna 5-210
?trexc 5-215
?trsen 5-217
?trsyl 5-222
Generalized Nonsymmetric Eigenvalue Problems 5-225
?gghrd 5-226
?ggbal 5-230
?ggbak 5-233
?hgeqz 5-235
?tgevc 5-242
?tgexc 5-247
?tgsen 5-250
?tgsyl 5-256
?tgsna 5-261
Generalized Singular Value Decomposition 5-266
?ggsvp 5-267
?tgsja 5-271
Driver Routines 5-278
Linear Least Squares (LLS) Problems 5-278
?gels 5-279
?gelsy 5-282
?gelss 5-286
?gelsd 5-289
Generalized LLS Problems 5-293
? ?glse 5-293
?ggglm 5-296
Symmetric Eigenproblems 5-298
?syev 5-299
?heev 5-301
?syevd 5-303
?heevd 5-306
?syevx 5-309
?heevx 5-313
?syevr 5-317
?heevr 5-322
?spev 5-327
?hpev 5-329
?spevd 5-331
?hpevd 5-334
?spevx 5-338
?hpevx 5-342
?sbev 5-346
?hbev 5-348
?sbevd 5-350
?hbevd 5-353
?sbevx 5-357
?hbevx 5-361
?stev 5-365
?stevd 5-367
?stevx 5-370
?stevr 5-374
Nonsymmetric Eigenproblems 5-379
? gees 5-379
?geesx 5-384
?geev 5-390
?geevx 5-394
Singular Value Decomposition 5-400
?gesvd 5-400
?gesdd 5-405
?ggsvd 5-409
Generalized Symmetric Definite Eigenproblems 5-415
?sygv 5-416
?hegv 5-419
?sygvd 5-422
?hegvd 5-425
?sygvx 5-429
?hegvx 5-434
?spgv 5-439
?hpgv 5-442
?spgvd 5-445
?hpgvd 5-448
?spgvx 5-452
?hpgvx 5-456
?sbgv 5-460
?hbgv 5-463
?sbgvd 5-466
?hbgvd 5-469
?sbgvx 5-473
?hbgvx 5-477
Generalized Nonsymmetric Eigenproblems 5-482
?gges 5-482
?ggesx 5-489
?ggev 5-497
?ggevx 5-502
References 5-509
Chapter 6 LAPACK Auxiliary Routines
?lacgv 6-1
?lacrm 6-2
?lacrt 6-3
?laesy 6-4
?rot. 6-6
?spmv 6-7
?spr 6-9
?symv 6-11
?syr 6-13
i?max1 6-15
ilaenv 6-16
Isame 6-18
Isamen 6-19
?sum1 6-20
?gbtf2 6-21
?gebd2 6-23
?gehd2 6-26
?gelq2 6-29
?geql2 6-31
?geqr2 6-33
?gerq2 6-35
?gesc2 6-37
?getc2 6-39
?getf2 6-40
?gtts2 6-42
?labad 6-43
?labrd 6-45
?lacon 6-48
?lacpy 6-50
?ladiv 6-51
?lae2 6-52
?laebz 6-54
?laed0 6-60
?laed1 6-64
?laed2 6-67
?laed3 6-70
?laed4 6-73
?laed5 6-74
?laed6 6-75
?laed7 6-78
?laed8 6-83
?laed9 6-87
?laeda 6-89
?laein 6-92
?laev2 6-95
?laexc 6-98
? lag2 6-100
?lags2 6-103
?lagtf 6-105
?lagtm 6-108
?lagts 6-110
?lagv2 6-113
?lahqr 6-115
?lahrd 6-118
?laic1 6-121
?laln2 6-124
?lals0 6-127
?lalsa 6-132
?lalsd 6-136
?lamch 6-139
?lamc1 6-140
?lamc2 6-141
?lamc3 6-142
?lamc4 6-143
?lamc5 6-144
?lamrg 6-145
?langb 6-146
?lange 6-148
?langt 6-149
?lanhs 6-151
?lansb 6-152
?lanhb 6-154
?lansp 6-156
?lanhp 6-158
?lanst/?lanht 6-159
?lansy 6-161
?lanhe 6-163
?lantb 6-164
?lantp 6-167
?lantr 6-169
?lanv2 6-171
?lapll 6-172
?lapmt 6-174
?lapy2 6-175
?lapy3 6-176
?laqgb 6-176
?laqge 6-179
?laqp2 6-181
?laqps 6-183
?laqsb 6-185
?laqsp 6-187
?laqsy 6-189
?laqtr 6-191
?lar1v 6-194
? lar2v 6-196
?larf 6-198
?larfb 6-200
?larfg 6-202
?larft 6-204
?larfx 6-207
?largv 6-208
?larnv 6-210
?larrb 6-212
?larre 6-214
?larrf 6-216
?larrv 6-218
?lartg 6-221
?lartv 6-223
?laruv 6-224
?larz 6-225
?larzb 6-227
?larzt 6-230
?las2 6-233
?lascl 6-234
?lasd0 6-236
?lasd1 6-238
?lasd2 6-241
?lasd3 6-246
?lasd4 6-249
?LASD5 6-251
?LASD6 6-252
?lasd7 6-257
?lasd8 6-262
?lasd9 6-264
?lasda 6-267
?lasdq 6-271
?lasdt 6-274
?laset 6-275
?lasq1 6-277
?lasq2 6-278
?lasq3 6-280
?lasq4 6-281
?lasq5 6-283
?lasq6 6-284
?lasr 6-286
?lasrt 6-288
?lassq 6-289
?lasv2 6-291
?laswp 6-292
?lasy2 6-294
?lasyf 6-296
?lahef 6-299
?latbs 6-301
?latdf 6-304
?latps 6-307
?latrd 6-309
?latrs 6-313
?latrz 6-317
?lauu2 6-320
?lauum 6-321
?org2l/?ung21 6-323
?org2r/?ung2r 6-324
?orgl2/?ungl2 6-326
?orgr2/?ungr2 6-328
?orm2l/?unm2l 6-330
?orm2r/?unm2r 6-332
?orml2/?unml2 6-335
?ormr2/?unmr2 6-337
?ormr3/?unmr3 6-340
?pbtf2 6-343
?potf2 6-345
?ptts2 6-346
?rscl 6-348
?sygs2/?hegs2 6-349
?sytd2/?hetd2 6-351
?sytf2 6-354
?hetf2 6-356
?tgex2 6-358
?tgsy2 6-361
?trti2 6-366
xerbla 6-367
Chapter 7 Vector Mathematical Functions
Data Types and Accuracy Modes 7-2
Function Naming Conventions 7-2
Functions Interface 7-3
Vector Indexing Methods 7-6
Error Diagnostics 7-6
VML Mathematical Functions 7-8
Inv 7-10
Div 7-11
Sqrt 7-12
InvSqrt 7-13
Cbrt 7-15
InvCbrt 7-16
Pow 7-17
Powx 7-18
Exp 7-20
Ln 7-21
Log10 7-22
Cos 7-23
Sin 7-24
SinCos 7-25
Tan 7-27
Acos 7-28
Asin 7-29
Atan 7-30
Atan2 7-31
Cosh 7-32
Sinh 7-34
Tanh 7-35
Acosh 7-36
Asinh 7-37
Atanh 7-39
Erf 7-40
VML Pack/Unpack Functions 7-42
Pack 7-42
Unpack 7-44
VML Service Functions 7-47
SetMode 7-47
GetMode 7-50
SetErrStatus 7-51
GetErrStatus 7-53
ClearErrStatus 7-54
SetErrorCallBack 7-55
GetErrorCallBack 7-57
ClearErrorCallBack 7-58
Chapter 8 Vector Generators of Statistical Distributions
Conventions 8-2
Mathematical Notation 8-3
Naming Conventions 8-4
Basic Pseudorandom Generators 8-6
Random Streams 8-6
Data Types 8-7
Service Subroutines 8-7
NewStream 8-9
NewStreamEx 8-10
DeleteStream 8-11
CopyStream 8-12
LeapfrogStream 8-13
SkipAheadStream 8-16
GetStreamStateBrng 8-19
Pseudorandom Generators 8-20
Continuous Distributions 8-21
Uniform 8-21
Gaussian 8-23
Exponential 8-26
Laplace 8-28
Weibull 8-31
Cauchy 8-33
Rayleigh 8-36
Lognormal 8-38
Gumbel 8-41
Discrete Distributions 8-43
Uniform 8-44
UniformBits 8-46
Bernoulli 8-48
Geometric 8-50
Binomial 8-52
Hypergeometric 8-54
Poisson 8-56
NegBinomial 8-57
Advanced Service Subroutines 8-59
Data types 8-60
RegisterBrng 8-62
GetBrngProperties 8-63
Formats for User-Designed Generators 8-64
iBRng 8-67
sBRng 8-68
dBRng 8-69
Chapter 9 Advanced DFT Functions
Computing DFT 9-2
DFT Interface 9-9
Status Checking Functions 9-10
ErrorClass 9-11
ErrorMessage 9-13
Descriptor Manipulation 9-15
CreateDescriptor 9-15
CommitDescriptor 9-17
CopyDescriptor 9-18
FreeDescriptor 9-20
DFT Computation 9-21
ComputeForward 9-21
ComputeBackward 9-23
Descriptor Configuration 9-26
SetValue 9-31
GetValue 9-33
Configuration Settings 9-35
Precision of transform 9-35
Forward domain of transform 9-36
Transform dimension and lengths 9-36
Number of transforms 9-37
Sign and scale 9-37
Placement of result 9-38
Packed formats 9-38
Storage schemes 9-39
Input and output distances 9-48
Strides 9-49
Initialization Effort 9-52
Ordering 9-52
Workspace 9-54
Transposition 9-54
Appendix A Routine and Function Arguments
Vector Arguments in BLAS A-1
Vector Arguments in VML A-3
Matrix Arguments A-4
Appendix B Code Examples Appendix C CBLAS Interface to the BLAS
CBLAS Arguments 1
Enumerated Types 2
Level 1 CBLAS 3
Level 2 CBLAS 6
Level 3 CBLAS 14
Sparse CBLAS 18
Glossary Index

Overview

The Intel ${ }^{\circledR}$ Math Kernel Library (Intel ${ }^{\circledR}$ MKL) provides Fortran routines and functions that perform a wide variety of operations on vectors and matrices. The library also includes fast Fourier transform functions and new discrete Fourier transform functions, as well as vector mathematical and vector statistical functions with Fortran and C interfaces. The Intel MKL enhances performance of the programs that use it because the library has been optimized for Intel ${ }^{\circledR}$ processors.
This chapter introduces the Intel Math Kernel Library and provides information about the organization of this manual.

About This Software

The Intel Math Kernel Library includes the following groups of routines:

- Basic Linear Algebra Subprograms (BLAS):
-vector operations
-matrix-vector operations
-matrix-matrix operations
- Sparse BLAS (basic vector operations on sparse vectors)
- Fast Fourier transform routines (with Fortran and C interfaces)
- LAPACK routines for solving systems of linear equations
- LAPACK routines for solving least-squares problems, eigenvalue and singular value problems, and Sylvester's equations
- Auxiliary LAPACK routines
- Vector Mathematical Library (VML) functions for computing core mathematical functions on vector arguments (with Fortran and C interfaces)
- Vector Statistical Library (VSL) functions for generating vectors of pseudorandom numbers with different types of statistical distributions
- Advanced Discrete Fourier Transform Functions (DFT).

For specific issues on using the library, please refer to the MKL Release Notes.

Technical Support

Intel MKL provides a product web site that offers timely and comprehensive product information, including product features, white papers, and technical articles. For the latest information, check: http://developer.intel.com/software/products/
Intel also provides a support web site that contains a rich repository of self help information, including getting started tips, known product issues, product errata, license information, user forums, and more (visit http://support.intel.com/support/).
Registering your product entitles you to one year of technical support and product updates through Intel® Premier Support. Intel Premier Support is an interactive issue management and communication web site providing these services:

- Submit issues and review their status.
- Download product updates anytime of the day.

To register your product, contact Intel, or seek product support, please visit: http://www.intel.com/software/products/support

BLAS Routines

BLAS routines and functions are divided into the following groups according to the operations they perform:

- BLAS Level 1 Routines and Functions perform operations of both addition and reduction on vectors of data. Typical operations include scaling and dot products.
- BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.
- BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix multiplication, rank-k update, and solution of triangular systems.

Sparse BLAS Routines

Sparse BLAS Routines and Functions operate on sparse vectors (that is, vectors in which most of the elements are zeros). These routines perform vector operations similar to BLAS Level 1 routines. Sparse BLAS routines take advantage of vectors' sparsity: they allow you to store only non-zero elements of vectors.

Fast Fourier Transforms

Fast Fourier Transforms (FFTs) are used in digital signal processing and image processing and in partial differential equation (PDE) solvers. Combined with the BLAS routines, the FFTs contribute to the portability of the programs and provide a simplified interface between your program and the available library. To obtain more functionality and ease of use, consider also using the new DFT functions described in Chapter 9.

LAPACK Routines

The Intel Math Kernel Library covers the full set of the LAPACK computational and driver routines. These routines can be divided into the following groups according to the operations they perform:

- Routines for solving systems of linear equations, factoring and inverting matrices, and estimating condition numbers (see Chapter 4).
- Routines for solving least-squares problems, eigenvalue and singular value problems, and Sylvester's equations (see Chapter 5).
- Auxiliary routines used to perform certain subtasks or common low-level computation (see Chapter 6).

VML Functions

VML functions (see Chapter 7) include a set of highly optimized implementations of certain computationally expensive core mathematical functions (power, trigonometric, exponential, hyperbolic etc.) that operate on real vector arguments.

VSL Functions

Vector Statistical Library (VSL) functions (see Chapter 8) include a set of pseudorandom number generator subroutines implementing basic continuous and discrete distributions. To provide best performance, VSL subroutines use calls to highly optimized Basic Random Number Generators and the library of vector mathematical functions, VML.

DFT Functions

The newly developed Discrete Fourier Transform functions (see Chapter 9) provide uniformity of DFT computation and combine functionality with ease of use. Both Fortran and C interface specification are given. Users are encouraged to migrate to the new interface in their application programs.

Performance Enhancements

The Intel Math Kernel Library has been optimized by exploiting both processor and system features and capabilities. Special care has been given to those routines that most profit from cache-management techniques. These especially include matrix-matrix operation routines such as dgemm ().
In addition, code optimization techniques have been applied to minimize dependencies of scheduling integer and floating-point units on the results within the processor.

The major optimization techniques used throughout the library include:

- Loop unrolling to minimize loop management costs.
- Blocking of data to improve data reuse opportunities.
- Copying to reduce chances of data eviction from cache.
- Data prefetching to help hide memory latency.
- Multiple simultaneous operations (for example, dot products in dgemm) to eliminate stalls due to arithmetic unit pipelines.
- Use of hardware features such as the SIMD arithmetic units, where appropriate.

These are techniques from which the arithmetic code benefits the most.

Parallelism

In addition to the performance enhancements discussed above, the Intel MKL offers performance gains through parallelism provided by the symmetric multiprocessing performance (SMP) feature. You can obtain improvements from SMP in the following ways:

- One way is based on user-managed threads in the program and further distribution of the operations over the threads based on data decomposition, domain decomposition, control decomposition, or some other parallelizing technique. Each thread can use any of the Intel MKL functions because the library has been designed to be thread-safe.
- Another method is to use the FFT and BLAS level 3 routines. They have been parallelized and require no alterations of your application to gain the performance enhancements of multiprocessing. Performance using multiple processors on the level 3 BLAS shows excellent scaling. Since the threads are called and managed within the library, the application does not need to be recompiled thread-safe (see also BLAS Level 3 Routines in Chapter 2).
- Yet another method is to use tuned LAPACK routines. Currently these include the single- and double precision flavors of routines for $Q R$ factorization of general matrices, triangular factorization of general and symmetric positive-definite matrices, solving systems of equations with such matrices, as well as solving symmetric eigenvalue problems.
For instructions on setting the number of available processors for the BLAS level 3 and LAPACK routines, see the Release Notes.

Platforms Supported

The Intel Math Kernel Library includes Fortran routines and functions optimized for Intel ${ }^{\circledR}$ processor-based computers running operating systems that support multiprocessing. In addition to the Fortran interface, the Intel MKL includes a C-language interface for the fast Fourier transform functions, new discrete Fourier transform API, as well as for the Vector Mathematical Library and Vector Statistical Library functions.

About This Manual

This manual describes the routines of the Intel Math Kernel Library. Each reference section describes a routine group consisting of routines used with four basic data types: single-precision real, double-precision real, single-precision complex, and double-precision complex.

Each routine group is introduced by its name, a short description of its purpose, and the calling sequence for each type of data with which each routine of the group is used. The following sections are also included:

Discussion	Describes the operation performed by routines of the group based on one or more equations. The data types of the arguments are defined in general terms for the group.
Input Parameters	Defines the data type for each parameter on entry, for example:
a REAL for saxpy	
Output Parameters \quad	Lists resultant parameters on exit.

Audience for This Manual

The manual addresses programmers proficient in computational linear algebra and assumes a working knowledge of linear algebra and Fourier transform principles and vocabulary.

Manual Organization

The manual contains the following chapters and appendixes:

Chapter 1	Overview. Introduces the Intel Math Kernel Library software, provides information on manual organization, and explains notational conventions.
Chapter 2	BLAS and Sparse BLAS Routines. Provides descriptions of BLAS and Sparse BLAS functions and routines.

\(\left.\left.\left.$$
\begin{array}{ll}\text { Chapter 3 } & \begin{array}{l}\text { Fast Fourier Transforms. Provides descriptions of fast } \\
\text { Fourier transforms (FFT). }\end{array} \\
\text { Chapter 4 } & \begin{array}{l}\text { LAPACK Routines: Linear Equations. Provides } \\
\text { descriptions of LAPACK routines for solving systems of } \\
\text { linear equations and performing a number of related } \\
\text { computational tasks: triangular factorization, matrix } \\
\text { inversion, estimating the condition number of matrices. }\end{array} \\
\text { Chapter 5 } & \begin{array}{l}\text { LAPACK Routines: Least Squares and Eigenvalue }\end{array} \\
\text { Chablems. Provides descriptions of LAPACK routines }\end{array}
$$\right\} \begin{array}{l}for solving least-squares problems, standard and

generalized eigenvalue problems, singular value

problems, and Sylvester's equations.\end{array}\right\} $$
\begin{array}{l}\text { LAPACK Auxiliary Routines. Describes auxiliary }\end{array}
$$\right\}\)| LAPACK routines that perform certain subtasks or |
| :--- |
| common low-level computation. |

The manual also includes a Glossary and an Index.

Notational Conventions

This manual uses the following notational conventions:

- Routine name shorthand (?ungqr instead of cungqr/zungqr).
- Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, character codes are represented by a question mark "?" in names of routine groups. The question mark is used to indicate any or all possible varieties of a function; for example:
?swap \quad Refers to all four data types of the vector-vector ?swap routine: sswap, dswap, cswap, and zswap.

Font Conventions

The following font conventions are used:

UPPERCASE COURIER	Data type used in the discussion of input and output parameters for Fortran interface. For example, CHARACTER*1.
lowercase courier	Code examples: a($k+i, j)=$ matrix (i, j) and data types for C interface, for example, const float*
lowercase courier mixed	
with UpperCase courier	Function names for C interface, for example, vmlSetMode
lowercase courier italic	Variables in arguments and parameters discussion. For example, incx.
*	Used as multiplication symbol in code examples and equations and where required by the Fortran syntax.

Related Publications

For more information about the BLAS, Sparse BLAS, LAPACK, VML, VSL, and DFT routines, refer to the following publications:

- BLAS Level 1
C. Lawson, R. Hanson, D. Kincaid, and F. Krough. Basic Linear Algebra Subprograms for Fortran Usage, ACM Transactions on Mathematical Software, Vol.5, No. 3 (September 1979) 308-325.
- BLAS Level 2
J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended Set of Fortran Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.14, No. 1 (March 1988) 1-32.
- BLAS Level 3
J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software (December 1989).
- Sparse BLAS
D. Dodson, R. Grimes, and J. Lewis. Sparse Extensions to the FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.17, No. 2 (June 1991).
D. Dodson, R. Grimes, and J. Lewis. Algorithm 692: Model Implementation and Test Package for the Sparse Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.17, No. 2 (June 1991).
- LAPACK
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Donagarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide, Third Edition, Society for Industrial and Applied Mathematics (SIAM), 1999.
G. Golub and C. Van Loan. Matrix Computations, Johns Hopkins University Press, 1989.
- VML
J.M.Muller. Elementary functions: algorithms and implementation, Birkhauser Boston, 1997.
IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985.
- VSL

[Bratley87]	Bratley P., Fox B.L., and Schrage L.E. A Guide to Simulation. 2nd edition. Springer-Verlag, New York, 1987.
[Coddington94]	Coddington, P. D. Analysis of Random Number Generators Using Monte Carlo Simulation. Int. J. Mod. Phys. C-5, 547, 1994.
[Gentle98]	Gentle, James E. Random Number Generation and Monte Carlo Methods, Springer-Verlag New York, Inc., 1998.
[L'Ecuyer94]	L'Ecuyer, Pierre. Uniform Random Number Generation. Annals of Operations Research, 53, 77-120, 1994.
[L'Ecuyer99]	L'Ecuyer, Pierre. Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure. Mathematics of Computation, 68, 225, 249-260, 1999.
[L'Ecuyer99a]	L'Ecuyer, Pierre. Good Parameter Sets for Combined Multiple Recursive Random Number Generators. Operations Research, 47, 1, 159-164, 1999.
[L'Ecuyer01]	L'Ecuyer, Pierre. Software for Uniform Random Number Generation: Distinguishing the Good and the Bad. Proceedings of the 2001 Winter Simulation Conference, IEEE Press, 95-105, Dec. 2001.
[Kirkpatrick81]	Kirkpatrick, S., and Stoll, E. A Very Fast Shift-Register Sequence Random Number Generatory. Journal of Computational Physics, V. 40. 517-526, 1981.
[Knuth81]	Knuth, Donald E. The Art of Computer Programming, Volume 2, Seminumerical Algorithms. 2nd edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1981.
[NAG]	NAG Numerical Libraries. http://www.nag.co.uk/numeric/numerical libraries.asp

- DFT
[1] E. Oran Brigham, The Fast Fourier Transform and Its Applications, Prentice Hall, New Jersey, 1988.
[2] Athanasios Papoulis, The Fourier Integral and its Applications, 2nd edition, McGraw-Hill, New York, 1984.
[3] Ping Tak Peter Tang, DFTI, a New API for DFT: Motivation, Design, and Rationale, July 2002.
[4] Charles Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia, 1992

For a reference implementation of BLAS, sparse BLAS, and LAPACK packages (without platform-specific optimizations) visit www.netlib.org.

BLAS and Sparse BLAS Routines

This chapter contains descriptions of the BLAS and Sparse BLAS routines of the Intel ${ }^{\circledR}$ Math Kernel Library. The routine descriptions are arranged in four sections according to the BLAS level of operation:

- BLAS Level 1 Routines and Functions (vector-vector operations)
- BLAS Level 2 Routines (matrix-vector operations)
- BLAS Level 3 Routines (matrix-matrix operations)
- Sparse BLAS Routines and Functions.

Each section presents the routine and function group descriptions in alphabetical order by routine or function group name; for example, the ?asum group, the ?axpy group. The question mark in the group name corresponds to different character codes indicating the data type ($\mathrm{s}, \mathrm{d}, \mathrm{c}$, and z or their combination); see Routine Naming Conventions on the next page.

When BLAS routines encounter an error, they call the error reporting routine XERBLA. To be able to view error reports, you must include XERBLA in your code. A copy of the source code for XERBLA is included in the library.
In BLAS Level 1 groups i?amax and i ?amin, an " i " is placed before the character code and corresponds to the index of an element in the vector. These groups are placed in the end of the BLAS Level 1 section.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Routine Naming Conventions

BLAS routine names have the following structure:

```
<character code> <name> <mod> ( )
```

The <character code> is a character that indicates the data type:
s real, single precision c complex, single precision
d real, double precision \quad z complex, double precision
Some routines and functions can have combined character codes, such as sc or dz . For example, the function scasum uses a complex input array and returns a real value.
The <name> field, in BLAS level 1, indicates the operation type. For example, the BLAS level 1 routines ?dot, ? rot, ?swap compute a vector dot product, vector rotation, and vector swap, respectively.
In BLAS level 2 and 3, <name> reflects the matrix argument type:

ge general matrix	
gb	general band matrix
sy	symmetric matrix
sp	symmetric matrix (packed storage)
sb	symmetric band matrix
he	Hermitian matrix
hp	Hermitian matrix (packed storage)
hb	Hermitian band matrix
tr	triangular matrix
tp	triangular matrix (packed storage)
tb	triangular band matrix.
c	conjugated vector
u	unconjugated vector
9	Givens rotation.
BLAS level 2 names can have the following characters in the $<\bmod >$ field: mv matrix-vector product	
sv	solving a system of linear equations with matrix-vector operations
	rank-1 update of a matrix rank-2 update of a matrix.

BLAS level 3 names can have the following characters in the $<\bmod >$ field:
mm matrix-matrix product
sm solving a system of linear equations with matrix-matrix operations
rk rank- k update of a matrix
$r 2 \mathrm{k}$ rank- $2 k$ update of a matrix.
The examples below illustrate how to interpret BLAS routine names:
<d> <dot> ddot: double-precision real vector-vector dot product
$\langle\mathrm{c}\rangle\langle\mathrm{dot}\rangle\langle\mathrm{c}\rangle$ cdotc: complex vector-vector dot product, conjugated
<sc> <asum> scasum: sum of magnitudes of vector elements, single precision real output and single precision complex input
<c> <dot><u> cdotu: vector-vector dot product, unconjugated, complex
<s> <ge> <mv> sgemv: matrix-vector product, general matrix, single precision
<z> <tr>>mm> ztrmm: matrix-matrix product, triangular matrix, double-precision complex.

Sparse BLAS naming conventions are similar to those of BLAS level 1. For more information, see Naming conventions in Sparse BLAS.

Matrix Storage Schemes

Matrix arguments of BLAS routines can use the following storage schemes:

- Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element $a_{i j}$ stored in the array element $a(i, j)$.
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: a band matrix is stored compactly in a two-dimensional array: columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.
For more information on matrix storage schemes, see Matrix Arguments in Appendix A.

BLAS Level 1 Routines and Functions

BLAS Level 1 includes routines and functions, which perform vector-vector operations. Table 2-1 lists the BLAS Level 1 routine and function groups and the data types associated with them.

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types

Routine or Function Group	Data Types	Description
? asum	$\mathrm{s}, \mathrm{d}, \mathrm{sc}, \mathrm{dz}$	Sum of vector magnitudes (functions)
? axpy	s, d, c, z	Scalar-vector product (routines)
? copy	s, d, c, z	Copy vector (routines)
?dot	s, d	Dot product (functions)
?sdot	sd, d	Dot product with extended precision (functions)
? dotc	c, z	Dot product conjugated (functions)
? dotu	c, z	Dot product unconjugated (functions)
? nrm 2	$\mathrm{s}, \mathrm{d}, \mathrm{sc}, \mathrm{dz}$	Vector 2-norm (Euclidean norm) a normal or null vector (functions)
?rot	s, d, cs, zd	Plane rotation of points (routines)
?rotg	s, d, c, z	Givens rotation of points (routines)
?rotm	s, d	Modified plane rotation of points
?rotmg	s, d	Givens modified plane rotation of points
?scal	s, d, c, z, cs, zd	Vector scaling (routines)
?swap	s, d, c, z	Vector-vector swap (routines)
i? amax	s, d, c, z	Vector maximum value, absolute largest element of a vector where i is an index to this value in the vector array (functions)
i? amin	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Vector minimum value, absolute smallest element of a vector where i is an index to this value in the vector array (functions)

?asum

Computes the sum of magnitudes of the vector elements.

```
res = sasum ( n, x, incx )
res = scasum ( n, x, incx )
res = dasum ( n, x, incx )
res = dzasum ( }n,x,\mathrm{ incx )
```


Discussion

Given a vector x, ? asum functions compute the sum of the magnitudes of its elements or, for complex vectors, the sum of magnitudes of the elements' real parts plus magnitudes of their imaginary parts:

```
res=| Rex(1)|+|\operatorname{Imx(1) | + Rex(2)|+| Imx(2)|+\ldots+| Rex(n)| | Imx(n)|}
```

where x is a vector of order n.

Input Parameters

n	INTEGER. Specifies the order of vector x.
x	REAL for sasum
	DOUBLE PRECISION for dasum
	COMPLEX for scasum
	DOUBLE COMPLEX for dzasum

Array, DIMENSION at least ($1+(n-1) * a b s(i n c x))$.
incx integer. Specifies the increment for the elements of x.

Output Parameters

```
res REAL for sasum
    DOUBLE PRECISION for dasum
    REAL for scasum
    DOUBLE PRECISION for dzasum
```

Contains the sum of magnitudes of all elements' real parts plus magnitudes of their imaginary parts.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

?axpy

Computes a vector-scalar product and adds the result to a vector.

```
call saxpy ( n, a, x, incx, y, incy )
call daxpy ( n, a, x, incx, y, incy )
call caxpy ( n, a, x, incx, y, incy )
call zaxpy ( n, a, x, incx, y, incy )
```


Discussion

The ?axpy routines perform a vector-vector operation defined as
$y:=a{ }^{*} x+y$
where:
a is a scalar
x and y are vectors of order n.

Input Parameters

n
a

X
incx

INTEGER. Specifies the order of vectors x and y.
REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy
Specifies the scalar a.
REAL for saxpy
DOUBLE PRECISION for daxpy
COMP LEX for caxpy
DOUBLE COMP LEX for zaxpy
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. INTEGER. Specifies the increment for the elements of x.

```
y REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy
Array, DIMENSION at least (1 + (n-1)*abs (incy)).
incy
Integer. Specifies the increment for the elements of y.
```


Output Parameters

```
y
```

y
Contains the updated vector y.

```

\section*{?copy}

Copies vector to another vector.
call scopy \((n, x\), incx, \(y\), incy \()\)
call dcopy \((n, x\), incx, \(y\), incy \()\)
call ccopy \((n, x\), incx, \(y\), incy \()\)
call zcopy \((n, x\), incx, \(y\), incy \()\)

\section*{Discussion}

The ?copy routines perform a vector-vector operation defined as
\(y=x\)
where \(x\) and \(y\) are vectors.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. Specifies the order of vectors \(x\) and \(y\). \\
\(x\) & REAL for scopy \\
& DOUBLE PRECISION for dcopy \\
& COMPLEX for Ccopy \\
& DOUBLE COMPLEX for zcopy \\
incx & Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). \\
& INTEGER. Specifies the increment for the elements of \(x\).
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll} 
y & \begin{tabular}{l} 
REAL for scopy \\
DOUBLE PRECISION for dcopy \\
COMPLEX for ccopy
\end{tabular} \\
DOUBLE COMPLEX for zcopy
\end{tabular}\(\quad\)\begin{tabular}{l} 
Array, DIMENSION at least \((1+(n-1) * \operatorname{abs}(\) incy \())\).
\end{tabular}

\section*{Output Parameters}

Y
Contains a copy of the vector \(x\) if \(n\) is positive. Otherwise, parameters are unaltered.

\section*{?dot}

Computes a vector-vector dot product.
```

res = sdot (n, x, incx, y, incy)
res = ddot (}n,x, incx, y, incy

```

\section*{Discussion}

The ?dot functions perform a vector-vector reduction operation defined as
res \(=\sum\left(x^{*} y\right)\)
where \(x\) and \(y\) are vectors.

\section*{Input Parameters}
\(n\)
INTEGER. Specifies the order of vectors \(x\) and \(y\).
REAL for sdot
DOUBLE PRECISION for ddot
Array, DIMENSION at least (1+(n-1)*abs(incx)).
INTEGER. Specifies the increment for the elements of \(x\).
```

y REAL for sdot
DOUBLE PRECISION for ddot
Array, DIMENSION at least (1+(n-1)*abs (incy)).
INTEGER. Specifies the increment for the elements of y.

```

\section*{Output Parameters}

\section*{res REAL for sdot}
```

DOUBLE PRECISION for ddot
Contains the result of the dot product of x and y, if n is positive. Otherwise, res contains 0 .

```

\section*{?sdot}

Computes a vector-vector dot product
with extended precision.
```

res = sdsdot (n, sb, sx, incx, sy, incy)
res = dsdot (n, sx, incx, sy, incy)

```

\section*{Discussion}

The ?sdot functions compute the inner product of two vectors with extended precision. Both functions use extended precision accumulation of the intermediate results, but the function sdsdot outputs the final result in single precision, whereas the function dsdot outputs the double precision result. The function sdsdot also adds scalar value \(s b\) to the inner product.

\section*{Input Parameters}
\(\left.\begin{array}{ll}n & \text { INTEGER. Specifies the number of elements in the input } \\
\text { vectors } s \times \text { and } s y .\end{array}\right]\)\begin{tabular}{l} 
REAL. Single precision scalar to be added to inner \\
product (for the function sdsdot only).
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll} 
sx, sy & REAL. \\
& Arrays, DIMENSION at least \((1+(n-1) * a b s\) (incx) ) \\
and \((1+(n-1) * a b s(i n c y))\), respectively. Contain the \\
input single precision vectors. \\
incx & \begin{tabular}{l} 
INTEGER. Specifies the increment for the elements \\
\\
of \(s x\).
\end{tabular} \\
incy & \begin{tabular}{l} 
INTEGER. Specifies the increment for the elements \\
\\
of \(s y\).
\end{tabular}
\end{tabular}

\section*{Output Parameters}
```

res REAL for sdsdot
DOUBLE PRECISION for dsdot

```

Contains the result of the dot product of \(s x\) and \(s y\) (with sb added for sdsdot), if \(n\) is positive. Otherwise, res contains sb for sdsdot and 0 for dsdot.

\section*{?dotc}

Computes a dot product of a conjugated vector with another vector.
```

res = cdotc (n, x, incx, y, incy)
res = zdotc (n, x, incx, y, incy)

```

\section*{Discussion}

The ?dotc functions perform a vector-vector operation defined as
res \(=\sum\left(\operatorname{conjg}(x)^{*} y\right)\)
where \(x\) and \(y\) are \(n\)-element vectors.

\section*{Input Parameters}
\(n \quad\) INTEGER. Specifies the order of vectors \(x\) and \(y\).
```

x COMPLEX for cotc
DOUBLE COMPLEX for zdotc
Array, DIMENSION at least (1 + (n-1)*abs (incx)).
incx INTEGER. Specifies the increment for the elements of x.
y COMPLEX for cdotc
DOUBLE COMPLEX for zdotc
Array, DIMENSION at least (1 + (n-1)*abs (incy)).
incy INTEGER. Specifies the increment for the elements of y.

```

\section*{Output Parameters}
Contains the result of the dot product of the conjugated \(x\) and unconjugated \(y\), if \(n\) is positive. Otherwise, res contains 0 .
```

```
res
```

res
COMPLEX for cdotc
COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

```
DOUBLE COMPLEX for zdotc
```


?dotu

Computes a vector-vector dot product.

```
res = cdotu ( n, x, incx, y, incy )
res = zdotu ( n, x, incx, y, incy )
```


Discussion

The ? dotu functions perform a vector-vector reduction operation defined as res $=\sum\left(x^{*} y\right)$
where x and y are n-element complex vectors.
Input Parameters
$n \quad$ INTEGER. Specifies the order of vectors x and y.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

x	COMPLEX for cdotu
	DOUBLE COMPLEX for zdotu
	Array, DIMENSION at least ($1+(n-1) *$ abs (incx)) .
incx	integer. Specifies the increment for the elements of x.
y	COMPLEX for cdotu
	DOUBLE COMPLEX for zdotu
	Array, DIMENSION at least ($1+(n-1)$ *abs (incy)) .
incy	Integer. Specifies the increment for the elements of y.
Output Parameters	
res	COMPLEX for cdotu
	DOUBLE COMPLEX for zdotu
	Contains the result of the dot product of x and y, if n is positive. Otherwise, res contains 0.

?nrm2

Computes the Euclidean norm of a vector.

```
res = snrm2 ( n, x, incx )
res = dnrm2 ( }n,x,\mathrm{ incx )
res = scnrm2 ( n, x, incx )
res = dznrm2 ( }n,x,incx 
```


Discussion

The ?nrm2 functions perform a vector reduction operation defined as
res $=||x||$
where:
x is a vector
res is a value containing the Euclidean norm of the elements of x.

Input Parameters

n	INTEGER. Specifies the order of vector x.
x	REAL for snrm2
	DOUBLE PRECISION for dnrm2
	COMPLEX for scnrm2
	DOUBLE COMPLEX for dznrm2
	Array, DIMENSION at least $(1+(n-1) * a b s$ (incx)).

Output Parameters

```
res REAL for snrm2
DOUBLE PRECISION for dnrm2
REAL for scnrm2
DOUBLE PRECISION for dznrm2
```

Contains the Euclidean norm of the vector x .

?rot

Performs rotation of points in the plane.

```
call srot ( }n,x,incx, y, incy, c, s 
call drot ( }n,x, incx, y, incy, c, s 
call csrot ( n, x, incx, y, incy, c, s )
call zdrot ( n, x, incx, y, incy, c, s )
```


Discussion

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:

```
x(i) = C*x(i) + s*y(i)
y(i) = C* y(i) - s*x(i)
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Input Parameters

n	Integer. Specifies the order of vectors x and y.
x	REAL for srot
	DOUBLE PRECISION for drot
	COMPLEX for csrot
	DOUBLE COMPLEX for zdrot
	Array, DIMENSION at least ($1+(n-1) *$ abs (incx)) .
incx	INTEGER. Specifies the increment for the elements of x.
y	REAL for srot
	DOUBLE PRECISION for drot
	COMPLEX for csrot
	DOUBLE COMPLEX for zdrot
	Array, DIMENSION at least (1+(n-1)*abs (incy)).
incy	INTEGER. Specifies the increment for the elements of y.
C	REAL for srot
	DOUBLE PRECISION for drot
	REAL for csrot
	DOUBLE PRECISION for zdrot
	A scalar.
s	REAL for srot
	DOUBLE PRECISION for drot
	REAL for csrot
	DOUBLE PRECISION for zdrot
	A scalar.

Output Parameters

Each element is replaced by $c^{\star} x+s^{\star} y$.
Each element is replaced by $c^{\star} y-s^{\star} x$.

?rotg

Computes the parameters for a Givens rotation.

```
call srotg ( a, b, c, s )
call drotg ( a, b, c, s )
call crotg ( a, b, c, s )
call zrotg ( a, b, c, s )
```


Discussion

Given the cartesian coordinates (a, b) of a point p, these routines return the parameters a, b, c, and s associated with the Givens rotation that zeros the y-coordinate of the point.

Input Parameters

```
a REAL for srotg
    DOUBLE PRECISION for drotg
    COMPLEX for crotg
    DOUBLE COMPLEX for zrotg
    Provides the x-coordinate of the point p.
b REAL for srotg
    DOUBLE PRECISION for drotg
    COMPLEX for crotg
    DOUBLE COMPLEX for zrotg
    Provides the y-coordinate of the point p.
```


Output Parameters

```
Contains the parameter \(r\) associated with the Givens rotation.
Contains the parameter \(z\) associated with the Givens rotation.
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

C

```
REAL for srotg DOUBLE PRECISION for drotg REAL for crotg DOUBLE PRECISION for zrotg
```

Contains the parameter c associated with the Givens rotation.

S
REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg
Contains the parameter s associated with the Givens rotation.

?rotm

Performs rotation of points in the modified plane.

```
call srotm ( }n,x, incx, y, incy, param 
call drotm ( }n,x, incx, y, incy, param 
```


Discussion

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:
$x(i)=H^{*} X(i)+H^{*} Y(i)$
$y(i)=H^{*} y(i)-H^{\star} X(i)$
where:
H is a modified Givens transformation matrix whose values are stored in the param (2) through param (5) array. See discussion on the param argument.

Input Parameters

n	INTEGER. Specifies the order of vectors x and y.
x	REAL for srotm
	DOUBLE PRECISION for drotm
	Array, DIMENSION at least ($1+(n-1) *$ abs (incx)) .
incx	INTEGER. Specifies the increment for the elements of x.
y	REAL for srotm
	DOUBLE PRECISION for drotm
	Array, DIMENSION at least (1+(n-1)*abs (incy)).
incy	INTEGER. Specifies the increment for the elements of y.
param	REAL for srotm
	DOUBLE PRECISION for drotm
	Array, DIMENSION 5.
	The elements of the param array are:
	param(1) contains a switch, flag.
	param (2-5) contain h11, h21, h12, and h22,
	respectively, the components of the array H.
	Depending on the values of $f l a g$, the components of H are set as follows:
	$\text { flag }=-1 .: H=\left[\begin{array}{ll} h 11 & h 12 \\ h 21 & h 22 \end{array}\right]$
	flag $=0 .: H=\left[\begin{array}{cc}1 . & h 12 \\ h 21 & 1 .\end{array}\right]$
	flag $=1 .: H=\left[\begin{array}{cc}h 11 & 1 . \\ -1 . & h 22\end{array}\right]$
	flag $=-2 .: H=\left[\begin{array}{ll}1 . & 0 \\ 0 . & 1\end{array}\right]$

In the above cases, the matrix entries of $1 .,-1$., and 0 . are assumed based on the last three values of $f l a g$ and are not actually loaded into the param vector.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Output Parameters

Each element is replaced by $h 11 *_{x}+h 12 * y$.
Each element is replaced by $h 21 *_{x}+h 22 * y$.
H Givens transformation matrix updated.

?rotmg

Computes the modified parameters for a Givens rotation.

```
call srotmg ( d1, d2, x1, y1, param )
call drotmg ( d1, d2, x1, y1, param )
```

Discussion
Given cartesian coordinates $(x 1, y 1)$ of an input vector, these routines compute the components of a modified Givens transformation matrix H that zeros the y-component of the resulting vector:
$\left[\begin{array}{l}x \\ 0\end{array}\right]=H\left[\begin{array}{ll}x & 1 \\ y & 1\end{array}\right]$

Input Parameters

d1
d2

REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the scaling factor for the x-coordinate of the input vector (sqrt (d1) x1).

REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the scaling factor for the y-coordinate of the input vector (sqrt (d2)y1).
$x 1$ REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the x-coordinate of the input vector.
REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the y-coordinate of the input vector.

Output Parameters

param

REAL for srotmg
DOUBLE PRECISION for drotmg
Array, DIMENSION 5.
The elementsof the param array are:
param(1) contains a switch, flag.
param(2-5) contain h11, h21, h12, and h22, respectively, the components of the array H.

Depending on the values of flag, the components of H are set as follows:
flag $=-1 .: H=\left[\begin{array}{lll}h 11 & h 12 \\ h 21 & h 22\end{array}\right]$
flag $=0 .: H=\left[\begin{array}{cc}1 . & h 12 \\ h 21 & 1 .\end{array}\right]$
flag $=1 .: H=\left[\begin{array}{cc}h 11 & 1 . \\ -1 . & \text { h22 }\end{array}\right]$
flag $=-2 .: H=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
In the above cases, the matrix entries of $1 .,-1 .$, and 0 . are assumed based on the last three values of flag and are not actually loaded into the param vector.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

?scal

Computes a vector by a scalar product.

```
call sscal ( n, a, x, incx )
call dscal ( n, a, x, incx )
call cscal ( }n,a,x, incx 
call zscal ( }n,a,x,incx 
call csscal ( n, a, x, incx )
call zdscal ( n, a, x, incx )
```


Discussion

The ?scal routines perform a vector-vector operation defined as $x=a * x$
where:
a is a scalar, x is an n-element vector.

Input Parameters

n
a
X
incx

INTEGER. Specifies the order of vector x.
REAL for sscal and csscal
DOUBLE PRECISION for dscal and zdscal
COMPLEX for cscal
DOUBLE COMPLEX for zscal
Specifies the scalar a.
REAL for sscal
DOUBLE PRECISION for dscal
COMPLEX for cscal and csscal
DOUBLE COMPLEX for zscal and csscal
Array, DIMENSION at least ($1+(n-1)$ *abs (incx)).
INTEGER. Specifies the increment for the elements of x.

Output Parameters

Overwritten by the updated vector x .

?swap

Swaps a vector with another vector.

```
call sswap ( n, x, incx, y, incy )
call dswap ( n, x, incx, y, incy )
call cswap ( n, x, incx, y, incy )
call zswap ( n, x, incx, y, incy )
```


Discussion

Given the two complex vectors x and y, the ?swap routines return vectors y and x swapped, each replacing the other.

Input Parameters

n	INTEGER. Specifies the order of vectors x and y.
x	REAL for SSwap
	DOUBLE PRECISION for dswap
	COMPLEX for cSwap
incx	DOUBLE COMPLEX for zswap
y	Array, DIMENSION at least $(1+(n-1) * a b s($ incx $)$.
	INTEGER. Specifies the increment for the elements of x.
	REAL for SSwap
	DOUBLE PRECISION for dswap
	COMPLEX for CSwap
	DOUBLE COMPLEX for zswap
incy	Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Output Parameters

x	Contains the resultant vector x.
y	Contains the resultant vector y.

i?amax

Finds the element of a vector that has the largest absolute value.

```
index = isamax ( n, x, incx )
index = idamax ( n, x, incx )
index = icamax ( }n,x,incx 
index = izamax ( n, x, incx )
```


Discussion

Given a vector x, the i ? amax functions return the position of the vector element x (i) that has the largest absolute value or, for complex flavors, the position of the element with the largest sum $|\operatorname{Re} x(i)|+|\operatorname{Im} x(i)|$.

If n is not positive, 0 is returned.
If more than one vector element is found with the same largest absolute value, the index of the first one encountered is returned.

Input Parameters

```
n
    INTEGER. Specifies the order of the vector }x\mathrm{ .
x REAL for isamax
    DOUBLE PRECISION for idamax
    COMPLEX for icamax
    DOUBLE COMPLEX for izamax
    Array, DIMENSION at least (1+(n-1)*abs (incx)).
incx INTEGER. Specifies the increment for the elements of x.
```


Output Parameters

index	INTEGER. Contains the position of vector element x
that has the largest absolute value.	

i?amin

Finds the element of a vector that has
the smallest absolute value.

```
index = isamin ( n, x, incx )
index = idamin ( n, x, incx )
index = icamin ( n, x, incx )
index = izamin ( n, x, incx )
```


Discussion

Given a vector x, the i?amin functions return the position of the vector element $x(i)$ that has the smallest absolute value or, for complex flavors, the position of the element with the smallest sum $|\operatorname{Rex}(i)|+|\operatorname{Im} x(i)|$. If n is not positive, 0 is returned.

If more than one vector element is found with the same smallest absolute value, the index of the first one encountered is returned.

Input Parameters

n	INTEGER. On entry, n specifies the order of the vector
x	x.
x	REAL for isamin DOUBLE PRECISION for idamin
	COMPLEX for icamin
	DOUBLE COMPLEX for izamin

Output Parameters

integer. Contains the position of vector element x that has the smallest absolute value.

BLAS Level 2 Routines

This section describes BLAS Level 2 routines, which perform matrix-vector operations. Table 2-2 lists the BLAS Level 2 routine groups and the data types associated with them.

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types

Routine Groups	Data Types	Description
? gbmv	s, d, c, z	Matrix-vector product using a general band matrix
? ? ${ }^{\text {emv }}$	s, d, c, z	Matrix-vector product using a general matrix
? ger	s, d	Rank-1 update of a general matrix
? gerc	c, z	Rank-1 update of a conjugated general matrix
? geru	c, z	Rank-1 update of a general matrix, unconjugated
? hbmv	c, z	Matrix-vector product using a Hermitian band matrix
? hemv	c, z	Matrix-vector product using a Hermitian matrix
?her	c, z	Rank-1 update of a Hermitian matrix
?her2	c, z	Rank-2 update of a Hermitian matrix
? hpmv	c, z	Matrix-vector product using a Hermitian packed matrix
?hpr	c, z	Rank-1 update of a Hermitian packed matrix
? hpr2	c, z	Rank-2 update of a Hermitian packed matrix
? sbmv	s, d	Matrix-vector product using symmetric band matrix
? spmv	s, d	Matrix-vector product using a symmetric packed matrix
? spr	s, d	Rank-1 update of a symmetric packed matrix
? $\mathrm{spr} 2^{\text {a }}$	s, d	Rank-2 update of a symmetric packed matrix
? symv	s, d	Matrix-vector product using a symmetric matrix
? syr	s, d	Rank-1 update of a symmetric matrix
? syr2	s, d	Rank-2 update of a symmetric matrix

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types (continued)

Routine Groups	Data Types	Description
$\underline{\text { ?t.bmv }}$	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Matrix-vector product using a triangular band matrix
$\underline{\underline{\text { ?t.bsv }}}$	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Linear solution of a triangular band matrix
$\underline{\text { ?tpmv }}$	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Matrix-vector product using a triangular packed matrix
$\underline{? \text { ?tpsv }}$	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Linear solution of a triangular packed matrix
$\underline{\text { ?trmv }}$	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Matrix-vector product using a triangular matrix
$\underline{? t r s v}$	$\mathrm{~s}, \mathrm{~d}, \mathrm{c}, \mathrm{z}$	Linear solution of a triangular matrix

?gbmv

Computes a matrix-vector product using a general band matrix

```
call sgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, inxc,
        beta, y, incy )
call dgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, incx,
        beta, y, incy )
call cgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, incx,
    beta, y, incy )
call zgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, incx,
    beta, y, incy )
```


Discussion

The ?gbmv routines perform a matrix-vector operation defined as
$y:=a l p h a * a * x+b e t a \star y$
or
$y:=a l p h a * a{ }^{\prime}{ }^{x}+$ beta*y,
or
$y:=a l p h a * \operatorname{conjg}\left(a^{\prime}\right){ }^{*} x+$ beta* y,
where:
alpha and beta are scalars
x and y are vectors
a is an m by n band matrix, with $k l$ sub-diagonals and $k u$ super-diagonals.

Input Parameters

trans CHARACTER*1. Specifies the operation to be performed, as follows:

trans value	Operation to be Performed
N or n	$y:=~ a l p h a * a * x+b e t a * y$
T or t	$y:=a l p h a * a{ }^{\prime}{ }^{\prime} x+$ beta* y
C or C	$y:=a l p h a * \operatorname{conjg}\left(a^{\prime}\right) *_{x}+$ beta* y

m
n
kl
ku
alpha
a

INTEGER. Specifies the number of rows of the matrix a. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix a. The value of n must be at least zero.

INTEGER. Specifies the number of sub-diagonals of the matrix a. The value of $k I$ must satisfy $0 \leq k I$.

INTEGER. Specifies the number of super-diagonals of the matrix a. The value of $k u$ must satisfy $0 \leq k u$.

REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zg bmv
Specifies the scalar alpha.
REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zg bmv

Array, DIMENSION (Ida, n). Before entry, the leading $(k I+k u+1)$ by n part of the array a must contain the matrix of coefficients. This matrix must be supplied column-by-column, with the leading diagonal of the matrix in row $(k u+1)$ of the array, the first super-diagonal starting at position 2 in row $k u$, the first sub-diagonal starting at position 1 in row $(k u+2)$, and so on. Elements in the array a that do not correspond to elements in the band matrix (such as the top left $k u$ by $k u$ triangle) are not referenced.
The following program segment transfers a band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    k = ku + 1 - j
        do 10, i = max(1, j-ku), min(m, j+kl)
        a(k+i, j) = matrix(i,j)
    10 continue
20 continue
```

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least $(k I+k u+1)$.

REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$ when trans $=$ ' N ' or ' n ' and at least $(1+(m-1) * \operatorname{abs}($ incx $))$ otherwise. Before entry, the incremented array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x. incx must not be zero.

REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Specifies the scalar beta. When bet a is supplied as zero, then y need not be set on input.

REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Array, DIMENSION at least $(1+(m-1)$ *abs (incy)) when trans $={ }^{\prime} N$ ' or ' n ' and at least $(1+(n-1) * \operatorname{abs}(i n c y))$ otherwise. Before entry, the incremented array y must contain the vector y.
incy INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

Output Parameters

y

Overwritten by the updated vector y.

?gemv

Computes a matrix-vector product using
a general matrix

```
call sgemv ( trans, m, n, alpha, a, lda, x, incx, beta,
    y, incy )
call dgemv ( trans, m, n, alpha, a, lda, x, incx, beta,
    y, incy )
call cgemv ( trans, m, n, alpha, a, lda, x, incx, beta,
    y, incy )
call zgemv ( trans, m, n, alpha, a, lda, x, incx, beta,
    y, incy )
```


Discussion

The ?gemv routines perform a matrix-vector operation defined as

```
y := alpha*a*x + beta*y,
```

```
Or
y := alpha*a'*x + beta*y,
or
y := alpha*conjg(a')*x + beta*y,
where:
alpha and beta are scalars
x}\mathrm{ and }y\mathrm{ are vectors
a is an m by n matrix.
```

Input Parameters
trans CHARACTER*1. Specifies the operation to be performed, as follows:

trans value	Operation to be Performed
N or n	$y:=a l p h a^{*} a^{*} X+$ beta* y
T or t	$y:=$ alpha*a'* $X+$ beta* y
C or C	$y:=$ alpha*conjg(a')*x +beta* y

m
n
alpha
a

INTEGER. Specifies the number of rows of the matrix a. m must be at least zero.
INTEGER. Specifies the number of columns of the matrix a. The value of n must be at least zero.

REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv
Specifies the scalar alpha.
REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Ida	integer. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least $\max (1, m)$.
x	REAL for sgemv
	DOUBLE PRECISION for dgemv
	COMPLEX for cgemv
	DOUBLE COMPLEX for zgemv
	Array, DIMENSION at least ($1+(n-1)$ *abs (incx)) when trans $=$ ' N ' or ' n ' and at least $(1+(m-1) * a b s(i n c x))$ otherwise. Before entry, the incremented array x must contain the vector x.
incx	INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.
beta	REAL for sgemv
	DOUBLE PRECISION for dgemv
	COMPLEX for cgemv
	DOUBLE COMPLEX for zgemv
	Specifies the scalar beta. When beta is supplied as zero, then y need not be set on input.
Y	REAL for sgemv
	DOUBLE PRECISION for dgemv
	COMPLEX for cgemv
	DOUBLE COMPLEX for zgemv
	Array, DIMENSION at least $(1+(m-1) * a b s$ (incy)) when trans $=$ ' N ' or ' n ' and at least $(1+(n-1)$ *abs (incy)) otherwise. Before entry with beta non-zero, the incremented array y must contain the vector y.
incy	INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

Output Parameters

$$
y \quad \text { Overwritten by the updated vector } y \text {. }
$$

?ger

Performs a rank-1 update of a general matrix.

```
call sger ( m, n, alpha, x, incx, y, incy, a, lda )
call dger ( m, n, alpha, x, incx, y, incy, a, lda )
```


Discussion

The ?ger routines perform a matrix-vector operation defined as
a := alpha* $x^{*} y^{\prime}+a$,
where:
alpha is a scalar
x is an m-element vector
y is an n-element vector
a is an m by n matrix.

Input Parameters

$m \quad$ INTEGER. Specifies the number of rows of the matrix a. The value of m must be at least zero.
INTEGER. Specifies the number of columns of the matrix a. The value of n must be at least zero.
alpha

X
REAL for sger
DOUBLE PRECISION for dger
Specifies the scalar alpha.
REAL for sger
DOUBLE PRECISION for dger

	Array, DIMENSION at least $(1+(m-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the m-element vector x.
incx	INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.
y	REAL for sger
	DOUBLE PRECISION for dger
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.
incy	INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.
a	REAL for sger
	DOUBLE PRECISION for dger
	Array, DIMENSION (Ida, n). Before entry, the leading m by n part of the array a must contain the matrix of coefficients.
Ida	Integer. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, m)$.
Output Parameters	
a	Overwritten by the updated matrix.

?gerc

Performs a rank-1 update (conjugated) of a general matrix.

```
call cgerc ( m, n, alpha, x, incx, y, incy, a, lda )
call zgerc ( m, n, alpha, x, incx, y, incy, a, lda )
```


Discussion

The ?gerc routines perform a matrix-vector operation defined as

```
a := alpha*x*conjg(y') + a,
```

where:
alpha is a scalar
x is an m-element vector
y is an n-element vector
a is an m by n matrix.

Input Parameters

$m \quad$ INTEGER. Specifies the number of rows of the matrix a. The value of m must be at least zero.
integer. Specifies the number of columns of the matrix a. The value of n must be at least zero.
alpha

X
incx
y
incy

SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc
Specifies the scalar alpha.
SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc
Array, DIMENSION at least $(1+(m-1)$ *abs (incx)). Before entry, the incremented array x must contain the m-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

COMP LEX for cgerc
DOUBLE COMPLEX for zgerc
Array, DIMENSION at least $(1+(n-1)$ *abs (incy)). Before entry, the incremented array y must contain the n-element vector y.
INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

COMPLEX for cgerc
DOUBLE COMPLEX for z gerc
Array, DIMENSION (Ida, n). Before entry, the leading m by n part of the array a must contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, m)$.

Output Parameters

Overwritten by the updated matrix.

?geru

Performs a rank-1 update
(unconjugated) of a general matrix.

```
call cgeru ( m, n, alpha, x, incx, y, incy, a, lda )
call zgeru ( m, n, alpha, x, incx, y, incy, a, lda )
```


Discussion

The ?geru routines perform a matrix-vector operation defined as

```
a:= alpha* X* 㐌 + a,
```

where:
alpha is a scalar
x is an m-element vector
y is an n-element vector
a is an m by n matrix.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Input Parameters

m
n

INTEGER. Specifies the number of rows of the matrix a. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix a. The value of n must be at least zero.

COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Specifies the scalar alpha.
COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Array, DIMENSION at least $(1+(m-1) * a b s$ (incx)). Before entry, the incremented array x must contain the m-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.
COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Array, DIMENSION (Ida, n). Before entry, the leading m by n part of the array a must contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of I da must be at least $\max (1, m)$.

Output Parameters

Overwritten by the updated matrix.

?hbmv

Computes a matrix-vector product using
a Hermitian band matrix.

```
call chbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y,
    incy )
call zhbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y,
    incy )
```


Discussion

The ?hbmv routines perform a matrix-vector operation defined as
$y:=$ alpha*a*x + beta*y,
where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n Hermitian band matrix, with k super-diagonals.
Input Parameters
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the band matrix a is being supplied, as follows:

uplo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is being supplied.
L or l	The lower triangular part of matrix a is being supplied.

[^0]Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

COMP LEX for chbmv
DOUBLE COMPLEX for zhbmv
Specifies the scalar alpha.
COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv
Array, DIMENSION (Ida, n). Before entry with uplo='U' or 'u', the leading $(k+1)$ by n part of the array a must contain the upper triangular band part of the Hermitian matrix. The matrix must be supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$ of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced.
The following program segment transfers the upper triangular part of a Hermitian band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m=k + 1 - j
    do 10, i = max(1, j - k), j
    a(m + i, j) = matrix(i, j)
    1 0 ~ c o n t i n u e
20 continue
```

Before entry with uplo = 'L' or ' 1 ', the leading $(k+1)$ by n part of the array a must contain the lower triangular band part of the Hermitian matrix, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right k by k triangle of the array a is not referenced.

The following program segment transfers the lower triangular part of a Hermitian band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m=1 - j
    do 10, i = j, min( n, j + k )
```

```
    a( m + i, j ) = matrix( i, j )
10 continue
20 continue
```

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Ida INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least $(k+1)$.

COMP LEX for ch.bmv
DOUBLE COMPLEX for zhbmv
Array, DIMENSION at least $(1+(n-1)$ *abs (incx)). Before entry, the incremented array x must contain the vector x.
incx INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

COMPLEX for ch.bmv DOUBLE COMPLEX for zhbmv

Specifies the scalar beta.
COMPLEX for ch.bmv
DOUBLE COMPLEX for zhbmv
Array, DIMENSION at least ($1+(n-1)$ *abs (incy)). Before entry, the incremented array y must contain the vector y.
INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

Output Parameters

y

Overwritten by the updated vector y.

?hemv

Computes a matrix-vector product using a Hermitian matrix.

```
call chemv ( uplo, n, alpha, a, lda, x, incx, beta, y,
    incy )
call zhemv ( uplo, n, alpha, a, lda, x, incx, beta, y,
    incy )
```


Discussion

The ?hemv routines perform a matrix-vector operation defined as

```
y := alpha*a*x + beta*y,
```

where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n Hermitian matrix.

Input Parameters

uplo
CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:

uplo value	Part of Array a To Be Referenced
U or u	The upper triangular part of array a is to be referenced.
L or l	The lower triangular part of array a is to be
	referenced.

n
integer. Specifies the order of the matrix a. The value of n must be at least zero.

alpha	COMPLEX for chemv DOUBLE COMPLEX for zhemv
	Specifies the scalar alpha.
a	COMPLEX for chemv DOUBLE COMPLEX for zhemv
	Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of a is not referenced. Before entry with uplo = 'L' or ' 1 ', the leading n by n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of a is not referenced.
	The imaginary parts of the diagonal elements need not be set and are assumed to be zero.
Ida	InTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of I da must be at least max $(1, n)$.
x	COMPLEX for chemv DOUBLE COMPLEX for zhemv
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx	Integer. Specifies the increment for the elements of x. The value of incx must not be zero.
beta	COMPLEX for chemv DOUBLE COMPLEX for zhemv
	Specifies the scalar beta. When beta is supplied as zero then y need not be set on input.

y | COMPLEX for chemv |
| :--- |
| DOUBLE COMPLEX for zhemv |
| Array, DIMENSION at least $(1+(n-1) *$ abs (incy)). |
| Before entry, the incremented array y must contain the |
| |
| n-element vector y. |

InTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Overwritten by the updated vector y.

?her

Performs a rank-1 update of a
Hermitian matrix.

```
call cher ( uplo, n, alpha, x, incx, a, lda )
call zher ( uplo, n, alpha, x, incx, a, lda )
```


Discussion

The ?her routines perform a matrix-vector operation defined as

```
a := alpha*x*conjg(x') + a,
```

where:
alpha is a real scalar
x is an n-element vector
a is an n by n Hermitian matrix.

Input Parameters

uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:
uplo value	Part of Array a To Be Referenced
U or uor l	The upper triangular part of array a is to be referenced.
The lower triangular part of array a is to be referenced.	

n
a

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

REAL for cher DOUBLE PRECISION for zher

Specifies the scalar alpha.
COMPLEX for cher DOUBLE COMPLEX for zher

Array, dimension at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

COMPLEX for cher
DOUBLE COMPLEX for zher
Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.

?her2

Performs a rank-2 update of a
Hermitian matrix.

```
call cher2 ( uplo, n, alpha, x, incx, y, incy, a, lda )
call zher2 ( uplo, n, alpha, x, incx, y, incy, a, lda )
```


Discussion

The ?her2 routines perform a matrix-vector operation defined as

```
a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,
```

where:
alpha is a scalar
x and y are n-element vectors
a is an n by n Hermitian matrix.

Input Parameters

uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:
uplo value	Part of Array a To Be Referenced
U or u or 1	The upper triangular part of array a is to be referenced.
The lower triangular part of array a is to be referenced.	

y
incy
a
n
incx INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.
Integer. Specifies the order of the matrix a. The value of n must be at least zero.

COMPLEX for cher2 DOUBLE COMPLEX for zher2

Specifies the scalar alpha.
COMPLEX for cher2 DOUBLE COMPLEX for zher2

Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

COMPLEX for cher2
DOUBLE COMPLEX for zher2
Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.
COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION (Ida, n). Before entry with uplo= 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of a is not referenced.

Before entry with uplo= 'L' or ' 1 ', the leading n by n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.
integer. Specifies the first dimension of a as declared in the calling (sub)program. The value of I da must be at least max $(1, n)$.

Output Parameters

With uplo= 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.
With up $10=$ ' L ' or ' 1 ', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.

?hpmv

Computes a matrix-vector product using a Hermitian packed matrix.

```
call chpmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )
call zhpmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )
```


Discussion

The ?hpmv routines perform a matrix-vector operation defined as

```
y := alpha*a*x + beta*y,
where:
alpha and beta are scalars
x \mp@code { a n d ~ y ~ a r e ~ n - e l e m e n t ~ v e c t o r s }
a is an n by n Hermitian matrix, supplied in packed form.
Input Parameters
uplo CHARACTER*1. Specifies whether the upper or lower
    triangular part of the matrix a is supplied in the packed
    array ap, as follows:
\begin{tabular}{ll}
\hline uplo value & Part of Matrix a Supplied \\
\hline U or u & The upper triangular part of matrix \(a\) is supplied in \\
L or 1 & \begin{tabular}{l} 
ap.
\end{tabular} \\
& \begin{tabular}{l} 
The lower triangular part of matrix \(a\) is supplied in \\
\end{tabular} \\
\hline
\end{tabular}
```

n
alpha COMPLEX for chpmv DOUBLE COMPLEX for zhpmv

Specifies the scalar alpha.
COMPLEX for chpmv DOUBLE COMPLEX for zhpmv
Array, DIMENSION at least $\left(\left(n^{*}(n+1)\right) / 2\right)$. Before entry with uplo $=$ 'U' or 'u', the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-by-column, so that ap(1) contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on. Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed
sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3$, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

COMP LEX for chpmv
DOUBLE PRECISION COMPLEX for zhpmv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
integer. Specifies the increment for the elements of x. The value of incx must not be zero.

COMP LEX for chpmv
DOUBLE COMPLEX for zhpmv
Specifies the scalar beta. When beta is supplied as zero then y need not be set on input.
COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv
Array, DIMENSION at least $(1+(n-1) * a b s$ (incy)). Before entry, the incremented array y must contain the n-element vector y.
INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

Output Parameters

?hpr

Performs a rank-1 update of a Hermitian packed matrix.

```
call chpr ( uplo, n, alpha, x, incx, ap )
call zhpr ( uplo, n, alpha, x, incx, ap )
```


Discussion

The ?hpr routines perform a matrix-vector operation defined as

```
a := alpha*\mp@subsup{x}{}{*}conjg(x') + a,
```

where:
alpha is a real scalar
x is an n-element vector
a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array $a p$, as follows:
uplo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied in ap.
The lower triangular part of matrix a is supplied in ap.	

n	INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.	
alpha	REAL for chpr
	DOUBLE PRECISION for zhpr

Specifies the scalar alpha.

x	COMPLEX for chpr
	DOUBLE COMPLEX for zhpr

Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
INTEGER. Specifies the increment for the elements of x. incx must not be zero.
COMPLEX for chpr
DOUBLE COMPLEX for zhpr
Array, DIMENSION at least $\left(\left(n^{*}(n+1)\right) / 2\right)$. Before entry with uplo $=$ 'U' or 'u', the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-by-column, so that ap (1) contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on.
Before entry with uplo $=$ 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-by-column, so that ap (1) contains a(1, 1), ap (2) and ap (3) contain a(2, 1) and $a(3,1)$ respectively, and so on.
The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Output Parameters

[^1]
?hpr2

Performs a rank-2 update of a Hermitian packed matrix.

```
call chpr2 ( uplo, n, alpha, x, incx, y, incy, ap )
call zhpr2 ( uplo, n, alpha, x, incx, y, incy, ap )
```


Discussion

The?hpr2 routines perform a matrix-vector operation defined as

```
a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,
```

where:
alpha is a scalar
x and y are n-element vectors
a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array $a p$, as follows
uplo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied in ap. The lower triangular part of matrix a is supplied in ap.

n	INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.	
alpha	COMPLEX for chpr2
	DOUBLE COMPLEX for zhpr2
	Specifies the scalar alpha.

x	COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2	
Array, dimension at least $(1+(n-1) *$ abs (incx)).	
Before entry, the incremented array x must contain the	
n-element vector x.	

Output Parameters

ap With uplo='U' or 'u', overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements need are set to zero.

?sbmv

Computes a matrix-vector product using
a symmetric band matrix.

```
call ssbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y,
    incy )
call dsbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y,
    incy )
```


Discussion

The ?sbmv routines perform a matrix-vector operation defined as

```
y := alpha*a*x + beta*y,
```

where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n symmetric band matrix, with k super-diagonals.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Input Parameters

uplo

CHARACTER*1. Specifies whether the upper or lower triangular part of the band matrix a is being supplied, as follows:

up $I 0$ value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied.
L or I	The lower triangular part of matrix a is supplied.

integer. Specifies the order of the matrix a. The value of n must be at least zero.
INTEGER. Specifies the number of super-diagonals of the matrix a. The value of k must satisfy $0 \leq k$.
alpha
a

REAL for ssbmv
DOUBLE PRECISION for dsbmv
Specifies the scalar alpha.
REAL for ssbmv
DOUBLE PRECISION for dsbmv
Array, DIMENSION (Ida, n). Before entry with uplo= 'U' or 'u', the leading $(k+1)$ by n part of the array a must contain the upper triangular band part of the symmetric matrix, supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$ of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a symmetric band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = k + 1 - j
    do 10, i = max( 1, j - k ), j
    a( m + i, j ) = matrix( i, j )
    1 0 ~ c o n t i n u e
20 continue
```

Before entry with uplo = 'L' or 'l', the leading $(k+1)$ by n part of the array a must contain the lower triangular band part of the symmetric matrix, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right k by k triangle of the array a is not referenced.

The following program segment transfers the lower triangular part of a symmetric band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = 1 - j
    do 10, i = j, min( n, j + k )
    a( m + i, j ) = matrix( i, j )
    10 continue
20 continue
```

Integer. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least $(k+1)$.

REAL for ssbmv
DOUBLE PRECISION for dsbmv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the vector x.
integer. Specifies the increment for the elements of x. The value of incx must not be zero.
REAL for ssbmv
DOUBLE PRECISION for dsbmv
Specifies the scalar beta.
REAL for ssbmv
DOUBLE PRECISION for dsbmv
Array, DIMENSION at least ($1+(n-1)$ *abs (incy)). Before entry, the incremented array y must contain the vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

Output Parameters

Overwritten by the updated vector y.

?spmv

```
Computes a matrix-vector product using a symmetric packed matrix.
```

```
call sspmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )
```

call sspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)
call dspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

```
call dspmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )
```


Discussion

The ?spmv routines perform a matrix-vector operation defined as
y := alpha*a*x + beta*y,
where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array $a p$, as follows:
uplo value	Part of Matrix a Supplied
U or u or 1	The upper triangular part of matrix a is supplied in ap. The lower triangular part of matrix a is supplied in $a p$.

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

REAL for sspmv DOUBLE PRECISION for dspmv
Specifies the scalar alpha.
REAL for sspmv
DOUBLE PRECISION for dspmv
Array, DIMENSION at least ($(\mathrm{n} *(\mathrm{n}+1)) / 2)$. Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on. Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that ap (1) contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on.
REAL for sspmv DOUBLE PRECISION for dspmv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

REAL for sspmv
DOUBLE PRECISION for dspmv
Specifies the scalar beta. When beta is supplied as zero, then y need not be set on input.
REAL for sspmv
DOUBLE PRECISION for dspmv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

Output Parameters

```
y Overwritten by the updated vector y.
```


?spr

Performs a rank-1 update of a symmetric packed matrix.

```
call sspr( uplo, n, alpha, x, incx, ap )
call dspr( uplo, n, alpha, x, incx, ap )
```


Discussion

The ? spr routines perform a matrix-vector operation defined as
$a:=$ alpha* $x^{*} x^{\prime}+a$,
where:
alpha is a real scalar
x is an n-element vector
a is an n by n symmetric matrix, supplied in packed form.
Input Parameters
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array ap, as follows:

up lo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied in
L or I	ap.
	The lower triangular part of matrix a is supplied in

n
alpha
x
incx
ap

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

REAL for sspr

DOUBLE PRECISION for dspr
Specifies the scalar alpha.
REAL for sspr
DOUBLE PRECISION for dspr
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
integer. Specifies the increment for the elements of x. The value of incx must not be zero.
REAL for sspr DOUBLE PRECISION for dspr
Array, DIMENSION at least $\left(\left(n^{*}(n+1)\right) / 2\right)$. Before entry with uplo $=$ 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that ap (1) contains a(1,1), ap (2) and ap (3) contain a(2,1) and a $(3,1)$ respectively, and so on.

Output Parameters

ap
With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

?spr2

Performs a rank-2 update of a symmetric packed matrix.

```
call sspr2( uplo, n, alpha, x, incx, y, incy, ap )
call dspr2( uplo, n, alpha, x, incx, y, incy, ap )
```


Discussion

The ? spr2 routines perform a matrix-vector operation defined as

```
a:= alpha*\mp@subsup{x}{}{*}\mp@subsup{y}{}{\prime} + alpha*\mp@subsup{y}{}{*}\mp@subsup{x}{}{\prime} + a,
```

where:
alpha is a scalar
x and y are n-element vectors
a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array $a p$, as follows:

up lo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied in
L or 1	The
	The lower triangular part of matrix a is supplied in

n	INTEGER. Specifies the order of the matrix a. The value
of n must be at least zero.	
alpha	REAL for sspr2
	DOUBLE PRECISION for dspr2

Specifies the scalar alpha.

x	REAL for sspr2
	DOUBLE PRECISION for dspr2
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx	integer. Specifies the increment for the elements of x. The value of incx must not be zero.
Y	REAL for sspr2
	DOUBLE PRECISION for dspr2
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.
incy	INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.
$a p$	REAL for sspr2
	DOUBLE PRECISION for dspr2
	Array, DIMENSION at least $\left(\left(n^{*}(n+1)\right) / 2\right)$. Before entry with uplo $=$ ' U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on.
	Before entry with uplo = 'L' or ' 1 ', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that ap (1) contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on.

Output Parameters

With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

?symv

Computes a matrix-vector product for a symmetric matrix.

```
call ssymv ( uplo, n, alpha, a, lda, x, incx, beta, y,
    incy )
call dsymv ( uplo, n, alpha, a, lda, x, incx, beta, y,
incy )
```


Discussion

The ?symv routines perform a matrix-vector operation defined as

```
y := alpha*a*x + beta*y,
```

where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:

uplo value	Part of Array a To Be Referenced
U or u	The upper triangular part of array a is to be
referenced.	
	The lower triangular part of array a is to be referenced.

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

alpha	REAL for ssymv
	DOUBLE PRECISION for dsymv
	Specifies the scalar alpha.
a	REAL for ssymv
	DOUBLE PRECISION for dsymv
	Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of a is not referenced. Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced.
Ida	Integer. Specifies the first dimension of a as declared in the calling (sub)program. The value of I da must be at least max $(1, n)$.
x	REAL for ssymv
	DOUBLE PRECISION for dsymv
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx	integer. Specifies the increment for the elements of x. The value of incx must not be zero.
beta	REAL for ssymv
	DOUBLE PRECISION for dsymv
	Specifies the scalar beta. When beta is supplied as zero, then y need not be set on input.
y	REAL for ssymv
	DOUBLE PRECISION for dsymv
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

Output Parameters

```
y Overwritten by the updated vector y.
```


?syr

Performs a rank-1 update of a symmetric matrix.

```
call ssyr( uplo, n, alpha, x, incx, a, lda )
call dsyr( uplo, n, alpha, x, incx, a, lda )
```


Discussion

The ?syr routines perform a matrix-vector operation defined as
a := alpha*x*x' + a,
where:
alpha is a real scalar
x is an n-element vector
a is an n by n symmetric matrix.

Input Parameters

uplo
CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:

uplo value	Part of Array a To Be Referenced
U or u	The upper triangular part of array a is to be referenced.
L or 1	The lower triangular part of array a is to be referenced.

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
REAL for ssyr DOUBLE PRECISION for dsyr
Specifies the scalar alpha.
REAL for ssyr
DOUBLE PRECISION for dsyr
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
integer. Specifies the increment for the elements of x. The value of incx must not be zero.
REAL for ssyr
DOUBLE PRECISION for dsyr
Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of a is not referenced.
Before entry with uplo $=$ 'L' or 'l', the leading n by n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced.
INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least $\max (1, n)$.

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

?syr2

Performs a rank-2 update of symmetric matrix.

```
call ssyr2( uplo, n, alpha, x, incx, y, incy, a, lda )
call dsyr2( uplo, n, alpha, x, incx, y, incy, a, lda )
```


Discussion

The ?syr2 routines perform a matrix-vector operation defined as

```
a := alpha*\mp@subsup{x}{}{*}\mp@subsup{y}{}{\prime} + alpha*\mp@subsup{y}{}{*}\mp@subsup{x}{}{\prime} + a,
```

where:
alpha is a scalar
x and y are n-element vectors
a is an n by n symmetric matrix.

Input Parameters

uplo
CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:

uplo value	Part of Array a To Be Referenced
U or u	The upper triangular part of array a is to be referenced.
L or l	The lower triangular part of array a is to be referenced.

n
INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
alpha
REAL for ssyr2
DOUBLE PRECISION for dsyr2
Specifies the scalar alpha.

x	REAL for ssyr2
	DOUBLE PRECISION for dsyr2
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx	INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.
y	REAL for ssyr2
	DOUBLE PRECISION for dsyr2
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.
incy	INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.
a	REAL for ssyr2
	DOUBLE PRECISION for dsyr2
	Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of a is not referenced.
	Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced.
Ida	INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least $\max (1, n)$.

Output Parameters

With uplo= 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or ' 1 ', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

?tbmv

Computes a matrix-vector product using a triangular band matrix.

```
call stbmv ( uplo, trans, diag, n, k, a, lda, x, incx )
call dtbmv ( uplo, trans, diag, n, k, a, lda, x, incx )
call ct.bmv ( uplo, trans, diag, n, k, a, lda, x, incx )
call ztbmv ( uplo, trans, diag, n, k, a, lda, x, incx )
```


Discussion

The ? tbmv routines perform one of the matrix-vector operations defined as $x:=a^{*} x$, or $x:=a^{\prime}{ }^{*} x$, or $x:=\operatorname{conjg}\left(a^{\prime}\right){ }^{*} x$,
where:
x is an n-element vector
a is an n by n unit, or non-unit, upper or lower triangular band matrix, with $(k+1)$ diagonals.

Input Parameters

uplo
CHARACTER*1. Specifies whether the matrix is an upper or lower triangular matrix, as follows:

uplo value	Matrix a
U or u	An upper triangular matrix.
L or l	A lower triangular matrix.

trans CHARACTER*1. Specifies the operation to be performed, as follows:

trans value	Operation to be Performed
N or n	$x:=a^{*} X$
T or t	$x:=a^{\prime} *_{X}$
C or C	$x:=\operatorname{conjg}\left(a^{\prime}\right) *_{X}$

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value	Matrix a
U or u	Matrix a is assumed to be unit triangular.
N or n	Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
$k \quad$ INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of super-diagonals of the matrix a. On entry with uplo $=$ 'L' or 'l', k specifies the number of sub-diagonals of the matrix a. The value of k must satisfy $0 \leq k$.
a
REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ct.bmv
DOUBLE COMPLEX for $z t . b m v$
Array, DIMENSION (Ida, n). Before entry with uplo $=$ 'U' or 'u', the leading $(k+1)$ by n part of the array a must contain the upper triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$
of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced. The following program segment transfers an upper triangular band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = k + 1 - j
    do 10, i = max(1, j - k), j
    a(m + i, j) = matrix(i, j)
    10 continue
20 continue
```

Before entry with uplo = 'L' or ' 1 ', the leading $(k+1)$ by n part of the array a must contain the lower triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right k by k triangle of the array a is not referenced. The following program segment transfers a lower triangular band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m=1 - j
    do 10, i = j, min(n, j + k)
    a(m + i, j) = matrix (i, j)
1 0 ~ c o n t i n u e
20 continue
```

Note that when diag= 'U' or 'u', the elements of the array a corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.
integer. Specifies the first dimension of a as declared in the calling (sub)program. The value of $I d a$ must be at least ($k+1$).

REAL for stbmv
DOUBLE PRECISION for dt.bmv
COMPLEX for ctbmv
DOUBLE COMPLEX for $z t . b m v$
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
integer. Specifies the increment for the elements of x. The value of incx must not be zero.

Output Parameters

$x \quad$ Overwritten with the transformed vector x.

?tbsv

Solves a system of linear equations
whose coefficients are in a triangular
band matrix.

```
call stbsv ( uplo, trans, diag, n, k, a, lda, x, incx )
call dt.bsv ( uplo, trans, diag, n, k, a, lda, x, incx )
call ct.bsv ( uplo, trans, diag, n, k, a, lda, x, incx )
call ztbsv ( uplo, trans, diag, n, k, a, lda, x, incx )
```


Discussion

The ?tbsv routines solve one of the following systems of equations:

```
a*X = b, or a'*X = b, or conjg(a')*X = b,
```

where:
b and x are n-element vectors
a is an n by n unit, or non-unit, upper or lower triangular band matrix, with $(k+1)$ diagonals.

The routine does not test for singularity or near-singularity. Such tests must be performed before calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular matrix, as follows:

uplo value	Matrix a
U or u	An upper triangular matrix.
L or 1	A lower triangular matrix.
trans	CHARACTER*1. Specifies the operation to be performed, as follows:
trans value	Operation to be Performed
N or n	$a^{*} X=b$
T or t	$a^{\prime} *_{X}=b$
C or C	$C o n j g\left(a^{\prime}\right) \star_{X}=b$

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value	Matrix a
U or u	Matrix a is assumed to be unit triangular.
N or n	Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
k
INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of super-diagonals of the matrix a. On entry with uplo = 'L' or ' l', k specifies the number of sub-diagonals of the matrix a. The value of k must satisfy $0 \leq k$.

REAL for stbsv
DOUBLE PRECISION for dt.bsv
COMP LEX for ctbsv
DOUBLE COMPLEX for $z t . b s v$
Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading $(k+1)$ by n part of the array a must contain the upper triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$ of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced.

The following program segment transfers an upper triangular band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = k + 1 - j
    do 10, i = max(1, j - k), j
    a(m + i, j) = matrix (i, j)
    1 0 ~ c o n t i n u e ~
20 continue
```

Before entry with up $10=$ 'L' or ' 1 ', the leading $(k+1)$ by n part of the array a must contain the lower triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right k by k triangle of the array a is not referenced.
The following program segment transfers a lower triangular band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = 1 - j
    do 10, i = j, min(n, j + k)
    a(m + i, j) = matrix (i, j)
    10 continue
20 continue
```

When diag = 'U' or 'u', the elements of the array a corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of $I d a$ must be at least ($k+1$).

REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element right-hand side vector b.
incx
integer. Specifies the increment for the elements of x. The value of incx must not be zero.

Output Parameters

Overwritten with the solution vector x .

?tpmv

Computes a matrix-vector product using
a triangular packed matrix.

```
call stpmv ( uplo, trans, diag, n, ap, x, incx )
call dtpmv ( uplo, trans, diag, n, ap, x, incx )
call ctpmv ( uplo, trans, diag, n, ap, x, incx )
call ztpmv ( uplo, trans, diag, n, ap, x, incx )
```


Discussion

The ?tpmv routines perform one of the matrix-vector operations defined as

```
x := a*x, or x := a'*x, or x := conjg(a')*x,
```

where:
x is an n-element vector
a is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular matrix, as follows:

uplo value	Matrix a
U or u	An upper triangular matrix.
L or l	A lower triangular matrix.

trans CHARACTER*1. Specifies the operation to be performed, as follows:

trans value	Operation To Be Performed
N or n	$x:=a^{\star} x$
T or t	$x:=a^{\prime} \star_{X}$
C or C	$x:=\operatorname{conjg}\left(a^{\prime}\right) *_{x}$

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value	Matrix a
U or u	Matrix a is assumed to be unit triangular.
N or n	Matrix a is not assumed to be unit triangular.

n
INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
$a p$
REAL for stpmv
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for $z t p m v$

Array, DIMENSION at least $\left(\left(n^{*}(n+1)\right) / 2\right)$. Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1)$, $a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on. Before entry with uplo = 'L' or ' 1 ', the array ap must contain the lower triangular matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on. When diag = 'U' or 'u', the diagonal elements of a are not referenced, but are assumed to be unity.
REAL for stpmv
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
integer. Specifies the increment for the elements of x. The value of incx must not be zero.

Output Parameters

Overwritten with the transformed vector x.

?tpsv

Solves a system of linear equations whose coefficients are in a triangular packed matrix.

```
call stpsv ( uplo, trans, diag, n, ap, x, incx )
call dtpsv ( uplo, trans, diag, n, ap, x, incx )
call ctpsv ( uplo, trans, diag, n, ap, x, incx )
call ztpsv ( uplo, trans, diag, n, ap, x, incx )
```


Discussion

The ?tpsv routines solve one of the following systems of equations

```
a*x = b, or a'*x = b, or conjg(a')*x = b,
```

where:
b and x are n-element vectors
a is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.
This routine does not test for singularity or near-singularity. Such tests must be performed before calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular matrix, as follows:

uplo value	Matrix a
U or u	An upper triangular matrix.
L or 1	A lower triangular matrix.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
trans
CHARACTER*1. Specifies the operation to be performed, as follows:

trans value	Operation To Be Performed
N or n	$a^{*} X=b$
T or t	$a^{\prime}{ }^{*} X=b$
C or C	$\operatorname{conjg}\left(a^{\prime}\right) *_{X}=b$

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value	Matrix a
U or u	Matrix a is assumed to be unit triangular.
N or n	Matrix a is not assumed to be unit triangular.

Integer. Specifies the order of the matrix a. The value of n must be at least zero.

REAL for stpsv
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for $z t p s v$
Array, DIMENSION at least $\left(\left(n^{*}(n+1)\right) / 2\right)$. Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular matrix packed sequentially, column-by-column, so that ap (1) contains a(1, 1), $a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on. Before entry with uplo $=$ 'L' or ' 1 ', the array ap must contain the lower triangular matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on. When diag = 'U' or 'u', the diagonal elements of a are not referenced, but are assumed to be unity.

REAL for stpsv
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for $z t p s v$
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$.
Before entry, the incremented array x must contain the n-element right-hand side vector b.
incx INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

Output Parameters

$x \quad$ Overwritten with the solution vector x.

?trmv

Computes a matrix-vector product using
a triangular matrix.

```
call strmv ( uplo, trans, diag, n, a, lda, x, incx )
call dtrmv ( uplo, trans, diag, n, a, lda, x, incx )
call ctrmv ( uplo, trans, diag, n, a, lda, x, incx )
call ztrmv ( uplo, trans, diag, n, a, lda, x, incx )
```


Discussion

The ?trmv routines perform one of the following matrix-vector operations defined as

```
x := a*x or x := a'*x or x := conjg(a')*x,
```

where:
x is an n-element vector
a is an n by n unit, or non-unit, upper or lower triangular matrix.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Input Parameters

uplo

CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular matrix, as follows:

uplo value	Matrix a
U or u	An upper triangular matrix.
L or l	A lower triangular matrix.
trans	CHARACTER*1. Specifies the operation to be performed, as follows:
trans value	Operation To Be Performed
N or n	$x:=a^{*} x$
T or t	$x:=a^{\prime *} x$
C or c	$x:=\operatorname{conjg}\left(a^{\prime}\right) *_{x}$

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value	Matrix a
U or u	Matrix a is assumed to be unit triangular.
N or n	Matrix a is not assumed to be unit triangular.

n
INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
a
REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for $z t r m v$
Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of a is not referenced. Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array a must
contain the lower triangular matrix and the strictly upper triangular part of a is not referenced. When diag = 'U' or 'u', the diagonal elements of a are not referenced either, but are assumed to be unity.

Ida INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of $I d a$ must be at least max $(1, n)$.

REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for $z t r m v$
Array, DIMENSION at least $(1+(n-1)$ *abs (incx)). Before entry, the incremented array x must contain the n-element vector x.
INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

Output Parameters

Overwritten with the transformed vector x.

?trsv

Solves a system of linear equations whose coefficients are in a triangular matrix.

```
call strsv ( uplo, trans, diag, n, a, lda, x, incx )
call dtrsv ( uplo, trans, diag, n, a, lda, x, incx )
call ctrsv ( uplo, trans, diag, n, a, lda, x, incx )
call ztrsv ( uplo, trans, diag, n, a, lda, x, incx )
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Discussion

The?trsv routines solve one of the systems of equations:

```
a*x = b or a'*x = b, or conjg(a')*x = b,
```

where:
b and x are n-element vectors
a is an n by n unit, or non-unit, upper or lower triangular matrix.
The routine does not test for singularity or near-singularity. Such tests must be performed before calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular matrix, as follows:

uplo value	Matrix a
U or u	An upper triangular matrix.
L or l	A lower triangular matrix.

trans CHARACTER*1. Specifies the operation to be performed, as follows:

trans value	Operation To Be Performed
N or n	$a^{*} X=b$
T or t	$a^{\prime} \star_{X}=b$
C or c	$\operatorname{Conjg}\left(a^{\prime}\right) \star_{X}=b$
diag	CHARACTER*1. Specifies whether or not a is unit triangular, as follows:
diag value	Matrix a
U or u	Matrix a is assumed to be unit triangular.
N or n	Matrix a is not assumed to be unit triangular.

n
INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for $z t r s v$
Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of a is not referenced. Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of a is not referenced. When diag $=I^{\prime} U^{\prime}$ or ' u ', the diagonal elements of a are not referenced either, but are assumed to be unity.
integer. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least $\max (1, n)$.

REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for $z t r s v$
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element right-hand side vector b.
integer. Specifies the increment for the elements of x. The value of incx must not be zero.

Output Parameters

x

Overwritten with the solution vector x.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

BLAS Level 3 Routines

BLAS Level 3 routines perform matrix-matrix operations. Table 2-3 lists the BLAS Level 3 routine groups and the data types associated with them.

Table 2-3 BLAS Level 3 Routine Groups and Their Data Types
$\left.\begin{array}{lll}\begin{array}{l}\text { Routine } \\ \text { Group }\end{array} & \begin{array}{l}\text { Data } \\ \text { Types }\end{array} & \text { Description } \\ ? \text { ?gemm } & \mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\end{array}\right)$ Matrix-matrix product of general matrices.

Symmetric Multiprocessing Version of Intel ${ }^{\circledR}$ MKL

Many applications spend considerable time for executing BLAS level 3 routines. This time can be scaled by the number of processors available on the system through using the symmetric multiprocessing (SMP) feature built into the Intel MKL Library. The performance enhancements based on the parallel use of the processors are available without any programming effort on your part.
To enhance performance, the library uses the following methods:

- The operation of BLAS level 3 matrix-matrix functions permits to restructure the code in a way which increases the localization of data reference, enhances cache memory use, and reduces the dependency on the memory bus.
- Once the code has been effectively blocked as described above, one of the matrices is distributed across the processors to be multiplied by the second matrix. Such distribution ensures effective cache management which reduces the dependency on the memory bus performance and brings good scaling results.

?gemm

Computes a scalar-matrix-matrix product and adds the result to a scalar-matrix product.

```
call sgemm ( transa, transb, m, n, k, alpha, a, lda,
    b, ldb, beta, c, ldc )
call dgemm ( transa, transb, m, n, k, alpha, a, lda,
    b, ldb, beta, c, ldc )
call cgemm ( transa, transb, m, n, k, alpha, a, lda,
    b, ldb, beta, c, ldc )
call zgemm ( transa, transb, m, n, k, alpha, a, lda,
    b, ldb, beta, c, ldc )
```


Discussion

The ? gemm routines perform a matrix-matrix operation with general matrices. The operation is defined as

```
c := alpha*op (a)*op(b) + beta*C,
```

where:
$o p(x)$ is one of $o p(x)=x$ or $o p(x)=x^{\prime}$ or op $(x)=\operatorname{conjg}\left(x^{\prime}\right)$,
alpha and bet a are scalars
a, b and c are matrices:
$o p(a)$ is an m by k matrix
op (b) is a k by n matrix
c is an m by n matrix.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Input Parameters

transa

CHARACTER*1. Specifies the form of op (a) to be used in the matrix multiplication as follows:

transa value	Form of op (a)
N or n	op $(a)=a$
T or t	op $(a)=a^{\prime}$
C or c	op $(a)=\operatorname{conjg}\left(a^{\prime}\right)$

transb
CHARACTER*1. Specifies the form of op (b) to be used in the matrix multiplication as follows:

transb value	Form of op (b)
N or n	op $(b)=b$
T or t	op $(b)=b^{\prime}$
C or c	op $(b)=\operatorname{conjg}\left(b^{\prime}\right)$

INTEGER. Specifies the number of rows of the matrix op (a) and of the matrix c. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (b) and the number of columns of the matrix c. The value of n must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (a) and the number of rows of the matrix op (b). The value of k must be at least zero.
alpha
REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Specifies the scalar alpha.

REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Array, DIMENSION (Ida, $k a$), where $k a$ is k when transa $=$ ' N ' or ' n ', and is m otherwise. Before entry with transa $=$ ' N ' or ' n ', the leading m by k part of the array a must contain the matrix a, otherwise the leading k by m part of the array a must contain the matrix a.
INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When transa $=$ ' N ' or ' n ', then Ida must be at least max $(1, m)$, otherwise lda must be at least max $(1, k)$.

REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Array, DIMENSION ($I d b, k b$), where $k b$ is n when transb $=$ ' N ' or ' n ', and is k otherwise. Before entry with transb $=$ ' N ' or ' n ', the leading k by n part of the array b must contain the matrix b, otherwise the leading n by k part of the array b must contain the matrix b.
integer. Specifies the first dimension of b as declared in the calling (sub)program. When transb $=$ ' N ' or ' n ', then 1 db must be at least max $(1, k)$, otherwise $1 d b$ must be at least $\max (1, n)$.

REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Specifies the scalar beta. When beta is supplied as zero, then c need not be set on input.

c	REAL for sgemm
	DOUBLE PRECISION for dgemm
	COMPLEX for cgemm
	DOUBLE COMPLEX for zgemm
	Array, DIMENSION ($I d c, n$). Before entry, the leading m by n part of the array c must contain the matrix c, except when beta is zero, in which case c need not be set on entry.
$1 d c$	INTEGER. Specifies the first dimension of c as declared in the calling (sub)program. The value of $I d c$ must be at least $\max (1, m)$.

Output Parameters

Overwritten by the m by n matrix (alpha*op (a)*op (b) + beta*c).

?hemm

Computes a scalar-matrix-matrix product (either one of the matrices is Hermitian) and adds the result to scalar-matrix product.

```
call chemm ( side, uplo, m, n, alpha, a, lda, b,
    ldb, beta, c, ldc )
call zhemm ( side, uplo, m, n, alpha, a, lda, b,
    ldb, beta, c, ldc )
```


Discussion

The ?hemm routines perform a matrix-matrix operation using Hermitian matrices. The operation is defined as

```
c := alpha*a*b + beta*c
or
```

```
c := alpha*b*a + beta*c,
```

where:
alpha and beta are scalars
a is an Hermitian matrix
b and c are m by n matrices.
Input Parameters
side CHARACTER*1. Specifies whether the Hermitian matrix a appears on the left or right in the operation as follows:

side value	Operation To Be Performed
L or l	$C:=a l p h a * a * b+b e t a{ }^{*} C$
R or r	$C:=a l p h a * b * a+b e t a * C$

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian matrix a is to be referenced as follows:

uplo value	Part of Matrix a To Be Referenced
U or u	Only the upper triangular part of the Hermitian matrix is to be referenced.
L or 1	Only the lower triangular part of the Hermitian matrix is to be referenced.

\(\left.\begin{array}{ll}m \& INTEGER. Specifies the number of rows of the matrix c .

The value of m must be at least zero.\end{array}\right\}\)| INTEGER. Specifies the number of columns of the |
| :--- |
| matrix c. The value of n must be at least zero. |

Specifies the scalar alpha.

COMP LEX for chemm
DOUBLE COMPLEX for zhemm
Array, DIMENSION (Ida, $k a$), where $k a$ is m when side = 'L' or 'l' and is n otherwise. Before entry with side = 'L' or 'l', the m by m part of the array a must contain the Hermitian matrix, such that when uplo = 'U' or 'u', the leading m by m upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of a is not referenced, and when uplo = 'L' or ' 1 ', the leading m by m lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix, and the strictly upper triangular part of a is not referenced. Before entry with side $=$ ' R ' or 'r', the n by n part of the array a must contain the Hermitian matrix, such that when uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of a is not referenced, and when uplo = 'L' or ' 1 ', the leading n by n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix, and the strictly upper triangular part of a is not referenced. The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling (sub) program. When side = 'L' or 'l' then Ida must be at least max $(1, m)$, otherwise Ida must be at least max $(1, n)$.

COMPLEX for chemm DOUBLE COMPLEX for zhemm

Array, DIMENSION ($I \mathrm{db}, n$). Before entry, the leading m by n part of the array b must contain the matrix b.
INTEGER. Specifies the first dimension of b as declared in the calling (sub)program. The value of 1 db must be at least max $(1, m)$.

beta	COMPLEX for chemm
DOUBLE COMPLEX for zhemm	
Specifies the scalar beta. When beta is supplied as	
zero, then c need not be set on input.	
COMPLEX for chemm	
	DOUBLE COMPLEX for zhemm
	Array, DIMENSION (c, n). Before entry, the leading m
by n part of the array c must contain the matrix c,	
	except when beta is zero, in which case c need not be
set on entry.	
$I d c \quad$	INTEGER. Specifies the first dimension of c as declared
	in the calling $($ sub $)$ program. The value of $I d c$ must be at
least max $(1, m)$.	

Output Parameters

Overwritten by the m by n updated matrix.

?herk

Performs a rank-n update of a

Hermitian matrix.

```
call cherk ( uplo, trans, n, k, alpha, a, lda, beta, c,
    ldc )
call zherk ( uplo, trans, n, k, alpha, a, lda, beta, c,
    Idc )
```


Discussion

The ?herk routines perform a matrix-matrix operation using Hermitian matrices. The operation is defined as

```
c := alpha*a*conjg(a') + beta*C,
or
c := alpha*conjg(a')*a + beta*C,
```

where:
alpha and beta are real scalars
c is an n by n Hermitian matrix
a is an n by k matrix in the first case and $a k$ by n matrix in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the array c is to be referenced as follows:

up 10 value	Part of Array C To Be Referenced
U or u	Only the upper triangular part of C is to be referenced.
L or 1	Only the lower triangular part of C is to be referenced.

trans CHARACTER*1. Specifies the operation to be performed as follows:

trans value	Operation to be Performed
N or n	c: = alpha*a*conjg (a') +beta* C
c or c	$c:=a l p h a * c o n j g\left(a^{\prime}\right) * a+b e t a * c$

n
integer. Specifies the order of the matrix c. The value of n must be at least zero.
k
INTEGER. With trans = 'n' or 'n', k specifies the number of columns of the matrix a, and with trans = 'C' or 'c', k specifies the number of rows of the matrix a. The value of k must be at least zero.
alpha
REAL for cherk
DOUBLE PRECISION for zherk
Specifies the scalar alpha.

COMP LEX for cherk
DOUBLE COMPLEX for zherk
Array, DIMENSION (Ida, $k a$), where $k a$ is k when trans $=$ ' N ' or ' n ', and is n otherwise. Before entry with trans = 'N' or ' n ', the leading n by k part of the array a must contain the matrix a, otherwise the leading k by n part of the array a must contain the matrix a.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When trans = 'N' or 'n', then 1 da must be at least $\max (1, n)$, otherwise $1 d a$ must be at least max ($1, k$).

```
REAL for cherk
```

DOUBLE PRECISION for zherk

Specifies the scalar beta.
COMPLEX for cherk
DOUBLE COMPLEX for zherk
Array, DIMENSION (Idc,n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array c must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of c is not referenced.

Before entry with uplo = ' L ' or ' 1 ', the leading n by n lower triangular part of the array c must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of c is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

INTEGER. Specifies the first dimension of c as declared in the calling (sub)program. The value of $I d c$ must be at least $\max (1, n)$.

Output Parameters

With uplo= 'U' or 'u', the upper triangular part of the array c is overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or ' 1 ', the lower triangular part of the array c is overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.

?her2k

Performs a rank-2k update of a
Hermitian matrix.

```
call cher2k ( uplo, trans, n, k, alpha, a, lda, b, ldb,
        beta, c, ldc )
call zher2k ( uplo, trans, n, k, alpha, a, lda, b, ldb,
    beta, c, ldc )
```


Discussion

The ?her 2 k routines perform a rank-2k matrix-matrix operation using Hermitian matrices. The operation is defined as

```
c:= alpha*a*conjg(b') + conjg(alpha)*b*conjg(a') + beta*c,
``` or
\(c:=a l p h a * \operatorname{conjg}\left(b^{\prime}\right) * a+\operatorname{conjg}(a l p h a) * \operatorname{conjg}\left(a^{\prime}\right) * b+b e t a * c\), where:
alpha is a scalar and beta is a real scalar
\(c\) is an \(n\) by \(n\) Hermitian matrix
\(a\) and \(b\) are \(n\) by \(k\) matrices in the first case and \(k\) by \(n\) matrices in the second case.

\section*{Input Parameters}
\begin{tabular}{ll}
uplo & CHARACTER*1. Specifies whether the upper or lower \\
triangular part of the array \(c\) is to be referenced as \\
follows:
\end{tabular}
\begin{tabular}{ll}
\hline uplo value & Part of Array \(C\) To Be Referenced \\
\hline U or \(u\) & \begin{tabular}{l}
Only the upper triangular part of \(C\) is to be \\
referenced.
\end{tabular} \\
L or \(l\) & \begin{tabular}{l}
Only the lower triangular part of \(C\) is to be \\
referenced.
\end{tabular} \\
\hline
\end{tabular}
trans CHARACTER*1. Specifies the operation to be performed as follows:
\begin{tabular}{|c|c|}
\hline trans value & Operation to be Performed \\
\hline N or n & \[
\begin{aligned}
c:= & a l p h a \star a * \operatorname{conjg}\left(b^{\prime}\right) \\
& +a l p h a * b * \operatorname{conjg}\left(a^{\prime}\right)+b e t a * c
\end{aligned}
\] \\
\hline C or c & \[
\begin{aligned}
c:= & a l p h a \star \operatorname{conjg}\left(a^{\prime}\right) \star b \\
& +a l p h a^{\star} \operatorname{conjg}\left(b^{\prime}\right) \star a+b e t a^{*} c
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(n\) & integer. Specifies the order of the matrix \(c\). The value of \(n\) must be at least zero. \\
\hline k & INTEGER. With trans = 'N' or ' \(n\) ', \(k\) specifies the number of columns of the matrix \(a\), and with trans \(=\) ' C' or ' \(c\) ', \(k\) specifies the number of rows of the matrix \(a\). The value of \(k\) must be at least zero. \\
\hline alpha & \begin{tabular}{l}
COMPLEX for cher2k \\
DOUBLE COMPLEX for zher2k
\end{tabular} \\
\hline & Specifies the scalar alpha. \\
\hline
\end{tabular}

COMP LEX for cher 2 k
DOUBLE COMP LEX for zher \(2 k\)
Array, DIMENSION (Ida, ka), where \(k a\) is \(k\) when trans \(=\) ' \(N\) ' or ' \(n\) ', and is \(n\) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\) by \(k\) part of the array a must contain the matrix \(a\), otherwise the leading \(k\) by \(n\) part of the array a must contain the matrix \(a\).
integer. Specifies the first dimension of a as declared in the calling (sub)program. When trans = ' N ' or ' n ', then Ida must be at least \(\max (1, n)\), otherwise Ida must be at least max \((1, k)\).

REAL for cher \(2 k\)
DOUBLE PRECISION for zher2k
Specifies the scalar beta.
COMP LEX for cher 2 k
DOUBLE COMPLEX for zher 2 k
Array, DIMENSION (\(1 d b, k b\)), where \(k b\) is \(k\) when trans \(=\) ' \(N\) ' or ' \(n\) ', and is \(n\) otherwise. Before entry with trans = 'N' or ' \(n\) ', the leading \(n\) by \(k\) part of the array \(b\) must contain the matrix \(b\), otherwise the leading \(k\) by \(n\) part of the array \(b\) must contain the matrix \(b\).

INTEGER. Specifies the first dimension of \(b\) as declared in the calling (sub)program. When trans = 'N' or 'n', then \(1 d b\) must be at least \(\max (1, n)\), otherwise \(I d b\) must be at least max \((1, k)\).

COMPLEX for cher \(2 k\)
DOUBLE COMPLEX for zher \(2 k\)
Array, DIMENSION (\(I d c, n\)). Before entry with uplo = 'U' or 'u', the leading \(n\) by \(n\) upper triangular part of the array \(c\) must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(c\) is not referenced.

Before entry with uplo = 'L' or 'l', the leading \(n\) by \(n\) lower triangular part of the array \(c\) must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of \(c\) is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

INTEGER. Specifies the first dimension of \(c\) as declared in the calling (sub)program. The value of \(I d c\) must be at least \(\max (1, n)\).

\section*{Output Parameters}

With uplo = 'U' or 'u', the upper triangular part of the array \(c\) is overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', the lower triangular part of the array \(c\) is overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.

\section*{?symm}

Performs a scalar-matrix-matrix product (one matrix operand is symmetric) and adds the result to a scalar-matrix product.
```

call ssymm ( side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc )
call dsymm ( side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, Idc )
call csymm ( side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, Idc )
call zsymm ( side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc )

```

\section*{Discussion}

The ?symm routines perform a matrix-matrix operation using symmetric matrices. The operation is defined as
\(c:=a l p h a * a * b+b^{*} \operatorname{beta}^{*}\),
or
\(c:=a l p h a^{*} b^{*} a+b e t a{ }^{*} c\),
where:
alpha and beta are scalars
\(a\) is a symmetric matrix
\(b\) and \(c\) are \(m\) by \(n\) matrices.

\section*{Input Parameters}
\begin{tabular}{ll}
side & \begin{tabular}{l}
CHARACTER*1. Specifies whether the symmetric matrix \\
a appears on the left or right in the operation as follows:
\end{tabular} \\
\hline side value & Operation to be Performed \\
L or \(l\) & \(C:=a l p h a * a * b+b e t a * C\) \\
R or \(r\) & \(C:=a l p h a * b * a+b e t a * C\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the upper or lower \\
triangular part of the symmetric matrix \(a\) is to be \\
referenced as follows:
\end{tabular} \\
\hline uplo value & \begin{tabular}{l}
Part of Array a To Be Referenced
\end{tabular} \\
\hline L or u or l & \begin{tabular}{l}
Only the upper triangular part of the symmetric \\
matrix is to be referenced. \\
Only the lower triangular part of the symmetric \\
matrix is to be referenced.
\end{tabular}
\end{tabular}

INTEGER. Specifies the number of rows of the matrix \(c\). The value of \(m\) must be at least zero.

INTEGER. Specifies the number of columns of the matrix \(c\). The value of \(n\) must be at least zero.

REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Specifies the scalar alpha.
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, DIMENSION (Ida, ka), where \(k a\) is \(m\) when side = 'L' or 'l' and is \(n\) otherwise. Before entry with side = 'L' or 'l', the \(m\) by \(m\) part of the array \(a\) must contain the symmetric matrix, such that when
uplo = 'U' or 'u', the leading \(m\) by mupper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced, and when uplo = ' L' or ' \(l\) ', the leading \(m\) by \(m\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced.

Before entry with side \(=\) ' \(R\) ' or ' \(r\) ', the \(n\) by \(n\) part of the array a must contain the symmetric matrix, such that when uplo \(=\) ' \(U\) ' or ' \(u\) ', the leading \(n\) by \(n\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced, and when uplo = 'L' or 'l', the leading \(n\) by \(n\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced.
INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When side = 'L' or 'l' then Ida must be at least max \((1, m)\), otherwise 1 da must be at least max \((1, n)\).
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, DIMENSION (\(I \mathrm{db}, n\)). Before entry, the leading \(m\) by \(n\) part of the array \(b\) must contain the matrix \(b\).
INTEGER. Specifies the first dimension of b as declared in the calling (sub)program. The value of \(I d b\) must be at least \(\max (1, m)\).
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{beta} & REAL for ssymm \\
\hline & DOUBLE PRECISION for dsymm \\
\hline & COMPLEX for csymm \\
\hline & DOUBLE COMPLEX for zsymm \\
\hline & Specifies the scalar beta. When beta is supplied as zero, then \(c\) need not be set on input. \\
\hline \multirow[t]{5}{*}{c} & REAL for ssymm \\
\hline & DOUBLE PRECISION for dsymm \\
\hline & COMPLEX for csymm \\
\hline & DOUBLE COMPLEX for zsymm \\
\hline & Array, DIMENSION (\(I d c, n\)). Before entry, the leading \(m\) by \(n\) part of the array \(c\) must contain the matrix \(c\), except when beta is zero, in which case \(c\) need not be set on entry. \\
\hline \(1 d c\) & INTEGER. Specifies the first dimension of \(c\) as declared in the calling (sub)program. The value of \(I d c\) must be at least max \((1, m)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the \(m\) by \(n\) updated matrix.

\section*{?syrk}

Performs a rank-n update of a symmetric matrix.
```

call ssyrk ( uplo, trans, n, k, alpha, a, lda, beta, c,
ldc )
call dsyrk ( uplo, trans, n, k, alpha, a, lda, beta, c,
ldc )
call csyrk ( uplo, trans, n, k, alpha, a, lda, beta, c,
ldc )
call zsyrk ( uplo, trans, n, k, alpha, a, lda, beta, c,
ldc )

```

\section*{Discussion}

The ?syrk routines perform a matrix-matrix operation using symmetric matrices. The operation is defined as
\(c:=a l p h a^{\star} a^{\star} a^{\prime}+\) beta*\(c\),
or
c : = alpha*a'*a + beta*c,
where:
alpha and beta are scalars
\(c\) is an \(n\) by \(n\) symmetric matrix
a is an \(n\) by \(k\) matrix in the first case and a \(k\) by \(n\) matrix in the second case.

\section*{Input Parameters}
\begin{tabular}{ll}
uplo & CHARACTER*1. Specifies whether the upper or lower \\
triangular part of the array \(c\) is to be referenced as \\
follows:
\end{tabular}
\begin{tabular}{ll}
\hline uplo value & Part of Array \(C\) To Be Referenced \\
\hline U or u & \begin{tabular}{l}
Only the upper triangular part of \(c\) is to be \\
referenced.
\end{tabular} \\
L or 1 & \begin{tabular}{l}
Only the lower triangular part of \(c\) is to be \\
referenced.
\end{tabular}
\end{tabular}
trans CHARACTER*1. Specifies the operation to be performed as follows:
\begin{tabular}{|c|c|}
\hline trans value & Operation to be Performed \\
\hline N or n & \\
\hline T or \(t\) & \(c:=~ a l p h a * a ' * a ~+~ b e t a * c ~\) \\
\hline C or c & \(c:=a l p h a * a ' * a+b e t a * c\) \\
\hline
\end{tabular}
\(n \quad\) INTEGER. Specifies the order of the matrix \(c\). The value of \(n\) must be at least zero.
\(k \quad\) integer. On entry with trans = 'n' or 'n', \(k\) specifies the number of columns of the matrix \(a\), and on entry with trans = 'T' or 't' or 'C' or 'c', \(k\) specifies the number of rows of the matrix \(a\). The value of \(k\) must be at least zero.
```

alpha REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

```

Specifies the scalar alpha.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Array, DIMENSION (Ida, \(k a\)), where \(k a\) is \(k\) when trans = 'N' or 'n', and is \(n\) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\) by \(k\) part of the array a must contain the matrix \(a\), otherwise the leading \(k\) by \(n\) part of the array a must contain the matrix \(a\).

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When trans = 'N' or 'n', then Ida must be at least max \((1, n)\), otherwise Ida must be at least max \((1, k)\).

REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Specifies the scalar beta.
REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Array, DIMENSION (\(I d c, n\)). Before entry with uplo = 'U' or ' \(u\) ', the leading \(n\) by \(n\) upper triangular part of the array c must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(c\) is not referenced.
Before entry with uplo \(=\) 'L' or 'l', the leading \(n\) by \(n\) lower triangular part of the array \(c\) must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(c\) is not referenced.
INTEGER. Specifies the first dimension of \(c\) as declared in the calling (sub)program. The value of \(I d c\) must be at least max \((1, n)\).

\section*{Output Parameters}

With uplo = 'U' or 'u', the upper triangular part of the array \(c\) is overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', the lower triangular part of the array \(c\) is overwritten by the lower triangular part of the updated matrix.

\section*{?syr2k}

Performs a rank-2k update of a
symmetric matrix.
```

call ssyr2k ( uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc )
call dsyr2k ( uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc )
call csyr2k ( uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc )
call zsyr2k ( uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc )

```

\section*{Discussion}

The ?syr 2 k routines perform a rank- 2 k matrix-matrix operation using symmetric matrices. The operation is defined as
```

c := alpha*a*b' + alpha*b*a' + beta*c,

```
or
c := alpha*a'*b + alpha*b'*a + beta*c,
where:
alpha and beta are scalars
\(c\) is an \(n\) by \(n\) symmetric matrix
\(a\) and \(b\) are \(n\) by \(k\) matrices in the first case and \(k\) by \(n\) matrices in the second case.

\section*{Input Parameters}
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the array \(c\) is to be referenced as follows:
\begin{tabular}{ll}
\hline up \(\perp\) value & Part of Array \(C\) To Be Referenced \\
\hline\(U\) or \(u\) & \begin{tabular}{l}
Only the upper triangular part of \(c\) is to be \\
referenced.
\end{tabular} \\
L or \(I\) & \begin{tabular}{l}
Only the lower triangular part of \(c\) is to be \\
referenced.
\end{tabular} \\
\hline
\end{tabular}
trans CHARACTER*1. Specifies the operation to be performed as follows:
\begin{tabular}{|c|c|}
\hline trans value & Operation to be Performed \\
\hline N or \(n\) & \(c:=~ a l p h a * a * b '+a l p h a * b^{*} a^{\prime}+\) beta* \(c\) \\
\hline T or \(t\) & \(c:=a l p h a * a{ }^{\prime}{ }^{\text {b }}\) +alpha* \({ }^{\prime}{ }^{*} a+\) beta* \(C\) \\
\hline C or c & c:= alpha*a'*b+alpha*b'*a+beta* \(C\) \\
\hline
\end{tabular}
n
\(k \quad\) integer. On entry with trans = 'n' or ' \(n\) ', \(k\) specifies the number of columns of the matrices \(a\) and \(b\), and on entry with trans \(=\) ' \(T\) ' or ' \(t\) ' or ' C ' or ' c ', \(k\) specifies the number of rows of the matrices \(a\) and \(b\). The value of \(k\) must be at least zero.
alpha
integer. Specifies the order of the matrix \(c\). The value of \(n\) must be at least zero.

REAL for ssyr \(2 k\)

DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Specifies the scalar alpha.
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{a} & REAL for ssyr 2 k \\
\hline & DOUBLE PRECISION for dsyr2k \\
\hline & COMPLEX for csyr \(2 k\) \\
\hline & DOUBLE COMPLEX for zsyr2k \\
\hline & Array, DIMENSION (Ida, ka), where \(k a\) is \(k\) when trans \(=\) ' \(N\) ' or ' \(n\) ', and is \(n\) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\) by \(k\) part of the array a must contain the matrix \(a\), otherwise the leading \(k\) by \(n\) part of the array a must contain the matrix \(a\). \\
\hline Ida & integer. Specifies the first dimension of a as declared in the calling (sub)program. When trans = 'N' or 'n', then Ida must be at least max \((1, n)\), otherwise 1 da must be at least max (\(1, k\)). \\
\hline \multirow[t]{5}{*}{b} & REAL for ssyr 2 k \\
\hline & DOUBLE PRECISION for dsyr 2 k \\
\hline & COMPLEX for csyr 2 k \\
\hline & DOUBLE COMPLEX for zsyr2k \\
\hline & Array, DIMENSION (\(1 \mathrm{db}, \mathrm{kb}\)) where \(k b\) is \(k\) when trans \(=\) ' \(N\) ' or ' \(n\) ' and is ' \(n\) ' otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\) by \(k\) part of the array \(b\) must contain the matrix \(b\), otherwise the leading \(k\) by \(n\) part of the array \(b\) must contain the matrix \(b\). \\
\hline 1 db & INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When trans \(=\) ' \(N\) ' or ' \(n\) ', then \(I d b\) must be at least max \((1, n)\), otherwise \(I d b\) must be at least max \((1, k)\). \\
\hline \multirow[t]{4}{*}{beta} & REAL for ssyr 2 k \\
\hline & DOUBLE PRECISION for dsyr2k \\
\hline & COMPLEX for csyr2k \\
\hline & DOUBLE COMPLEX for zsyr2k \\
\hline
\end{tabular}

Specifies the scalar beta.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?trmm}

Computes a scalar-matrix-matrix product (one matrix operand is triangular).
```

call strmm ( side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb )
call dtrmm ( side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb )
call ctrmm ( side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb )
call ztrmm ( side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb )

```

\section*{Discussion}

The ?t rmm routines perform a matrix-matrix operation using triangular matrices. The operation is defined as
```

b := alpha*op(a)*b

```
or
b : = alpha*b*op (a)
where:
alpha is a scalar
\(b\) is an \(m\) by \(n\) matrix
\(a\) is a unit, or non-unit, upper or lower triangular matrix
\(o p(a)\) is one of \(o p(a)=a\) or \(o p(a)=a^{\prime}\) or op \((a)=\operatorname{conjg}\left(a^{\prime}\right)\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}

\author{
side
}

CHARACTER*1. Specifies whether op (a) multiplies b from the left or right in the operation as follows:
\begin{tabular}{ll}
\hline side value & Operation To Be Performed \\
\hline L or \(I\) & \(b:=a l p h a * o p(a) * b\) \\
R or \(r\) & \(b:=a l p h a * b * o p(a)\) \\
\hline
\end{tabular}
uplo CHARACTER*1. Specifies whether the matrix \(a\) is an upper or lower triangular matrix as follows:
\begin{tabular}{ll}
\hline uplo value & Matrix \(a\) \\
\hline U or \(u\) & Matrix \(a\) is an upper triangular matrix. \\
L or I & Matrix \(a\) is a lower triangular matrix. \\
\hline
\end{tabular}
transa CHARACTER*1. Specifies the form of op (a) to be used in the matrix multiplication as follows:
\begin{tabular}{ll}
\hline transa value & Form of op \((a)\) \\
\hline N or \(n\) & op \((a)=a\) \\
T or \(t\) & \(o p(a)=a^{\prime}\) \\
C or \(C\) & op \((a)=\operatorname{conjg}\left(a^{\prime}\right)\) \\
\hline
\end{tabular}
diag CHARACTER*1. Specifies whether or not \(a\) is unit triangular as follows:
\begin{tabular}{ll}
\hline diag value & Matrix \(a\) \\
\hline U or u & Matrix \(a\) is assumed to be unit triangular. \\
N or n & Matrix \(a\) is not assumed to be unit triangular. \\
\hline
\end{tabular}
m
Integer. Specifies the number of rows of \(b\). The value of \(m\) must be at least zero.
n
integer. Specifies the number of columns of \(b\). The value of \(n\) must be at least zero.
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{alpha} & REAL for strmm \\
\hline & DOUBLE PRECISION for dtrmm \\
\hline & COMPLEX for ctrmm \\
\hline & DOUBLE COMPLEX for ztrmm \\
\hline & Specifies the scalar alpha. When alpha is zero, then a is not referenced and \(b\) need not be set before entry. \\
\hline \multirow[t]{6}{*}{a} & REAL for strmm \\
\hline & DOUBLE PRECISION for dtrmm \\
\hline & COMPLEX for ctrmm \\
\hline & DOUBLE COMPLEX for ztrmm \\
\hline & Array, DIMENSION (\(I d a, k\)), where \(k\) is \(m\) when side \(=\) 'L' or 'l' and is \(n\) when side = 'R' or 'r'. Before entry with uplo \(=\) ' U' or 'u', the leading \(k\) by \(k\) upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of a is not referenced. \\
\hline & Before entry with uplo = 'L' or 'l', the leading \(k\) by lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of \(a\) is not referenced. When diag = 'U' or 'u', the diagonal elements of \(a\) are not referenced either, but are assumed to be unity. \\
\hline Ida & INTEGER. Specifies the first dimension of \(a\) as declared in the calling (sub)program. When side = 'L' or 'l', then Ida must be at least max \((1, m)\), when \(s i d e=' R '\) or ' \(r\) ', then \(1 d a\) must be at least max \((1, n)\). \\
\hline \multirow[t]{5}{*}{\(b\)} & REAL for strmm \\
\hline & DOUBLE PRECISION for dtrmm \\
\hline & COMPLEX for ctrmm \\
\hline & DOUBLE COMPLEX for ztrmm \\
\hline & Array, dimension (\(1 \mathrm{db}, \mathrm{n}\)). Before entry, the leading \(m\) by \(n\) part of the array \(b\) must contain the matrix \(b\). \\
\hline 1 db & integer. Specifies the first dimension of \(b\) as declared in the calling (sub)program. The value of 1 db must be at least max \((1, m)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

> b Overwritten by the transformed matrix.

\section*{?trsm}

Solves a matrix equation (one matrix operand is triangular).
```

call strsm ( side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb )
call dtrsm ( side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb )
call ctrsm ( side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb )
call ztrsm ( side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb )

```

\section*{Discussion}

The ? trsm routines solve one of the following matrix equations:
op (a) \({ }^{*} x=a l p h a * b\),
or
\(x^{\star} o p(a)=a l p h a^{*} b\),
where:
alpha is a scalar
\(x\) and \(b\) are \(m\) by \(n\) matrices
a is a unit, or non-unit, upper or lower triangular matrix
\(o p(a)\) is one of op(a) = a or op(a) = a' or
\(o p(a)=c o n j g(a ')\).
The matrix \(x\) is overwritten on \(b\).

\section*{Input Parameters}
\begin{tabular}{ll}
side & \begin{tabular}{l}
CHARACTER* 1 . Specifies whether op (a) appears on the \\
left or right of \(x\) for the operation to be performed as \\
follows:
\end{tabular} \\
\hline side value & Operation To Be Performed \\
L or 1 & \(\circ p(a) * X=a I_{p h a * b}\) \\
R or \(r\) & \(x^{*} \circ p(a)=a I_{p h a *}\)
\end{tabular}
uplo CHARACTER*1. Specifies whether the matrix \(a\) is an upper or lower triangular matrix as follows:
\begin{tabular}{ll}
\hline uplo value & Matrix \(a\) \\
\hline U or u & Matrix \(a\) is an upper triangular matrix. \\
L or l & Matrix \(a\) is a lower triangular matrix. \\
\hline
\end{tabular}
transa CHARACTER*1. Specifies the form of op (a) to be used in the matrix multiplication as follows:
\begin{tabular}{ll}
\hline transa value & Form of op \((a)\) \\
\hline N or \(n\) & op \((a)=a\) \\
T or \(t\) & op \((a)=a^{\prime}\) \\
C or \(C\) & op \((a)=\operatorname{conjg}\left(a^{\prime}\right)\) \\
\hline
\end{tabular}
diag CHARACTER*1. Specifies whether or not a is unit triangular as follows:
\begin{tabular}{ll}
\hline diag value & Matrix \(a\) \\
\hline U or u & Matrix \(a\) is assumed to be unit triangular. \\
N or n & Matrix \(a\) is not assumed to be unit triangular. \\
\hline
\end{tabular}
\(m\) INTEGER. Specifies the number of rows of \(b\). The value of \(m\) must be at least zero.

INTEGER. Specifies the number of columns of \(b\). The value of \(n\) must be at least zero.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for \(z t r s m\)
Specifies the scalar alpha. When alpha is zero, then a is not referenced and \(b\) need not be set before entry.
REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEXfor ztrsm
Array, DIMENSION (\(I d a, k\)), where \(k\) is \(m\) when side = 'L' or 'l' and is \(n\) when side = 'R' or 'r'. Before entry with uplo \(=\) ' U ' or ' \(u\) ', the leading \(k\) by \(k\) upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of \(a\) is not referenced.

Before entry with uplo \(=\) 'L' or 'l', the leading \(k\) by \(k\) lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of \(a\) is not referenced. When diag = 'U' or 'u', the diagonal elements of a are not referenced either, but are assumed to be unity.
integer. Specifies the first dimension of a as declared in the calling (sub)program. When side = 'L' or 'l', then Ida must be at least \(\max (1, m)\), when \(s i d e=' R '\) or ' \(r\) ', then \(I d a\) must be at least max \((1, n)\).

REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm
Array, DIMENSION (\(1 \mathrm{db}, n\)). Before entry, the leading \(m\) by \(n\) part of the array \(b\) must contain the right-hand side matrix \(b\).

INTEGER. Specifies the first dimension of \(b\) as declared in the calling (sub)program. The value of 1 db must be at least max (1, m).

\section*{Output Parameters}
b
Overwritten by the solution matrix \(x\).

\section*{Sparse BLAS Routines and Functions}

This section describes Sparse BLAS, an extension of BLAS Level 1 included in Intel \({ }^{\circledR}\) Math Kernel Library beginning with Intel MKL release 2.1. Sparse BLAS is a group of routines and functions that perform a number of common vector operations on sparse vectors stored in compressed form.
Sparse vectors are those in which the majority of elements are zeros. Sparse BLAS routines and functions are specially implemented to take advantage of vector sparsity. This allows you to achieve large savings in computer time and memory. If \(n z\) is the number of non-zero vector elements, the computer time taken by Sparse BLAS operations will be \(O(n z)\).

\section*{Vector Arguments in Sparse BLAS}

Compressed sparse vectors. Let a be a vector stored in an array, and assume that the only non-zero elements of a are the following:
\[
a\left(k_{1}\right), a\left(k_{2}\right), a\left(k_{3}\right) \ldots a\left(k_{n z}\right),
\]
where \(n z\) is the total number of non-zero elements in \(a\).
In Sparse BLAS, this vector can be represented in compressed form by two FORTRAN arrays, \(x\) (values) and indx (indices). Each array has \(n z\) elements:
\[
\begin{aligned}
& x(1)=a\left(k_{1}\right), x(2)=a\left(k_{2}\right), \ldots x(n z)=a\left(k_{n z}\right), \\
& \operatorname{indx}(1)=k_{1}, \operatorname{indx}(2)=k_{2}, \ldots \operatorname{indx}(n z)=k_{n z} .
\end{aligned}
\]

Thus, a sparse vector is fully determined by the triple (\(n z, x\), indx). If you pass a negative or zero value of \(n z\) to Sparse BLAS, the subroutines do not modify any arrays or variables.
Full-storage vectors. Sparse BLAS routines can also use a vector argument fully stored in a single FORTRAN array (a full-storage vector). If \(y\) is a full-storage vector, its elements must be stored contiguously: the first element in \(y(1)\), the second in \(y(2)\), and so on. This corresponds to an increment incy \(=1\) in BLAS Level 1. No increment value for full-storage vectors is passed as an argument to Sparse BLAS routines or functions.

\section*{Naming Conventions in Sparse BLAS}

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes that determine the data type involved: \(s\) and \(d\) for single- and doubleprecision real; c and z for single- and double-precision complex.
If a Sparse BLAS routine is an extension of a "dense" one, the subprogram name is formed by appending the suffix \(i\) (standing for indexed) to the name of the corresponding "dense" subprogram. For example, the Sparse BLAS routine saxpyi corresponds to the BLAS routine saxpy, and the Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

\section*{Routines and Data Types in Sparse BLAS}

Routines and data types supported in the Intel MKL implementation of Sparse BLAS are listed in Table 2-4.

Table 2-4 Sparse BLAS Routines and Their Data Types
\begin{tabular}{|c|c|c|}
\hline Routine/ Function & \begin{tabular}{l}
Data \\
Types
\end{tabular} & Description \\
\hline ? axpyi & s, d, c, z & Scalar-vector product plus vector (routines) \\
\hline ?doti & s, d & Dot product (functions) \\
\hline ?dotci & c, z & Complex dot product conjugated (functions) \\
\hline ?dotui & c, z & Complex dot product unconjugated (functions) \\
\hline ? gthr & s, d, c, z & Gathering a full-storage sparse vector into compressed form: \(n z\), \(x\), indx (routines) \\
\hline ?gthrz & s, d, c, z & Gathering a full-storage sparse vector into compressed form and assigning zeros to gathered elements in the full-storage vector (routines) \\
\hline ?roti & s, d & Givens rotation (routines) \\
\hline ?sctr & s, d, c, z & Scattering a vector from compressed form to full-storage form (routines) \\
\hline
\end{tabular}

\section*{BLAS Routines That Can Work With Sparse Vectors}

The following BLAS Level 1 routines will give correct results when you pass to them a compressed-form array \(x\) (with the increment incx \(=1\)):
?asum sum of absolute values of vector elements
?copy copying a vector
?nrm2 Euclidean norm of a vector
?scal scaling a vector
i?amax index of the element with the largest absolute value or, for complex flavors, the largest sum \(|\operatorname{Rex}(i)|+|\operatorname{Im} x(i)|\).
i?amin index of the element with the smallest absolute value or, for complex flavors, the smallest sum \(\left|\operatorname{Re}_{x}(i)\right|+|\operatorname{Im} x(i)|\). The result \(i\) returned by \(i\) ? amax and \(i\) ? amin should be interpreted as index in the compressed-form array, so that the largest (smallest) value is \(x(i)\); the corresponding index in full-storage array is indx (i).
You can also call ?rotg to compute the parameters of Givens rotation and then pass these parameters to the Sparse BLAS routines ?roti.

\section*{?axpyi}

Adds a scalar multiple of compressed sparse vector to a full-storage vector.
```

call saxpyi ( nz, a, x, indx, y )
call daxpyi ( nz, a, x, indx, y )
call caxpyi ( nz, a, x, indx, y )
call zaxpyi ( nz, a, x, indx, y )

```

\section*{Discussion}

The ?axpyi routines perform a vector-vector operation defined as
\(y:=a^{*} x+y\)
where:
a is a scalar
(\(n z, x\), indx) is a sparse vector stored in compressed form \(y\) is a vector in full storage form.

The ?axpyi routines reference or modify only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
```

nz INTEGER. The number of elements in }x\mathrm{ and indx.
a REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Specifies the scalar a.
x REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least nz.
indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.
REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least max i (indx(i)).

```

\section*{Output Parameters}

\section*{y}

Contains the updated vector \(y\).

\section*{?doti}

Computes the dot product of a compressed sparse real vector by a full-storage real vector.
```

res = sdoti ( nz, x, indx, y )
res = ddoti ( nz, x, indx, y )

```

\section*{Discussion}

The ?doti functions return the dot product of \(x\) and \(y\) defined as
```

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+x(nz)*y(indx(nz))

```
where the triple (\(n z, x\), indx) defines a sparse real vector stored in compressed form, and \(y\) is a real vector in full storage form. The functions reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n z\) & Integer. The number of elements in \(x\) and indx. \\
\hline \(x\) & REAL for sdoti \\
\hline & DOUBLE PRECISION for ddoti \\
\hline & Array, DIMENSION at least \(n z\). \\
\hline indx & INTEGER. Specifies the indices for the elements of \(x\). Array, DIMENSION at least \(n z\). \\
\hline y & REAL for sdoti \\
\hline & DOUBLE PRECISION for ddoti \\
\hline & Array, DIMENSION at least max \({ }_{\text {i }}(\mathrm{indx}(\mathrm{i})\)). \\
\hline Outpu & ters \\
\hline res & REAL for sdoti \\
\hline & DOUBLE PRECISION for ddoti \\
\hline & Contains the dot product of \(x\) and \(y\), if \(n z\) is positive. Otherwise, res contains 0 . \\
\hline
\end{tabular}

\section*{?dotci}

Computes the conjugated dot product of a compressed sparse complex vector with a full-storage complex vector.
```

res = cdotci ( nz, x, indx, y )
res = zdotci ( nz, x, indx, y )

```

\section*{Discussion}

The ? dotci functions return the dot product of \(x\) and \(y\) defined as
```

conjg(x(1))*y(indx(1)) + ... + conjg(x(nz))*y(indx(nz))

```
where the triple (\(n z, x\), indx) defines a sparse complex vector stored in compressed form, and \(y\) is a real vector in full storage form. The functions reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}

\section*{Output Parameters}
```

res COMPLEX for cdotci
DOUBLE COMPLEX for zdotci

```

Contains the conjugated dot product of \(x\) and \(y\), if \(n z\) is positive. Otherwise, res contains 0 .

\section*{?dotui}

Computes the dot product of a compressed sparse complex vector by a full-storage complex vector.
```

res = cdotui ( nz, x, indx, y )
res = zdotui ( nz, x, indx, y )

```

\section*{Discussion}

The ?dotui functions return the dot product of \(x\) and \(y\) defined as
```

x(1)*y(indx(1)) + x(2)*y(indx(2)) +···. . + x(nz)*y(indx(nz))

```
where the triple \((n z, x\), indx) defines a sparse complex vector stored in compressed form, and \(y\) is a real vector in full storage form. The functions reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
```

nz INTEGER. The number of elements in }x\mathrm{ and indx.
x COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least nz.
indx Integer. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.
y COMPLEX for cdotui
DOUBLE COMPLEXfor zdotui
Array, DIMENSION at least max (indx(i)).

```

\section*{Output Parameters}
```

res
COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Contains the dot product of }x\mathrm{ and }y\mathrm{ , if }nz\mathrm{ is positive.
Otherwise, res contains 0.

```

\section*{?gthr}

Gathers a full-storage sparse vector's elements into compressed form.
```

call sgthr ( nz, y, x, indx )
call dgthr ( nz, y, x, indx )
call cgthr ( nz, y, x, indx )
call zgthr ( nz, y, x, indx )

```

\section*{Discussion}

The ?gthr routines gather the specified elements of a full-storage sparse vector \(y\) into compressed form (\(n z, x\), indx). The routines reference only the elements of \(y\) whose indices are listed in the array indx:
```

x(i) = y(indx(i)), for i=1,2,...nz.

```

\section*{Input Parameters}
```

nz
INTEGER. The number of elements of y to be gathered.
indx IntEger. Specifies indices of elements to be gathered.
Array, DIMENSION at least nz.
y REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least max (indx(i)).

```

\section*{Output Parameters}
```

x
REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least nz
Contains the vector converted to the compressed form.

```

\section*{?gthrz}

Gathers a sparse vector's elements into compressed form, replacing them by zeros.
```

call sgthrz ( nz, y, x, indx )
call dgthrz ( nz, y, x, indx )
call cgthrz ( nz, y, x, indx )
call zgthrz ( nz, y, x, indx )

```

\section*{Discussion}

The ? gthrz routines gather the elements with indices specified by the array indx from a full-storage vector \(y\) into compressed form (\(n z, x\), indx) and overwrite the gathered elements of \(y\) by zeros. Other elements of \(y\) are not referenced or modified (see also ?gthr).

\section*{Input Parameters}
\(n z \quad\) INTEGER. The number of elements of \(y\) to be gathered.
indx INTEGER. Specifies indices of elements to be gathered. Array, DIMENSION at least \(n z\).
\(y \quad\) REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least max \(i_{i}(i n d x(i))\).

\section*{Output Parameters}
\(x\)
REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zg thrz
Array, DIMENSION at least \(n z\).
Contains the vector converted to the compressed form.
\(y \quad\) The updated vector \(y\).

\section*{?roti}

Applies Givens rotation to sparse vectors one of which is in compressed form.
```

call sroti ( nz, x, indx, y, c, s )
call droti ( nz, x, indx, y, c, s )

```

\section*{Discussion}

The ?roti routines apply the Givens rotation to elements of two real vectors, \(x\) (in compressed form \(n z, x\), indx) and \(y\) (in full storage form):
```

x(i) = c*x(i) + s*y(indx(i))
y(indx(i)) = c*y(indx(i)) - s*x(i)

```

The routines reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n z\) & INTEGER. The number of elements in \(x\) and indx. \\
\hline \multirow[t]{3}{*}{\(x\)} & REAL for sroti \\
\hline & DOUBLE PRECISION for droti \\
\hline & Array, DIMENSION at least \(n z\). \\
\hline indx & INTEGER. Specifies the indices for the elements of \(x\). Array, DIMENSION at least \(n z\). \\
\hline \multirow[t]{3}{*}{y} & REAL for sroti \\
\hline & DOUBLE PRECISION for droti \\
\hline & Array, DIMENSION at least \(\max _{i}(i n d x(i))\). \\
\hline \multirow[t]{2}{*}{c} & A scalar: REAL for sroti \\
\hline & DOUBLE PRECISION for droti. \\
\hline \multirow[t]{2}{*}{\(s\)} & A scalar: REAL for sroti \\
\hline & DOUBLE PRECISION for droti. \\
\hline
\end{tabular}

\section*{Output Parameters}
\(x\) and \(y\)
The updated arrays.

\section*{?sctr}

Converts compressed sparse vectors into full storage form.
```

call ssctr ( nz, x, indx, y )
call dsctr ( nz, x, indx, y )
call csctr ( }nz,x,indx, y
call zsctr ( nz, x, indx, y )

```

\section*{Discussion}

The ?sctr routines scatter the elements of the compressed sparse vector (\(n z, x\), indx) to a full-storage vector \(y\). The routines modify only the elements of \(y\) whose indices are listed in the array indx: \(y(i n d x(i))=x(i)\), for \(i=1,2, \ldots n z\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(n z\) & INTEGER. The number of elements of \(x\) to be scattered. \\
indx & INTEGER. Specifies indices of elements to be scattered. \\
\(x\) & Array, DIMENSION at least \(n z\). \\
& REAL for ssctr \\
& DOUBLE PRECISION for dsctr \\
& COMPLEX for csctr \\
& DOUBLE COMPLEX for zsctr \\
& Array, DIMENSION at least \(n z\). \\
& Contains the vector to be converted to full-storage form.
\end{tabular}

\section*{Output Parameters}

REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least \(\max _{i}\) (indx (i)).
Contains the vector \(y\) with updated elements.

\section*{Fast Fourier Transforms}

This chapter describes the fast Fourier transform (FFT) routines implemented in Intel \({ }^{\circledR}\) MKL. The FFT routines included consist of two classes: one-dimensional and two-dimensional. Both one-dimensional and two-dimensional routines have been optimized to effectively use cache memory. All routines work with transforms of a power of 2 length.
For a more general set of Discrete Fourier Transform functions in Intel MKL, refer to Advanced DFT Functions in this manual.
Although Intel MKL still supports the FFT interface described later in this chapter, users are encouraged to migrate to the new DFT functions in their application programs. Unlike the FFT routines, the DFT routines support transforms of up to 7D, and transform lengths of other than powers of 2 mixed radix.

This chapter contains these major sections:
- One-dimensional FFTs
- Two-dimensional FFTs

Each of the major sections contains the description of three groups of the FFTs.

\section*{One-dimensional FFTs}

The one-dimensional FFTs include the following groups:
- Complex-to-Complex Transforms
- Real-to-Complex Transforms
- Complex-to-Real Transforms.

All one-dimensional FFTs are in-place. The transform length must be a power of 2. The complex-to-complex transform routines perform both forward and inverse transforms of a complex vector. The real-to-complex transform routines perform forward transforms of a real vector. The complex-to-real transform routines perform inverse transforms of a complex conjugate-symmetric vector, which is packed in a real array.

\section*{Data Storage Types}

Each FFT group contains two sets of FFTs having the similar functionality: one set is used for the Fortran-interface and the other for the C-interface. The former set stores the complex data as a Fortran complex data type, while the latter stores the complex data as float arrays of real and imaginary parts separately. These sets are distinguished by naming the FFTs within each set. The names of the FFTs used for the C-interface have the letter "c" added to the end of the FFTs' Fortran names. For example, the names of the \(c f f t 1 d / z f f t 1 d\) FFTs for the corresponding C-interface routines are \(c f f t 1 d c / z f f t 1 d c\). All names of the C-type data items are lower case.
Table 3-1 lists the one-dimensional FFT routine groups and the data types associated with them.

Table 3-1 One-dimensional FFTs: Names and Data Types
\begin{tabular}{|c|c|c|c|c|}
\hline Group & Stored as Fortran Complex Data & \begin{tabular}{l}
Stored as C \\
Real Data
\end{tabular} & Data Types & Description \\
\hline Complex-toComplex & \[
\frac{\text { Cfftid/ }}{\text { zfft1d }}
\] & \[
\frac{\mathrm{cfftldc} /}{\text { zfftldc }}
\] & C, z & Transform complex data to complex data. \\
\hline Real-toComplex & \[
\frac{\text { scfft1d/ }}{\text { dzfft1d }}
\] & \begin{tabular}{l}
scfft1dc/ \\
dzfft1dc
\end{tabular} & sc, dz & Transform forward real-to-complex data. Complement csfftid/zdfftid and csfft1dc/zdfft1dc FFTs. \\
\hline Complex-to-Real & \[
\frac{\text { csfftid/ }}{\text { zdfft1d }}
\] & \[
\frac{\operatorname{csfft1dc/}}{\underline{z d f f t 1 d c}}
\] & cs, zd & Transform inverse complex-to-real data. Complement scfftid/dzfftid and scfft1dc/dzfft1dc FFTs. \\
\hline
\end{tabular}

\section*{Data Structure Requirements}

For C-interface, storage of the complex-to-complex transform routines data requires separate float arrays for the real and imaginary parts. The real-to-complex and complex-to-real pairs require a single float input/output array.
The C-interface requires scalar values to be passed by value.
All transforms require additional memory to store the transform coefficients. When performing multiple FFTs of the same dimension, the table of coefficients should be created only once and then used on all the FFTs afterwards. Using the same table rather than creating it repeatedly for each FFT produces an obvious performance gain.

\section*{Complex-to-Complex One-dimensional FFTs}

Each of the complex-to-complex routines computes a forward or inverse FFT of a complex vector.
The forward FFT is computed according to the mathematical equation
\[
z_{j}=\sum_{k=0}^{n-1} r_{k} * w^{-j * k}, \quad 0 \leq j \leq n-1
\]

The inverse FFT is computed according to the mathematical equation
\[
r_{j}=\frac{1}{n} \sum_{k=0}^{n-1} z_{k^{*} * w^{j * k}, \quad 0 \leq j \leq n-1}
\]
where \(\mathrm{w}=\exp \left[\frac{2 \pi i}{\mathrm{n}}\right], i\) being the imaginary unit.
The operation performed by the complex-to-complex routines is determined by the value of the isign parameter used by each of these routines. If isign \(=-1\), perform the forward FFT where input and output are in normal order.
If isign \(=+1\), perform the inverse FFT where input and output are in normal order.
If isign \(=-2\), perform the forward FFT where input is in normal order and output is in bit-reversed order.
If isign \(=+2\), perform the inverse FFT where input is in bit-reversed order
and output is in normal order.
If \(i\) sign \(=0\), initialize FFT coefficients for both the forward and inverse FFTs.
The above equations apply to all FFTs with all data types indicated in Table 3-1.
To compute a forward or inverse FFT of a given length, first initialize the coefficients by calling the function with isign \(=0\). Thereafter, any number of transforms of the same length can be computed by calling the function with isign \(=+1,-1,+2,-2\).

\section*{cfft1d/zfft1d}

\section*{Fortran-interface routines. Compute the forward} or inverse FFT of a complex vector (in-place)
```

call cfft1d ( r, n, isign, wsave )
call zfft1d ( r, n, isign, wsave )

```

\section*{Discussion}

The operation performed by the \(c f f t 1 \mathrm{~d} / \mathrm{zfft} 1 \mathrm{~d}\) routines is determined by the value of isign. See the equations of the operations for the Complex-to-Complex One-dimensional FFTs above.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\(r\)} & COMPLEX for cfftid \\
\hline & DOUBLE COMPLEX for zfftid \\
\hline & Array, DIMENSION at least (\(n\)). Contains the complex vector on which the transform is to be performed. Not referenced if isign \(=0\). \\
\hline \(n\) & INTEGER. Transform length; \(n\) must be a power of 2 . \\
\hline isign & INTEGER. Flag indicating the type of operation to be performed: \\
\hline & if isign \(=0\), initialize the coefficients wsave; \\
\hline
\end{tabular}
if isign=-1, perform the forward FFT where input and output are in normal order; if isign \(=+1\), perform the inverse FFT where input and output are in normal order; if isign \(=-2\), perform the forward FFT where input is in normal order and output is in bit-reversed order; if isign \(=+2\), perform the inverse FFT where input is in bit-reversed order and output is in normal order.
wsave COMPLEX for cfftld
DOUBLE COMPLEX for \(z f f t 1 d\)
Array, DIMENSION at least \(((3 * n) / 2)\). If isign \(=0\), then wsave is an output parameter. Otherwise, wsave contains the FFT coefficients initialized on a previous call with isign \(=0\).

\section*{Output Parameters}

Contains the complex result of the transform depending on isign. Does not change if isign \(=0\).
wsave If isign = 0, wsave contains the initialized FFT coefficients. Otherwise, wsave does not change.

\section*{cfft1dc/zfft1dc}
\(C\)-interface routines. Compute the forward or inverse FFT of a complex vector (in-place).
```

void cfftldc (float* r, float* i, int n, int isign, float* wsave)
void zfftldc (double* r, double* i, int n, int isign, double* wsave)

```

\section*{Discussion}

The operation performed by the \(c f f t 1 \mathrm{dc} / \mathrm{zfft} 1 \mathrm{dc}\) routines is determined by the value of isign. See the equations of the operations for the Complex-to-Complex One-dimensional FFTs.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
float* for cfft1dc
double* for \(\mathrm{zfft1dc}\)
Pointer to an array of size at least \((n)\). Contains the real parts of complex vector to be transformed. Not referenced if isign \(=0\).
float* for cfftldc
double* for \(\mathrm{zfft1dc}\)
Pointer to an array of size at least \((n)\). Contains the imaginary parts of complex vector to be transformed.

Not referenced if isign \(=0\).
int. Transform length; \(n\) must be a power of 2 .
int. Flag indicating the type of operation to be performed:
if isign \(=0\), initialize the coefficients wsave; if isign=-1, perform the forward FFT where input and output are in normal order;
if isign \(=+1\), perform the inverse FFT where input and output are in normal order;
if isign \(=-2\), perform the forward FFT where input is in normal order and output is in bit-reversed order; if isign \(=+2\), perform the inverse FFT where input is in bit-reversed order and output is in normal order.
float* for cfftldc
double* for \(\mathrm{zfft1dc}\)
Pointer to an array of size at least \((3 * n)\). If isign \(=0\), then wsave is an output parameter. Otherwise, wsave contains the FFT coefficients initialized on a previous call with isign \(=0\).

\section*{Output Parameters}

\footnotetext{
\(r\)
Contains the real part of the transform depending on isign. Does not change if isign \(=0\).
}
i Contains the imaginary part of the transform depending on \(\quad\) isign.. Does not change if isign \(=0\).
wsave If isign = 0, wsave contains the initialized FFT coefficients. Otherwise, wsave does not change.

\section*{Real-to-Complex One-dimensional FFTs}

Each of the real-to-complex routines computes forward FFT of a real input vector according to the mathematical equation
\(z_{j}=\sum_{k=0}^{n-1} t_{k^{*}}-j * k, \quad 0 \leq j \leq n-1\)
for \(t_{k}=\operatorname{cmplx}\left(r_{k}, 0\right)\), where \(r_{k}\) is the real input vector, \(0 \leq k \leq n-1\). The mathematical result \(z_{j}, 0 \leq j \leq n-1\), is the complex conjugate-symmetric vector, where \(z(n / 2+i)=\operatorname{conjg}(z(n / 2-i)), 1 \leq i \leq n / 2-1\), and moreover \(z(0)\) and \(z(n / 2)\) are real values.
This complex conjugate-symmetric (CCS) vector can be stored in the complex array of size \((n / 2+1)\) or in the real array of size \((n+2)\). The data storage of the CCS format is defined later for Fortran-interface and C-interface routines separately.

Table 3-2 shows a comparison of the effects of performing the cfft1d/ zfft1d complex-to-complex FFT on a vector of length \(n=8\) in which all the imaginary elements are zeros, with the real-to-complex scfft1d/zdfft1d FFT applied to the same vector. The advantage of the latter approach is that only half of the input data storage is required and there is no need to zero the imaginary part. The last two columns are stored in the real array of size (\(\mathrm{n}+2\)) containing the complex conjugate-symmetric vector in CCS format.

To compute a forward FFT of a given length, first initialize the coefficients by calling the routine you are going to use with isign \(=0\). Thereafter, any number of real-to-complex and complex-to-real transforms of the same length can be computed by calling that routine with the isign value other than 0.

Table 3-2 Comparison of the Storage Effects of Complex-to-Complex and Real-to-Complex FFTs
\begin{tabular}{c|c|c|c|c|c|c}
\hline \multicolumn{3}{c|}{ Input Vectors } & \multicolumn{4}{c}{ Output Vectors } \\
\hline cfft1d & scfft1d & \multicolumn{2}{c}{ cfft1d } & \multicolumn{2}{c}{ scfft1d } \\
\hline Complex Data & Real Data & \multicolumn{2}{c}{ Complex Data } & \multicolumn{2}{c}{ Real Data } \\
\hline Real & Imaginary & & Real & Imaginary & (Real) & (Imaginary) \\
\hline 0.841471 & 0.000000 & 0.841471 & 1.543091 & 0.000000 & 1.543091 & 0.000000 \\
\hline 0.909297 & 0.000000 & 0.909297 & 3.875664 & 0.910042 & 3.875664 & 0.910042 \\
\hline 0.141120 & 0.000000 & 0.141120 & -0.915560 & -0.397326 & -0.915560 & -0.397326 \\
\hline-0.756802 & 0.000000 & -0.756802 & -0.274874 & -0.121691 & -0.274874 & -0.121691 \\
\hline-0.958924 & 0.000000 & -0.958924 & -0.181784 & 0.000000 & -0.181784 & 0.000000 \\
\hline-0.279415 & 0.000000 & -0.279415 & -0.274874 & 0.121691 & & \\
\hline 0.656987 & 0.000000 & 0.656987 & -0.915560 & 0.397326 & & \\
\hline 0.989358 & 0.000000 & 0.989358 & 3.875664 & -0.910042 & & \\
\hline
\end{tabular}

\section*{scfft1d/dzfft1d}

\section*{Fortran-interface routines. Compute} forward FFT of a real vector and represent the complex conjugate-symmetric result in CCS format (in-place).
```

call scfftld ( r, n, isign, wsave )
call dzfftld ( r, n, isign, wsave )

```

\section*{Discussion}

The operation performed by the scfft \(1 d / d z f f t 1 d\) routines is determined by the value of isign. See the equations of the operations for Real-to-Complex One-dimensional FFTs above. These routines are complementary to the complex-to-real transform routines
```

csfft1d/zdfft1d.

```

\section*{Input Parameters}
```

r REAL for scfft1d
DOUBLE PRECISION for dzfft1d

```

Array, DIMENSION at least \((n+2)\). First \(n\) elements contain the input vector to be transformed. The elements \(r(n+1)\) and \(r(n+2)\) are used on output. The array \(r\) is not referenced if isign \(=0\).
\(n \quad\) INTEGER. Transform length; \(n\) must be a power of 2.
isign INTEGER. Flag indicating the type of operation to be performed:
if isign is 0 , initialize the coefficients wsave; if isign is not 0 , perform the forward FFT.
wsave REAL for scfftid
DOUBLE PRECISION for dzfftid
Array, DIMENSION at least \((2 * n+4)\). If isign \(=0\), then wsave contains output data. Otherwise, wsave contains coefficients required to perform the FFT that has been initialized on a previous call to this routine or the complementary complex-to-real FFT routine.

\section*{Output Parameters}

If isign \(=0, r\) does not change. If isign is not 0 , the output real-valued array \(r(1: n+2)\) contains the complex conjugate-symmetric vector \(z(1: n)\) packed in CCS format for Fortran interface.
The table below shows the relationship between them.
\begin{tabular}{|c|c|l|l|l|l|l|l|c|}
\hline\(r(1)\) & \(r(2)\) & \(r(3)\) & \(r(4)\) & \(\ldots\) & \(r(n-1)\) & \(r(n)\) & \(r(n+1)\) & \(r(n+2)\) \\
\hline\(z(1)\) & 0 & \(\operatorname{RE} z(2)\) & \(\operatorname{IM} z(2)\) & \(\ldots\) & \(\operatorname{RE} z(n / 2)\) & \(\operatorname{IM} z(n / 2)\) & \(z(n / 2+1)\) & 0 \\
\hline
\end{tabular}

The full complex vector \(z(1: n)\) is defined by
```

z(i) = cmplx(r(2*i-1), r(2*i)),
1 <i <n/2+1,
z(n/2+i) = conjg(z(n/2+2-i)),
2 \leqi\leqn/2.

```

Then, \(z(1: n)\) is the forward FFT of a real input vector \(r(1: n)\).
wsave If isign \(=0\), wsave contains the coefficients required by the called routine. Otherwise wsave does not change.

\section*{scfft1dc/dzfft1dc}

\section*{C-interface routines. Compute forward \\ FFT of a real vector and represent the \\ complex conjugate- \\ symmetric result in CCS format \\ (in-place).}
```

void scfftldc ( float* r, int n, int isign, float* wsave );
void dzfftldc ( double* r, int n, int isign, double* wsave );

```

\section*{Discussion}

The operation performed by the scfft1dc/dzfft1dc routines is determined by the value of isign. See the equations of the operations for the Real-to-Complex One-dimensional FFTs above.
These routines are complementary to the complex-to-real transform routines csfft1dc/zdfft1dc.

\section*{Input Parameters}
```

r float* for scfft1dc
double* for dzfft1dc

```

Pointer to an array of size at least \((n+2)\). First \(n\) elements contain the input vector to be transformed. The array \(r\) is not referenced if \(i s i g n=0\).
n
wsave
int. Transform length; \(n\) must be a power of 2 .
int. Flag indicating the type of operation to be performed:
if isign is 0 , initialize the coefficients wsave;
if \(i s i g n\) is not 0 , perform the forward FFT.
float* for scfft1dc
double* for dzfft 1 dc
Pointer to an array of size at least \((2 * n+4)\). If isign \(=0\), then wsave contains output data. Otherwise, wsave contains coefficients required to perform the FFT that has been initialized on a previous call to this routine or the complementary complex-to-real FFT routine.

\section*{Output Parameters}

If \(i\) sign \(=0, r\) does not change. If \(i \operatorname{sign}\) is not 0 , the output real-valued array \(r(0: n+1)\) contains the complex conjugate-symmetric vector \(z(0: n-1)\) packed in CCS format for C-interface.
The table below shows the relationship between them.
\begin{tabular}{|l|l|l|l|l|c|l|l|l|c|}
\hline\(r(0)\) & \(r(1)\) & \(r(2)\) & \(\ldots\) & \(r(n / 2)\) & \(r(n / 2+1)\) & \(r(n / 2+2)\) & \(\ldots\) & \(r(n)\) & \(r(n+1)\) \\
\hline\(z(0)\) & \(\operatorname{RE} z(1)\) & \(\operatorname{RE} z(2)\) & \(\ldots\) & \(z(n / 2)\) & 0 & \(\operatorname{IM} z(1)\) & \(\ldots\) & \(\operatorname{IM} z(n / 2-1)\) & 0 \\
\hline
\end{tabular}

The full complex vector \(z(0: n-1)\) is defined by
\(z(i)=\operatorname{cmplx}(r(i), r(n / 2+1+i)), 0 \leq i \leq n / 2\),
\(z(n / 2+i)=\operatorname{conjg}(z(n / 2-i)), \quad 1 \leq i \leq n / 2-1\). Then, \(z(0: n-1)\) is the forward FFT of the real input vector of length \(n\).
wsave If isign = 0, wsave contains the coefficients required by the called routine. Otherwise wsave does not change.

\section*{Complex-to-Real One-dimensional FFTs}

Each of the complex-to-real routines computes a one-dimensional inverse FFT according to the mathematical equation
\(t_{j}=\frac{1}{n} \sum_{k=0}^{n-1} z_{k} * w^{j * k}, \quad 0 \leq j \leq n-1\)
The mathematical input is the complex conjugate-symmetric vector \(z_{j}\), \(0 \leq j \leq n-1\), , where \(z(n / 2+i)=\operatorname{conjg}(z(n / 2-i)), 1 \leq i \leq n / 2-1\), and moreover \(z(0)\) and \(z(n / 2)\) are real values.
The mathematical result is \(t_{j}=\operatorname{cmplx}\left(r_{j}, 0\right)\), where \(r_{j}\) is a real vector, \(0 \leq j \leq n-1\).
Input to the complex-to-real transform routines is a real array of size \((n+2)\), which contains the complex conjugate-symmetric vector \(z(0: n-1)\) in CCS format (see Real-to-Complex One-dimensional FFTs above).
Output of the complex-to-real routines is a real vector of size \(n\).
Table 3-3 is identical to Table 3-2, except for reversing the input and output vectors. In the complex-to-real routines the last two columns are stored in the input real array of size \((n+2)\) containing the complex conjugate-symmetric vector in CCS format.
To compute an inverse FFT of a given length, first initialize the coefficients by calling the routine you are going to use with isign \(=0\). Thereafter, any number of real-to-complex and complex-to-real transforms of the same length can be computed by calling the appropriate routine with the isign value other than 0 .

Table 3-3 Comparison of the Storage Effects of Complex-to-Real and Complex-to-Complex FFTs
\begin{tabular}{c|c|c|c|c|c|c}
\hline \multicolumn{3}{c|}{ Output Vectors } & \multicolumn{4}{c}{ Input Vectors } \\
\hline cfft1d & csfft1d & \multicolumn{2}{c}{ cfft1d } & \multicolumn{2}{c}{ csfft1d } \\
\hline Complex Data & Real Data & \multicolumn{2}{c}{ Complex Data } & \multicolumn{2}{c}{ Real Data } \\
\hline Real & Imaginary & & Real & Imaginary & (Real) & (Imaginary) \\
\hline 0.841471 & 0.000000 & 0.841471 & 1.543091 & 0.000000 & 1.543091 & 0.000000 \\
\hline 0.909297 & 0.000000 & 0.909297 & 3.875664 & 0.910042 & 3.875664 & 0.910042 \\
\hline 0.141120 & 0.000000 & 0.141120 & -0.915560 & -0.397326 & -0.915560 & -0.397326 \\
\hline-0.756802 & 0.000000 & -0.756802 & -0.274874 & -0.121691 & -0.274874 & -0.121691 \\
\hline-0.958924 & 0.000000 & -0.958924 & -0.181784 & 0.000000 & -0.181784 & 0.000000 \\
\hline-0.279415 & 0.000000 & -0.279415 & -0.274874 & 0.121691 & & \\
\hline 0.656987 & 0.000000 & 0.656987 & -0.915560 & 0.397326 & & \\
\hline 0.989358 & 0.000000 & 0.989358 & 3.875664 & -0.910042 & & \\
\hline
\end{tabular}

\section*{csfft1d/zdfft1d}

Fortran-interface routines.
Compute inverse FFT of a
complex conjugate-symmetric
vector packed in CCS format
(in-place).
```

call csfftld ( r, n, isign, wsave )
call zdfftld ( r, n, isign, wsave )

```

\section*{Discussion}

The operation performed by the csfft1d/zdfft1d routines is determined by the value of isign. See the equations of the operations for the Complex-to-Real One-dimensional FFTs above.

These routines are complementary to the real-to-complex transform routines scfft \(1 \mathrm{~d} / \mathrm{dzfft} 1 \mathrm{~d}\).

\section*{Input Parameters}
```

r REAL for csfft1d
DOUBLE PRECISION for zdfft1d

```

Array, DIMENSION at least \((n+2)\).
Not referenced if isign \(=0\).
If isign is not 0 , then \(r(1: n+2)\) contains the complex conjugate-symmetric vector packed in CCS format for Fortran-interface.
The table below shows the relationship between them
\begin{tabular}{|c|c|l|l|l|l|l|l|c|}
\hline\(r(1)\) & \(r(2)\) & \(r(3)\) & \(r(4)\) & \(\cdots\) & \(r(n-1)\) & \(r(n)\) & \(r(n+1)\) & \(r(n+2)\) \\
\hline\(z(1)\) & 0 & \(\operatorname{RE} z(2)\) & \(\operatorname{IM} z(2)\) & \(\cdots\) & \(\operatorname{RE} z(n / 2)\) & \(\operatorname{IM} z(n / 2)\) & \(z(n / 2+1)\) & 0 \\
\hline
\end{tabular}

The full complex vector \(z(1: n)\) is defined by
```

z(i) = cmplx(r(2*i-1), r(2*i)),
1 \leqi \leqn/2+1,
z(n/2+i) = conjg(z(n/2+2-i)),
2 \leqi \leqn/2.

```

After the transform, \(r(1: n)\) contains the inverse FFT of the complex conjugate-symmetric vector \(z(1: n)\).
wsave
integer. Transform length; \(n\) must be a power of 2 .
INTEGER. Flag indicating the type of operation to be performed:
if isign is 0, initialize the coefficients wsave; if isign is not 0 , perform the inverse FFT.

REAL for csfftid
DOUBLE PRECISION for \(z d f f t 1 d\)
Array, DIMENSION at least \((2 * n+4)\). If isign \(=0\), then wsave contains output data. Otherwise, wsave
contains coefficients required to perform the FFT that has been initialized on a previous call to this routine or the complementary real-to-complex FFT routine.

\section*{Output Parameters}
\begin{tabular}{ll}
\(r\) & \begin{tabular}{l}
If isign is not 0, then \(r(1: n)\) is the real result of the \\
inverse FFT of the complex conjugate-symmetric vector
\end{tabular} \\
\(z(1: n)\). Does not change if \(i s i g n=0\). \\
wsave \(\quad\) & \begin{tabular}{l}
If \(i\) isign \(=0\), wsave contains the coefficients required \\
by the called routine. Otherwise wsave does not change.
\end{tabular}
\end{tabular}

\section*{csfft1dc/zdfft1dc}

\author{
C-interface routines.Compute \\ inverse FFT of a complex \\ conjugate-symmetric vector \\ packed in CCS format (in-place).
}
```

void csfftldc ( float* r, int n, int isign, float* wsave )
void zdfftldc ( double* r, int n, int isign, double* wsave )

```

\section*{Discussion}

The operation performed by the csfft \(1 \mathrm{dc} / \mathrm{zdfft} 1 \mathrm{dc}\) routines is determined by the value of isign. See the equations of the operations for the Complex-to-Real One-dimensional FFTs above.

These routines are complementary to the real-to-complex transform routines scfft1dc/dzfft1dc.

\section*{Input Parameters}
```

r
float* for csfft1dc
double* for zdfft1dc

```

Pointer to an array of size at least \((n+2)\). Not referenced if \(i\) sign \(=0\).
If \(i s i g n\) is not 0 , then \(r(0: n+1)\) contains the complex conjugate-symmetric vector packed in CCS format for C-interface.
The table below shows the relationship between them.
\begin{tabular}{|l|l|l|l|l|c|l|l|l|c|}
\hline\(r(0)\) & \(r(1)\) & \(r(2)\) & \(\ldots\) & \(r(n / 2)\) & \(r(n / 2+1)\) & \(r(n / 2+2)\) & \(\ldots\) & \(r(n)\) & \(r(n+1)\) \\
\hline\(z(0)\) & \(\operatorname{RE} z(1)\) & \(\operatorname{RE} z(2)\) & \(\ldots\) & \(z(n / 2)\) & 0 & \(\operatorname{IM} z(1)\) & \(\ldots\) & \(\operatorname{IM} z(n / 2-1)\) & 0 \\
\hline
\end{tabular}

The full complex vector \(z(0: n-1)\) is defined by \(z\) (i) \(=\operatorname{cmplx}(r(i), r(n / 2+1+i)), 0 \leq i \leq n / 2\), \(z(n / 2+i)=\operatorname{conjg}(z(n / 2-i)), 1 \leq i \leq n / 2-1\).
After the transform, \(r(0: n-1)\) is the inverse FFT of the complex conjugate-symmetric vector \(z(0: n-1)\).
n
wsave int. Transform length; \(n\) must be a power of 2 .
int. Flag indicating the type of operation to be performed:
if \(i s i g n=0\), initialize the coefficients wsave; if \(i\) sign is not 0 , perform the inverse FFT.
float* for csfft1dc
double* for \(z d f f t 1 d c\)
Pointer to an array of size at least \(\left(2{ }^{*} n+4\right)\). If isign \(=0\), then wsave contains output data. Otherwise, wsave contains coefficients required to perform the FFT that has been initialized on a previous call to this routine or the complementary real-to-complex FFT routine.

\section*{Output Parameters}
\begin{tabular}{ll}
\(r\) & If \(i\) isign is not 0 , then \(r(0: n-1)\) is the real result of the \\
inverse FFT of the complex conjugate-symmetric vector \\
& \(z(0: n-1)\). Does not change if \(i s i g n=0\).
\end{tabular}

\section*{Two-dimensional FFTs}

The two-dimensional FFTs are functionally the same as one-dimensional FFTs. They contain the following groups:
- Complex-to-Complex Transforms
- Real-to-Complex Transforms
- Complex-to-Real Transforms.

All two-dimensional FFTs are in-place. Transform lengths must be a power of 2 . The complex-to-complex transform routines perform both forward and inverse transforms of a complex matrix. The real-to-complex transform routines perform forward transforms of a real matrix. The complex-to-real transform routines perform inverse transforms of a complex conjugate-symmetric matrix, which is packed in a real array.

The naming conventions are also the same as those for one-dimensional FFTs, with " 2 d " replacing " 1 d " in all cases. Table 3-4 lists the two-dimensional FFT routine groups and the data types associated with them.

Table 3-4 Two-dimensional FFTs: Names and Data Types
\(\left.\begin{array}{lllll}\hline & \begin{array}{l}\text { Stored as } \\ \text { FORTRAN } \\ \text { Complex } \\ \text { Data }\end{array} & \begin{array}{l}\text { Stored as C } \\ \text { Real Data }\end{array} & \begin{array}{l}\text { Data } \\ \text { Types }\end{array} & \begin{array}{l}\text { Description }\end{array} \\ \text { Group } & \begin{array}{llll}\text { Complex- } \\ \text { Co- }\end{array} & \frac{c f f t 2 d /}{z f f t 2 d} & \underline{c f f t 2 d c /} & \mathrm{c}, \mathrm{z}\end{array} \begin{array}{l}\text { Transform complex data to complex } \\ \text { data. }\end{array}\right]\)

The C-interface requires scalar values to be passed by value. The major difference between the one-dimensional and two-dimensional FFTs is that your application does not need to provide storage for transform coefficients.

The data storage types and data structure requirements are the same as for one-dimensional FFTs. For more information, see the Data Storage Types and Data Structure Requirements sections at the beginning of this chapter.

\section*{Complex-to-Complex Two-dimensional FFTs}

Each of the complex-to-complex routines computes a forward or inverse FFT of a complex matrix in-place.
The forward FFT is computed according to the mathematical equation
\[
z_{i, j}=\sum_{k=0}^{m-1} \sum_{l=0}^{n-1} r_{k, ~} l^{n} w_{m}^{-i * k} * w_{n}^{-j * l}, \quad 0 \leq i \leq m-1, \quad 0 \leq j \leq n-1
\]

The inverse FFT is computed according to the mathematical equation
\[
r_{i, j}=\frac{1}{m * n} \sum_{k=0}^{m-1} \sum_{1=0}^{n-1} z_{k, ~} l^{*} w_{m}^{i * k_{*}}{\underset{n}{j * 1}, \quad 0 \leq i \leq m-1, \quad 0 \leq j \leq n-1}^{m}
\]
where \(\mathrm{w}_{m}=\exp \left[\frac{2 \pi \mathrm{i}}{m}\right], \mathrm{w}_{n}=\exp \left[\frac{2 \pi \mathrm{i}}{n}\right], i\) being the imaginary unit.
The operation performed by the complex-to-complex routines is determined by the value of the isign parameter.
If isign \(=-1\), perform the forward FFT where input and output are in normal order.
If isign \(=+1\), perform the inverse FFT where input and output are in normal order.
If isign \(=-2\), perform the forward FFT where input is in normal order and output is in bit-reversed order.
If isign \(=+2\), perform the inverse FFT where input is in bit-reversed order and output is in normal order.

The above equations apply to all FFTs with all data types indicated in Table 3-4.

\section*{cfft2d/zfft2d}

Fortran-interface routines. Compute the forward or inverse FFT of a complex matrix (in-place).
```

call cfft2d ( r, m, n, isign )
call zfft2d ( r, m, n, isign )

```

\section*{Discussion}

The operation performed by the cfft \(2 \mathrm{~d} / \mathrm{zfft} 2 \mathrm{~d}\) routines is determined by the value of isign. See the equations of the operations for Complex-to-Complex Two-dimensional FFTs.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\(r\)} & COMPLEX for cfft 2 d \\
\hline & DOUBLE COMPLEX for zfft 2 d \\
\hline & Array, DIMENSION at least \((m, n)\), with its leading dimension equal to \(m\). This array contains the complex matrix to be transformed. \\
\hline m & INTEGER. Column transform length (number of rows); \(m\) must be a power of 2 . \\
\hline \(n\) & INTEGER. Row transform length (number of columns); \(n\) must be a power of 2 . \\
\hline \multirow[t]{4}{*}{isign} & INTEGER. Flag indicating the type of operation to be performed: \\
\hline & if isign \(=-1\), perform the forward FFT where input and output are in normal order; \\
\hline & if isign \(=+1\), perform the inverse FFT where input and output are in normal order; \\
\hline & if isign \(=-2\), perform the forward FFT where input is in normal order and output is in bit-reversed order; if isign=+2, perform the inverse FFT where input is \\
\hline
\end{tabular}

\section*{Output Parameters}

Contains the complex result of the transform depending on isign.

\section*{cfft2dc/zfft2dc}

C-interface routines. Compute the forward or inverse FFT of a complex matrix (in-place).
```

void cfft2dc ( float* r, float* i, int m, int n, int isign )
void zfft2dc ( double* r, double* i, int m, int n, int isign )

```

\section*{Discussion}

The operation performed by the \(c f f t 2 \mathrm{dc} / \mathrm{zfft} 2 \mathrm{dc}\) routines is determined by the value of isign. See the equations of the operations for the Complex-to-Complex Two-dimensional FFTs above.

\section*{Input Parameters}
\(r\)
i
m
```

float* for cfft2dc
double* for zfft2dc

```

Pointer to a two-dimensional array of size at least \((m, n)\), with its leading dimension equal to \(n\). The array contains the real parts of a complex matrix to be transformed.
float* for cfft 2 dc
double* for \(z f f t 2 d c\)
Pointer to a two-dimensional array of size at least \((m, n)\), with its leading dimension equal to \(n\). The array contains the imaginary parts of a complex matrix to be transformed.
int. Column transform length (number of rows); \(m\) must be a power of 2 .

\section*{n}
isign
int. Row transform length (number of columns); \(n\) must be a power of 2.
int. Flag indicating the type of operation to be performed:
if isign \(=-1\), perform the forward FFT where input and output are in normal order;
if isign \(=+1\), perform the inverse FFT where input and output are in normal order;
if isign \(=-2\), perform the forward FFT where input is in normal order and output is in bit-reversed order; if isign \(=+2\), perform the inverse FFT where input is in bit-reversed order and output is in normal order.

\section*{Output Parameters}
```

r Contains the real parts of the complex result depending on isign.
i
Contains the imaginary parts of the complex depending on isign.

```

\section*{Real-to-Complex Two-dimensional FFTs}

Each of the real-to-complex routines computes the forward FFT of a real matrix according to the mathematical equation
\(z_{i, j}=\sum_{k=0}^{m-1} \sum_{l=0}^{n-1} t_{k, I} * w_{m}^{-i * k_{n} * w_{n}^{-j} * l}, \quad 0 \leq i \leq m-1, \quad 0 \leq j \leq n-1\)
\(t_{k, 1}=\operatorname{cmplx}\left(r_{k, 1}, 0\right)\), where \(r_{k, 1}\) is a real input matrix, \(0 \leq k \leq m-1,0 \leq 1 \leq n-1\).
The mathematical result \(z_{i}, j, 0 \leq i \leq m-1,0 \leq j \leq n-1\), is the complex matrix of size \((m, n)\). Each column is the complex conjugate-symmetric vector as follows:
for \(0 \leq j \leq n-1\),
\(z(m / 2+i, j)=\operatorname{conjg}(z(m / 2-i, j)), 1 \leq i \leq m / 2-1\).
Moreover, \(z(0, j)\) and \(z(m / 2, j)\) are real values for \(j=0\) and \(j=n / 2\).
This mathematical result can be stored in the complex two-dimensional array of size \((m / 2+1, n / 2+1)\) or in the real two-dimensional array of size \((m+2, n+2)\). The data storage of CCS format is defined later for Fortran-interface and C-interface routines separately.

\section*{scfft2d/dzfft2d}

\author{
Fortran-interface routines. Compute forward FFT of a real matrix and represent the complex conjugate-symmetric result in CCS format (in-place).
}
```

call scfft2d ( r, m, n )
call dzfft2d ( r, m, n )

```

\section*{Discussion}

See the equations of the operations for the Real-to-Complex Two-dimensional FFTs above.

These routines are complementary to the complex-to-real transform routines csfft2d/zdfft2d.

\section*{Input Parameters}

REAL for scfft 2 d
DOUBLE PRECISION for dzfft2d
Array, DIMENSION at least \((m+2, n+2)\), with its leading dimension equal to \((m+2)\). The first \(m\) rows and \(n\) columns of this array contain the real matrix to be transformed. Table 3-5 presents the input data layout.
INTEGER. Column transform length (number of rows); \(m\) must be a power of 2 .

INTEGER. Row transform length (number of columns); \(n\) must be a power of 2 .

\section*{Table 3-5 Fortran-interface Real Data Storage for the Real-to-Complex and Complex-to-Real Two-dimensional FFTs}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(r(1,1)\) & \(r(1,2)\) & \(\cdots\) & \(r(1, n-1)\) & \(r(1, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline\(r(2,1)\) & \(r(2,2)\) & \(\ldots\) & \(r(2, n-1)\) & \(r(2, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline\(r(3,1)\) & \(r(3,2)\) & \(\ldots\) & \(r(3, n-1)\) & \(r(3, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline\(r(4,1)\) & \(r(4,2)\) & \(\ldots\) & \(r(4, n-1)\) & \(r(4, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline\(r(m-1,1)\) & \(r(m-1,2)\) & \(\ldots\) & \(r(m-1, n-1)\) & \(r(m-1, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline\(r(m, 1)\) & \(r(m, 2)\) & \(\ldots\) & \(r(m, n-1)\) & \(r(m, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) & \(\ldots\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) & \(\ldots\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline
\end{tabular}
* n/u - not used

\section*{Output Parameters}
\(r\) The output real array \(r(1: m+2,1: n+2)\) contains the complex conjugate-symmetric matrix \(z(1: m, 1: n)\) packed in CCS format for Fortran-interface as follows:
- Rows 1 and \(m+1\) contain in \(n+2\) locations the complex conjugate-symmetric vectors \(z(1, j)\) and \(z(m / 2+1, j)\) packed in CCS format (seeReal-to-Complex One-dimensional FFTs above).
The full complex vector \(z(1, j)\) is defined by:
```

z(1, j) = cmplx(r(1, 2* j-1),r(1, 2* j)), 1 <j \leqn/2+1,
z(1,n/2+1+j)=conjg(z(1,n/2+1-j)), 1\leqj \leqn/2-1.

```

The full complex vector \(z(m / 2+1, j)\) is defined by:
\(z(m / 2+1, j)=\operatorname{cmplx}(r(m+1,2 * j-1), r(m+1,2 * j))\),
\(1 \leq j \leq n / 2+1\),
\(z(m / 2+1, n / 2+1+j)=\operatorname{conjg}(z(m / 2+1, n / 2+1-j))\),
\(1 \leq j \leq n / 2-1 ;\)
- Rows from 3 to \(m\) contain in \(n\) locations complex vectors represented as
```

z(i+1,j) = cmplx(r(2*i+1,j),r(2*i+2,j)),
1\leqi <m/2-1, 1 <j <n.

```
- The rest matrix elements can be obtained from
\[
\begin{aligned}
& z(m / 2+1+i, j)=\operatorname{conj} g(z(m / 2+1-i, j)), \\
& 1 \leq i \leq m / 2-1, \quad 1 \leq j \leq n .
\end{aligned}
\]

The storage of the complex conjugate-symmetric matrix \(z\) for Fortran-interface is shown in Table 3-6.

Table 3-6 Fortran-interface Data Storage of CCS Format for the Real-to-Complex and Complex-to-Real Two-Dimensional FFTs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(z(1,1)\) & 0 & \(\operatorname{RE} z(1,2)\) & \(\operatorname{IMz}(1,2)\) & \(\ldots\) & \(\operatorname{RE} z(1, n / 2)\) & \(\operatorname{IM} z(1, n / 2)\) & \[
\begin{aligned}
& z(1, \\
& n / 2+1)
\end{aligned}
\] & 0 \\
\hline 0 & 0 & 0 & 0 & \(\ldots\) & 0 & 0 & 0 & 0 \\
\hline \(\operatorname{RE} z(2,1)\) & \(\operatorname{RE} z(2,2)\) & \(\operatorname{RE} z(2,3)\) & \(\operatorname{RE} z(2,4)\) & ... & \(\operatorname{RE} \boldsymbol{z}(2, n-1)\) & \(\operatorname{RE} z(2, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\operatorname{IMz}(2,1)\) & \(\operatorname{IMz}(2,2)\) & \(\operatorname{IM} z(2,3)\) & \(\operatorname{IMz}(2,4)\) & ... & \(\operatorname{IMz}(2, n-1)\) & \(\operatorname{IM} z(2, n)\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline ... & ... & ... & ... & ... & ... & ... & n/u & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\operatorname{RE} \boldsymbol{z}(\mathrm{m} / 2,1)\) & \(\operatorname{RE} z(m / 2,2)\) & \(\operatorname{RE} z(m / 2,3)\) & \(\operatorname{RE} \boldsymbol{z}(\mathrm{m} / 2,4)\) & ... & \[
\begin{gathered}
\operatorname{RE} z(m / 2, \\
n-1)
\end{gathered}
\] & \begin{tabular}{l}
\[
\operatorname{RE} z(m / 2,
\] \\
n)
\end{tabular} & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(\operatorname{IMz}(\mathrm{m} / 2,1)\) & \(\operatorname{IMz}(m / 2,2)\) & \(\operatorname{IMz}(\mathrm{m} / 2,3)\) & \(\operatorname{IM} z(m / 2,4)\) & ... & \[
\begin{gathered}
\operatorname{IM} z(m / 2 \\
n-1)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I} M z(m / 2 \\
\mathrm{n})
\end{gathered}
\] & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline \(z(m / 2+1,1)\) & 0 & \(\operatorname{RE} z(m / 2+1,2)\) & \(\operatorname{IMz}(\mathrm{m} / 2+1,2)\) & ... & \[
\begin{gathered}
\operatorname{RE} z(m / 2+1, \\
n / 2)
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{IMz}(m / 2+1, \\
n / 2)
\end{gathered}
\] & \[
\begin{gathered}
z(m / 2+1, \\
n / 2+1)
\end{gathered}
\] & 0 \\
\hline 0 & 0 & 0 & 0 & \(\cdots\) & 0 & 0 & \(\mathrm{n} / \mathrm{u}\) & \(n / u\) \\
\hline
\end{tabular}
* n/u - not used

\section*{scfft2dc/dzfft2dc}

C-interface routine. Compute forward FFT of a real matrix and represent the complex conjugate-symmetric result in CCS format (in-place).
```

void scfft2dc ( float* r, int m, int n )
void dzfft2dc ( double* r, int m, int n )

```

\section*{Discussion}

See the equations of the operations for the Real-to-Complex Two-dimensional FFTs above.

These routines are complementary to the complex-to-real transform routines csfft \(2 \mathrm{dc} / \mathrm{zdfft} 2 \mathrm{dc}\).

\section*{Input Parameters}
```

r
float* for scfft2dc
double* for dzfft2dc

```

Pointer to an array of size at least \((m+2, n+2)\), with its leading dimension equal to \((n+2)\). The first \(m\) rows and \(n\) columns of this array contain the real matrix to be transformed.

Table 3-7 presents the input data layout.
m
int. Column transform length; \(m\) must be a power of 2 .
\(n\)
int. Row transform length; \(n\) must be a power of 2 .

Table 3-7 C-interface Real Data Storage for a Real-to-Complex and Complex-to-Real Two-dimensional FFTs
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(r(0,0)\) & \(r(0,1)\) & \(\ldots\) & \(r(0, n-2)\) & \(r(0, n-1)\) & \(n / u\) & \(n / u\) \\
\hline\(r(1,0)\) & \(r(1,1)\) & \(\ldots\) & \(r(1, n-2)\) & \(r(1, n-1)\) & \(n / u\) & \(n / u\) \\
\hline\(r(2,0)\) & \(r(2,1)\) & \(\ldots\) & \(r(2, n-2)\) & \(r(2, n-1)\) & \(n / u\) & \(n / u\) \\
\hline\(r(3,0)\) & \(r(3,1)\) & \(\cdots\) & \(r(3, n-2)\) & \(r(3, n-1)\) & \(n / u\) & \(n / u\) \\
\hline\(\ldots\) & \(\ldots\) & \(\cdots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline\(r(m-2,0)\) & \(r(m-2,1)\) & \(\cdots\) & \(r(m-2, n-2)\) & \(r(m-2, n-1)\) & \(n / u\) & \(n / u\) \\
\hline\(r(m-1,0)\) & \(r(m-1,1)\) & \(\cdots\) & \(r(m-1, n-2)\) & \(r(m-1, n-1)\) & \(n / u\) & \(n / u\) \\
\hline\(n / u\) & \(n / u\) & \(\cdots\) & \(n / u\) & \(n / u\) & \(n / u\) & \(n / u\) \\
\hline\(n / u\) & \(n / u\) & \(\cdots\) & \(n / u\) & \(n / u\) & \(n / u\) & \(n / u\) \\
\hline
\end{tabular}

\section*{Output Parameters}
\(r\)
The output real array \(r(0: m+1,0: n+1)\) contains the complex conjugate-symmetric matrix \(z(0: m-1,0: n-1)\) packed in CCS format for C-interface as follows:
- Columns 0 and \(n / 2\) contain in \(m+2\) locations the complex conjugate-symmetric vectors \(z(i, 0)\) and \(z(i, n / 2)\) in CCS format (seeReal-to-Complex One-dimensional FFTs above).
The full complex vector \(z(i, 0)\) is defined by:
\(z(i, 0)=\operatorname{cmplx}(r(i, 0), r(m / 2+i+1,0)), 0 \leq i \leq m / 2\),
\(z(m / 2+i, 0)=\operatorname{conjg}(z(m / 2-i, 0)), \quad 1 \leq i \leq m / 2-1\).
The full complex vector \(z(i, n / 2)\) is defined by:
\(z(i, n / 2)=\operatorname{cmplx}(r(i, n / 2), r(m / 2+i+1, n / 2)), 0 \leq i \leq m / 2\), \(z(m / 2+i, n / 2)=\operatorname{conjg}(z(m / 2-i, n / 2)), 1 \leq i \leq m / 2-1\).
- Columns from 1 to \(n / 2-1\) contain real parts, and columns from \(n / 2+2\) to \(n\) contain imaginary parts of complex vectors. These values for each vector are stored in \(m\) locations represented as follows
```

z(i,j) = cmplx(r(i,j),r(i,n/2+1+j)),
0\leqi <m-1, 1 <j sn/2-1.

```
- The rest matrix elements can be obtained from
```

z(i,n/2+j) = conjg(z(i,n/2-j)),
0<i <m-1, 1 <j <n/2-1.

```

The storage of the complex conjugate-symmetric matrix \(z\) for C-interface is shown in Table 3-8.

Table 3-8 C-interface Data Storage of CCS Format for the Real-to-Complex and Complex-to-Real Two-dimensional FFT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(z(0,0)\) & \(\operatorname{REz}(0,1)\) & ... & \[
\begin{aligned}
& \operatorname{RE} z(0, \\
& \mathrm{n} / 2-1)
\end{aligned}
\] & \(z(0, n / 2)\) & 0 & \(\operatorname{IMz}(0,1)\) & \(\ldots\) & \[
\begin{aligned}
& \mathrm{IMz}(0, \\
& \mathrm{n} / 2-1)
\end{aligned}
\] & 0 \\
\hline \(\mathrm{RE} z(1,0)\) & \(\operatorname{REz}(1,1)\) & ... & \[
\begin{aligned}
& \operatorname{RE} z(1, \\
& \mathrm{n} / 2-1)
\end{aligned}
\] & \(\operatorname{REz}(1, \mathrm{n} / 2)\) & 0 & \(\operatorname{IMz}(1,1)\) & \(\ldots\) & \[
\begin{aligned}
& \operatorname{IMz}(1, \\
& \mathrm{n} / 2-1)
\end{aligned}
\] & 0 \\
\hline ... & \(\ldots\) & \(\ldots\) & ... & ... & 0 & ... & \(\ldots\) & ... & 0 \\
\hline \[
\begin{gathered}
\operatorname{REz}(\mathrm{m} / 2-1 \\
0)
\end{gathered}
\] & \begin{tabular}{l}
\[
\operatorname{REz}(\mathrm{m} / 2-1,
\] \\
1)
\end{tabular} & \(\ldots\) & \[
\begin{gathered}
\operatorname{RE} z(\mathrm{~m} / 2-1, \\
\mathrm{n} / 2-1)
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{RE} z(\mathrm{~m} / 2-1, \\
\mathrm{n} / 2)
\end{gathered}
\] & 0 & \begin{tabular}{l}
\[
\operatorname{IMz}(\mathrm{m} / 2-1
\] \\
1)
\end{tabular} & \(\ldots\) & \[
\begin{gathered}
\operatorname{IMz}(\mathrm{m} / 2-1, \\
\mathrm{n} / 2-1)
\end{gathered}
\] & 0 \\
\hline \(z(\mathrm{~m} / 2,0)\) & \(\operatorname{REz}(\mathrm{m} / 2,1)\) & \(\ldots\) & \[
\begin{gathered}
\mathrm{REz}(\mathrm{~m} / 2, \\
\mathrm{n} / 2-1)
\end{gathered}
\] & \(\mathrm{z}(\mathrm{m} / 2, \mathrm{n} / 2)\) & 0 & \(\operatorname{IMz}(\mathrm{m} / 2,1)\) & ... & \[
\begin{array}{r}
\operatorname{IMz}(\mathrm{m} / 2, \\
\mathrm{n} / 2-1)
\end{array}
\] & 0 \\
\hline 0 & \begin{tabular}{l}
\[
\operatorname{REz}(\mathrm{m} / 2+1,
\] \\
1)
\end{tabular} & \(\ldots\) & \[
\begin{gathered}
\operatorname{REz}(\mathrm{m} / 2+1, \\
\mathrm{n} / 2-1)
\end{gathered}
\] & 0 & 0 & \begin{tabular}{l}
\[
\operatorname{IMz}(\mathrm{m} / 2+1
\] \\
1)
\end{tabular} & ... & \[
\begin{gathered}
\operatorname{IMz}(\mathrm{m} / 2+1, \\
\mathrm{n} / 2-1)
\end{gathered}
\] & 0 \\
\hline \(\operatorname{IMz}(1,0)\) & \begin{tabular}{l}
\[
\operatorname{REz}(\mathrm{m} / 2+2,
\] \\
1)
\end{tabular} & \(\ldots\) & \[
\begin{gathered}
\operatorname{REz}(\mathrm{m} / 2+2, \\
\mathrm{n} / 2-1)
\end{gathered}
\] & \(\operatorname{IMz}(1, \mathrm{n} / 2)\) & 0 & \begin{tabular}{l}
\[
\operatorname{IMz}(\mathrm{m} / 2+2
\] \\
1)
\end{tabular} & \(\ldots\) & \[
\begin{gathered}
\operatorname{IMz}(\mathrm{m} / 2+2, \\
\mathrm{n} / 2-1)
\end{gathered}
\] & 0 \\
\hline ... & ... & \(\ldots\) & ... & ... & 0 & ... & \(\ldots\) & ... & 0 \\
\hline \[
\begin{gathered}
\operatorname{IMz}(\mathrm{m} / 2-2, \\
0)
\end{gathered}
\] & REz \((\mathrm{m}-1,1)\) & ... & \[
\begin{gathered}
\mathrm{RE} z(\mathrm{~m}-1, \\
\mathrm{n} / 2-1)
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{IMz}(\mathrm{m} / 2-2, \\
\mathrm{n} / 2)
\end{gathered}
\] & 0 & \(\operatorname{IMz}(\mathrm{m}-1,1)\) & ... & \[
\begin{gathered}
\operatorname{IMz}(\mathrm{m}-1, \\
\mathrm{n} / 2-1)
\end{gathered}
\] & 0 \\
\hline \[
\begin{gathered}
\operatorname{IMz}(\mathrm{m} / 2-1 \\
0)
\end{gathered}
\] & \(\mathrm{n} / \mathrm{u}\) & \(\ldots\) & \(\mathrm{n} / \mathrm{u}\) & \[
\begin{gathered}
\operatorname{IMz}(\mathrm{m} / 2-1, \\
\mathrm{n} / 2)
\end{gathered}
\] & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) & \(\ldots\) & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) \\
\hline 0 & \(\mathrm{n} / \mathrm{u}\) & ... & n/u & 0 & \(\mathrm{n} / \mathrm{u}\) & \(\mathrm{n} / \mathrm{u}\) & \(\ldots\) & n/u & \(\mathrm{n} / \mathrm{u}\) \\
\hline
\end{tabular}

\section*{Complex-to-Real Two-dimensional FFTs}

Each of the complex-to-real routines computes a two-dimensional inverse FFT according to the mathematical equation:
\(t_{i, j}=\frac{1}{m * n} \sum_{k=0}^{m-1} \sum_{l=0}^{n-1} z_{k, 1} * w_{m}^{i * k} w_{n}^{j * l}, \quad 0 \leq i \leq m-1, \quad 0 \leq j \leq n-1\)
The mathematical input \(z_{i, j}, \quad 0 \leq i \leq m-1, \quad 0 \leq j \leq n-1\), is a complex matrix of size \((m, n)\). Each column is the complex conjugate-symmetric vector as follows:
\[
\begin{aligned}
& \text { for } 0 \leq j \leq n-1 \text {, } \\
& z(m / 2+i, j)=\operatorname{conjg}(z(m / 2-i, j)), 1 \leq i \leq m / 2-1 \text {. } \\
& \text { Moreover, } z(0, j) \text { and } z(m / 2, j) \text { are real values for } j=0 \text { and } j=n / 2 \text {. } \\
& \text { This mathematical input can be stored in the complex two-dimensional } \\
& \text { array of size }(m / 2+1, n / 2+1) \text { or in the real two-dimensional array of size } \\
& (m+2, n+2) \text {. For the details of data storage of CCS format } \\
& \text { see Real-to-Complex One-dimensional FFTs above. } \\
& \text { The mathematical result of the transform is } t_{k, 1}=\operatorname{cmpl} x\left(r_{k, 1}, 0\right) \text {, } \\
& \text { where } r_{k, 1} \text { is the real matrix, } 0 \leq k \leq m-1, \quad 0 \leq 1 \leq n-1 \text {. }
\end{aligned}
\]

\section*{csfft2d/zdfft2d}

\section*{Fortran-interface routine. \\ Compute inverse FFT of a complex \\ conjugate-symmetric matrix packed in CCS \\ format (in-place).}
```

call csfft2d ( r, m, n )
call zdfft2d ( r, m, n )

```

\section*{Discussion}

See the equations of the operations for the Complex-to-Real Two-dimensional FFTs above. These routines are complementary to the real-to-complex transform routines \(\mathrm{scfft} 2 \mathrm{~d} / \mathrm{dzfft} 2 \mathrm{~d}\).

\section*{Input Parameters}
```

r SINGLE PRECISION REAL*4 for csfft2d
DOUBLE PRECISION REAL*8 for zdfft2d

```

Array, DIMENSION at least \((m+2, n+2)\), with its leading dimension equal to \((m+2)\). This array contains the complex conjugate-symmetric matrix in CCS format to be transformed. The input data layout is given in Table 3-6.

INTEGER. Column transform length (number of rows); \(m\) must be a power of 2 .
n
INTEGER. Row transform length (number of columns); \(n\) must be a power of 2 .

\section*{Output Parameters}
r
Contains the real result returned by the transform. For the output data layout, see Table 3-5.

\section*{csfft2dc/zdfft2dc}

C-interface routines.
Compute inverse FFT of a complex
conjugate-symmetric matrix packed in
CCS format (in-place).
```

void csfft2dc ( float* r, int m, int n );
void zdfft2dc ( double* r, int m, int n );

```

\section*{Discussion}

See the equations of the operations for the Complex-to-Real Two-dimensional FFTs above. These routines are complementary to the real-to-complex transform routines \(\mathrm{scfft} 2 \mathrm{dc} / \mathrm{dzfft} 2 \mathrm{dc}\).

\section*{Input Parameters}
```

r float* for csfft2dc
double* for zdfft2dc
Pointer to an array of size at least $(m+2, n+2)$, with its leading dimension equal to $(n+2)$. This array contains the complex conjugate-symmetric matrix in CCS format to be transformed. The input data layout is given in Table 3-8.
int. Column transform length; $m$ must be a power of 2 .

```
int. Row transform length; \(n\) must be a power of 2 .

\section*{Output Parameters}

Contains the real result returned by the transform. The output data layout is the same as that for the input data of scfft \(2 \mathrm{dc} / \mathrm{dzfft} 2 \mathrm{dc}\). See Table 3-7 for the details.

\title{
LAPACK Routines: Linear Equations
}

This chapter describes the Intel \({ }^{\circledR}\) Math Kernel Library implementation of routines from the LAPACK package that are used for solving systems of linear equations and performing a number of related computational tasks. The library includes LAPACK routines for both real and complex data.
Routines are supported for systems of equations with the following types of matrices:
- general
- banded
- symmetric or Hermitian positive-definite (both full and packed storage)
- symmetric or Hermitian positive-definite banded
- symmetric or Hermitian indefinite (both full and packed storage)
- symmetric or Hermitian indefinite banded
- triangular (both full and packed storage)
- triangular banded
- tridiagonal.

For each of the above matrix types, the library includes routines for performing the following computations: factoring the matrix (except for triangular matrices); equilibrating the matrix; solving a system of linear equations; estimating the condition number of a matrix; refining the solution of linear equations and computing its error bounds; inverting the matrix.
To solve a particular problem, you can either call two or more computational routines or call a corresponding driver routine that combines several tasks in one call, such as ? gesv for factoring and solving. Thus, to solve a system of linear equations with a general matrix, you can first call ?getrf (\(L U\) factorization) and then ?getrs (computing the solution). Then, you might wish to call ? gerfs to refine the solution and get the error bounds. Alternatively, you can just use the driver routine ? gesvx which performs all these tasks in one call.

\section*{Routine Naming Conventions}

For each routine introduced in this chapter, you can use the LAPACK name.
LAPACK names are listed in Tables 4-1 and 4-2, and have the structure xyyzzz or xyyzz, which is described below.
The initial letter x indicates the data type:
s real, single precision c complex, single precision
d real, double precision \(\quad\) z complex, double precision
The second and third letters \(y y\) indicate the matrix type and storage scheme:
ge general
gb general band
gt general tridiagonal
po symmetric or Hermitian positive-definite
pp symmetric or Hermitian positive-definite (packed storage)
pb symmetric or Hermitian positive-definite band
pt symmetric or Hermitian positive-definite tridiagonal
sy symmetric indefinite
sp symmetric indefinite (packed storage)
he Hermitian indefinite
hp Hermitian indefinite (packed storage)
tr triangular
tp triangular (packed storage)
tb triangular band
For computational routines, the last three letters zzz indicate the computation performed:
trf form a triangular matrix factorization
trs solve the linear system with a factored matrix
con estimate the matrix condition number
\(r f s\) refine the solution and compute error bounds
tri compute the inverse matrix using the factorization
equ equilibrate a matrix.
For example, the routine sgetrf performs the triangular factorization of general real matrices in single precision; the corresponding routine for complex matrices is cgetrf.
For driver routines, the names can end either with -sv (meaning a simple driver), or with -svx (meaning an expert driver).

\section*{Matrix Storage Schemes}

LAPACK routines use the following matrix storage schemes:
- Full storage: a matrix \(A\) is stored in a two-dimensional array \(a\), with the matrix element \(a_{i j}\) stored in the array element \(a(i, j)\).
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: an \(m\) by \(n\) band matrix with \(k I\) sub-diagonals and \(k u\) super-diagonals is stored compactly in a two-dimensional array \(a b\) with \(k l+k u+1\) rows and \(n\) columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.
In Chapters 4 and 5, arrays that hold matrices in packed storage have names ending in \(p\); arrays with matrices in band storage have names ending in \(b\).
For more information on matrix storage schemes, see Matrix Arguments in Appendix A.

\section*{Mathematical Notation}

Descriptions of LAPACK routines use the following notation:
\begin{tabular}{|c|c|}
\hline \(A x=b\) & A system of linear equations with an \(n\) by \(n\) matrix \(A=\left\{a_{i j}\right\}\), a right-hand side vector \(b=\left\{b_{i}\right\}\), and an unknown vector \(x=\left\{x_{i}\right\}\). \\
\hline \(A X=B\) & A set of systems with a common matrix \(A\) and multiple right-hand sides. The columns of \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions. \\
\hline \(|x|\) & the vector with elements \(\left|x_{i}\right|\) (absolute values of \(x_{i}\)). \\
\hline \(|A|\) & the matrix with elements \(\left|a_{i j}\right|\) (absolute values of \(a_{i j}\)). \\
\hline \(\|x\|_{\infty}\) & The infinity-norm of the vector \(x\). \\
\hline \multicolumn{2}{|l|}{\(\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\) The infinity-norm of the matrix \(A\).} \\
\hline \[
\|A\|
\] & \begin{tabular}{l}
Theone-normofthematrix \(A .||A||_{1}=| | A^{T}\) \\
The condition number of the matrix \(A\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Error Analysis}

In practice, most computations are performed with rounding errors. Besides, you often need to solve a system \(A x=b\) where the data (the elements of \(A\) and \(b\)) are not known exactly. Therefore, it's important to understand how the data errors and rounding errors can affect the solution \(x\).
Data perturbations. If \(x\) is the exact solution of \(A x=b\), and \(x+\delta x\) is the exact solution of a perturbed problem \((A+\delta A) x=(b+\delta b)\), then
\[
\frac{\|\delta x\|}{\|x\|} \leq \kappa(A)\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right), \text { where } \kappa(A)=\|A\|\left\|A^{-1}\right\| .
\]

In other words, relative errors in \(A\) or \(b\) may be amplified in the solution vector \(x\) by a factor \(\kappa(A)=\|A\|\left\|A^{-1}\right\|\) called the condition number of \(A\).
Rounding errors have the same effect as relative perturbations \(c(n) \varepsilon\) in the original data. Here \(\varepsilon\) is the machine precision, and \(c(n)\) is a modest function of the matrix order \(n\). The corresponding solution error is \(\| \delta x| | /||x|| \leq c(n) \kappa(A) \varepsilon\). (The value of \(c(n)\) is seldom greater than \(10 n\).)
Thus, if your matrix \(A\) is ill-conditioned (that is, its condition number \(\kappa(A)\) is very large), then the error in the solution \(x\) is also large; you may even encounter a complete loss of precision. LAPACK provides routines that allow you to estimate \(\kappa(A)\) (see Routines for Estimating the Condition Number) and also give you a more precise estimate for the actual solution error (see Refining the Solution and Estimating Its Error).

\section*{Computational Routines}

Table 4-1 lists the LAPACK computational routines for factorizing, equilibrating, and inverting real matrices, estimating their condition numbers, solving systems of equations with real matrices, refining the solution, and estimating its error.
Table 4-2 lists similar routines for complex matrices.
\begin{tabular}{llllllll}
Table 4-1 & Computational Routines for Systems of Equations with Real Matrices
\end{tabular}

In this table ? denotes \(\mathbf{s}\) (single precision) or \(\mathbf{d}\) (double precision).

Table 4-2 Computational Routines for Systems of Equations with Complex Matrices
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Matrix type, storage scheme & Factorize matrix & Equilibrate matrix & Solve system & Condition number & Estimate error & Invert matrix \\
\hline general & ? getrf & ? geequ & ? getrs & ? gecon & ? gerfs & ? getri \\
\hline general band & ? gbtrf & ? gbequ & ? gbtrs & \(\underline{\text { ? gbcon }}\) & ? gbrfs & \\
\hline general tridiagonal & ? gttrf & & ?gttrs & ? gtcon & ?gtrfs & \\
\hline Hermitian positive-definite & ?potrf & ?poequ & ?potrs & ?pocon & ?porfs & ?potri \\
\hline Hermitian positive-definite, packed storage & ?pptrf & ?ppequ & ?pptrs & ? ppcon & ?pprfs & ?pptri \\
\hline Hermitian positive-definite, band & ?pbtrf & ?pbequ & ?pbtrs & ? pbcon & ?pbrfs & \\
\hline Hermitian positive-definite, tridiagonal & ?pttrf & & ?pttrs & ?ptcon & ?ptrfs & \\
\hline Hermitian indefinite & ?hetrf & & ?hetrs & \(\underline{\text { ?hecon }}\) & \(\underline{\text { ?herfs }}\) & ?hetri \\
\hline symmetric indefinite & ?sytrf & & ?sytrs & ?sycon & ?syrfs & ?sytri \\
\hline Hermitian indefinite, packed storage & ?hptrf & & ?hptrs & \(\underline{\text { ? } \mathrm{hpcon}}\) & ?hprfs & ?hptri \\
\hline symmetric indefinite, packed storage & ?sptrf & & ?sptrs & ? spcon & ?sprfs & ?sptri \\
\hline triangular & & & ?trtrs & ?trcon & ?trrfs & ?trtri \\
\hline triangular, packed storage & & & ?tptrs & ?tpcon & ?tprfs & ?tptri \\
\hline triangular band & & & ?tbtrs & ? tbcon & ?tbrfs & \\
\hline
\end{tabular}

In this table ? stands for \(\mathbf{c}\) (single precision complex) or \(\mathbf{z}\) (double precision complex).

\section*{Routines for Matrix Factorization}

This section describes the LAPACK routines for matrix factorization. The following factorizations are supported:
- \(L U\) factorization
- Cholesky factorization of real symmetric positive-definite matrices
- Cholesky factorization of Hermitian positive-definite matrices
- Bunch-Kaufman factorization of real and complex symmetric matrices
- Bunch-Kaufman factorization of Hermitian matrices.

You can compute the \(L U\) factorization using full and band storage of matrices; the Cholesky factorization using full, packed, and band storage; and the Bunch-Kaufman factorization using full and packed storage.

\section*{?getrf}

Computes the LU factorization of a general \(m\) by \(n\) matrix.
```

call sgetrf ( m, n, a, lda, ipiv, info )
call dgetrf ( m, n, a, lda, ipiv, info )
call cgetrf ( m, n, a, lda, ipiv, info )
call zgetrf ( m, n, a, lda, ipiv, info )

```

\section*{Discussion}

The routine forms the \(L U\) factorization of a general \(m\) by \(n\) matrix \(A\) as
\[
A=P L U
\]
where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>n\)) and \(U\) is upper triangular (upper trapezoidal if \(m<n\)). Usually \(A\) is square \((m=n)\), and both \(L\) and \(U\) are triangular. The routine uses partial pivoting, with row interchanges.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
\(m \quad\) Integer. The number of rows in the matrix \(A(m \geq 0)\).
\(n \quad\) Integer. The number of columns in \(A(n \geq 0)\).
a
REAL for sgetrf
DOUBLE PRECISION for dgetrf
COMPLEX for cgetrf
DOUBLE COMPLEX for zgetrf.
Array, dimension (\(1 \mathrm{da}, *\)). Contains the matrix \(A\). The second dimension of a must be at least max \((1, n)\).

Ida
integer. The first dimension of \(a\).

\section*{Output Parameters}

Overwritten by \(L\) and \(U\). The unit diagonal elements of \(L\) are not stored.

INTEGER.
Array, DIMENSION at least \(\max (1, \min (m, n))\).
The pivot indices: row \(i\) was interchanged with row ipiv(i).
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i, u_{i j}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}

The computed \(L\) and \(U\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq c(\min (m, n)) \varepsilon P|L||U|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. The approximate number of floating-point operations for real flavors is
\[
\begin{array}{ll}
(2 / 3) n^{3} & \text { if } m=n, \\
(1 / 3) n^{2}(3 m-n) & \text { if } m>n,
\end{array}
\]
\((1 / 3) m^{2}(3 n-m) \quad\) if \(m<n\).
The number of operations for complex flavors is 4 times greater.
After calling this routine with \(m=n\), you can call the following:
?getrs to solve \(A X=B\) or \(A^{T} X=B\) or \(A^{H} X=B\);
? gecon to estimate the condition number of \(A\);
?getri to compute the inverse of \(A\).

\section*{?gbtrf}

Computes the LU factorization of a general \(m\) by \(n\) band matrix.
```

call sgbtrf ( m, n, kl, ku, ab, ldab, ipiv, info )
call dgbtrf ( m, n, kl, ku, ab, ldab, ipiv, info )
call cgbtrf ( m, n, kl, ku, ab, ldab, ipiv, info )
call zgbtrf ( m, n, kl, ku, ab, ldab, ipiv, info )

```

\section*{Discussion}

The routine forms the \(L U\) factorization of a general \(m\) by \(n\) band matrix \(A\) with \(k l\) non-zero sub-diagonals and \(k u\) non-zero super-diagonals. Usually \(A\) is square \((m=n)\), and then
\[
A=P L U
\]
where \(P\) is a permutation matrix; \(L\) is lower triangular with unit diagonal elements and at most \(k l\) non-zero elements in each column; \(U\) is an upper triangular band matrix with \(k I+k u\) super-diagonals. The routine uses partial pivoting, with row interchanges (which creates the additional \(k I\) super-diagonals in \(U\)).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows in the matrix \(A(m \geq 0)\) \\
\hline \(n\) & Integer. The number of columns in \(A(n \geq 0)\). \\
\hline kl & INTEGER. The number of sub-diagonals within the band of \(A(k I \geq 0)\). \\
\hline ku & INTEGER. The number of super-diagonals within the band of \(A(k u \geq 0)\). \\
\hline ab & REAL for sgbtrf \\
\hline & DOUBLE PRECISION for dgbtrf \\
\hline & COMPLEX for cgbtrf \\
\hline & \begin{tabular}{l}
DOUBLE COMPLEX for zgbtrf. \\
Array, DIMENSION (ldab, *).
\end{tabular} \\
\hline
\end{tabular}

The array \(a b\) contains the matrix \(A\) in band storage (see Matrix Storage Schemes).
The second dimension of \(a b\) must be at least \(\max (1, n)\).
Idab INTEGER. The first dimension of the array \(a b\). \((I d a b \geq 2 k I+k u+1)\)

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a b\) & Overwritten by \(L\) and \(U\). The diagonal and \(k I+k u\) super-diagonals of \(U\) are stored in the first \(1+k I+k u\) rows of \(a b\). The multipliers used to form \(L\) are stored in the next kl rows. \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION at least \(\max (1, \min (m, n))\). \\
The pivot indices: row \(i\) was interchanged with row ipiv(i).
\end{tabular} \\
\hline info & INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations. \\
\hline
\end{tabular}

\section*{Application Notes}

The computed \(L\) and \(U\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq c(k I+k u+1) \varepsilon P|L||U|
\]
\(c(k)\) is a modest linear function of \(k\), and \(\varepsilon\) is the machine precision.
The total number of floating-point operations for real flavors varies between approximately \(2 n(k u+1) k I\) and \(2 n(k I+k u+1) k I\). The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k l\) and \(k u\) are much less than \(\min (m, n)\).
After calling this routine with \(m=n\), you can call the following:
?gbtrs \(\quad\) to solve \(A X=B\) or \(A^{T} X=B\) or \(A^{H} X=B\);
?gbcon to estimate the condition number of \(A\).

\section*{?gttrf}

Computes the LU factorization of a tridiagonal matrix.
```

call sgttrf ( n, dl, d, du, du2, ipiv, info )
call dgttrf ( n, dl, d, du, du2, ipiv, info )
call cgttrf ( n, dl, d, du, du2, ipiv, info )
call zgttrf ( n, dl, d, du, du2, ipiv, info )

```

\section*{Discussion}

The routine computes the \(L U\) factorization of a real or complex tridiagonal matrix \(A\) in the form
\[
A=P L U
\]
where \(P\) is a permutation matrix; \(L\) is lower bidiagonal with unit diagonal elements; and \(U\) is an upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals. The routine uses elimination with partial pivoting and row interchanges .

\section*{Input Parameters}
n
dl, d, du
integer. The order of the matrix \(A(n \geq 0)\).
REAL for sgttrf
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Arrays containing elements of A.
The array \(d l\) of dimension \((n-1)\) contains the sub-diagonal elements of \(A\).
The array \(d\) of dimension \(n\) contains the diagonal elements of \(A\).
The array \(d u\) of dimension \((n-1)\) contains the super-diagonal elements of \(A\).

Output Parameters
dl Overwritten by the (\(n-1\)) multipliers that define the matrix \(L\) from the \(L U\) factorization of A.
d
Overwritten by the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of A.
du Overwritten by the \((n-1)\) elements of the first super-diagonal of \(U\).
du2 REAL for sgttrf
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Array, dimension (\(n-2\)). On exit, du2 contains (\(n-2\)) elements of the second super-diagonal of \(U\).
ipiv Integer.
Array, dimension (\(n\)).
The pivot indices: row \(i\) was interchanged with row ipiv(i).
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If \(i n f o=i, u_{i j}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by zero will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}
? gbtrs
?gbcon
to solve \(A X=B\) or \(A^{T} X=B\) or \(A^{H} X=B\);
to estimate the condition number of \(A\).

\section*{?potrf}

Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite matrix.
```

call spotrf ( uplo, n, a, lda, info )
call dpotrf ( uplo, n, a, lda, info )
call cpotrf ( uplo, n, a, lda, info )
call zpotrf ( uplo, n, a, lda, info )

```

\section*{Discussion}

This routine forms the Cholesky factorization of a symmetric positivedefinite or, for complex data, Hermitian positive-definite matrix \(A\) :
```

$A=U^{H} U \quad$ if uplo='U'
$A=L L^{H} \quad$ if uplo='L'

```
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored: \\
\hline & If uplo \(=\) ' U ', the array a stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(U^{H} U\). \\
\hline & If uplo = ' L ', the array a stores the lower triangular part of the matrix \(A ; A\) is factored as \(L L^{H}\). \\
\hline n & Integer. The order of matrix \(A(n \geq 0)\). \\
\hline a & REAL for spotrf \\
\hline & DOUBLE PRECISION for dpotrf \\
\hline & COMPLEX for cpotrf \\
\hline & Double Complex for zpotrf. \\
\hline & Array, dimension (lda,*). \\
\hline
\end{tabular}

The array a contains either the upper or the lower triangular part of the matrix \(A\) (see uplo). The second dimension of a must be at least \(\max (1, n)\). INTEGER. The first dimension of \(a\).

\section*{Output Parameters}
a The upper or lower triangular part of \(a\) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
info INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i\), the leading minor of order \(i\) (and hence the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Application Notes}

If uplo \(=\) ' \(U^{\prime}\), the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\[
|E| \leq c(n) \varepsilon\left|U^{H}\right||U|, \quad\left|e_{i j}\right| \leq c(n) \varepsilon \sqrt{a_{i i} a_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo \(=\) 'L'.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.
After calling this routine, you can call the following:
?potrs \(\quad\) to solve \(A X=B\);
?pocon to estimate the condition number of \(A\);
?potri to compute the inverse of \(A\).

\section*{?pptrf}

Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite matrix using packed storage.
```

call spptrf ( uplo, n, ap, info )
call dpptrf ( uplo, n, ap, info )
call cpptrf ( uplo, n, ap, info )
call zpptrf ( uplo, n, ap, info )

```

\section*{Discussion}

This routine forms the Cholesky factorization of a symmetric positivedefinite or, for complex data, Hermitian positive-definite packed matrix \(A\) :
```

$A=U^{H} U \quad$ if uplo='U'
$A=L L^{H} \quad$ if uplo='L'

```
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is packed in the array \(a p\), and how \(A\) is factored: \\
\hline & If \(u p I o=\) ' U ', the array \(a p\) stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(U^{H} U\). \\
\hline & If uplo='L', the array ap stores the lower triangular part of the matrix \(A ; A\) is factored as \(L L^{H}\). \\
\hline \(n\) & Integer. The order of matrix \(A(n \geq 0)\). \\
\hline ap & REAL for spptrf \\
\hline & DOUBLE PRECISION for dpptrf \\
\hline & COMPLEX for cpptrf \\
\hline & DOUBLE COMPLEX for zpptrf. \\
\hline & Array, dimension at least max (1,n(n+1)/2). \\
\hline
\end{tabular}

The array ap contains either the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in packed storage (see Matrix Storage Schemes).

\section*{Output Parameters}

The upper or lower triangular part of \(A\) in packed storage is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
info INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and hence the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Application Notes}

If uplo \(=\) ' \(U\) ', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\[
|E| \leq c(n) \varepsilon\left|U^{H}\right||U|, \quad\left|e_{i j}\right| \leq c(n) \varepsilon \sqrt{a_{i i} a_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo = 'L'.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors and \((4 / 3) n^{3}\) for complex flavors.

After calling this routine, you can call the following:
?pptrs \(\quad\) to solve \(A X=B\);
?ppcon to estimate the condition number of \(A\);
?pptri to compute the inverse of \(A\).

\section*{?pbtrf}

Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite band matrix.
```

call spbtrf ( uplo, n, kd, ab, ldab, info )
call dpbtrf ( uplo, n, kd, ab, ldab, info )
call cpbtrf ( uplo, n, kd, ab, ldab, info )
call zpbtrf ( uplo, n, kd, ab, ldab, info )

```

\section*{Discussion}

This routine forms the Cholesky factorization of a symmetric positivedefinite or, for complex data, Hermitian positive-definite band matrix \(A\) :
```

$A=U^{H} U \quad$ if uplo='U'
$A=L L^{H} \quad$ if uplo='L'

```
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored in the array \(a b\), and how \(A\) is factored: \\
\hline & If uplo=' U ', the array \(a b\) stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(U^{H} U\). \\
\hline & If uplo='L', the array \(a b\) stores the lower triangular part of the matrix \(A ; A\) is factored as \(L L^{H}\). \\
\hline n & integer. The order of matrix \(A(n \geq 0)\). \\
\hline kd & Integer. The number of super-diagonals or sub-diagonals in the matrix \(A(k d \geq 0)\). \\
\hline ab & ReAL for spbtrf \\
\hline & DOUBLE PRECISION for dpbtrf \\
\hline & COMPLEX for cpbtrf \\
\hline & DOUBLE COMPLEX for zpbtrf. \\
\hline & Array, DIMENSION (1 dab,*). \\
\hline
\end{tabular}

The array ap contains either the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in band storage (see Matrix Storage Schemes). The second dimension of \(a b\) must be at least \(\max (1, n)\).
Idab INTEGER. The first dimension of the array \(a b\). \((1 d a b \geq k d+1)\)

\section*{Output Parameters}
\begin{tabular}{ll}
ap & The upper or lower triangular part of \(A\) (in band storage) \\
is overwritten by the Cholesky factor \(U\) or \(L\), as \\
specified by uplo. \\
info & INTEGER. If info=0, the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value. \\
If info \(=i\), the leading minor of order \(i\) (and hence the \\
matrix \(A\) itself) is not positive-definite, and the \\
factorization could not be completed. This may indicate \\
an error in forming the matrix \(A\).
\end{tabular}

\section*{Application Notes}

If uplo='U', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\(|E| \leq c(k d+1) \varepsilon\left|U^{H}\right||U|, \quad\left|e_{i j}\right| \leq c(k d+1) \varepsilon \sqrt{a_{i i} a_{j j}}\)
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo \(=\) 'L'.
The total number of floating-point operations for real flavors is approximately \(n(k d+1)^{2}\). The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k d\) is much less than \(n\).

After calling this routine, you can call the following:
\(\begin{array}{ll}\text { ?pbtrs } & \text { to solve } A X=B ; \\ \text { ?pbcon } & \text { to estimate the condition number of } A ;\end{array}\)

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?pttrf}

Computes the factorization of a symmetric (Hermitian) positive-definite tridiagonal matrix.
```

call spttrf ( n, d, e, info )
call dpttrf ( n, d, e, info )
call cpttrf ( n, d, e, info )
call zpttrf ( }n,d,e, info

```

\section*{Discussion}

This routine forms the factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite tridiagonal matrix \(A\) :
\(A=L D L^{H}\), where \(D\) is diagonal and \(L\) is unit lower bidiagonal. The factorization may also be regarded as having the form \(A=U^{H} D U\), where \(D\) is unit upper bidiagonal.

\section*{Input Parameters}
n
d
e

INTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for spttrf, cpttrf
DOUBLE PRECISION for dpttrf, zpttrf.
Array, dimension (\(n\)). Contains the diagonal elements of \(A\).
REAL for spttrf
DOUBLE PRECISION for dpttrf
COMPLEX for cpttrf
DOUBLE COMPLEX for zpttrf.
Array, dimension (\(n-1\)). Contains the sub-diagonal elements of \(A\).

\section*{Output Parameters}

Overwritten by the \(n\) diagonal elements of the diagonal matrix \(D\) from the \(L D L^{H}\) factorization of A.

Overwritten by the \((n-1)\) off-diagonal elements of the unit bidiagonal factor \(L\) or \(U\) from the factorization of A.

\section*{info}

INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If \(i n f \circ=i\), the leading minor of order \(i\) (and hence the matrix \(A\) itself) is not positive-definite; if \(i<n\), the factorization could not be completed, while if \(i=n\), the factorization was completed, but \(d(n)=0\).

\section*{?sytrf}

Computes the Bunch-Kaufman
factorization of a symmetric matrix.
```

call ssytrf ( uplo, n, a, lda, ipiv, work, lwork, info )
call dsytrf ( uplo, n, a, lda, ipiv, work, lwork, info )
call csytrf ( uplo, n, a, lda, ipiv, work, lwork, info )
call zsytrf ( uplo, n, a, lda, ipiv, work, lwork, info )

```

\section*{Discussion}

This routine forms the Bunch-Kaufman factorization of a symmetric matrix:
\[
\begin{array}{ll}
\text { if uplo='U', } & A=P U D U^{T} P^{T} \\
\text { if uplo='L', } & A=P L D L^{T} P^{T}
\end{array}
\]
where \(A\) is the input matrix, \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & ChARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored: \\
\hline & If uplo \(=\) ' U ', the array a stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(P U D U^{T} P^{T}\). \\
\hline & If uplo = ' L ', the array a stores the lower triangular part of the matrix \(A ; A\) is factored as \(P L D L^{T} P^{T}\). \\
\hline \(n\) & Integer. The order of matrix \(A(n \geq 0)\). \\
\hline a & REAL for ssytrf \\
\hline & DOUBLE PRECISION for dsytrf \\
\hline & Complex for csytrf \\
\hline & DOUBLE Complex for zsytrf. \\
\hline & Array, Dimension (lda,*). \\
\hline
\end{tabular}

The array a contains either the upper or the lower triangular part of the matrix \(A\) (see uplo). The second dimension of a must be at least \(\max (1, n)\). INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).

\section*{work}

Same type as a. Workspace array of dimension 1 work
INTEGER. The size of the work array (1 work \(\geq n\))
See Application notes for the suggested value of lwork.

\section*{Output Parameters}

The upper or lower triangular part of \(a\) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\)). If info=0, on exit work (1) contains the minimum value of \(l\) work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
Array, DIMENSION at least max \((1, n)\).
Contains details of the interchanges and the block structure of \(D\).
If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\) th row and column of \(A\) was interchanged with the \(k\) th row and column.
If uplo='U' andipiv(i)=ipiv(i-1) \(=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and (\(i-1\)) th row and column of \(A\) was interchanged with the mth row and column.
If uplo='L' and ipiv(i) =ipiv(i+1) \(=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and \((i+1)\) th row and column of \(A\) was interchanged with the mth row and column.
INTEGER. If info= 0 , the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array \(a\), but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).
If \(i_{\operatorname{piv}}(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array a.
If uplo = 'U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq c(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. A similar estimate holds for the computed \(L\) and \(D\) when uplo \(=\) 'L'. The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.
After calling this routine, you can call the following:
?sytrs
?sycon
?sytri
to solve \(A X=B\);
to estimate the condition number of \(A\);
to compute the inverse of \(A\).

\section*{?hetrf}

Computes the Bunch-Kaufman
factorization of a complex Hermitian
matrix.
```

call chetrf ( uplo, n, a, lda, ipiv, work, lwork, info )
call zhetrf ( uplo, n, a, lda, ipiv, work, lwork, info )

```

\section*{Discussion}

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix:
\[
\begin{array}{ll}
\text { if uplo='U', } & A=P U D U^{H} P^{T} \\
\text { if uplo='L', } & A=P L D L^{H} P^{T}
\end{array}
\]
where \(A\) is the input matrix, \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & ChARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored: \\
\hline & If uplo = ' U ', the array a stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(P U D U^{H} P^{T}\). If uplo = ' L ', the array a stores the lower triangular part of the matrix \(A ; A\) is factored as \(P L D L^{H} P^{T}\). \\
\hline \(n\) & Integer. The order of matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{\(a\)} & COMPLEX for chetrf \\
\hline & DOUBLE COMPLEX for zhetrf. \\
\hline & Array, DIMENSION (lda,*). \\
\hline & The array a contains either the upper or the lower triangular part of the matrix \(A\) (see uplo). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Ida INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
work Same type as a. Workspace array of dimension lwork
lwork INTEGER. The size of the work array (1 work \(\geq n\))
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

The upper or lower triangular part of \(a\) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\)).
If info=0, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
Array, DIMENSION at least \(\max (1, n)\).
Contains details of the interchanges and the block structure of \(D\).
If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\) th row and column of \(A\) was interchanged with the \(k\) th row and column.

If uplo='U' and ipiv(i) =ipiv(i-1) \(=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and (\(i-1\)) th row and column of \(A\) was interchanged with the mth row and column.

If uplo='L' and ipiv(i) =ipiv(i+1) \(=-m<0\), then \(D\) has a 2-by- 2 block in rows/columns \(i\) and \(i+1\), and \((i+1)\) th row and column of \(A\) was interchanged with the mth row and column.

INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

This routine is suitable for Hermitian matrices that are not known to be positive-definite. If \(A\) is in fact positive-definite, the routine does not perform interchanges, and no 2-by-2 diagonal blocks occur in \(D\).

For better performance, try using 1 work \(=n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array \(a\), but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(i p i v(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array a.
If uplo = ' \(U\) ', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq c(n) \mathcal{E} P|U||D|\left|U^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. A similar estimate holds for the computed \(L\) and \(D\) when uplo \(=\) ' L '. The total number of floating-point operations is approximately \((4 / 3) n^{3}\). After calling this routine, you can call the following:
\begin{tabular}{ll}
?hetrs & to solve \(A X=B ;\) \\
?hecon & to estimate the condition number of \(A ;\) \\
?hetri & to compute the inverse of \(A\).
\end{tabular}

\section*{?sptrf}

\section*{Computes the Bunch-Kaufman}
factorization of a symmetric matrix using packed storage.
```

call ssptrf ( uplo, n, ap, ipiv, info )
call dsptrf ( uplo, n, ap, ipiv, info )
call csptrf ( uplo, n, ap, ipiv, info )
call zsptrf ( uplo, n, ap, ipiv, info )

```

\section*{Discussion}

This routine forms the Bunch-Kaufman factorization of a symmetric matrix \(A\) using packed storage:
\[
\begin{array}{ll}
\text { if upIo='U', } & A=P U D U^{T} P^{T} \\
\text { if upIo='L', } & A=P L D L^{T} P^{T}
\end{array}
\]
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).

\section*{Input Parameters}
```

uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of }
is packed in the array ap and how A is factored:
If uplo= 'U', the array ap stores the upper triangular
part of the matrix A, and A is factored as PUDU'T}\mp@subsup{P}{}{T}\mathrm{ .
If upIo= 'L', the array ap stores the lower triangular
part of the matrix A;A is factored as PLDLT}\mp@subsup{P}{}{T}\mathrm{ .
n INTEGER. The order of matrix A ( }n\geq0)\mathrm{ .

```
ap
REAL for ssptrf
DOUBLE PRECISION for dsptrf
COMPLEX for csptrf
DOUBLE COMPLEX for zsptrf.
Array, DIMENSION at least \(\max (1, n(n+1) / 2)\).
The array ap contains either the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in packed storage (see Matrix Storage Schemes).

\section*{Output Parameters}

The upper or lower triangle of \(A\) (as specified by uplo) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\)).

INTEGER.
Array, DIMENSION at least max \((1, n)\).
Contains details of the interchanges and the block structure of \(D\).
If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\) th row and column of \(A\) was interchanged with the \(k\) th row and column.

If uplo='U' and ipiv(i) \(=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and (\(i-1\)) th row and column of \(A\) was interchanged with the mth row and column.
If uplo='L' andipiv(i)=ipiv(i+1)=-m<0, then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and \((i+1)\) th row and column of \(A\) was interchanged with the mth row and column.
INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) overwrite elements of the corresponding columns of the matrix \(A\), but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).
If \(i_{\operatorname{piv}}(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in packed form.

If uplo = ' \(U\) ', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq c(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. A similar estimate holds for the computed \(L\) and \(D\) when up \(I O=\) ' L '.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.
After calling this routine, you can call the following:
\begin{tabular}{ll}
?sptrs & to solve \(A X=B ;\) \\
?spcon & to estimate the condition number of \(A ;\) \\
?sptri & to compute the inverse of \(A\).
\end{tabular}

\section*{?hptrf}

Computes the Bunch-Kaufman
factorization of a complex Hermitian
matrix using packed storage.
```

call chptrf ( uplo, n, ap, ipiv, info )
call zhptrf ( uplo, n, ap, ipiv, info )

```

\section*{Discussion}

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix using packed storage:
```

if uplo='U',
$A=P U D U^{H} P^{T}$
if uplo='L',
$A=P L D L^{H} P^{T}$

```
where \(A\) is the input matrix, \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether the upper or lower triangular part of \(A\) is packed and how \(A\) is factored:
\end{tabular} \\
\hline & If uplo='U', the array \(a p\) stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(P U D U^{H} P^{T}\). If uplo = 'L', the array ap stores the lower triangular part of the matrix \(A ; A\) is factored as \(P L D L^{H} P^{T}\). \\
\hline \(n\) & Integer. The order of matrix \(A(n \geq 0)\). \\
\hline ap & Complex for chptrf \\
\hline & DOUBLE COMPLex for zhptrf. \\
\hline & Array, DIMENSION at least max \((1, n(n+1) / 2)\). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

The array \(a p\) contains either the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in packed storage (see Matrix Storage Schemes).

\section*{Output Parameters}

The upper or lower triangle of \(A\) (as specified by uplo) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\)).
info

INTEGER.
Array, DIMENSION at least \(\max (1, n)\).
Contains details of the interchanges and the block structure of \(D\).
If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\) th row and column of \(A\) was interchanged with the \(k\) th row and column.
If uplo='U' and ipiv(i) =ipiv(i-1) \(=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and (i-1) th row and column of \(A\) was interchanged with the \(m\) th row and column.
If uplo='L' andipiv(i)=ipiv(i+1)=-m<0, then \(D\) has a 2-by- 2 block in rows/columns \(i\) and \(i+1\), and \((i+1)\) th row and column of \(A\) was interchanged with the mth row and column.
INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array \(a\), but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(i p i v(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array a.

If uplo = 'U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq c(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. A similar estimate holds for the computed \(L\) and \(D\) when up \(10=\) ' L '.
The total number of floating-point operations is approximately \((4 / 3) n^{3}\).
After calling this routine, you can call the following:
\begin{tabular}{ll}
?hptrs & to solve \(A X=B ;\) \\
?hpcon & to estimate the condition number of \(A ;\) \\
?hptri & to compute the inverse of \(A\).
\end{tabular}

\section*{Routines for Solving Systems of Linear Equations}

This section describes the LAPACK routines for solving systems of linear equations. Before calling most of these routines, you need to factorize the matrix of your system of equations (see Routines for Matrix Factorizationin this chapter). However, the factorization is not necessary if your system of equations has a triangular matrix.

\section*{?getrs}

Solves a system of linear equations with an LU-factored square matrix, with multiple right-hand sides.
```

call sgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)
call dgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)
call cgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)
call zgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

```

\section*{Discussion}

This routine solves for \(X\) the following systems of linear equations:
\begin{tabular}{ll}
\(A X=B\) & if trans='N', \\
\(A^{T} X=B\) & if trans=' \(\mathrm{T}^{\prime}\), \\
\(A^{H} X=B\) & if trans='C' (for complex matrices only).
\end{tabular}

Before calling this routine, you must call ?getrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{trans} & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & Indicates the form of the equations: \\
\hline & If trans \(=\) ' \(\mathrm{N}^{\prime}\), then \(A X=B\) is solved for \(X\). \\
\hline & If trans = ' T ', then \(A^{T} X=B\) is solved for \(X\). \\
\hline & If trans = ' \(\mathrm{C}^{\prime}\), then \(A^{H} X=B\) is solved for \(X\). \\
\hline \(n\) & INTEGER. The order of \(A\); the number of rows in \(B(n \geq 0)\) \\
\hline nrhs & INTEGER. The number of right-hand sides (\(n r h s \geq 0\)). \\
\hline \multirow[t]{5}{*}{\(a, b\)} & REAL for sgetrs \\
\hline & DOUBLE PRECISION for dgetrs \\
\hline & COMPLEX for cgetrs \\
\hline & DOUBLE COMPLEX for zgetrs. \\
\hline & Arrays: \(a(1 d a, *), b(1 d b, *)\). \\
\hline
\end{tabular}

The array a contains the matrix \(A\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
The second dimension of a must be at least \(\max (1, n)\), the second dimension of \(b\) at least max (\(1, n r h s\)).

Ida
1 db
ipiv

INTEGER. The first dimension of \(a ; I d a \geq \max (1, n)\).
INTEGER. The first dimension of \(b ; 1 d b \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\).
The ipiv array, as returned by ?getrf.

\section*{Output Parameters}
b
info

Overwritten by the solution matrix \(X\).
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\) where
\[
|E| \leq c(n) \mathcal{E} P|L||U|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| | \infty_{\infty} /\left.|x|\right|_{\infty} \leq\left|\left|A^{-1}\right|\right|{ }_{\infty}| | A| |_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\alpha}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\alpha}(A)\).
The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.
To estimate the condition number \(\kappa_{\alpha}(A)\), call ?gecon.
To refine the solution and estimate the error, call ?gerfs.

\section*{? gbtrs}

Solves a system of linear equations with an \(L U\)-factored band matrix, with multiple right-hand sides.
```

call sgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call dgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call cgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call zgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

```

\section*{Discussion}

This routine solves for \(X\) the following systems of linear equations:
\[
\begin{array}{ll}
A X=B & \text { if } \text { trans =' 'N', } \\
A^{T} X=B & \text { if } t \text { rans }=\text { ' ' ', } \\
A^{H} X=B & \text { if } t \text { rans }=\text { ' ' (for complex matrices only). }
\end{array}
\]

Here \(A\) is an \(L U\)-factored general band matrix of order \(n\) with \(k I\) non-zero sub-diagonals and \(k u\) non-zero super-diagonals. Before calling this routine, you must call ? gbtrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}
```

trans CHARACTER*1. Must be 'N' or 't' or 'C'.
n
kl INTEGER. The number of sub-diagonals within the band
of A(kl\geq0).
INTEGER. The number of super-diagonals within the band
of A(ku\geq0).
INTEGER. The number of right-hand sides (nrhs }\geq0\mathrm{ ).
REAL for sgbtrs
DOUBLE PRECISION for dgbtrs
COMPLEX for cgbtrs
DOUBLE COMPLEX for zgbtrs.
Arrays: ab(ldab,*),b(ldb,*).

```

The array \(a b\) contains the matrix \(A\) in band storage (see Matrix Storage Schemes).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(a b\) must be at least \(\max (1, n)\), the second dimension of \(b\) at least \(\max (1, n r h s)\).
Idab
\(I d b \quad \operatorname{INTEGER}\). The first dimension of \(b ; 1 d b \geq \max (1, n)\).
ipiv Integer. Array, dimension at least max \((1, n)\). The ipiv array, as returned by ?gbtrf.

Output Parameters
b Overwritten by the solution matrix \(X\).
info INTEGER. If info=0, the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq c(k I+k u+1) \varepsilon P|L||U|
\]
\(c(k)\) is a modest linear function of \(k\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(k I+k u+1) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| | \infty /||x||_{\infty} \leq\left|\left|A^{-1}\right|\right| \infty| | A \mid \|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\alpha}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\alpha}(A)\).
The approximate number of floating-point operations for one right-hand side vector is \(2 n(k u+2 k l)\) for real flavors. The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k l\) and \(k u\) are much less than \(\min (m, n)\).

To estimate the condition number \(\kappa_{\alpha}(A)\), call ?gbcon.
To refine the solution and estimate the error, call ?gbrfs.

\section*{?gttrs}

Solves a system of linear equations with a tridiagonal matrix using the \(L U\) factorization computed by ?gttrf.
```

call sgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
call dgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
call cgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
call zgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

```

\section*{Discussion}

This routine solves for \(X\) the following systems of linear equations with multiple right hand sides:
```

$A X=B \quad$ if trans='N',
$A^{T} X=B \quad$ if trans=' $T^{\prime}$,
$A^{H} X=B \quad$ if trans=' C' (for complex matrices only).

```

Before calling this routine, you must call ?gttrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}
```

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans='N', then AX=B is solved for X.
If trans= 'T', then }\mp@subsup{A}{}{T}X=B\mathrm{ is solved for }X\mathrm{ .
If trans='C', then A}\mp@subsup{A}{}{H}X=B\mathrm{ is solved for X.
n
nrhs
d1, d, du, du2,b
REAL for sgttrs
DOUBLE PRECISION for dgttrs
COMPLEX for cgttrs
DOUBLE COMPLEX for zgttrf.

```
```

Arrays: $d l(n-1), d(n), d u(n-1), d u 2(n-2)$,
b(ldb, nrhs).

```
The array \(d l\) contains the \((n-1)\) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\).
The array \(d\) contains the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\). The array \(d u\) contains the \((n-1)\) elements of the first super-diagonal of \(U\).
The array du2 contains the (\(n-2\)) elements of the second super-diagonal of \(U\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
INTEGER. The leading dimension of \(b ; I d b \geq \max (1, n)\).

\section*{INTEGER.}

Array, DIMENSION (\(n\)).
The ipiv array, as returned by ?gttrf.

\section*{Output Parameters}

Overwritten by the solution matrix \(X\).
info INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\) where
\[
|E| \leq c(n) \varepsilon P|L||U|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| |_{\infty} /||x||_{\infty} \leq\left|\left|A^{-1}\right|\right|_{\infty}| | A| |_{\infty}=\) \(\kappa_{\infty}(A)\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\alpha}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\circ}(A)\).
The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.
To estimate the condition number \(\kappa_{o}(A)\), call ?gecon.
To refine the solution and estimate the error, call ?gerfs.

\section*{?potrs}

Solves a system of linear equations with a Cholesky-factored symmetric (Hermitian) positive-definite matrix.
```

call spotrs ( uplo, n, nrhs, a, lda, b, ldb, info )
call dpotrs ( uplo, n, nrhs, a, lda, b, ldb, info )
call cpotrs ( uplo, n, nrhs, a, lda, b, ldb, info )
call zpotrs ( uplo, n, nrhs, a, lda, b, ldb, info )

```

\section*{Discussion}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix \(A\), given the Cholesky factorization of \(A\) :
\[
\begin{array}{ll}
A=U^{H} U & \text { if uplo='U' } \\
A=L L^{H} & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).
Before calling this routine, you must call ?potrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}
uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored: If uplo = 'U', the array a stores the factor \(U\) of the Cholesky factorization \(A=U^{H} U\). If uplo = 'L', the array a stores the factor \(L\) of the Cholesky factorization \(A=L L^{H}\).
n
nrhs
integer. The number of right-hand sides (\(n r h s \geq 0\)).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{\(a, b\)} & REAL for spotrs \\
\hline & DOUBLE PRECISION for dpotrs \\
\hline & COMPLEX for cpotrs \\
\hline & DOUBLE COMPLEX for zpotrs. \\
\hline & Arrays: \(a(l d a, *), b(l d b, *)\). \\
\hline & The array a contains the factor \(U\) or \(L\) (see uplo). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. \\
\hline & The second dimension of a must be at least max \((1, n)\), the second dimension of \(b\) at least \(\max (1, n r h s)\). \\
\hline Ida & INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline 1 db & INTEGER. The first dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
\(b\) & Overwritten by the solution matrix \(X\). \\
info & INTEGER. If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value
\end{tabular}

\section*{Application Notes}

If uplo= 'U', the computed solution for each right-hand side \(b\) is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq c(n) \varepsilon\left|U^{H}\right||U|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. A similar estimate holds for uplo = ' L '.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\|\left|\left|A^{-1}\right|\right| A| | x| |\left|{ }_{\infty} /||x||_{\infty} \leq\left|\left|A^{-1}\right|\right|\right|_{\infty}|A| \mid{ }_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\alpha}(A)\).
The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.
To estimate the condition number \(\kappa_{\alpha}(A)\), call ?pocon.
To refine the solution and estimate the error, call ?porfs.

\section*{?pptrs}

Solves a system of linear equations with a packed Cholesky-factored symmetric (Hermitian) positive-definite matrix.
```

call spptrs ( uplo, n, nrhs, ap, b, ldb, info )
call dpptrs ( uplo, n, nrhs, ap, b, ldb, info )
call cpptrs ( uplo, n, nrhs, ap, b, ldb, info )
call zpptrs ( uplo, n, nrhs, ap, b, ldb, info )

```

\section*{Discussion}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a packed symmetric positive-definite or, for complex data, Hermitian positive-definite matrix \(A\), given the Cholesky factorization of \(A\) :
\[
\begin{array}{ll}
A=U^{H} U & \text { if uplo='U' } \\
A=L L^{H} & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).

Before calling this routine, you must call ?pptrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{ll}
uplo & CHARACTER*1. Must be 'U' or ' L '. \\
& Indicates how the input matrix \(A\) has been factored: \\
& If uplo \(=\) ' \(U\) ', the array a stores the packed factor \(U\) of \\
the Cholesky factorization \(A=U^{H} U\).
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll}
\(a p, b\) & REAL for spptrs \\
DOUBLE PRECISION for dpptrs \\
COMPLEX for cpptrs \\
& DOUBLE COMPLEX for zpptrs. \\
Arrays: \(a p(*), b(l d b, *)\) \\
& The dimension of \(a p\) must be at least \(\max (1, n(n+1) / 2)\). \\
& The array ap contains the factor \(U\) or \(L\), as specified by \\
& uplo, in packed storage (see Matrix Storage Schemes). \\
& The array b contains the matrix \(B\) whose columns are \\
the right-hand sides for the systems of equations. The \\
& second dimension of \(b\) must be at least max \((1, n r h s)\). \\
& INTEGER. The first dimension of \(b ; I d b \geq \max (1, n)\).
\end{tabular}

\section*{Output Parameters}
b Overwritten by the solution matrix \(X\).
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

If uplo = 'U', the computed solution for each right-hand side \(b\) is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq c(n) \varepsilon\left|U^{H}\right||U|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo \(=\) 'L'.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| | \infty /||x||_{\infty} \leq\left.\left|\left|A^{-1}\right|\right|\right|_{\infty}| | A| |_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.
To estimate the condition number \(\kappa_{\alpha}(A)\), call ?ppcon.
To refine the solution and estimate the error, call ?pprfs.

\section*{?pbtrs}

Solves a system of linear equations with a Cholesky-factored symmetric (Hermitian) positive-definite band matrix.
```

call spbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call dpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call cpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call zpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

```

\section*{Discussion}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a symmetric positive-definite or, for complex data, Hermitian positive-definite band matrix \(A\), given the Cholesky factorization of \(A\) :
\[
\begin{array}{ll}
A=U^{H} U & \text { if uplo='U' } \\
A=L L^{H} & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).

Before calling this routine, you must call ?pbtrf to compute the Cholesky factorization of \(A\) in the band storage form.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & \begin{tabular}{l}
Indicates how the input matrix \(A\) has been factored: If uplo \(=\) ' U', the array a stores the factor \(U\) of the factorization \(A=U^{H} U\) in the band storage form. \\
If uplo = ' L', the array a stores the factor \(L\) of the factorization \(A=L L^{H}\) in the band storage form.
\end{tabular} \\
\hline \(n\) & Integer. The order of matrix \(A(n \geq 0)\). \\
\hline kd & INTEGER. The number of super-diagonals or sub-diagonals in the matrix \(A(k d \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides (nrhs \(\geq 0\)). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll}
\(a b, b\) & REAL for spbtrs \\
DOUBLE PRECISION for dpbtrs \\
& COMPLEX for cpbtrs \\
& DOUBLE COMPLEX for zpbtrs. \\
& Arrays: \(a b(I d a b, *), b(I d b, *)\). \\
& The array \(a b\) contains the Cholesky factor, as returned by \\
the factorization routine, in band storage form. \\
& The array \(b\) contains the matrix \(B\) whose columns are the \\
& right-hand sides for the systems of equations. \\
& The second dimension of ab must be at least \(\max (1, n)\), \\
& the second dimension of \(b\) at least max \((1, n r h s)\). \\
& INTEGER. The first dimension of the array \(a b\). \\
& \((I d a b \geq k d+1)\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
\(b\) & Overwritten by the solution matrix \(X\). \\
info & INTEGER. If info=0, the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq c(k d+1) \varepsilon P\left|U^{H}\right||U| \text { or }|E| \leq c(k d+1) \varepsilon P\left|L^{H}\right||L|
\]
\(c(k)\) is a modest linear function of \(k\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(k d+1) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| |{ }_{\infty} /||x||_{\infty} \leq\left|\left|A^{-1}\right|\right|{ }_{\infty}| | A| |_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The approximate number of floating-point operations for one right-hand side vector is \(4 n^{*} k d\) for real flavors and \(16 n^{*} k d\) for complex flavors.

To estimate the condition number \(\kappa_{\alpha}(A)\), call ?pbcon.
To refine the solution and estimate the error, call ?pbrfs.

\section*{?pttrs}

Solves a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal matrix using the factorization computed by ?pttrf.
```

call spttrs (n, nrhs, d, e, b, ldb, info)
call dpttrs (n, nrhs, d, e, b, ldb, info)
call cpttrs (uplo, n, nrhs, d, e, b, ldb, info)
call zpttrs (uplo, n, nrhs, d, e, b, ldb, info)

```

\section*{Discussion}

This routine solves for \(X\) a system of linear equations \(A X=B\) with a symmetric (Hermitian) positive-definite tridiagonal matrix \(A\). Before calling this routine, you must call ? pttrf to compute the \(L D L^{H}\) or \(U^{H} D U\) factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{ll}
uplo & CHARACTER*1. Used for cpttrs/zpttrs only. \\
Must be 'U' or 'L'. \\
Specifies whether the superdiagonal or the subdiagonal \\
of the tridiagonal matrix \(A\) is stored and how \(A\) is \\
factored: \\
If uplo \({ }^{\prime} \mathrm{U}\) ', the array e stores the superdiagonal of \(A\), \\
and \(A\) is factored as \(U^{H} D U ;\) \\
If uplo \(=\) ' L ', the array e stores the subdiagonal of \(A\), \\
and \(A\) is factored as \(L D L^{H}\). \\
\(n\) & INTEGER. The order of \(A(n \geq 0)\).
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{\(d\)} & REAL for spttrs, cpttrs \\
\hline & DOUBLE PRECISION for dpttrs, zpttrs. \\
\hline & Array, dimension (\(n\)). Contains the diagonal elements of the diagonal matrix \(D\) from the factorization \\
\hline & computed by ?pttrf. \\
\hline \multirow[t]{8}{*}{e, b} & REAL for spttrs \\
\hline & DOUBLE PRECISION for dpttrs \\
\hline & COMPLEX for cpttrs \\
\hline & DOUBLE COMPLEX for zpttrs. \\
\hline & Arrays: e (n-1), b (\(1 \mathrm{db}, \mathrm{nrhs}\)) . \\
\hline & The array e contains the \((n-1)\) off-diagonal elements of the unit bidiagonal factor \(U\) or \(L\) from the \\
\hline & factorization computed by ?pttrf (see uplo). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline b & Overwritten by the solution matrix \(X\). \\
\hline \multirow[t]{2}{*}{info} & INTEGER. If info=0, the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{?sytrs}

Solves a system of linear equations with a UDU- or LDL-factored symmetric matrix.
```

call ssytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
call dsytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
call csytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
call zsytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

```

\section*{Discussion}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a symmetric matrix \(A\), given the Bunch-Kaufman factorization of \(A\) :
```

if uplo='U',
$A=P U D U^{T} P^{T}$
if uplo='L',
$A=P L D L^{T} P^{T}$

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\). You must supply to this routine the factor \(U\) (or \(L\)) and the array ipiv returned by the factorization routine? sytrf.

\section*{Input Parameters}
\begin{tabular}{ll}
uplo & CHARACTER*1. Must be ' \(U\) ' or 'L'. \\
& Indicates how the input matrix \(A\) has been factored: \\
& If uplo \(=\) ' \(U\) ', the array a stores the upper triangular \\
& factor \(U\) of the factorization \(A=P U D U^{T} P^{T}\). \\
& If uplo \(=\) ' L ', the array a stores the lower triangular \\
& factor \(L\) of the factorization \(A=P L D L^{T} P^{T}\). \\
\(n\) & INTEGER. The order of matrix \(A(n \geq 0)\). \\
nrhs & INTEGER. The number of right-hand sides \((n r h s \geq 0)\). \\
ipiv & INTEGER. Array, DIMENSION at least \(\max (1, n)\). \\
& The ipivarray, as returned by ?sytrf.
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(a, b\) & REAL for ssytrs \\
\hline & DOUBLE PRECISION for dsytrs \\
\hline & COMPLex for csytrs \\
\hline & DOUBLE COMPLex for zsytrs. \\
\hline & Arrays: \(a(I d a, *), b(I d b, *)\). \\
\hline & The array a contains the factor \(U\) or \(L\) (see uplo). \\
\hline & The array bcontains the matrix \(B\) whose columns are the right-hand sides for the system of equations. \\
\hline & The second dimension of a must be at least max \((1, n)\), the second dimension of \(b\) at least \(\max (1, n r h s)\). \\
\hline lda & Integer. The first dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline 1 db & Integer. The first dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
b Overwritten by the solution matrix \(X\).
info INTEGER. If info=0, the execution is successful. If \(i n f o=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq c(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T} \text { or }|E| \leq c(n) \varepsilon P|L||D|\left|L^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| |{ }_{\infty} /\left.||x||\right|_{\infty} \leq\left|\left|A^{-1}\right|\right| \infty| | A| |_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(2 n^{2}\) for real flavors or \(8 n^{2}\) for complex flavors.
To estimate the condition number \(\kappa_{o}(A)\), call ?sycon.
To refine the solution and estimate the error, call ?syrfs.

\section*{?hetrs}

Solves a system of linear equations with a UDU- or LDL-factored Hermitian matrix.
```

call chetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
call zhetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

```

\section*{Discussion}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a Hermitian matrix \(A\), given the Bunch-Kaufman factorization of \(A\) :
\[
\begin{array}{ll}
\text { if uplo }=\text { 'U', }, & A=P U D U^{H} P^{T} \\
\text { if uplo }=\text { 'L', }, & A=P L D L^{H} P^{T}
\end{array}
\]
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\). You must supply to this routine the factor \(U\) (or \(L\)) and the array ipiv returned by the factorization routine ?hetrf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or \\
\hline & Indicates how the input matrix \(A\) has been factored: \\
\hline & If uplo \(=\) 'U', the array a stores the upper triangular factor \(U\) of the factorization \(A=P U D U^{H} P^{T}\). \\
\hline & If uplo = 'L', the array a stores the lower triangular factor \(L\) of the factorization \(A=P L D L^{H} P^{T}\). \\
\hline \(n\) & INTEGER. The order of matrix \(A(n \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides (nrhs \(\geq 0\)). \\
\hline ipiv & INTEGER. Array, DIMENSION at least max \((1, n)\). \\
\hline & The ipiv array, as returned by ?hetrf. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll}
\(a, b\) & COMPLEX for chetrs. \\
& DOUBLE COMPLEX for zhetrs. \\
& Arrays: \(a(l d a, *), b(I d b, *)\). \\
& The array a contains the factor \(U\) or \(L\) (see uplo). \\
& The array b contains the matrix \(B\) whose columns are the \\
& right-hand sides for the system of equations. \\
& The second dimension of \(a\) must be at least \(\max (1, n)\), \\
& the second dimension of \(b\) at least \(\max (1, n r h s)\). \\
\(l d a\) & INTEGER. The first dimension of \(a ; l d a \geq \max (1, n)\). \\
\(l d b\) & INTEGER. The first dimension of \(b ; l d b \geq \max (1, n)\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
\(b\) & Overwritten by the solution matrix \(X\). \\
info & INTEGER. If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq c(n) \varepsilon P|U||D|\left|U^{H}\right| P^{T} \text { or }|E| \leq c(n) \varepsilon P|L||D|\left|L^{H}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| | \|_{\infty} /\left.|x|\right|_{\infty} \leq\left|\left|A^{-1}\right|\right| \infty| | A| |_{\infty}=\kappa_{\alpha}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\alpha}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(8 n^{2}\).

To estimate the condition number \(\kappa_{\alpha}(A)\), call ?hecon.
To refine the solution and estimate the error, call ?herfs.

\section*{?sptrs}

Solves a system of linear equations with a UDU- or LDL-factored symmetric matrix using packed storage.
```

call ssptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call dsptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call csptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call zsptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )

```

\section*{Discussion}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a symmetric matrix \(A\), given the Bunch-Kaufman factorization of \(A\) :
```

if uplo='U', $\quad A=P U D U^{T} P^{T}$
if uplo='L', $\quad A=P L D L^{T} P^{T}$

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower packed triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\). You must supply the factor \(U\) (or \(L\)) and the array ipiv returned by the factorization routine ?sptrf.

\section*{Input Parameters}

\section*{uplo CHARACTER*1. Must be 'U' or 'L'.}

Indicates how the input matrix \(A\) has been factored:
If uplo \(=\) 'U', the array \(a p\) stores the packed factor \(U\) of the factorization \(A=P U D U^{T} P^{T}\).
If uplo = 'L', the array ap stores the packed factor \(L\) of the factorization \(A=P L D L^{T} P^{T}\).
\(n\)
nrhs
ipiv
INTEGER. The order of matrix \(A(n \geq 0)\).
INTEGER. The number of right-hand sides (nrhs \(\geq 0\)).
Integer. Array, Dimension at least max \((1, n)\).
The ipiv array, as returned by ?sptrf.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
```

ap, b REAL for ssptrs
DOUBLE PRECISION for dsptrs
COMPLEX for csptrs
DOUBLE COMPLEX for zsptrs.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor }U\mathrm{ or }L\mathrm{ , as specified by
uplo, in packed storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are
the right-hand sides for the system of equations. The
second dimension of b must be at least max(1,nrhs).
INTEGER. The first dimension of b; Idb \geq max (1,n).

```

\section*{Output Parameters}
```

b Overwritten by the solution matrix X.
info INTEGER. If info=0, the execution is successful.
If info=-i, the ith parameter had an illegal value.

```

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq c(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T} \text { or }|E| \leq c(n) \varepsilon P|L||D|\left|L^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
\]
where cond \((A, x)=\left\|\left|\left|A^{-1}\right|\right| A| | x| |\left|{ }_{\infty} /||x||_{\infty} \leq\left|\left|A^{-1}\right|\right| \|_{\infty}\right| A| |_{\infty}=\kappa_{\infty}(A)\right.\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\alpha}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(2 n^{2}\) for real flavors or \(8 n^{2}\) for complex flavors.
To estimate the condition number \(\kappa_{\alpha}(A)\), call ?spcon.
To refine the solution and estimate the error, call ?sprfs.

\section*{?hptrs}

Solves a system of linear equations with a UDU- or LDL-factored Hermitian matrix using packed storage.
```

call chptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call zhptrs ( uplo, n, nrhs, ap, ipiv, b, ldb, info )

```

\section*{Discussion}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a Hermitian matrix \(A\), given the Bunch-Kaufman factorization of \(A\) :
```

if uplo='U', $\quad A=P U D U^{H} P^{T}$
if uplo='L', $\quad A=P L D L^{H} P^{T}$

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower packed triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).
You must supply to this routine the arrays \(a p\) (containing \(U\) or \(L\)) and ipiv in the form returned by the factorization routine ?hptrf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates how the input matrix \(A\) has been factored: \\
\hline & If uplo \(=\) 'U', the array \(a p\) stores the packed factor \(U\) of the factorization \(A=P U D U^{H} P^{T}\). \\
\hline & If \(u p I o=\) ' \(L\) ', the array \(a p\) stores the packed factor \(L\) of the factorization \(A=P L D L^{H} P^{T}\). \\
\hline \(n\) & Integer. The order of matrix \(A(n \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides (\(n r h s \geq 0\)). \\
\hline ipiv & Integer. Array, dimension at least max (\(1, n\)) . \\
\hline & The ipiv array, as returned by \(\mathrm{?hptrf}\). \\
\hline
\end{tabular}
ap, b COMPLEX for chptrs.
DOUBLE COMPLEX for zhptrs.
Arrays: \(a p(*), b(I d b, *)\)
The dimension of ap must be at least \(\max (1, n(n+1) / 2)\). The array ap contains the factor \(U\) or \(L\), as specified by uplo, in packed storage (see Matrix Storage Schemes).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the system of equations. The second dimension of \(b\) must be at least \(\max (1, n r h s)\).

1 db
INTEGER. The first dimension of \(b ; ~ I d b \geq \max (1, n)\).

\section*{Output Parameters}
\(b \quad\) Overwritten by the solution matrix \(X\).
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq c(n) \varepsilon P|U||D|\left|U^{H}\right| P^{T} \text { or }|E| \leq c(n) \varepsilon P|L||D|\left|L^{H}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| | \infty /||x||_{\infty} \leq\left.\left|\left|A^{-1}\right|\right|\right|_{\infty}| | A| |_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\alpha}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{o}(A)\), call ?hpcon.
To refine the solution and estimate the error, call ?hprfs.

\section*{?trtrs}

Solves a system of linear equations with a triangular matrix, with multiple right-hand sides.
```

call strtrs (uplo,trans,diag,n, nrhs,a,lda,b,ldb,info)
call dtrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)
call ctrtrs (uplo,trans,diag,n, nrhs,a,lda,b,ldb,info)
call ztrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

```

\section*{Discussion}

This routine solves for \(X\) the following systems of linear equations with a triangular matrix \(A\), with multiple right-hand sides stored in \(B\) :
\(A X=B \quad\) if trans='N',
\(A^{T} X=B \quad\) if trans=' \(T^{\prime}\),
\(A^{H} X=B \quad\) if \(t r a n s=' \mathrm{C}\) ' (for complex matrices only).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether \(A\) is upper or lower triangular: \\
\hline & If uplo = ' U ', then \(A\) is upper triangular. \\
\hline & If uplo = 'L', then \(A\) is lower triangular. \\
\hline \multirow[t]{4}{*}{trans} & CHARACTER*1. Must be 'n' or 't' or 'C'. \\
\hline & If trans = 'n', then \(A X=B\) is solved for \(X\). \\
\hline & If trans = ' I ', then \(A^{T} X=B\) is solved for \(X\). \\
\hline & If trans \(=\) ' \(\mathrm{C}^{\prime}\), then \(A^{H} X=B\) is solved for \(X\). \\
\hline \multirow[t]{3}{*}{diag} & Character*1. Must be 'n' or 'U'. \\
\hline & If diag = ' N ', then \(A\) is not a unit triangular matrix. \\
\hline & If diag= ' U ', then \(A\) is unit triangular: diagonal elements of \(A\) are assumed to be 1 and not referenced in the array a. \\
\hline n & INTEGER. The order of \(A\); the number of rows in \(B(n \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides (\(n \mathrm{rhs} \geq 0\)). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll}
\(a, b\) & REAL for strtrs \\
DOUBLE PRECISION for dtrtrs \\
COMPLEX for ctrtrs \\
DOUBLE COMPLEX for ztrtrs. \\
Arrays: \(a(I d a, *), b(I d b, *)\). \\
& The array a contains the matrix \(A\). \\
& The array \(b\) contains the matrix \(B\) whose columns are the \\
right-hand sides for the systems of equations. \\
& The second dimension of a must be at least \(\max (1, n)\), the \\
& second dimension of \(b\) at least \(\max (1, n r h s)\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
\(b\) & Overwritten by the solution matrix \(X\). \\
info & INTEGER. If info=0, the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\) where
\[
|E| \leq c(n) \varepsilon|A|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\(\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon, \quad\) provided \(c(n) \operatorname{cond}(A, x) \varepsilon<1\)
where \(\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| | \infty /||x||_{\infty} \leq\left.\left|\left|A^{-1}\right|\right|\right|_{\infty}| | A| |_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{o}(A)\).
The approximate number of floating-point operations for one right-hand side vector \(b\) is \(n^{2}\) for real flavors and \(4 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\alpha}(A)\), call ?trcon.
To estimate the error in the solution, call ?trrfs.

\section*{?tptrs}

Solves a system of linear equations with a packed triangular matrix, with multiple right-hand sides.
```

call stptrs (uplo,trans,diag,n,nrhs,ap,b,ldb,info)
call dtptrs (uplo,trans, diag,n,nrhs,ap,b,ldb,info)
call ctptrs (uplo,trans, diag, n, nrhs,ap,b,ldb,info)
call ztptrs (uplo,trans, diag,n,nrhs,ap,b,ldb,info)

```

\section*{Discussion}

This routine solves for \(X\) the following systems of linear equations with a packed triangular matrix \(A\), with multiple right-hand sides stored in \(B\) :
```

AX=B if trans='N',
A T}X=B\quad if trans='T',
A H}X=B\quad if trans='C' (for complex matrices only)

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether \(A\) is upper or lower triangular: \\
\hline & If uplo = ' U ', then \(A\) is upper triangular. \\
\hline & If uplo = 'L', then \(A\) is lower triangular. \\
\hline \multirow[t]{4}{*}{trans} & CHARACTER*1. Must be 'n' or 't' or 'C'. \\
\hline & If trans = 'N', then \(A X=B\) is solved for \(X\). \\
\hline & If trans = ' T ', then \(A^{T} X=B\) is solved for \(X\). \\
\hline & If trans \(=\) ' \(\mathrm{C}^{\prime}\), then \(A^{H} X=B\) is solved for \(X\). \\
\hline \multirow[t]{3}{*}{diag} & Character*1. Must be 'n' or 'U'. \\
\hline & If diag = ' N ', then \(A\) is not a unit triangular matrix. \\
\hline & If diag= 'U', then \(A\) is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array ap. \\
\hline n & INTEGER. The order of \(A\); the number of rows in \(B(n \geq 0)\). \\
\hline nrhs & Teger. The number of right-hand sides (\(n r h s \geq 0\)). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
```

ap, b REAL for stptrs
DOUBLE PRECISION for dtptrs
COMPLEX for ctptrs
DOUBLE COMPLEX for ztptrs.
Arrays: ap(*), b(ldb, *)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the matrix A in packed storage
(see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the
right-hand sides for the system of equations. The second
dimension of b must be at least max(1,nrhs).
ldb INTEGER. The first dimension of b; Idb \geq max (1,n).

```

\section*{Output Parameters}
\begin{tabular}{ll}
b & Overwritten by the solution matrix \(X\). \\
info & INTEGER. If info=0, the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\) where
\[
|E| \leq c(n) \varepsilon|A|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\(\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon, \quad\) provided \(c(n) \operatorname{cond}(A, x) \varepsilon<1\)
where \(\operatorname{cond}(A, x)=\left|\left|\left|A^{-1}\right|\right| A\right||x|| | \infty_{\infty} /||x||_{\infty} \leq\left.\left|\left|A^{-1}\right|\right||A|\right|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{o}(A)\).

The approximate number of floating-point operations for one right-hand side vector \(b\) is \(n^{2}\) for real flavors and \(4 n^{2}\) for complex flavors.
To estimate the condition number \(\kappa_{\alpha}(A)\), call ?tpcon.
To estimate the error in the solution, call ?tprfs.

\section*{?tbtrs}

Solves a system of linear equations with a band triangular matrix, with multiple right-hand sides.
```

call stbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)
call dtbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)
call ctbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)
call ztbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

```

\section*{Discussion}

This routine solves for \(X\) the following systems of linear equations with a band triangular matrix \(A\), with multiple right-hand sides stored in \(B\) :
\begin{tabular}{ll}
\(A X=B\) & if trans='N', \\
\(A^{T} X=B\) & if trans='T', \\
\(A^{H} X=B\) & if trans='C' (for complex matrices only).
\end{tabular}

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & Character*1. Must be 'U' or 'L'. \\
\hline & Indicates whether \(A\) is upper or lower triangular: \\
\hline & If uplo = ' U ', then \(A\) is upper triangular. \\
\hline & If uplo = 'L', then \(A\) is lower triangular. \\
\hline \multirow[t]{4}{*}{trans} & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & If trans = 'N', then \(A X=B\) is solved for \(X\). \\
\hline & If trans \(=\) ' T ', then \(A^{T} X=B\) is solved for \(X\). \\
\hline & If trans \(=\) ' \(\mathrm{C}^{\prime}\), then \(A^{H} X=B\) is solved for \(X\). \\
\hline \multirow[t]{3}{*}{diag} & CHARACTER*1. Must be 'N' or 'U'. \\
\hline & If diag = ' N ', then \(A\) is not a unit triangular matrix. \\
\hline & If diag= ' U ', then \(A\) is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array \(a b\). \\
\hline \(n\) & INTEGER. The order of \(A\); the number of rows in \(B(n \geq 0)\). \\
\hline kd & Integer. The number of super-diagonals or sub-diagonals in the matrix \(A(k d \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides (\(n r h s \geq 0\)). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \(a b, b\) & REAL for stbtrs \\
\hline & DOUBLE PRECISION for dt.btrs \\
\hline & COMPLEX for ctbtrs \\
\hline & DOUBLE COMPLEX for zt.btrs. \\
\hline & Arrays: \(a b\) (\(1 \mathrm{dab}, *\)) , b (ldb, *). \\
\hline & The array \(a b\) contains the matrix \(A\) in band storage form. \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. \\
\hline & The second dimension of \(a b\) must be at least \(\max (1, n)\), the second dimension of \(b\) at least \(\max (1, n r h s)\). \\
\hline Idab & INTEGER. The first dimension of \(a b ; 1 d a b \geq k d+1\). \\
\hline \(1 d b\) & INTEGER. The first dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
info & Overwritten by the solution matrix \(X\). \\
INTEGER. If info=0, the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\) where
\[
|E| \leq c(n) \varepsilon|A|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision. If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\(\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon, \quad\) provided \(c(n) \operatorname{cond}(A, x) \varepsilon<1\)
where \(\operatorname{cond}(A, x)=\left.\left|\left|\left|A^{-1}\right|\right| A\right||x|| |\right|_{\infty} /\left.|x|\right|_{\infty} \leq\left.\left|\left|A^{-1}\right|\right|\right|_{\infty}| | A| |_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\infty}(A)\).

The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{\star} k d\) for real flavors and \(8 n^{\star} k d\) for complex flavors.

To estimate the condition number \(\kappa_{\alpha}(A)\), call ?tbcon.
To estimate the error in the solution, call ?tbrfs.

\section*{Routines for Estimating the Condition Number}

This section describes the LAPACK routines for estimating the condition number of a matrix. The condition number is used for analyzing the errors in the solution of a system of linear equations (see Error Analysis). Since the condition number may be arbitrarily large when the matrix is nearly singular, the routines actually compute the reciprocal condition number.

\section*{?gecon}

Estimates the reciprocal of the condition number of a general matrix in either the 1 -norm or the infinity-norm.
```

call sgecon ( norm,n,a,lda, anorm,rcond,work,iwork,info )
call dgecon ( norm,n,a,lda, anorm,rcond,work,iwork,info )
call cgecon ( norm,n,a,lda, anorm,rcond,work,rwork,info )
call zgecon ( norm,n,a,lda,anorm,rcond,work,rwork,info )

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a general matrix \(A\) in either the 1-norm or infinity-norm:
\[
\begin{aligned}
& \kappa_{1}(A)=\|A\|_{1}\left\|A^{-}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
\]

Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\| A| |{ }_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\))
- call ?getrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}
```

norm CHARACTER*1. Must be '1'or 'O' or 'I'.
If norm= '1' or 'O', then the routine estimates }\mp@subsup{\kappa}{1}{\prime}(A)\mathrm{ .
If norm = 'I', then the routine estimates }\mp@subsup{\kappa}{\infty}{}(A)
n
Integer. The order of the matrix A(n\geq0).

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{9}{*}{a, work} & REAL for sgecon \\
\hline & DOUBLE PRECISION for dgecon \\
\hline & COMPLEX for cgecon \\
\hline & DOUBLE COMPLEX for zgecon. \\
\hline & Arrays: a (lda, *), work (*). \\
\hline & The array a contains the \(L U\)-factored matrix \(A\), as returned by ?getrf. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & The array work is a workspace for the routine. \\
\hline & The dimension of work must be at least \(\max \left(1,4 \star_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors. \\
\hline \multirow[t]{3}{*}{anorm} & REAL for single precision flavors. \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & The norm of the original matrix \(A\) (see Discussion). \\
\hline Ida & INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max \((1, n)\). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgecon \\
\hline & DOUBLE PRECISION for zgecon \\
\hline & Workspace array, DIMENSION at least max (\(1,2 *_{n}\)) . \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
RCond & REAL for single precision flavors. \\
DOUBLE PRECISION for double precision flavors. \\
An estimate of the reciprocal of the condition number. \\
The routine sets \(r\) rond \(=0\) if the estimate underflows; in \\
this case the matrix is singular (to working precision). \\
However, anytime \(r c o n d\) is small compared to 1.0, \\
for the working precision, the matrix may be poorly \\
info & conditioned or even singular. \\
& INTEGER. If info=0, the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\) or \(A^{H} x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

\section*{?gbcon}

Estimates the reciprocal of the condition number of a band matrix in either the 1 -norm or the infinity-norm.
```

call sgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,iwork,info)
call dgbcon (norm, n,kl,ku, ab,ldab,ipiv,anorm,rcond,work,iwork,info)
call cgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,rwork,info)
call zgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,rwork,info)

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a general band matrix \(A\) in either the 1-norm or infinity-norm:
\[
\begin{aligned}
& \kappa_{1}(A)=\|A\|_{1}\left\|A^{-}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{H} \mid\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
\]

Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\| A| |{ }_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\))
- call ?gbtrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline norm & CHARACTER*1. Must be '1' or '0' or \\
\hline & \begin{tabular}{l}
If norm \(=1\) ' or ' 0 ', then the routine estimates \(\kappa_{1}(A)\). \\
If norm \(=\) 'I', then the routine estimates \(\kappa_{\infty}(A)\).
\end{tabular} \\
\hline \(n\) & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline kI & INTEGER. The number of sub-diagonals within the band of \(A(k I \geq 0)\). \\
\hline ku & integer. The number of super-diagonals within the band of \(A(k u \geq 0)\). \\
\hline Idab & integer. The first dimension of the array ab. (\(I\) dab \(\geq 2 k I+k u+1\)). \\
\hline ipiv & integer. Array, Dimension at least max \((1, n)\). The ipiv array, as returned by ?gbtrf. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{ab, work} & REAL for sgbcon \\
\hline & DOUBLE PRECISION for dgbcon \\
\hline & COMPLEX for cgbcon \\
\hline & DOUBLE COMPLEX for zgbcon. \\
\hline & Arrays: ab (ldab,*), work (*). \\
\hline & The array \(a b\) contains the factored band matrix \(A\), as returned by ?gbtrf. \\
\hline & The second dimension of \(a b\) must be at least \(\max (1, n)\). The array work is a workspace for the routine. \\
\hline & The dimension of work must be at least \(\max \left(1,3^{*_{n}}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors. \\
\hline \multirow[t]{3}{*}{anorm} & REAL for single precision flavors. \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & The norm of the original matrix \(A\) (see Discussion). \\
\hline \multirow[t]{2}{*}{iwork} & Integer. \\
\hline & Workspace array, DIMENSION at least max \((1, n)\). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgbcon \\
\hline & DOUBLE PRECISION for zgbcon \\
\hline & Workspace array, DIMENSION at least max (\(1,2 \star_{n}\)) . \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \multirow[t]{4}{*}{rcond} & REAL for single precision flavors. \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & An estimate of the reciprocal of the condition number. The routine sets \(r\) rond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). \\
\hline & However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular. \\
\hline info & INTEGER. If info \(=0\), the execution is successful. \\
\hline
\end{tabular}

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\) or \(A^{H} x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n(k u+2 k l)\) floating-point operations for real flavors and \(8 n(k u+2 k l)\) for complex flavors.

\section*{?gtcon}

Estimates the reciprocal of the condition number of a tridiagonal matrix using the factorization computed by ?gttrf.
```

call sgtcon ( norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,iwork,info )
call dgtcon ( norm, n,dl,d,du,du2,ipiv,anorm,rcond,work,iwork,info )
call cgtcon ( norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,info )
call zgtcon ( norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,info )

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a real or complex tridiagonal matrix \(A\) in either the 1-norm or infinity-norm:
\[
\begin{aligned}
& \kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1} \\
& \kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}
\end{aligned}
\]

An estimate is obtained for \(\left\|A^{-1}\right\|\), and the reciprocal of the condition number is computed as rcond \(=1 /\left(\|A\| \| A^{-1}| |\right)\).
Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(||A||{ }_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\))
- call ?gttrf to compute the \(L U\) factorization of \(A\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Input Parameters} \\
\hline norm & \begin{tabular}{l}
CHARACTER*1. Must be '1' or '0' or 'I'. \\
If norm \(=\) ' 1 ' or ' \(0^{\prime}\) ', then the routine estimates \(\kappa_{1}(A)\). \\
If norm \(=\) 'I', then the routine estimates \(\kappa_{\infty}(A)\).
\end{tabular} \\
\hline \(n\) & integer. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{9}{*}{\(d \mathrm{l}, \mathrm{d}, \mathrm{du}, \mathrm{du} 2\)} & REAL for sgtcon \\
\hline & DOUBLE PRECISION for dgtcon \\
\hline & COMPLEX for cgtcon \\
\hline & Double Complex for zgtcon. \\
\hline & Arrays: \(d 1(n-1), d(n), d u(n-1), d u 2(n-2)\). \\
\hline & The array \(d l\) contains the (\(n-1\)) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\) as computed by ?gttrf. \\
\hline & The array \(d\) contains the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of A. \\
\hline & The array \(d u\) contains the (\(n-1\)) elements of the first super-diagonal of \(U\). \\
\hline & The array du2 contains the (\(n-2\)) elements of the second super-diagonal of \(U\). \\
\hline \multirow[t]{3}{*}{ipiv} & Integer. \\
\hline & Array, DIMENSION (\(n\)). \\
\hline & The array of pivot indices, as returned by ?gttrf. \\
\hline \multirow[t]{3}{*}{anorm} & REAL for single precision flavors. \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & The norm of the original matrix \(A\) (see Discussion). \\
\hline \multirow[t]{5}{*}{work} & REAL for sgtcon \\
\hline & DOUBLE PRECISION for dgtcon \\
\hline & COMPLEX for cgtcon \\
\hline & double Complex for zgtcon. \\
\hline & Workspace array, DIMENSION (\(2 *_{n}\)) . \\
\hline \multirow[t]{3}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION (\(n\)). \\
\hline & Used for real flavors only. \\
\hline
\end{tabular}

Output Parameters
rcond REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info INTEGER.
If \(\operatorname{info}=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?pocon}

Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite matrix.
```

call spocon ( uplo,n,a,lda, anorm,rcond,work,iwork,info )
call dpocon ( uplo,n,a,lda,anorm,rcond,work,iwork,info )
call cpocon ( uplo,n,a,lda, anorm,rcond,work,rwork,info )
call zpocon ( uplo,n,a,lda, anorm,rcond,work,rwork,info )

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite matrix \(A\) :
\(\kappa_{1}(A)=\left\|A\left|\left\|_{1}| | A^{-1}\right\|_{1}\left(\right.\right.\right.\) since \(A\) is symmetric or Hermitian, \(\left.\kappa_{\alpha}(A)=\kappa_{1}(A)\right)\). Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\))
- call ? potrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates how the input matrix \(A\) has been factored:
\end{tabular} \\
\hline & If uplo = 'U', the array a stores the upper triangular factor \(U\) of the factorization \(A=U^{H} U\). \\
\hline & If uplo= ' L ', the array a stores the lower triangular factor \(L\) of the factorization \(A=L L^{H}\). \\
\hline n & integer. The order of the matrix \(A(n \geq 0)\). \\
\hline a, work & REAL for spocon \\
\hline & DOUBLE PRECISION for dpocon \\
\hline & COMPLEX for cpocon \\
\hline & DOUBLE COMPLEX for zpocon. \\
\hline & Arrays: a (lda,*), work (*). \\
\hline
\end{tabular}

The array a contains the factored matrix \(A\), as returned by ?potrf.
The second dimension of a must be at least max \((1, n)\). The array work is a workspace for the routine. The dimension of work must be at least \(\max \left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2^{\star} n\right)\) for complex flavors.

Ida
anorm
iwork
rwork

INTEGER. The first dimension of \(a ; \operatorname{lda} \geq \max (1, n)\). REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix \(A\) (see Discussion). INTEGER. Workspace array, DIMENSION at least max \((1, n)\). REAL for cpocon DOUBLE PRECISION for zpocon Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info INTEGER.
If \(i n f o=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?ppcon}

Estimates the reciprocal of the condition number of a packed symmetric (Hermitian) positive-definite matrix.
```

call sppcon ( uplo,n,ap,anorm,rcond,work,iwork,info )
call dppcon ( uplo,n,ap,anorm,rcond,work,iwork,info )
call cppcon ( uplo,n,ap,anorm,rcond,work,rwork,info )
call zppcon ( uplo,n,ap,anorm,rcond,work,rwork,info )

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a packed symmetric (Hermitian) positive-definite matrix \(A\) :
\(\kappa_{1}(A)=\left\|A| |_{1}| | A^{-1}\right\|_{1}\left(\right.\) since \(A\) is symmetric or Hermitian, \(\left.\kappa_{\alpha}(A)=\kappa_{1}(A)\right)\). Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\))
- call ?pptrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates how the input matrix \(A\) has been factored:
\end{tabular} \\
\hline & If \(u p I o=\) ' U ', the array ap stores the upper triangular factor \(U\) of the factorization \(A=U^{H} U\). \\
\hline & If \(u p 10=\) ' L ', the array ap stores the lower triangular factor \(L\) of the factorization \(A=L L^{H}\). \\
\hline \(n\) & integer. The order of the matrix \(A(n \geq 0)\). \\
\hline ap, work & REAL for sppcon \\
\hline & DOUBLE PRECISION for dppcon \\
\hline & COMPLEX for cppcon \\
\hline & DOUBLE COMPLEX for zppcon. \\
\hline & Arrays: ap (*) , work (*). \\
\hline
\end{tabular}

The array \(a p\) contains the packed factored matrix \(A\), as returned by ?pptrf.
The dimension of \(a p\) must be at least \(\max (1, n(n+1) / 2)\). The array work is a workspace for the routine. The dimension of work must be at least \(\max \left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
anorm
iwork
rwork REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix \(A\) (see Discussion). INTEGER. Workspace array, DIMENSION at least max \((1, n)\). REAL for cppcon DOUBLE PRECISION for zppcon Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
rcond

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime reond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info INTEGER.
If \(\operatorname{info}=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

\section*{?pbcon}

Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite band matrix.
```

call spbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call dpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call cpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
call zpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite band matrix \(A\) :
\(\kappa_{1}(A)=\|A\|_{1}| | A^{-1} \|_{1}\left(\right.\) since \(A\) is symmetric or Hermitian, \(\left.\kappa_{\alpha}(A)=\kappa_{1}(A)\right)\).
Before calling this routine:
- compute anorm (either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.||A||\right|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\))
- call ? pbtrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Must be 'U' or \\
\hline & Indicates how the input matrix \(A\) has been factored If uplo='U', the array \(a b\) stores the upper trian factor \(U\) of the Cholesky factorization \(A=U^{H} U\). If uplo= 'L', the array \(a b\) stores the lower trian factor \(L\) of the factorization \(A=L L^{H}\). \\
\hline \(n\) & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline kd & INTEGER. The number of super-diagonals or sub-diagonals in the matrix \(A(k d \geq 0)\). \\
\hline Idab & integer. The first dimension of the array \(a b\). (1 dab \(\geq k d+1\)). \\
\hline ab, work & REAL for spbcon \\
\hline & DOUBLE PRECISION for dpbcon \\
\hline & COMPLEX for cpbcon \\
\hline & DOUBLE COMPLex for zpb \\
\hline
\end{tabular}

Arrays: ab(ldab,*), work(*).
The array \(a b\) contains the factored matrix \(A\) in band form, as returned by ?pbtrf. The second dimension of \(a b\) must be at least \(\max (1, n)\), The array work is a workspace for the routine. The dimension of work must be at least \(\max \left(1,3 \star_{n}\right)\) for real flavors and \(\max \left(1,2^{\star} n\right)\) for complex flavors.
anorm
iwork
rwork REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix \(A\) (see Discussion).

INTEGER.
Workspace array, DIMENSION at least \(\max (1, n)\).
REAL for cpbcon DOUBLE PRECISION for zpbcon. Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
\begin{tabular}{ll}
rcond & REAL for single precision flavors. \\
DOUBLE PRECISION for double precision flavors. \\
An estimate of the reciprocal of the condition number. \\
The routine sets \(r\) rond \(=0\) if the estimate underflows; in \\
this case the matrix is singular (to working precision). \\
However, anytime \(r\) rond is small compared to 1.0, \\
for the working precision, the matrix may be poorly \\
conditioned or even singular. \\
info & INTEGER. If info=0, the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(4 n(k d+1)\) floating-point operations for real flavors and \(16 n(k d+1)\) for complex flavors.

\section*{?ptcon}
```

Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite tridiagonal matrix.

```
```

call sptcon (n, d, e, anorm, rcond, work, info)

```
call sptcon (n, d, e, anorm, rcond, work, info)
call dptcon (n, d, e, anorm, rcond, work, info)
call dptcon (n, d, e, anorm, rcond, work, info)
call cptcon (n, d, e, anorm, rcond, work, info)
call cptcon (n, d, e, anorm, rcond, work, info)
call zptcon (}n,d,e, anorm, rcond, work, info
```

call zptcon ( }n,d,e, anorm, rcond, work, info

```

\section*{Discussion}

This routine computes the reciprocal of the condition number (in the 1-norm) of a real symmetric or complex Hermitian positive-definite tridiagonal matrix using the factorization \(A=L D L^{H}\) or \(A=U^{H} D U\) computed by ?pttrf :
\(\kappa_{1}(A)=\left\|A\left|\left\|_{1}| | A^{-1}\right\|_{1} \quad\left(\right.\right.\right.\) since \(A\) is symmetric or Hermitian, \(\kappa_{\alpha}(A)=\) \(\left.\kappa_{1}(A)\right)\).

The norm \(\left\|A^{4}\right\|\) is computed by a direct method, and the reciprocal of the condition number is computed as rcond \(=1 /\left(\|A \mid\|\left\|A^{-1}\right\|\right)\).

Before calling this routine:
- compute anorm as \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\)
- call ?pttrf to compute the factorization of \(A\).

\section*{Input Parameters}
```

n
d, work

```

INTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for single precision flavors DOUBLE PRECISION for double precision flavors. Arrays, dimension (\(n\)). The array \(d\) contains the \(n\) diagonal elements of the diagonal matrix \(D\) from the factorization of \(A\), as computed by ?pttrf ;
work is a workspace array.

REAL for sptcon
DOUBLE PRECISION for dptcon
COMPLEX for cptcon
DOUBLE COMPLEX for zptcon.
Array, DIMENSION (\(n-1\)).
Contains off-diagonal elements of the unit bidiagonal factor \(U\) or \(L\) from the factorization computed by ?pttrf . REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. The 1- norm of the original matrix \(A\) (see Discussion).

\section*{Output Parameters}

\author{
rcond
}
info

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors. An estimate of the reciprocal of the condition number. The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.

\section*{INTEGER.}

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(4 n(k d+1)\) floating-point operations for real flavors and \(16 n(k d+1)\) for complex flavors.

\section*{?sycon}

Estimates the reciprocal of the condition number of a symmetric matrix.
```

call ssycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
call dsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
call csycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)
call zsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a symmetric matrix \(A\) :
\[
\kappa_{1}(A)=\|A \mid\|_{1}\left\|A^{-1}\right\|_{1} \quad\left(\text { since } A \text { is symmetric, } \kappa_{\alpha}(A)=\kappa_{1}(A)\right) .
\]

Before calling this routine:
- compute \(\operatorname{anorm}\left(\right.\) either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.||A|| \infty=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)\)
- call ?sytrf to compute the factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & \begin{tabular}{l}
Indicates how the input matrix \(A\) has been factored: \\
If uplo \(=\) ' \(U\) ', the array a stores the upper triangular factor \(U\) of the factorization \(A=P U D U^{T} P^{T}\). \\
If uplo = 'L', the array a stores the lower triangular factor \(L\) of the factorization \(A=P L D L^{T} P^{T}\).
\end{tabular} \\
\hline \(n\) & Integer. The order of matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{7}{*}{a, work} & REAL for ssycon \\
\hline & DOUBLE PRECISION for dsycon \\
\hline & COMPLEX for csycon \\
\hline & DOUBLE COMPLEX for zsycon. \\
\hline & Arrays: a lda,*), work (*). \\
\hline & The array a contains the factored matrix \(A\), as returned by ?sytrf. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline
\end{tabular}

The array work is a workspace for the routine. The dimension of work must be at least \(\max \left(1,2 \star_{n}\right)\).

Ida
ipiv
anorm
iwork
rwork

INTEGER. The first dimension of \(a ; ~ I d a \geq \max (1, n)\).
Integer. Array, DIMENSION at least max \((1, n)\). The array ipiv, as returned by ?sytrf.
REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix \(A\) (see Discussion).

INTEGER.
Workspace array, DIMENSION at least max \((1, n)\).
REAL for csycon
DOUBLE PRECISION for zsycon.
Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number.
The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info INTEGER.
If \(\operatorname{info}=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?hecon}

Estimates the reciprocal of the condition number of a Hermitian matrix.
```

call checon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)
call zhecon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a Hermitian matrix \(A\) :
\[
\kappa_{1}(A)=\|A \mid\|_{1}\left\|A^{-1}\right\|_{1} \quad\left(\text { since } A \text { is Hermitian, } \kappa_{\infty}(A)=\kappa_{1}(A)\right) .
\]

Before calling this routine:
- compute anorm \(\left(\right.\) either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.||A|| \infty=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)\)
- call ?hetrf to compute the factorization of \(A\).

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the array a stores the upper triangular
factor }U\mathrm{ of the factorization }A=PUD\mp@subsup{U}{}{H}\mp@subsup{P}{}{T}\mathrm{ .
If uplo = 'L', the array a stores the lower triangular
factor }L\mathrm{ of the factorization A=PLDLHP}\mp@subsup{P}{}{T}\mathrm{ .
INTEGER. The order of matrix A ( }n\geq0)\mathrm{ .
COMPLEX for checon
DOUBLE COMPLEX for zhecon.
Arrays: a(lda,*),work(*).
The array a contains the factored matrix A, as returned
by ?hetrf.
The second dimension of a must be at least max (1,n).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2* n).

```
lda
ipiv
anorm
rwork

INTEGER. The first dimension of \(a ; ~ I d a \geq \max (1, n)\).
INTEGER. Array, DIMENSION at least max \((1, n)\). The array ipiv, as returned by ?hetrf.

REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix \(A\) (see Discussion).

REAL for checon
DOUBLE PRECISION for zhecon
Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
\begin{tabular}{ll}
rcond & REAL for single precision flavors. \\
DOUBLE PRECISION for double precision flavors. \\
An estimate of the reciprocal of the condition number. \\
The routine sets rcond=0 if the estimate underflows; in \\
this case the matrix is singular (to working precision). \\
However, anytime rcond is small compared to 1.0, \\
for the working precision, the matrix may be poorly \\
conditioned or even singular. \\
info & INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 5 and never more than 11 . Each solution requires approximately \(8 n^{2}\) floating-point operations.

\section*{?spcon}

Estimates the reciprocal of the condition number of a packed symmetric matrix.
```

call sspcon ( uplo, n, ap, ipiv, anorm, rcond, work, iwork, info )
call dspcon ( uplo, n, ap, ipiv, anorm, rcond, work, iwork, info )
call cspcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )
call zspcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a packed symmetric matrix \(A\) :
\[
\kappa_{1}(A)=\|A \mid\|_{1}\left\|A^{-1}\right\|_{1} \quad\left(\text { since } A \text { is symmetric, } \kappa_{\alpha}(A)=\kappa_{1}(A)\right) .
\]

Before calling this routine:
- compute anorm \(\left(\right.\) either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.||A|| \infty=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)\)
- call ?sptrf to compute the factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates how the input matrix \(A\) has been factored: If uplo \(=\) ' \(U\) ', the array \(a p\) stores the packed upper triangular factor \(U\) of the factorization \(A=P U D U^{T} P^{T}\). If uplo = 'L', the array ap stores the packed lower triangular factor \(L\) of the factorization \(A=P L D L^{T} P^{T}\). \\
\hline \(n\) & INTEGER. The order of matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{7}{*}{ap, work} & REAL for sspcon \\
\hline & DOUBLE PRECISION for dspcon \\
\hline & COMPLEX for cspcon \\
\hline & DOUBLE COMPLEX for zspcon. \\
\hline & Arrays: ap(*), work (*). \\
\hline & The array ap contains the packed factored matrix \(A\), as returned by ?sptrf. \\
\hline & The dimension of ap must be at least max \((1, n(n+1) / 2)\). \\
\hline
\end{tabular}

The array work is a workspace for the routine. The dimension of work must be at least \(\max \left(1,2 \star_{n}\right)\).
ipiv Integer. Array, dimension at least \(\max (1, n)\). The array ipiv, as returned by ?sptrf.

REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix A (see Discussion).

INTEGER.
Workspace array, DIMENSION at least max \((1, n)\).
rwork REAL for cspcon
DOUBLE PRECISION for zspcon
Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
\begin{tabular}{ll}
rcond & REAL for single precision flavors. \\
DOUBLE PRECISION for double precision flavors. \\
An estimate of the reciprocal of the condition number. \\
The routine sets rcond \(=0\) if the estimate underflows; in \\
this case the matrix is singular (to working precision). \\
However, anytime rcond is small compared to 1.0, \\
for the working precision, the matrix may be poorly \\
conditioned or even singular. \\
info & INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the ith parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors and \(8 n^{2}\) for complex flavors.

\section*{?hpcon}

Estimates the reciprocal of the condition number of a packed Hermitian matrix.
```

call chpcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )
call zhpcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )

```

Discussion
This routine estimates the reciprocal of the condition number of a Hermitian matrix \(A\) :
\[
\kappa_{1}(A)=\|A \mid\|_{1}\left\|A^{-4}\right\|_{1} \quad\left(\text { since } A \text { is Hermitian, } \kappa_{\alpha}(A)=\kappa_{1}(A)\right) .
\]

Before calling this routine:
- compute anorm \(\left(\right.\) either \(||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|\) or \(\left.||A|| \infty=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)\)
- call ?hptrf to compute the factorization of \(A\).

\section*{Input Parameters}
uplo
\(n\)
ap, work

CHARACTER*1. Must be 'U' or 'L'. Indicates how the input matrix \(A\) has been factored:

If uplo \(=\) ' U', the array ap stores the packed upper triangular factor \(U\) of the factorization \(A=P U D U^{T} P^{T}\). If uplo \(=\) ' L', the array ap stores the packed lower triangular factor \(L\) of the factorization \(A=P L D L^{T} P^{T}\).
INTEGER. The order of matrix \(A(n \geq 0)\).
ap, work
COMPLEX for chpcon
DOUBLE COMPLEX for zhpcon.
Arrays: ap(*), work(*).
The array ap contains the packed factored matrix \(A\), as returned by ?hptrf.
The dimension of ap must be at least \(\max (1, n(n+1) / 2)\).
The array work is a workspace for the routine.
The dimension of work must be at least \(\max \left(1,2 \star_{n}\right)\).
ipiv Integer. Array, dimension at least max \((1, n)\). The array ipiv, as returned by ?hptrf.
anorm REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix \(A\) (see Discussion).
rwork REAL for chpcon
DOUBLE PRECISION for zhpcon.
Workspace array, DIMENSION at least \(\max (1, n)\).

\section*{Output Parameters}

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 5 and never more than 11 . Each solution requires approximately \(8 n^{2}\) floating-point operations.

\section*{?trcon}

Estimates the reciprocal of the condition number of a triangular matrix.
```

call strcon (norm, uplo, diag, n, a, lda, rcond, work, iwork, info)
call dtrcon (norm, uplo, diag, n, a, lda, rcond, work, iwork, info)
call ctrcon (norm, uplo, diag, n, a, lda, rcond, work, rwork, info)
call ztrcon (norm, uplo, diag, n, a, lda, rcond, work, rwork, info)

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a triangular matrix \(A\) in either the 1-norm or infinity-norm:
\[
\begin{aligned}
& \kappa_{1}(A)=\|A \mid\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\alpha}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|\left\|_{\infty}\right\| A^{-1} \|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
\]

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline norm & \begin{tabular}{l}
CHARACTER*1. Must be '1' or 'O' or 'I'. \\
If norm \(=\) ' 1 ' or ' 0 ', then the routine estimates \(\kappa_{1}(A)\). \\
If norm \(=\) 'I', then the routine estimates \(\kappa_{\infty}(A)\).
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Indicates whether \(A\) is upper or lower triangular: \\
If uplo = 'U', the array a stores the upper triangle of \(A\), other array elements are not referenced. \\
If uplo = ' L ', the array a stores the lower triangle of \(A\), other array elements are not referenced.
\end{tabular} \\
\hline diag & ChARACTER*1. Must be 'N' or 'U'. \\
\hline & If diag = ' \(N\) ', then \(A\) is not a unit triangular matrix. \\
\hline & If diag=' U ', then \(A\) is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array a. \\
\hline & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline
\end{tabular}
a, work REAL for strcon
DOUBLE PRECISION for dtrcon
COMPLEX for ctrcon
DOUBLE COMPLEX for ztrcon.
Arrays: a(lda,*), work(*).
The array a contains the matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
The array work is a workspace for the routine.
The dimension of work must be at least \(\max \left(1,3 \star_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
Ida INTEGER. The first dimension of \(a ; ~ I d a \geq \max (1, n)\).
iwork INTEGER.
Workspace array, DIMENSION at least max \((1, n)\).
rwork REAL for ctrcon
DOUBLE PRECISION for ztrcon.
Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
\begin{tabular}{ll}
rcond & REAL for single precision flavors. \\
DOUBLE PRECISION for double precision flavors. \\
An estimate of the reciprocal of the condition number. \\
The routine sets \(r\) rond \(=0\) if the estimate underflows; in \\
this case the matrix is singular (to working precision). \\
However, anytime rcond is small compared to 1.0, \\
for the working precision, the matrix may be poorly \\
info & conditioned or even singular. \\
& INTEGER. \\
If info \(=0\), the execution is successful. \\
& If info \(=-i\), the ith parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(n^{2}\) floating-point operations for real flavors and \(4 n^{2}\) operations for complex flavors.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?tpcon}

Estimates the reciprocal of the condition number of a packed triangular matrix.
```

call stpcon (norm,uplo,diag, n, ap,rcond,work,iwork,info)
call dtpcon (norm,uplo,diag, n, ap,rcond,work, iwork,info)
call ctpcon (norm,uplo,diag,n,ap,rcond,work,rwork,info)
call ztpcon (norm,uplo,diag,n,ap,rcond,work,rwork,info)

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a packed triangular matrix \(A\) in either the 1-norm or infinity-norm:
\[
\begin{aligned}
& \kappa_{1}(A)=\|A \mid\|_{1}\left\|A^{-}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\alpha}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|\left\|_{\infty}\right\| A^{-1} \|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
\]

\section*{Input Parameters}
norm

CHARACTER*1. Must be '1' or 'O' or 'I'. If norm \(=\) ' 1 ' or ' 0 ', then the routine estimates \(\kappa_{1}(A)\). If norm = ' I ', then the routine estimates \(\mathrm{K}_{\infty}(A)\).

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether \(A\) is upper or lower triangular: If uplo= 'U', the array \(a p\) stores the upper triangle of \(A\) in packed form.
If uplo= 'L', the array \(a p\) stores the lower triangle of \(A\) in packed form.

CHARACTER*1. Must be 'N' or 'U'.
If diag = ' N ', then \(A\) is not a unit triangular matrix.
If diag = 'U', then \(A\) is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array \(a p\).
Integer. The order of the matrix \(A(n \geq 0)\).
ap, work REAL for stpcon
DOUBLE PRECISION for dtpcon
COMPLEX for ctpcon
DOUBLE COMPLEX for ztpcon.
Arrays: ap(*), work (*).
The array ap contains the packed matrix \(A\).
The dimension of ap must be at least \(\max (1, n(n+1) / 2)\).
The array work is a workspace for the routine.
The dimension of work must be at least \(\max \left(1,3 \star_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
iwork INTEGER.
Workspace array, DIMENSION at least max \((1, n)\).
rwork REAL for ctpcon
DOUBLE PRECISION for ztpcon
Workspace array, DIMENSION at least \(\max (1, n)\).

\section*{Output Parameters}
\begin{tabular}{ll}
rcond & REAL for single precision flavors. \\
DOUBLE PRECISION for double precision flavors. \\
An estimate of the reciprocal of the condition number. \\
The routine sets \(r\) cond \(=0\) if the estimate underflows; in \\
this case the matrix is singular (to working precision). \\
However, anytime rcond is small compared to 1.0, \\
for the working precision, the matrix may be poorly \\
conditioned or even singular. \\
info & INTEGER. \\
& If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(n^{2}\) floating-point operations for real flavors and \(4 n^{2}\) operations for complex flavors.

\section*{?tbcon}

Estimates the reciprocal of the condition number of a triangular band matrix.
```

call stbcon ( norm,uplo,diag,n,kd,ab,ldab,rcond,work,iwork,info )
call dtbcon ( norm,uplo,diag,n,kd,ab,ldab,rcond,work,iwork,info )
call ctbcon ( norm,uplo,diag, n,kd,ab,ldab,rcond,work,rwork,info )
call ztbcon ( norm,uplo,diag,n,kd,ab,ldab,rcond,work,rwork,info )

```

\section*{Discussion}

This routine estimates the reciprocal of the condition number of a triangular band matrix \(A\) in either the 1-norm or infinity-norm:
\[
\begin{aligned}
& \kappa_{1}(A)=\|A \mid\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|_{\infty}| | A^{-1} \|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
\]

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{norm} & CHARACTER*1. Must be '1' or '0' or \\
\hline & \begin{tabular}{l}
If norm \(=\) ' 1 ' or ' \(O^{\prime}\), then the routine estimates \(\kappa_{1}(A)\). \\
If norm \(=\) 'I', then the routine estimates \(\kappa_{\infty}(A)\).
\end{tabular} \\
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether \(A\) is upper or lower triangular: \\
\hline & If uplo = 'U', the array ap stores the upper triangle of \(A\) in packed form. \\
\hline & If uplo = 'L', the array ap stores the lower triangle of \(A\) in packed form. \\
\hline \multirow[t]{3}{*}{diag} & CHARACTER*1. Must be 'N' or 'U'. \\
\hline & If diag \(=\) ' \(N^{\prime}\), then \(A\) is not a unit triangular matrix. \\
\hline & If \(\operatorname{diag}=\) 'U', then \(A\) is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array ab. \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \(k d\) & INTEGER. The number of super-diagonals or sub-diagonals in the matrix \(A(k d \geq 0)\). \\
\hline
\end{tabular}
ab, work REAL for stbcon
DOUBLE PRECISION for dtbcon
COMPLEX for ctbcon
DOUBLE COMPLEX for ztbcon.
Arrays: ab(ldab, *), work(*).
The array \(a b\) contains the band matrix \(A\).
The second dimension of \(a b\) must be at least \(\max (1, n))\).
The array work is a workspace for the routine.
The dimension of work must be at least \(\max \left(1,3 \star_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
Idab INTEGER. The first dimension of the array \(a b\).
\((I d a b \geq k d+1)\).
iwork INTEGER.
Workspace array, DIMENSION at least max \((1, n)\).
rwork REAL for ctbcon
DOUBLE PRECISION for ztbcon.
Workspace array, DIMENSION at least \(\max (1, n)\).

\section*{Output Parameters}
\begin{tabular}{ll}
rcond & REAL for single precision flavors. \\
DOUBLE PRECISION for double precision flavors. \\
An estimate of the reciprocal of the condition number. \\
The routine sets \(r\) rond \(=0\) if the estimate underflows; in \\
this case the matrix is singular (to working precision). \\
However, anytime \(r\) rond is small compared to 1.0, \\
for the working precision, the matrix may be poorly \\
conditioned or even singular. \\
info & INTEGER. If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The computed rcond is never less than \(\rho\) (the reciprocal of the true condition number) and in practice is nearly always less than \(10 \rho\). A call to this routine involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n(k d+1)\) floating-point operations for real flavors and \(8 n(k d+1)\) operations for complex flavors.

\section*{Refining the Solution and Estimating Its Error}

> This section describes the LAPACK routines for refining the computed solution of a system of linear equations and estimating the solution error. You can call these routines after factorizing the matrix of the system of equations and computing the solution (see Routines for Matrix Factorization and Routines for Solving Systems of Linear Equations).

\section*{?gerfs}

Refines the solution of a system of linear equations with a general matrix and estimates its error.
```

call sgerfs (trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx, ferr,berr,work, iwork, info)
call dgerfs (trans,n, nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx, ferr,berr,work, iwork, info)
call cgerfs (trans,n, nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx, ferr,berr,work, rwork, info)
call zgerfs (trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx, ferr,berr,work, rwork, info)

```

\section*{Discussion}

This routine performs an iterative refinement of the solution to a system of linear equations \(A X=B\) or \(A^{T} X=B\) or \(A^{H} X=B\) with a general matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\| x-x_{\mathrm{e}}| | \alpha| | x| |_{\infty}\) (here \(x_{\mathrm{e}}\) is the exact solution).

Before calling this routine:
- call the factorization routine ?getrf
- call the solver routine ?getrs.

\section*{Input Parameters}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & The ipiv array, as returned by ?getrf. \\
\hline \multirow[t]{2}{*}{iwork} & Integer. \\
\hline & Workspace array, DIMENSION at least max \((1, n)\). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgerfs \\
\hline & DOUBLE PRECISION for zgerfs. \\
\hline & Workspace array, DIMENSION at least max \((1, n)\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \(x\) & The refined solution matrix \(X\). \\
\hline \multirow[t]{3}{*}{ferr, berr} & REAL for single precision flavors. \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Arrays, DIMENSION at least max (\(1, n r h s\)). Contain the component-wise forward and backward errors, respectively, for each solution vector. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of \(4 n^{2}\) floating-point operations (for real flavors) or \(16 n^{2}\) operations (for complex flavors). In addition, each step of iterative refinement involves \(6 n^{2}\) operations (for real flavors) or \(24 n^{2}\) operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11. Each solution requires approximately \(2 \mathrm{n}^{2}\) floating-point operations for real flavors or \(8 n^{2}\) for complex flavors.

\section*{?gbrfs}

\section*{Refines the solution of a system of linear equations with a general band matrix and estimates its error.}
```

call sgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b, ldb, x, ldx, ferr,berr, work, iwork, info)
call dgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b, ldb, x, ldx, ferr,berr, work, iwork, info)
call cgbrfs (trans,n,kl,ku,nrhs,ab,ldab, afb,ldafb,ipiv,
b,ldb,x,ldx, ferr,berr,work,rwork, info)
call zgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b, ldb, x, ldx, ferr,berr, work, rwork, info)

```

\section*{Discussion}

This routine performs an iterative refinement of the solution to a system of linear equations \(A X=B\) or \(A^{T} X=B\) or \(A^{H} X=B\) with a band matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{\mathrm{e}}\right|\right| \propto||x||_{\infty}\) (here \(x_{\mathrm{e}}\) is the exact solution).

Before calling this routine:
- call the factorization routine ?gbtrf
- call the solver routine ?gbtrs.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline trans c & CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
\hline & Indicates the form of the equations: \\
\hline & If trans \(=\) ' N', the system has the form \(A X=B\). \\
\hline & If trans \(=\) ' \(T\) ', the system has the form \(A^{T} X=B\). \\
\hline & If trans \(=\) ' C', the system has the form \(A^{H} X=B\). \\
\hline I & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline kl I & INTEGER. The number of sub-diagonals within the band of \(A(k I \geq 0)\). \\
\hline ku I & Integer. The number of super-diagonals within the band of \(A(k u \geq 0)\). \\
\hline nrhs I & INTEGER. The number of right-hand sides (\(n r h s \geq 0\)). \\
\hline \(a b, a f b, b, x\), work & k REAL for sgbrfs \\
\hline & DOUBLE PRECISION for dgbrfs \\
\hline & COMP LEX for cgbrfs \\
\hline & DOUBLE COMPLEX for zgbrfs. \\
\hline
\end{tabular}

\section*{Arrays:}
\(a b(I d a b, *)\) contains the original band matrix \(A\), as supplied to ? gbtrf, but stored in rows from 1 to \(k I+k u\) +1 .
\(a f b(I d a f b, *)\) contains the factored band matrix \(A\), as returned by ?gbtrf.
\(b(I d b, *)\) contains the right-hand side matrix \(B\).
\(x(I d x, *)\) contains the solution matrix \(X\).
work (*) is a workspace array.
The second dimension of \(a b\) and \(a f b\) must be at least \(\max (1, n)\); the second dimension of \(b\) and \(x\) must be at least \(\max (1, n r h s)\); the dimension of work must be at least \(\max \left(1,3 \star_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
Idab INTEGER. The first dimension of \(a b\).
Idafb INTEGER. The first dimension of \(a f b\).
\(I d b \quad\) INTEGER. The first dimension of \(b ; 1 d b \geq \max (1, n)\).
\(I d x \quad\) INTEGER. The first dimension of \(x ; I d x \geq \max (1, n)\).
ipiv INTEGER.
Array, DIMENSION at least max \((1, n)\).
The ipiv array, as returned by ?gbtrf.
iwork INTEGER.
Workspace array, DIMENSION at least max \((1, n)\).
rwork REAL for cgbrfs
DOUBLE PRECISION for zgbrfs
Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}

\section*{\(x \quad\) The refined solution matrix \(X\).}
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info
INTEGER.
If \(\operatorname{infO}=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of \(4 n(k l+k u)\) floating-point operations (for real flavors) or \(16 n(k I+k u)\) operations (for complex flavors). In addition, each step of iterative refinement involves \(2 n(4 k l+3 k u)\) operations (for real flavors) or \(8 n(4 k I+3 k u)\) operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11. Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors or \(8 n^{2}\) for complex flavors.

\section*{?gtrfs}

Refines the solution of a system of linear equations with a tridiagonal matrix and estimates its error.
```

call sgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, iwork, info)
call dgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, iwork, info)
call cgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, rwork, info)
call zgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, rwork, info)

```

\section*{Discussion}

This routine performs an iterative refinement of the solution to a system of linear equations \(A X=B\) or \(A^{T} X=B\) or \(A^{H} X=B\) with a tridiagonal matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j} /\left|a_{i j}\right| \leq \beta\right| a_{i j}|, \quad| \delta b_{i}\left|/\left|b_{i}\right| \leq \beta\right| b_{i} \mid\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{\mathrm{e}}\right|\right| \infty||x||_{\infty}\) (here \(x_{\mathrm{e}}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?gttrf
- call the solver routine ? gttrs.

\section*{Input Parameters}
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans \(=\) ' \(N\) ', the system has the form \(A X=B\).
If trans = ' \(T\) ', the system has the form \(A^{T} X=B\).
If trans \(=' C\) ', the system has the form \(A^{H} X=B\).
\begin{tabular}{|c|c|}
\hline \(n\) & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides, i.e., the number of columns of the matrix B (\(n r h s \geq 0\)). \\
\hline \multicolumn{2}{|l|}{\[
d l, d, d u, d l f, d f,
\]} \\
\hline \multicolumn{2}{|l|}{duf, du2,b, x, work REAL for sgtrfs} \\
\hline & DOUBLE PRECISION for dgtrfs \\
\hline & COMPLEX for cgtrfs \\
\hline & DOUBLE COMPLEX for zgtrfs. \\
\hline & Arrays: \\
\hline & dl, dimension (\(n-1\)), contains the subdiagonal elements of \(A\). \\
\hline & \(d\), dimension (\(n\)), contains the diagonal elements of \(A\) \(d u\), dimension \((n-1)\), contains the superdiagonal elements of \(A\). \\
\hline & dlf, dimension \((n-1)\), contains the \((n-1)\) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\) as computed by ?gttrf. \\
\hline & \(d f\), dimension (\(n\)), contains the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\). \\
\hline & duf, dimension (\(n-1\)), contains the \((n-1)\) elements of the first super-diagonal of \(U\). \\
\hline & du2, dimension (\(n-2\)), contains the \((n-2)\) elements of the second super-diagonal of \(U\). \\
\hline & \(b\) (1 db , nrhs) contains the right-hand side matrix \(B\). \\
\hline & \(x\) (Idx, nrhs) contains the solution matrix \(X\), as computed by ?gttrs. \\
\hline & work (*) is a workspace array; the dimension of work must be at least \(\max \left(1,3 \star_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors. \\
\hline 1 db & INTEGER. The first dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(1 d x\) & INTEGER. The first dimension of \(x ; 1 d x \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & The ipiv array, as returned by ?gttrf. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline iwork & INTEGER. \\
\hline & Workspace array, DIMENSION (\(n\)). Used for real flavors only. \\
\hline rwork & REAL for cgtrfs \\
\hline & DOUBLE PRECISION for zgtrfs. \\
\hline & Workspace array, DIMENSION (\(n\)). Used for complex flavors only. \\
\hline Output Para & \\
\hline \(x\) & The refined solution matrix \(X\). \\
\hline ferr, berr & REAL for single precision flavors. \\
\hline & DOUBLE PRECISION for double precision flavors. \\
\hline & Arrays, DIMENSION at least max (\(1, n r h s\)). Contain the component-wise forward and backward errors, respectively, for each solution vector. \\
\hline info & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value \\
\hline
\end{tabular}

\section*{?porfs}

Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite matrix and estimates its error.
```

call sporfs (uplo,n, nrhs,a,lda,af,ldaf,b,ldb,
x,ldx, ferr,berr,work, iwork, info)
call dporfs (uplo,n,nrhs,a,lda,af,ldaf,b,ldb,
x,ldx, ferr,berr,work, iwork, info)
call cporfs (uplo,n,nrhs,a,lda,af,ldaf,b,ldb,
x,ldx, ferr,berr,work,rwork, info)
call zporfs (uplo,n, nrhs,a,lda,af,ldaf,b,ldb,
x,ldx, ferr,berr,work,rwork,info)

```

\section*{Discussion}

This routine performs an iterative refinement of the solution to a system of linear equations \(A X=B\) with a symmetric (Hermitian) positive definite matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{\mathrm{e}}\right|\right| \infty||x||_{\infty}\) (here \(x_{\mathrm{e}}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?potrf
- call the solver routine ?potrs.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & \begin{tabular}{l}
Indicates how the input matrix \(A\) has been factored: If uplo = ' \(U\) ', the array af stores the factor \(U\) of the Cholesky factorization \(A=U^{H} U\). \\
If uplo = 'L', the array af stores the factor \(L\) of the Cholesky factorization \(A=L L^{H}\).
\end{tabular} \\
\hline n & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides (\(n r h s \geq 0\)). \\
\hline \multirow[t]{7}{*}{a, af, b, \(x\),} & \begin{tabular}{l}
work REAL for sporfs \\
DOUBLE PRECISION for dporfs \\
COMPLEX for cporfs \\
DOUBLE COMPLEX for zporfs.
\end{tabular} \\
\hline & Arrays: \\
\hline & a (Ida,*) contains the original matrix \(A\), as supplied to ?potrf. \\
\hline & af(Idaf,*) contains the factored matrix \(A\), as returned by ? potrf. \\
\hline & \(\mathrm{b}(I \mathrm{db}, *)\) contains the right-hand side matrix \(B\). \\
\hline & \(x(l d x, *)\) contains the solution matrix \(X\). work (*) is a workspace array. \\
\hline & The second dimension of \(a\) and \(a f\) must be at least \(\max (1, n)\); the second dimension of \(b\) and \(x\) must be at least max \((1, n r h s)\); the dimension of work must be at least \(\max \left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2 *_{n}\right)\) for complex flavors. \\
\hline lda & INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline ldaf & Integer. The first dimension of \(a f ; 1\) daf \(\geq \max (1, n)\). \\
\hline 1 db & Integer. The first dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(1 d x\) & INTEGER. The first dimension of \(x ; 1 d x \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{iwork} & Integer. \\
\hline & Workspace array, DIMENSION at least max \((1, n)\). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cporfs \\
\hline & DOUBLE PRECISION for zporfs \\
\hline & Workspace array, DIMEnSION at least max \((1, n)\). \\
\hline
\end{tabular}

Output Parameters
```

$x$

```

\author{
ferr, berr
}
info
The refined solution matrix \(X\).
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of \(4 n^{2}\) floating-point operations (for real flavors) or \(16 n^{2}\) operations (for complex flavors). In addition, each step of iterative refinement involves \(6 n^{2}\) operations (for real flavors) or \(24 n^{2}\) operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors or \(8 n^{2}\) for complex flavors.

\section*{?pprfs}

Refines the solution of a system of linear equations with a packed symmetric (Hermitian) positive-definite matrix and estimates its error.
```

call spprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,iwork,info)
call dpprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,iwork,info)
call cpprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,rwork,info)
call zpprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work, rwork,info)

```

\section*{Discussion}

This routine performs an iterative refinement of the solution to a system of linear equations \(A X=B\) with a packed symmetric (Hermitian) positive definite matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left.\left|\left|x-x_{\mathrm{e}}\right|\right| \infty||x||\right|_{\infty}\) (here \(x_{\mathrm{e}}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?pptrf
- call the solver routine ?pptrs.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

```

If uplo = 'U', the array \(a f p\) stores the packed factor \(U\) of the Cholesky factorization \(A=U^{H} U\).
If uplo = 'L', the array afp stores the packed factor \(L\) of the Cholesky factorization \(A=L L^{H}\).
\(n\)
nrhs INTEGER. The number of right-hand sides (nrhs \(\geq 0\)).
ap, afp, b, \(x\), work REAL for spprfs
DOUBLE PRECISION for dpprfs COMPLEX for cpprfs DOUBLE COMPLEX for zppris.
Arrays:
\(a p(*)\) contains the original packed matrix \(A\), as supplied to ?pptrf. \(\operatorname{afp}(*)\) contains the factored packed matrix \(A\), as returned by ?pptrf.
\(b(I d b, *)\) contains the right-hand side matrix \(B\).
\(x(I d x, *)\) contains the solution matrix \(X\).
work (*) is a workspace array.
The dimension of arrays \(a p\) and \(a f p\) must be at least \(\max (1, n(n+1) / 2)\); the second dimension of \(b\) and \(x\) must be at least max \((1, n r h s)\); the dimension of work must be at least \(\max \left(1,3 \star_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
\(I \mathrm{db} \quad\) INTEGER. The first dimension of \(b ; \quad 1 \mathrm{db} \geq \max (1, n)\).
\(I d x \quad\) INTEGER. The first dimension of \(x ; I d x \geq \max (1, n)\).
INTEGER.
Workspace array, DIMENSION at least \(\max (1, n)\).
rwork REAL for cpprfs
DOUBLE PRECISION for zpprfs
Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
\(x \quad\) The refined solution matrix \(X\).
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of \(4 n^{2}\) floating-point operations (for real flavors) or \(16 n^{2}\) operations (for complex flavors). In addition, each step of iterative refinement involves \(6 n^{2}\) operations (for real flavors) or \(24 n^{2}\) operations (for complex flavors); the number of iterations may range from 1 to 5 .
Estimating the forward error involves solving a number of systems of linear equations \(A x=b\); the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors or \(8 n^{2}\) for complex flavors.

\section*{?pbrfs}

Refines the solution of a system of linear equations with a band symmetric (Hermitian) positive-definite matrix and estimates its error.
```

call spbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b,ldb,x,ldx, ferr,berr,work, iwork, info)
call dpbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b,ldb,x,ldx,ferr,berr,work, iwork,info)
call cpbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b, ldb, x, ldx, ferr,berr, work, rwork, info)
call zpbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b, ldb, x, ldx, ferr,berr, work, rwork, info)

```

\section*{Discussion}

This routine performs an iterative refinement of the solution to a system of linear equations \(A X=B\) with a symmetric (Hermitian) positive definite band matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{\mathrm{e}}\right|\right| \propto||x||_{\infty}\) (here \(x_{\mathrm{e}}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?pbtrf
- call the solver routine ?pbtrs.

\section*{Input Parameters}
```

uplo
CHARACTER*1. Must be 'U' or 'L'. Indicates how the input matrix $A$ has been factored:

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

If \(u p I o=\) ' U ', the array \(a f b\) stores the factor \(U\) of the Cholesky factorization \(A=U^{H} U\).
If uplo= 'L', the array \(a f b\) stores the factor \(L\) of the Cholesky factorization \(A=L L^{H}\).
n
kd
nrhs
\(a b, a f b, b, x\), work
\[
a b, a f b, b, x, w o r k
\]

Integer. The order of the matrix \(A(n \geq 0)\).
INTEGER. The number of super-diagonals or sub-diagonals in the matrix \(A(k d \geq 0)\).
integer. The number of right-hand sides (nrhs \(\geq 0\)).

REAL for spbrfs
DOUBLE PRECISION for dpbrfs
COMPLEX for cpbrfs
DOUBLE COMPLEX for zpbrfs.

\section*{Arrays:}
\(a . b\) (Idab, *) contains the original band matrix \(A\), as supplied to ?pbtrf.
\(a f b\) (ldafb, *) contains the factored band matrix \(A\), as returned by ?pbtrf.
\(b(I d b, *)\) contains the right-hand side matrix \(B\).
\(x(I d x, *)\) contains the solution matrix \(X\).
work (*) is a workspace array.
The second dimension of \(a b\) and \(a f b\) must be at least \(\max (1, n)\); the second dimension of \(b\) and \(x\) must be at least \(\max (1, n r h s)\); the dimension of work must be at least \(\max \left(1,3 \star_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
Idab INTEGER. The first dimension of \(a b ; \quad l d a b \geq k d+1\).
Idafb INTEGER. The first dimension of \(a f b ;\) ldafb \(\geq k d+1\).
\(I d b \quad\) INTEGER. The first dimension of \(b ; 1 d b \geq \max (1, n)\).
\(I d x \quad\) INTEGER. The first dimension of \(x ; I d x \geq \max (1, n)\).
iwork
rwork
INTEGER.
Workspace array, DIMENSION at least \(\max (1, n)\).
REAL for cpbrfs
DOUBLE PRECISION for zpbrfs
Workspace array, DIMENSION at least \(\max (1, n)\).

Output Parameters
\begin{tabular}{ll}
\(x\) & The refined solution matrix \(X\). \\
ferr, berr & REAL for single precision flavors. \\
& DOUBLE PRECISION for double precision flavors. \\
& Arrays, DIMENSION at least max \((1, n r h s)\). Contain the \\
component-wise forward and backward errors, \\
respectively, for each solution vector. \\
info & INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of \(8 n^{\star} k d\) floating-point operations (for real flavors) or \(32 n^{\star} k d\) operations (for complex flavors). In addition, each step of iterative refinement involves \(12 n^{*} k d\) operations (for real flavors) or \(48 n^{\star} k d\) operations (for complex flavors); the number of iterations may range from 1 to 5 .
Estimating the forward error involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(4 n^{\star} k d\) floating-point operations for real flavors or \(16 n^{*} k d\) for complex flavors.

\section*{?ptrfs}

Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal matrix and estimates its error.
```

call sptrfs (n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,work,info)
call dptrfs (n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,work,info)
call cptrfs (uplo,n, nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,
work, rwork, info)
call cptrfs (uplo,n, nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,
work, rwork, info)

```

\section*{Discussion}

This routine performs an iterative refinement of the solution to a system of linear equations \(A X=B\) with a symmetric (Hermitian) positive definite tridiagonal matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\| x-\left.x_{\mathrm{e}}| | \infty| | x| |\right|_{\infty}\) (here \(x_{\mathrm{e}}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?pttrf
- call the solver routine ? pttrs.

\section*{Input Parameters}
uplo

CHARACTER*1. Used for complex flavors only. Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix \(A\) is stored and how \(A\) is factored:

If \(u p I o=\) ' U ', the array e stores the superdiagonal of \(A\), and \(A\) is factored as \(U^{H} D U\);
If upIo='L', the array e stores the subdiagonal of \(A\), and \(A\) is factored as \(L D L^{H}\).
n
nrhs
d, df,rwork

Integer. The order of the matrix \(A(n \geq 0)\).
INTEGER. The number of right-hand sides (\(n r h s \geq 0\)).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors
Arrays: \(d(n), d f(n), \operatorname{rwork}(n)\).
The array \(d\) contains the \(n\) diagonal elements of the tridiagonal matrix \(A\).
The array \(d f\) contains the \(n\) diagonal elements of the diagonal matrix \(D\) from the factorization of \(A\) as computed by ?pttrf.
The array rwork is a workspace array used for complex flavors only.
e, ef,b,x, work
REAL for sptrfs
DOUBLE PRECISION for dptrfs
COMPLEX for cptrfs
DOUBLE COMPLEX for zptrfs.
Arrays: \(e(n-1), e f(n-1), b(1 d b, n r h s)\), \(x(l d x, n r h s)\), work(*).
The array e contains the (\(n-1\)) off-diagonal elements of the tridiagonal matrix \(A\) (see uplo).
The array ef contains the (\(n-1\)) off-diagonal elements of the unit bidiagonal factor \(U\) or \(L\) from the factorization computed by ? ptrf (see uplo). The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
The array \(x\) contains the solution matrix \(X\) as computed by ? pttrs.
The array work is a workspace array. The dimension of work must be at least \(2 \star_{n}\) for real flavors, and at least \(n\) for complex flavors.
\(I d b \quad\) INTEGER. The leading dimension of \(b ; I d b \geq \max (1, n)\).
\(I d x \quad\) INTEGER. The leading dimension of \(x ; I d x \geq \max (1, n)\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Output Parameters
\begin{tabular}{ll}
\(x\) & The refined solution matrix \(X\). \\
ferr, berr & REAL for single precision flavors. \\
& DOUBLE PRECISION for double precision flavors. \\
& Arrays, DIMENSION at least max \((1, n r h s)\). Contain the \\
component-wise forward and backward errors, \\
respectively, for each solution vector. \\
info & INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{?syrfs}

Refines the solution of a system of linear equations with a symmetric matrix and estimates its error.
```

call ssyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,iwork,info)
call dsyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,iwork,info)
call csyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)
call zsyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

```

\section*{Discussion}

This routine performs an iterative refinement of the solution to a system of linear equations \(A X=B\) with a symmetric full-storage matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j} /\left|a_{i j}\right| \leq \beta\right| a_{i j}, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{\mathrm{e}}\right|\right| \alpha||x||_{\infty}\) (here \(x_{\mathrm{e}}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?sytrf
- call the solver routine ?sytrs.

\section*{Input Parameters}
uplo CHARACTER*1. Must be 'U' or 'L'. Indicates how the input matrix \(A\) has been factored:

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

If uplo= 'U', the array af stores the Bunch-Kaufman factorization \(A=P U D U^{T} P^{T}\).
If uplo= 'L', the array af stores the Bunch-Kaufman factorization \(A=P L D L^{T} P^{T}\).
n
nrhs
\(a, a f, b, x\), work REAL for ssyrfs
ipiv
iwork
rwork

DOUBLE PRECISION for dsyrfs
COMPLEX for csyrfs
DOUBLE COMPLEX for zsyrfs.
Arrays:
a(Ida,*) contains the original matrix \(A\), as supplied to ?sytrf.
af (Idaf,*) contains the factored matrix \(A\), as returned by ?sytrf.
\(b(I d b, *)\) contains the right-hand side matrix \(B\).
\(x(I d x, *)\) contains the solution matrix \(X\).
work (*) is a workspace array.
The second dimension of \(a\) and \(a f\) must be at least \(\max (1, n)\); the second dimension of \(b\) and \(x\) must be at least \(\max (1, n r h s)\); the dimension of work must be at least \(\max \left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2 \star_{n}\right)\) for complex flavors.
Ida INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, n)\).
Idaf Integer. The first dimension of \(a f ; 1 d a f \geq \max (1, n)\).
\(I d b \quad\) Integer. The first dimension of \(b ; 1 d b \geq \max (1, n)\).
\(l d x \quad\) Integer. The first dimension of \(x ; 1 d x \geq \max (1, n)\).
Integer. The order of the matrix \(A(n \geq 0)\).
INTEGER. The number of right-hand sides (nrhs \(\geq 0\)).

INTEGER. The first dimension of \(x ; ~ I d x \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\).
The ipiv array, as returned by ?sytrf.
INTEGER.
Workspace array, DIMENSION at least max \((1, n)\).
REAL for csyrfs
DOUBLE PRECISION for zsyrfs.
Workspace array, DIMENSION at least \(\max (1, n)\).

Output Parameters
```

$x$

```

\author{
ferr, berr
}
info
The refined solution matrix \(X\).
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.
INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of \(4 n^{2}\) floating-point operations (for real flavors) or \(16 n^{2}\) operations (for complex flavors). In addition, each step of iterative refinement involves \(6 n^{2}\) operations (for real flavors) or \(24 n^{2}\) operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11. Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors or \(8 n^{2}\) for complex flavors.

\section*{?herfs}

> Refines the solution of a system of linear equations with a complex Hermitian matrix and estimates its error.
```

call cherfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)
call zherfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx, ferr,berr,work,rwork,info)

```

\section*{Discussion}

This routine performs an iterative refinement of the solution to a system of linear equations \(A X=B\) with a complex Hermitian full-storage matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{\mathrm{e}}\right|\right| \infty||x||_{\infty}\) (here \(x_{\mathrm{e}}\) is the exact solution).

Before calling this routine:
- call the factorization routine ?hetrf
- call the solver routine ?hetrs.

\section*{Input Parameters}
\begin{tabular}{ll}
uplo & CHARACTER*1. Must be ' U ' or ' L '. \\
Indicates how the input matrix \(A\) has been factored: \\
If uplo \(=\) ' U ', the array \(a f\) stores the Bunch-Kaufman \\
& factorization \(A=P U D U^{H} P^{T}\). \\
& If uplo \(=\mathrm{L}\) ', the array af stores the Bunch-Kaufman \\
& factorization \(A=P L D L^{H} P^{T}\).
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}
\begin{tabular}{ll}
\(x\) & The refined solution matrix \(X\). \\
ferr, berr & REAL for cherfs \\
& DOUBLE PRECISION for zherfs. \\
& Arrays, DIMENSION at least max \((1, n r h s)\). Contain the \\
& component-wise forward and backward errors, \\
respectively, for each solution vector. \\
info & INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of \(16 n^{2}\) operations. In addition, each step of iterative refinement involves \(24 n^{2}\) operations; the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations \(A x=b\); the number is usually 4 or 5 and never more than 11 . Each solution requires approximately \(8 n^{2}\) floating-point operations.

The real counterpart of this routine is ssyrfs/dsyrfs.

\section*{?sprfs}

Refines the solution of a system of linear equations with a packed symmetric matrix and estimates the solution error.
```

call ssprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,iwork,info)
call dsprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work, iwork,info)
call csprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work, rwork,info)
call zsprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work, rwork,info)

```

\section*{Discussion}

This routine performs an iterative refinement of the solution to a system of linear equations \(A X=B\) with a packed symmetric matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward error \(\beta\). This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j} /\left|a_{i j}\right| \leq \beta\right| a_{i j}, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{\mathrm{e}}\right|\right| \alpha||x||_{\infty}\) (here \(x_{\mathrm{e}}\) is the exact solution).
Before calling this routine:
- call the factorization routine ?sptrf
- call the solver routine ?sptrs.

\section*{Input Parameters}
uplo CHARACTER*1. Must be 'U' or 'L'. Indicates how the input matrix \(A\) has been factored:

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

If uplo= 'U', the array afp stores the packed Bunch-Kaufman factorization \(A=P U D U^{T} P^{T}\). If uplo \(=\) 'L', the array \(a f p\) stores the packed Bunch-Kaufman factorization \(A=P L D L^{T} P^{T}\).
n
nrhs INTEGER. The number of right-hand sides (nrhs \(\geq 0\)).
ap, afp, b, \(x\), work REAL for ssprfs
DOUBLE PRECISION for dsprfs
COMPLEX for csprfs
DOUBLE COMPLEX for zsprfs.
Arrays:
\(a p(*)\) contains the original packed matrix \(A\), as supplied to ?sptrf.
\(\operatorname{afp}(*)\) contains the factored packed matrix \(A\), as returned by ?sptrf.
\(b(I d b, *)\) contains the right-hand side matrix \(B\).
\(x(I d x, *)\) contains the solution matrix \(X\).
work (*) is a workspace array.
The dimension of arrays \(a p\) and \(a f p\) must be at least \(\max (1, n(n+1) / 2)\); the second dimension of \(b\) and \(x\) must be at least max \((1, n r h s)\); the dimension of work must be at least \(\max \left(1,3 \star_{n}\right)\) for real flavors and \(\max \left(1,2^{\star_{n}}\right)\) for complex flavors..
\(I d b \quad \operatorname{INTEGER}\). The first dimension of \(b ; \quad l d b \geq \max (1, n)\).
ipiv
iwork
rwork
\(I d x \quad\) INTEGER. The first dimension of \(x ; I d x \geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\).
The ipiv array, as returned by ? sptrf.
INTEGER.
Workspace array, DIMENSION at least \(\max (1, n)\).
REAL for csprfs
DOUBLE PRECISION for zsprfs
Workspace array, DIMENSION at least \(\max (1, n)\).

Output Parameters
```

$x$

```

\author{
ferr, berr
}
info

The refined solution matrix \(X\).
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of \(4 n^{2}\) floating-point operations (for real flavors) or \(16 n^{2}\) operations (for complex flavors). In addition, each step of iterative refinement involves \(6 n^{2}\) operations (for real flavors) or \(24 n^{2}\) operations (for complex flavors); the number of iterations may range from 1 to 5 .
Estimating the forward error involves solving a number of systems of linear equations \(A x=b\); the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors or \(8 n^{2}\) for complex flavors.

\section*{?hprfs}

\author{
Refines the solution of a system of linear equations with a packed complex Hermitian matrix and estimates the solution error. \\ ```
call chprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx, \\ ferr,berr,work, rwork,info) \\ call zhprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx, \\ ferr,berr,work,rwork, info)
```

}

## Discussion

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ with a packed complex Hermitian matrix $A$, with multiple right-hand sides. For each computed solution vector $x$, the routine computes the component-wise backward error $\beta$. This error is the smallest relative perturbation in elements of $A$ and $b$ such that $x$ is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$. Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{\mathrm{e}}\right|\right| \infty||x||_{\infty}$ (here $x_{\mathrm{e}}$ is the exact solution).
Before calling this routine:

- call the factorization routine ?hptrf
- call the solver routine ?hptrs.


## Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix $A$ has been factored:
	If uplo ${ }^{\prime} U$ ', the array afp stores the packed
	Bunch-Kaufman factorization $A=P U D U^{H} P^{T}$.
	If uplo $=^{\prime} L$ ', the array afp stores the packed
	Bunch-Kaufman factorization $A=P L D L^{H} P^{T}$.
$n$	INTEGER. The order of the matrix $A(n \geq 0)$.
$n r h s$	INTEGER. The number of right-hand sides $(n r h s \geq 0)$.

```
ap, afp, b, x, work COMPLEX for chprfs
 DOUBLE COMPLEX for zhprfs.
```

Arrays:
$a p(*)$ contains the original packed matrix $A$, as supplied to ?hptrf.
$\operatorname{afp}(*)$ contains the factored packed matrix $A$, as returned by ?hptrf.
$b(I d b, *)$ contains the right-hand side matrix $B$.
$x(I d x, *)$ contains the solution matrix $X$.
work (*) is a workspace array.
The dimension of arrays $a p$ and $a f p$ must be at least $\max (1, n(n+1) / 2)$; the second dimension of $b$ and $x$ must be at least $\max (1, n r h s)$; the dimension of work must be at least $\max \left(1,2 \star_{n}\right)$.
$I d b \quad$ INTEGER. The first dimension of $b ; \quad I d b \geq \max (1, n)$.
$I d x \quad$ INTEGER. The first dimension of $x ; I d x \geq \max (1, n)$.
rwork REAL for chpres
DOUBLE PRECISION for zhprfs
Workspace array, DIMENSION at least max $(1, n)$.

## Output Parameters

$x$	The refined solution matrix $X$.
ferr, berr	REAL for chprfs.
	DOUBLE PRECISION for zhprfs.
	Arrays, DIMENSION at least max $(1, n r h s)$. Contain the
	component-wise forward and backward errors,
respectively, for each solution vector.	
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $16 n^{2}$ operations. In addition, each step of iterative refinement involves $24 n^{2}$ operations; the number of iterations may range from 1 to 5 .
Estimating the forward error involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.
The real counterpart of this routine is ssprfs/dsprfs.

## ?trrfs

Estimates the error in the solution of a system of linear equations with a triangular matrix.

```
call strrfs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,
 x,ldx, ferr,berr,work,iwork,info)
call dtrrfs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,
 x,ldx, ferr,berr,work,iwork,info)
call ctrrfs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,
 x,ldx, ferr,berr,work,rwork,info)
call ztrrfs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,
 x,ldx, ferr,berr,work,rwork,info)
```


## Discussion

This routine estimates the errors in the solution to a system of linear equations $A X=B$ or $A^{T} X=B$ or $A^{H} X=B$ with a triangular matrix $A$, with multiple right-hand sides. For each computed solution vector $x$, the routine computes the component-wise backward error $\beta$. This error is the smallest relative perturbation in elements of $A$ and $b$ such that $x$ is the exact solution of the perturbed system:

$$
\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right| \text { such that }(A+\delta A) x=(b+\delta b) .
$$

The routine also estimates the component-wise forward error in the computed solution $\left|\left|x-x_{\mathrm{e}}\right|\right| \infty||x||_{\infty}$ (here $x_{\mathrm{e}}$ is the exact solution).
Before calling this routine, call the solver routine ? trtrs.

## Input Parameters

```
uplo
 *
trans
diag
n
nrhs INTEGER. The number of right-hand sides (nrhs \geq0).
a, b, x, work REAL for strrfs
 DOUBLE PRECISION for dtrrfs
 COMPLEX for ctrrfs
 DOUBLE COMPLEX for ztrrfs.
 Arrays:
 a (Ida,*) contains the upper or lower triangular matrix A,
 as specified by uplo.
 b(Idb,*) contains the right-hand side matrix B.
 x(Idx,*) contains the solution matrix X.
 work (*) is a workspace array.
 The second dimension of a must be at least max (1,n);
 the second dimension of b}\mathrm{ and }x\mathrm{ must be at least
 max(1,nrhs); the dimension of work must be at least
 max}(1,3\mp@subsup{*}{n}{})\mathrm{ for real flavors and max (1, 2**n) for
 complex flavors.
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

$I d a$	INTEGER. The first dimension of $a ; I d a \geq \max (1, n)$.
$I d b$	INTEGER. The first dimension of $b ; I d b \geq \max (1, n)$.
$I d x$	INTEGER. The first dimension of $x ; I d x \geq \max (1, n)$.
iwork	INTEGER.
rwork	Workspace array, DIMENSION at least $\max (1, n)$.
	REAL for ctrrfs
	DOUBLE PRECISION for ztrrfs
	Workspace array, DIMENSION at least $\max (1, n)$.

## Output Parameters

```
ferr, berr REAL for single precision flavors.
 DOUBLE PRECISION for double precision flavors.
 Arrays, DIMENSION at least max(1,nrhs). Contain the
 component-wise forward and backward errors,
 respectively, for each solution vector.
info
INTEGER.
 If info = 0, the execution is successful.
 If info = -i, the ith parameter had an illegal value.
```


## Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A x=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $n^{2}$ floating-point operations for real flavors or $4 n^{2}$ for complex flavors.

## ?tprfs

Estimates the error in the solution of a system of linear equations with a packed triangular matrix.

```
call stprfs (uplo,trans,diag,n,nrhs,ap,b,ldb,
 x,ldx, ferr,berr,work, iwork, info)
call dtprfs (uplo,trans,diag,n,nrhs,ap,b,ldb,
 x,ldx, ferr,berr, work, iwork, info)
call ctprfs (uplo,trans,diag,n,nrhs,ap,b,ldb,
 x,ldx, ferr,berr,work, rwork, info)
call ztprfs (uplo,trans,diag,n,nrhs,ap,b,ldb,
 x,ldx, ferr,berr,work, rwork, info)
```


## Discussion

This routine estimates the errors in the solution to a system of linear equations $A X=B$ or $A^{T} X=B$ or $A^{H} X=B$ with a packed triangular matrix $A$, with multiple right-hand sides. For each computed solution vector $x$, the routine computes the component-wise backward error $\beta$. This error is the smallest relative perturbation in elements of $A$ and $b$ such that $x$ is the exact solution of the perturbed system:
$\left|\delta a_{i j} / /\left|a_{i j}\right| \leq \beta\right| a_{i j}, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
The routine also estimates the component-wise forward error in the computed solution $\left|\left|x-x_{\mathrm{e}}\right|\right| \alpha||x||_{\infty}$ (here $x_{\mathrm{e}}$ is the exact solution).
Before calling this routine, call the solver routine ?tptrs.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Input Parameters


rwork REAL for ctrrfs
DOUBLE PRECISION for ztrrfs
Workspace array, DIMENSION at least max $(1, n)$.

## Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A x=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $n^{2}$ floating-point operations for real flavors or $4 n^{2}$ for complex flavors.

## ?tbrfs

Estimates the error in the solution of a system of linear equations with a triangular band matrix.

```
call stbrfs (uplo,trans, diag, n,kd, nrhs,ab,ldab,b,ldb,
 x, ldx, ferr,berr,work, iwork, info)
call dtbrfs (uplo,trans, diag, n,kd, nrhs,ab,ldab,b,ldb,
 x,ldx, ferr,berr,work, iwork, info)
call ctbrfs (uplo,trans,diag,n,kd,nrhs,ab,ldab,b,ldb,
 x,ldx, ferr,berr,work, rwork, info)
call ztbrfs (uplo,trans, diag,n,kd,nrhs,ab,ldab,b,ldb,
 x,ldx, ferr,berr,work, rwork, info)
```


## Discussion

This routine estimates the errors in the solution to a system of linear equations $A X=B$ or $A^{T} X=B$ or $A^{H} X=B$ with a triangular band matrix $A$, with multiple right-hand sides. For each computed solution vector $x$, the routine computes the component-wise backward error $\beta$. This error is the smallest relative perturbation in elements of $A$ and $b$ such that $x$ is the exact solution of the perturbed system:

$$
\left|\delta a_{i j}\right| /\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right| \text { such that }(A+\delta A) x=(b+\delta b) .
$$

The routine also estimates the component-wise forward error in the computed solution $\left|\left|x-x_{\mathrm{e}}\right|\right| \alpha||x||_{\infty}$ (here $x_{\mathrm{e}}$ is the exact solution).
Before calling this routine, call the solver routine ?tbtrs.

Input Parameters


Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Idb INTEGER. The first dimension of $b ; \quad l d b \geq \max (1, n)$.
$I d x \quad \operatorname{INTEGER}$. The first dimension of $x ; I d x \geq \max (1, n)$.
iwork INTEGER.
Workspace array, DIMENSION at least $\max (1, n)$.
rwork
REAL for ctbrfs
DOUBLE PRECISION for ztbrfs
Workspace array, DIMENSION at least $\max (1, n)$.

## Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A x=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{\star} k d$ floating-point operations for real flavors or $8 n^{\star} k d$ operations for complex flavors.

## Routines for Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix.
In particular, do not attempt to solve a system of equations $A x=b$ by first computing $A^{-1}$ and then forming the matrix-vector product $x=A^{-1} b$. Call a solver routine instead (see Routines for Solving Systems of Linear Equations); this is more efficient and more accurate.

However, matrix inversion routines are provided for the rare occasions when an explicit inverse matrix is needed.

## ?getri

Computes the inverse of an $L U$-factored general matrix.

```
call sgetri (n, a, lda, ipiv, work, lwork, info)
call dgetri (n, a, lda, ipiv, work, lwork, info)
call cgetri (n, a, lda, ipiv, work, lwork, info)
call zgetri (n, a, lda, ipiv, work, lwork, info)
```


## Discussion

This routine computes the inverse ( $A^{4}$ ) of a general matrix $A$. Before calling this routine, call ?getrf to factorize $A$.

## Input Parameters

```
n INTEGER. The order of the matrix A(n\geq0).
a, work REAL for sgetri
 DOUBLE PRECISION for dgetri
 COMPLEX for cgetri
 DOUBLE COMPLEX for zgetri.
 Arrays: a(lda,*),work(lwork).
 a(lda,*) contains the factorization of the matrix }A\mathrm{ , as
 returned by ?getrf: }A=PLU
 The second dimension of a must be at least max (1,n).
 work(lwork) is a workspace array.
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
Ida INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv
lwork

INTEGER.
Array, DIMENSION at least max $(1, n)$.
The ipiv array, as returned by ?getrf.
INTEGER. The size of the work array ( 1 work $\geq n$ )
See Application notes for the suggested value of 1 work.

## Output Parameters

a	Overwritten by the $n$ by $n$ matrix $A^{-1}$.
work (1)	If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, the $i$ th diagonal element of the factor $U$ is zero, $U$ is singular, and the inversion could not be completed.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed inverse $X$ satisfies the following error bound:

$$
|X A-I| \leq c(n) \varepsilon|X| P|L||U|
$$

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; $I$ denotes the identity matrix; $P, L$, and $U$ are the factors of the matrix factorization $A=P L U$.
The total number of floating-point operations is approximately $(4 / 3) n^{3}$ for real flavors and $(16 / 3) n^{3}$ for complex flavors.

## ?potri

Computes the inverse of a symmetric
(Hermitian) positive-definite matrix.

```
call spotri (uplo, n, a, lda, info)
call dpotri (uplo, n, a, lda, info)
call cpotri (uplo, n, a, lda, info)
call zpotri (uplo, n, a, lda, info)
```


## Discussion

This routine computes the inverse $\left(A^{-4}\right)$ of a symmetric positive definite or, for complex flavors, Hermitian positive-definite matrix $A$. Before calling this routine, call ? potrf to factorize $A$.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix $A$ has been factored:
If uplo = ' U ', the array a stores the factor $U$ of the Cholesky factorization $A=U^{H} U$.
If uplo= 'L', the array a stores the factor $L$ of the Cholesky factorization $A=L L^{H}$.
integer. The order of the matrix $A(n \geq 0)$.
REAL for spotri
DOUBLE PRECISION for dpotri
COMPLEX for cpotri
DOUBLE COMPLEX for zpotri.
Array: a(lda,*).
Contains the factorization of the matrix $A$, as returned by ?potrf.

The second dimension of a must be at least max $(1, n)$.
Ida INTEGER. The first dimension of $a ; I d a \geq \max (1, n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Output Parameters

a
info

Overwritten by the $n$ by $n$ matrix $A^{-1}$.
INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i$, the $i$ th diagonal element of the Cholesky factor (and hence the factor itself) is zero, and the inversion could not be completed.

## Application Notes

The computed inverse $X$ satisfies the following error bounds:

$$
\|X A-I\|_{2} \leq c(n) \varepsilon \kappa_{2}(A), \quad\|A X-I\|_{2} \leq c(n) \varepsilon \kappa_{2}(A)
$$

where $c(n)$ is a modest linear function of $n$, and $\varepsilon$ is the machine precision; $I$ denotes the identity matrix.
The 2-norm $||A||_{2}$ of a matrix $A$ is defined by $||A||_{2}=\max _{x \cdot x=1}(A x \cdot A x)^{1 / 2}$, and the condition number $\kappa_{2}(A)$ is defined by $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

## ?pptri

Computes the inverse of a packed symmetric (Hermitian) positive-definite matrix

```
call spptri (uplo, n, ap, info)
call dpptri (uplo, n, ap, info)
call cpptri (uplo, n, ap, info)
call zpptri (uplo, n, ap, info)
```


## Discussion

This routine computes the inverse $\left(A^{-1}\right)$ of a symmetric positive definite or, for complex flavors, Hermitian positive-definite matrix $A$ in packed form. Before calling this routine, call ?pptrf to factorize $A$.

## Input Parameters

uplo
$n$
ap

CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix $A$ has been factored:
If uplo $=$ ' U', the array ap stores the packed factor $U$ of the Cholesky factorization $A=U^{H} U$.
If uplo = 'L', the array ap stores the packed factor $L$ of the Cholesky factorization $A=L L^{H}$.

Integer. The order of the matrix $A(n \geq 0)$.
REAL for spptri
DOUBLE PRECISION for dpptri
COMPLEX for cpptri
DOUBLE COMPLEX for zpptri.
Array, DIMENSION at least $\max (1, n(n+1) / 2)$.
Contains the factorization of the packed matrix $A$, as returned by ?pptrf.

The dimension ap must be at least $\max (1, n(n+1) / 2)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Output Parameters

ap $\quad$ Overwritten by the packed $n$ by $n$ matrix $A^{-1}$.
info
INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If $i n f o=i$, the $i$ th diagonal element of the Cholesky factor (and hence the factor itself) is zero, and the inversion could not be completed.

## Application Notes

The computed inverse $X$ satisfies the following error bounds:

$$
\|X A-I\|_{2} \leq c(n) \varepsilon \kappa_{2}(A), \quad\|A X-I\|_{2} \leq c(n) \varepsilon \kappa_{2}(A)
$$

where $c(n)$ is a modest linear function of $n$, and $\varepsilon$ is the machine precision; $I$ denotes the identity matrix.
The 2-norm $||A||_{2}$ of a matrix $A$ is defined by $||A||_{2}=\max _{x \cdot x=1}(A x \cdot A x)^{1 / 2}$, and the condition number $\kappa_{2}(A)$ is defined by $\kappa_{2}(A)=\|A\|\left\|_{2}\right\| A^{4} \|_{2}$.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

## ?sytri

Computes the inverse of a symmetric matrix.

```
call ssytri (uplo, n, a, lda, ipiv, work, info)
call dsytri (uplo, n, a, lda, ipiv, work, info)
call csytri (uplo, n, a, lda, ipiv, work, info)
call zsytri (uplo, n, a, lda, ipiv, work, info)
```


## Discussion

This routine computes the inverse $\left(A^{-1}\right)$ of a symmetric matrix $A$. Before calling this routine, call ?sytrf to factorize $A$.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix $A$ has been factored:
If uplo = 'U', the array a stores the Bunch-Kaufman factorization $A=P U D U^{T} P^{T}$.
If uplo = 'L', the array a stores the Bunch-Kaufman factorization $A=P L D L^{T} P^{T}$.

Integer. The order of the matrix $A(n \geq 0)$.
REAL for ssytri
DOUBLE PRECISION for dsytri
COMPLEX for csytri
DOUBLE COMPLEX for zsytri.
Arrays:
$a(l d a, *)$ contains the factorization of the matrix $A$, as returned by ?sytrf.
The second dimension of a must be at least $\max (1, n)$.
work (*) is a workspace array.
The dimension of work must be at least $\max \left(1,2 \star_{n}\right)$.
Ida INTEGER. The first dimension of $a ; I d a \geq \max (1, n)$.
ipiv INTEGER.
Array, DIMENSION at least max $(1, n)$.
The ipiv array, as returned by ?sytrf.

## Output Parameters

a
info

> Overwritten by the $n$ by $n$ matrix $A^{-1}$.
> INTEGER.
> If info $=0$, the execution is successful.
> If $i n f o=-i$, the $i$ th parameter had an illegal value.
> If info $=i$, the $i$ th diagonal element of $D$ is zero, $D$ is singular, and the inversion could not be completed.

## Application Notes

The computed inverse $X$ satisfies the following error bounds:

$$
\left|D U^{T} P^{T} X P U-I\right| \leq c(n) \varepsilon\left(|D|\left|U^{T}\right| P^{T}|X| P|U|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'U', and

$$
\left|D L^{T} P^{T} X P L-I\right| \leq c(n) \varepsilon\left(|D|\left|L^{T}\right| P^{T}|X| P|L|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'L'. Here $c(n)$ is a modest linear function of $n$, and $\varepsilon$ is the machine precision; $I$ denotes the identity matrix.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

## ?hetri

Computes the inverse of a complex
Hermitian matrix.

```
call chetri (uplo, n, a, lda, ipiv, work, info)
call zhetri (uplo, n, a, lda, ipiv, work, info)
```


## Discussion

This routine computes the inverse ( $A^{4}$ ) of a complex Hermitian matrix $A$. Before calling this routine, call ?hetrf to factorize $A$.

## Input Parameters

uplo	Character* ${ }^{\text {c }}$. Must be 'U' or 'L'.
	Indicates how the input matrix $A$ has been factored: If uplo = 'U', the array a stores the Bunch-Kaufman factorization $A=P U D U^{H} P^{T}$.
	If uplo = 'L', the array a stores the Bunch-Kaufman factorization $A=P L D L^{H} P^{T}$.
$n$	Integer. The order of the matrix $A(n \geq 0)$.
a, work	COMPLEX for chetri
	double Complex for zhetri.
	Arrays:
	a (Ida,*) contains the factorization of the matrix $A$, as returned by ?hetrf.
	The second dimension of $a$ must be at least $\max (1, n)$. work (*) is a workspace array.
	The dimension of work must be at least max (1,n).
Ida	Integer. The first dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv	Integer.

Array, DIMENSION at least $\max (1, n)$.
The ipiv array, as returned by ?hetrf.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Output Parameters

a
info
Overwritten by the $n$ by $n$ matrix $A^{-1}$.
INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i$, the $i$ th diagonal element of $D$ is zero, $D$ is singular, and the inversion could not be completed.

## Application Notes

The computed inverse $X$ satisfies the following error bounds:

$$
\left|D U^{H} P^{T} X P U-I\right| \leq c(n) \mathcal{E}\left(|D|\left|U^{H}\right| P^{T}|X| P|U|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'U', and

$$
\left|D L^{H} P^{T} X P L-I\right| \leq c(n) \varepsilon\left(|D|\left|L^{H}\right| P^{T}|X| P|L|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'L'. Here $c(n)$ is a modest linear function of $n$, and $\varepsilon$ is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.
The real counterpart of this routine is ?sytri.

## ?sptri

Computes the inverse of a symmetric matrix using packed storage.

```
call ssptri (uplo, n, ap, ipiv, work, info)
call dsptri (uplo, n, ap, ipiv, work, info)
call csptri (uplo, n, ap, ipiv, work, info)
call zsptri (uplo, n, ap, ipiv, work, info)
```


## Discussion

This routine computes the inverse $\left(A^{4}\right)$ of a packed symmetric matrix $A$. Before calling this routine, call ?sptrf to factorize $A$.

## Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
 Indicates how the input matrix A has been factored:
 If uplo='U', the array ap stores the Bunch-Kaufman
 factorization A=PUDUT}\mp@subsup{P}{}{T}\mathrm{ .
 If uplo = ' L', the array ap stores the Bunch-Kaufman
 factorization A = PLDL'T}\mp@subsup{P}{}{T}\mathrm{ .
n
ap, work
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If \(u p l o=\) ' U ', the array \(a p\) stores the Bunch-Kaufman factorization \(A=P U D U^{T} P^{T}\).
If \(u p I o=\) ' L ', the array \(a p\) stores the Bunch-Kaufman factorization \(A=P L D L^{T} P^{T}\).
\(n\)
INTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for ssptri
DOUBLE PRECISION for dsptri
COMPLEX for csptri
DOUBLE COMPLEX for zsptri.
Arrays:
\(a p\) (*) contains the factorization of the matrix \(A\), as returned by ?sptrf.
The dimension of \(a p\) must be at least \(\max (1, n(n+1) / 2)\).
work (*) is a workspace array.
The dimension of work must be at least \(\max (1, n)\).
```

ipiv INTEGER.
Array, DIMENSION at least max $(1, n)$.
The ipiv array, as returned by ?sptrf.

## Output Parameters

Overwritten by the $n$ by $n$ matrix $A^{-1}$ in packed form.
INTEGER
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, the $i$ th diagonal element of $D$ is zero, $D$ is singular, and the inversion could not be completed.

## Application Notes

The computed inverse $X$ satisfies the following error bounds:

$$
\left|D U^{T} P^{T} X P U-I\right| \leq c(n) \varepsilon\left(|D|\left|U^{T}\right| P^{T}|X| P|U|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'U', and

$$
\left|D L^{T} P^{T} X P L-I\right| \leq c(n) \varepsilon\left(|D|\left|L^{T}\right| P^{T}|X| P|L|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'L'. Here $c(n)$ is a modest linear function of $n$, and $\varepsilon$ is the machine precision; $I$ denotes the identity matrix.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

## ?hptri

Computes the inverse of a complex
Hermitian matrix using packed storage.

```
call chptri (uplo, n, ap, ipiv, work, info)
call zhptri (uplo, n, ap, ipiv, work, info)
```


## Discussion

This routine computes the inverse ( $A^{4}$ ) of a complex Hermitian matrix $A$ using packed storage.
Before calling this routine, call $?$ hptrf to factorize $A$.

## Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
```

Indicates how the input matrix $A$ has been factored:
If $u p l o=$ ' U ', the array $a p$ stores the packed Bunch-Kaufman factorization $A=P U D U^{H} P^{T}$. If $u p l o=$ ' L ', the array $a p$ stores the packed Bunch-Kaufman factorization $A=P L D L^{H} P^{T}$.

Integer. The order of the matrix $A(n \geq 0)$.
COMPLEX for chptri
DOUBLE COMPLEX for zhptri.
Arrays:
$a p(*)$ contains the factorization of the matrix $A$, as returned by ?hptrf.
The dimension of $a p$ must be at least $\max (1, n(n+1) / 2)$.
work (*) is a workspace array.
The dimension of work must be at least $\max (1, n)$.
ipiv
INTEGER.
Array, DIMENSION at least max $(1, n)$.
The ipiv array, as returned by ?hptrf.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Output Parameters

$a p$	Overwritten by the $n$ by $n$ matrix $A^{-1}$.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.
	If info $i$, the $i$ th diagonal element of $D$ is zero, $D$ is
singular, and the inversion could not be completed.	

## Application Notes

The computed inverse $X$ satisfies the following error bounds:

$$
\left|D U^{H} P^{T} X P U-I\right| \leq c(n) \varepsilon\left(|D|\left|U^{H}\right| P^{T}|X| P|U|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'U', and

$$
\left|D L^{H} P^{T} X P L-I\right| \leq c(n) \varepsilon\left(|D|\left|L^{H}\right| P^{T}|X| P|L|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'L'. Here $c(n)$ is a modest linear function of $n$, and $\varepsilon$ is the machine precision; $I$ denotes the identity matrix.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.
The real counterpart of this routine is ?sptri.

## ?trtri

Computes the inverse of a triangular matrix.

```
call strtri (uplo, diag, n, a, lda, info)
call dtrtri (uplo, diag, n, a, lda, info)
call ctrtri (uplo, diag, n, a, lda, info)
call ztrtri (uplo, diag, n, a, lda, info)
```


## Discussion

This routine computes the inverse ( $A^{-4}$ ) of a triangular matrix $A$.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether $A$ is upper or lower triangular:
If uplo = 'U', then $A$ is upper triangular.
If uplo = 'L', then $A$ is lower triangular.
diag CHARACTER*1. Must be 'N' or 'U'.
If $\operatorname{diag}=$ ' $N$ ', then $A$ is not a unit triangular matrix.
If diag= 'U', $A$ is unit triangular: diagonal elements of $A$ are assumed to be 1 and not referenced in the array $a$.
$n$
a REAL for strtri
DOUBLE PRECISION for dtrtri
COMPLEX for ctrtri
DOUBLE COMPLEX for ztrtri.
Array: DIMENSION (Ida,*).
Contains the matrix $A$.
The second dimension of a must be at least $\max (1, n)$.
lda
INTEGER. The first dimension of $a ;$ Ida $\geq \max (1, n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Output Parameters

Overwritten by the $n$ by $n$ matrix $A^{-1}$.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i$, the $i$ th diagonal element of $A$ is zero, $A$ is singular, and the inversion could not be completed.

## Application Notes

The computed inverse $X$ satisfies the following error bounds:

$$
\begin{gathered}
|X A-I| \leq c(n) \varepsilon|X||A| \\
\left|X-A^{-1}\right| \leq c(n) \varepsilon\left|A^{-1}\right||A||X|
\end{gathered}
$$

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; $I$ denotes the identity matrix.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors and $(4 / 3) n^{3}$ for complex flavors.

## ?tptri

Computes the inverse of a triangular matrix using packed storage.

```
call stptri (uplo, diag, n, ap, info)
call dtptri (uplo, diag, n, ap, info)
call ctptri (uplo, diag, n, ap, info)
call ztptri (uplo, diag, n, ap, info)
```


## Discussion

This routine computes the inverse $\left(A^{-1}\right)$ of a packed triangular matrix $A$.

Input Parameters
uplo CHARACTER*1. Must be 'U' or 'L'
Indicates whether $A$ is upper or lower triangular:
If uplo $=$ ' U', then $A$ is upper triangular.
If uplo = 'L', then $A$ is lower triangular.
diag CHARACTER*1. Must be 'N' or 'U'.
If diag $=$ ' $N^{\prime}$, then $A$ is not a unit triangular matrix.
If diag='U', $A$ is unit triangular: diagonal elements of $A$ are assumed to be 1 and not referenced in the array ap.

INTEGER. The order of the matrix $A(n \geq 0)$.
REAL for stptri
DOUBLE PRECISION for dtptri
COMPLEX for ctptri
DOUBLE COMPLEX for ztptri.
Array: DIMENSION at least $\max (1, n(n+1) / 2)$.
Contains the packed triangular matrix $A$.

## Output Parameters

```
ap Overwritten by the packed n by n matrix }\mp@subsup{A}{}{-1
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), the \(i\) th diagonal element of \(A\) is zero, \(A\) is singular, and the inversion could not be completed.
```


## Application Notes

The computed inverse $X$ satisfies the following error bounds:

$$
\begin{gathered}
|X A-I| \leq c(n) \varepsilon|X||A| \\
\left|X-A^{-1}\right| \leq c(n) \varepsilon\left|A^{-1}\right||A||X|
\end{gathered}
$$

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; $I$ denotes the identity matrix.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors and $(4 / 3) n^{3}$ for complex flavors.

## Routines for Matrix Equilibration

Routines described in this section are used to compute scaling factors needed to equilibrate a matrix. Note that these routines do not actually scale the matrices.

## ?geequ

Computes row and column scaling
factors intended to equilibrate a matrix
and reduce its condition number.

```
call sgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
call dgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
call cgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
call zgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
```


## Discussion

This routine computes row and column scalings intended to equilibrate an $m$-by- $n$ matrix $A$ and reduce its condition number. The output array $r$ returns the row scale factors and the array $c$ the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i j}=r(\mathrm{i}) \star a_{i j}{ }^{\star} c(\mathrm{j})$ have absolute value 1 .

## Input Parameters

$m$			
$n$	INTEGER. The number of rows of the matrix $A, m \geq 0$.		
$a$	INTEGER. The number of columns of the matrix $A$,		
	$n \geq 0$.	$\quad$	REAL for sgeequ
:---			
DOUBLE PRECISION for dgeequ			
COMPLEX for cgeequ			
DOUBLE COMPLEX for zgeequ.			

Array: dimension (Ida,*).
Contains the $m$-by- $n$ matrix $A$ whose equilibration factors are to be computed.
The second dimension of a must be at least $\max (1, n)$.
Integer. The leading dimension of $a ; 1 d a \geq \max (1, m)$.

## Output Parameters

$r, \mathrm{c}$	REAL for single precision flavors;   DOUBLE PRECISION for double precision flavors.   Arrays: $r(m), c(n)$.   If info $=0$, or $i n f o>m$, the array $r$ contains the row scale factors of the matrix $A$.   If info $=0$, the array c contains the column scale factors of the matrix $A$.
rowend	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. If info $=0$ or info $>m$, rowend contains the ratio of the smallest $r($ i) to the largest $r($ i).
colcnd	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. If info $=0$, colcnd contains the ratio of the smallest $c(i)$ to the largest $c(i)$.
amax	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. Absolute value of the largest element of the matrix $A$.
info	INTEGER.   If info $=0$, the execution is successful.   If info $=-i$, the $i$ th parameter had an illegal value.   If info $=i$ and   $i \leq m$, the $i$ th row of $A$ is exactly zero;   $i>m$, the $(i-m)$ th column of $A$ is exactly zero

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Application Notes

All the components of $r$ and $c$ are restricted to be between $\operatorname{SMLNUM}=$ smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of $A$ but works well in practice.

If rowend $\geq 0.1$ and amax is neither too large nor too small, it is not worth scaling by $r$. If colcnd $\geq 0.1$, it is not worth scaling by $c$.

If amax is very close to overflow or very close to underflow, the matrix $A$ should be scaled.

## ?gbequ

```
Computes row and column scaling
factors intended to equilibrate a band
matrix and reduce its condition number.
```

```
call sgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)
```

call sgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)
call dgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)
call dgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)
call cgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)
call cgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)
call zgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)

```
call zgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)
```


## Discussion

This routine computes row and column scalings intended to equilibrate an $m$-by- $n$ band matrix $A$ and reduce its condition number. The output array $r$ returns the row scale factors and the array $c$ the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i j}=r(\mathrm{i}) \star a_{i j}{ }^{\star} c(\mathrm{j})$ have absolute value 1 .

## Input Parameters

$m \quad$ INTEGER. The number of rows of the matrix $\mathrm{A}, m \geq 0$. $n$ Integer. The number of columns of the matrix A, $n \geq 0$.
kl INTEGER. The number of sub-diagonals within the band of $A(k l \geq 0)$.
ku INTEGER. The number of super-diagonals within the band of $A(k u \geq 0)$.
$a b$
REAL for sgbequ
DOUBLE PRECISION for dgbequ
COMPLEX for cgbequ
DOUBLE COMPLEX for zgbequ.
Array, DIMENSION (ldab,*).
Contains the original band matrix $A$ stored in rows from 1 to $k l+k u+1$.

The second dimension of $a b$ must be at least $\max (1, n)$;
Idab INTEGER. The leading dimension of $a b$,
ldab $\geq k l+k u+1$.

## Output Parameters

r, $C$	REAL for single precision flavors;   DOUBLE PRECISION for double precision flavors.   Arrays: $r(m), c(n)$.   If info $=0$, or info $>m$, the array $r$ contains the row scale factors of the matrix $A$.   If info $=0$, the array $c$ contains the column scale factors of the matrix $A$.
rowend	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. If info $=0$ or info $>m$, rowend contains the ratio of the smallest $r(\mathrm{i})$ to the largest $r(\mathrm{i})$.
colcnd	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. If info $=0$, colcnd contains the ratio of the smallest $c(i)$ to the largest $c(i)$.
amax	REAL for single precision flavors;   DOUBLE PRECISION for double precision flavors. Absolute value of the largest element of the matrix $A$.
info	INTEGER.   If $\operatorname{info}=0$, the execution is successful.   If info $=-i$, the $i$ th parameter had an illegal value.   If info $=i$ and   $i \leq m$, the $i$ th row of $A$ is exactly zero;   $i>m$, the $(i-m)$ th column of $A$ is exactly zero

## Application Notes

All the components of $r$ and $c$ are restricted to be between SMLNUM $=$ smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of $A$ but works well in practice.

If rowend $\geq 0.1$ and amax is neither too large nor too small, it is not worth scaling by $r$. If colcnd $\geq 0.1$, it is not worth scaling by $c$.
If amax is very close to overflow or very close to underflow, the matrix $A$ should be scaled.

## ?poequ

Computes row and column scaling
factors intended to equilibrate a
symmetric (Hermitian) positive definite
matrix and reduce its condition number.

```
call spoequ (n, a, lda, s, scond, amax, info)
call dpoequ (n, a, lda, s, scond, amax, info)
call cpoequ (}n, a, lda, s, scond, amax, info
call zpoequ (n, a, lda, s, scond, amax, info)
```


## Discussion

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite matrix $A$ and reduce its condition number (with respect to the two-norm). The output array $s$ returns scale factors computed as
$s(i)=\frac{1}{\sqrt{a_{i, i}}}$
These factors are chosen so that the scaled matrix B with elements $b_{i j}=s(\mathrm{i})^{\star} a_{i j}{ }^{\star} s(\mathrm{j})$ has diagonal elements equal to 1 .
This choice of $s$ puts the condition number of $B$ within a factor $n$ of the smallest possible condition number over all possible diagonal scalings.

## Input Parameters

$n \quad$ INTEGER. The order of the matrix $\mathrm{A}, n \geq 0$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
a

Ida

REAL for spoequ
DOUBLE PRECISION for dpoequ
COMPLEX for cpoequ
DOUBLE COMPLEX for zpoequ.
Array: DIMENSION (Ida,*).
Contains the $n$-by- $n$ symmetric or Hermitian positive definite matrix $A$ whose scaling factors are to be computed. Only diagonal elements of $A$ are referenced. The second dimension of a must be at least max $(1, n)$.
INTEGER. The leading dimension of $a ; I d a \geq \max (1, m)$.

## Output Parameters

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION ( $n$ ).
If info $=0$, the array $s$ contains the scale factors for $A$.
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info $=0$, scond contains the ratio of the smallest $s(\mathrm{i})$ to the largest $s(\mathrm{i})$.
amax
info
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix $A$.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i$, the $i$ th diagonal element of $A$ is nonpositive.

## Application Notes

If scond $\geq 0.1$ and amax is neither too large nor too small, it is not worth scaling by $s$.

If amax is very close to overflow or very close to underflow, the matrix $A$ should be scaled.

## ?ppequ

Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix in packed storage and reduce its condition number.

```
call sppequ (uplo, n, ap, s, scond, amax, info)
call dppequ (uplo, n, ap, s, scond, amax, info)
call cppequ (uplo, n, ap, s, scond, amax, info)
call zppequ (uplo, n, ap, s, scond, amax, info)
```


## Discussion

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite matrix $A$ in packed storage and reduce its condition number (with respect to the two-norm). The output array $s$ returns scale factors computed as
$s(i)=\frac{1}{\sqrt{a_{i, i}}}$
These factors are chosen so that the scaled matrix B with elements $b_{i j}=s(\mathrm{i}) \star a_{i j}{ }^{\star} s(\mathrm{j})$ has diagonal elements equal to 1 .
This choice of $s$ puts the condition number of $B$ within a factor $n$ of the smallest possible condition number over all possible diagonal scalings.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of $A$ is packed in the array $a p$ : If $u p l o=' U$ ', the array $a p$ stores the upper triangular part of the matrix $A$.
If uplo='L', the array $a p$ stores the lower triangular part of the matrix $A$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
$n$
ap

INTEGER. The order of matrix $A(n \geq 0)$.
REAL for sppequ
DOUBLE PRECISION for dppequ
COMPLEX for cppequ
DOUBLE COMPLEX for zppequ.
Array, DIMENSION at least $\max (1, n(n+1) / 2)$.
The array ap contains either the upper or the lower triangular part of the matrix $A$ (as specified by uplo) in packed storage (see Matrix Storage Schemes).

## Output Parameters

$s \quad$ REAL for single precision flavors; DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info $=0$, the array $s$ contains the scale factors for $A$.
scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info $=0$, scond contains the ratio of the smallest
$s(\mathrm{i})$ to the largest $s(\mathrm{i})$.
amax
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix $A$.
info
INTEGER.
If info $=0$, the execution is successful.
If $i n f O=-i$, the $i$ th parameter had an illegal value.
If info $=i$, the $i$ th diagonal element of $A$ is nonpositive.

## Application Notes

If scond $\geq 0.1$ and amax is neither too large nor too small, it is not worth scaling by $s$.
If amax is very close to overflow or very close to underflow, the matrix $A$ should be scaled.

## ?pbequ

Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite band matrix and reduce its condition number.

```
call spbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
call dpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
call cpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
call zpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
```


## Discussion

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite matrix $A$ in packed storage and reduce its condition number (with respect to the two-norm). The output array $s$ returns scale factors computed as
$s(i)=\frac{1}{\sqrt{a_{i, i}}}$
These factors are chosen so that the scaled matrix B with elements $b_{i j}=s(\mathrm{i}) * a_{i j}{ }^{*} s(\mathrm{j})$ has diagonal elements equal to 1 .
This choice of $s$ puts the condition number of $B$ within a factor $n$ of the smallest possible condition number over all possible diagonal scalings.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of $A$ is packed in the array $a b$ :
If uplo $=$ ' $U$ ', the array $a b$ stores the upper triangular part of the matrix $A$.
If uplo $=$ ' L', the array ab stores the lower triangular part of the matrix $A$.
$n \quad$ INTEGER. The order of matrix $A(n \geq 0)$.
$k d$ INTEGER. The number of super-diagonals or sub-diagonals in the matrix $A(k d \geq 0)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

ab	REAL for spbequ
	DOUBLE PRECISION for dpbequ
	COMPLEX for cpbequ
	DOUBLE COMPLEX for zpbequ.
	Array, DIMENSION ( $1 \mathrm{dab}, *$ ).
	The array ap contains either the upper or the lower triangular part of the matrix $A$ (as specified by uplo) in band storage (see Matrix Storage Schemes).
	The second dimension of $a b$ must be at least max (1, $n$ ) .
Idab	Integer. The leading dimension of the array $a b$. $(I d a b \geq k d+1)$.

## Output Parameters

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION ( $n$ ).
If info $=0$, the array $s$ contains the scale factors for $A$.
scond
amax
info

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors. If info $=0$, scond contains the ratio of the smallest $s(\mathrm{i})$ to the largest $s(\mathrm{i})$.
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors. Absolute value of the largest element of the matrix $A$.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i$, the $i$ th diagonal element of $A$ is nonpositive.

## Application Notes

If scond $\geq 0.1$ and amax is neither too large nor too small, it is not worth scaling by $s$.
If amax is very close to overflow or very close to underflow, the matrix $A$ should be scaled.

## Driver Routines

Table 4-3 lists the LAPACK driver routines for solving systems of linear equations with real or complex matrices.

Table 4-3 Driver Routines for Solving Systems of Linear Equations

Matrix type, storage scheme	Simple Driver	Expert Driver
general	? gesv	? gesvx
general band	? gbsv	? gbsvx
general tridiagonal	?gtsv	? gtsvx
symmetric/Hermitian positive-definite	?posv	? posvx
symmetric/Hermitian positive-definite, packed storage	? ppsv	? ${ }^{\text {ppsvx }}$
symmetric/Hermitian positive-definite, band	? pbsv	? pbsvx
symmetric/Hermitian positive-definite, tridiagonal	? ptsv	? ptsvx
symmetric/Hermitian indefinite	?sysv /?hesv	?sysvx /?hesvx
symmetric/Hermitian indefinite, packed storage	?spsv /?hpsv	? ${ }^{\text {spsvx } / ? h p s v x}$
complex symmetric	? sysv	? sysvx
complex symmetric, packed storage	? spsv	? spsvx

In this table ? stands for $\mathbf{s}$ (single precision real), $\mathbf{d}$ (double precision real), $\mathbf{c}$ (single precision complex), or $\mathbf{z}$ (double precision complex).

## ?gesv

Computes the solution to the system of linear equations with a square matrix $A$ and multiple right-hand sides.

```
call sgesv (n, nrhs, a, lda, ipiv, b, ldb, info)
call dgesv (n, nrhs, a, lda, ipiv, b, ldb, info)
call cgesv (n, nrhs, a, lda, ipiv, b, ldb, info)
call zgesv (n, nrhs, a, lda, ipiv, b, ldb, info)
```


## Discussion

This routine solves for $X$ the system of linear equations $A X=B$, where A is an $n$-by- $n$ matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
The $L U$ decomposition with partial pivoting and row interchanges is used to factor $A$ as $A=P L U$, where $P$ is a permutation matrix, $L$ is unit lower triangular, and $U$ is upper triangular. The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

n
nrhs INTEGER. The number of right-hand sides; the number of columns in $B$ ( $n r h s \geq 0$ ).
$a, b$
INTEGER. The order of $A$; the number of rows in $B$ $(n \geq 0)$.

REAL for sgesv

DOUBLE PRECISION for dgesv
COMPLEX for cgesv
DOUBLE COMPLEX for zgesv.
Arrays: $a(I d a, *), b(I d b, *)$.
The array a contains the matrix $A$.
The array b contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of a must be at least $\max (1, n)$, the second dimension of $b$ at least $\max (1, n r h s)$.

Ida
1 db
Output Parameters

INTEGER. The first dimension of $a ; I d a \geq \max (1, n)$.
INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

a	Overwritten by the factors $L$ and $U$ from the factorization of $A=P L U$; the unit diagonal elements of $L$ are not stored .
b	Overwritten by the solution matrix $X$.
ipiv	INTEGER.   Array, DIMENSION at least max $(1, n)$. The pivot indices that define the permutation matrix $P$; row i of the matrix was interchanged with row ipiv(i).
info	INTEGER. If info=0, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $i, U(i, i)$ is exactly zero. The factorization has been completed, but the factor $U$ is exactly singular, so the solution could not be computed.

## ?gesvx

Computes the solution to the system of linear equations with a square matrix $A$ and multiple right-hand sides, and provides error bounds on the solution.

```
call sgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
 c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call dgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
 c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call cgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
 c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
call zgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
 c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Discussion

This routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A X=B$, where A is an $n$-by- $n$ matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?gesvx performs the following steps:

1. If fact $=$ ' $E$ ', real scaling factors $r$ and $c$ are computed to equilibrate the system:
```
trans \(=\) ' N ': \(\quad \operatorname{diag}(r)^{\star} A \star \operatorname{diag}(c) * \operatorname{diag}(c)^{-1} \star X=\operatorname{diag}(r)^{\star} B\)
trans \(=\) ' \(T^{\prime}: \quad(\operatorname{diag}(r) * A * \operatorname{diag}(c))^{\mathrm{T}} * \operatorname{diag}(r)^{-1} \star X=\operatorname{diag}(c) * B\)
trans \(=\) ' \(c\) ': \(\quad\left(\operatorname{diag}(r) \star A^{*} \operatorname{diag}(c)\right)^{\mathrm{H}} * \operatorname{diag}(r)^{-1} \star X=\operatorname{diag}(c) * B\)
```

Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by $\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$ and $B$ by $\operatorname{diag}(r) \star B$ (if trans='N') or diag $(c) \star B$ (if trans $=$ ' $I$ ' or ' $C$ ').
2. If fact = ' N ' or ' E ', the $L U$ decomposition is used to factor the matrix $A$ (after equilibration if fact $=$ ' $E$ ') as $A=P L U$, where $P$ is a permutation matrix, $L$ is a unit lower triangular matrix, and $U$ is upper triangular.
3. If some $U_{i, i}=0$, so that $U$ is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by $\operatorname{diag}(c)$ (if trans = ' N ') or diag (r) (if trans = ' T ' or ' C ') so that it solves the original system before equilibration.

## Input Parameters

```
CHARACTER*1. Must be 'F','N', or 'E'.
```

Specifies whether or not the factored form of the matrix $A$ is supplied on entry, and if not, whether the matrix $A$ should be equilibrated before it is factored.

If fact $=$ ' $F^{\prime}$ : on entry, af and ipiv contain the factored form of $A$. If equed is not ' $n$ ', the matrix $A$ has been equilibrated with scaling factors given by $r$ and $c$. a, af, and ipiv are not modified.

If fact $=$ ' $N$ ', the matrix $A$ will be copied to $a f$ and factored.
If fact $=$ ' $E$ ', the matrix $A$ will be equilibrated if necessary, then copied to $a f$ and factored.
trans CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' $N$ ', the system has the form $A X=B$
(No transpose);
If trans $=$ ' $T$ ', the system has the form $A^{\mathrm{T}} X=B$ (Transpose);
If trans $=$ ' C', the system has the form $A^{\mathrm{H}} X=B$ (Conjugate transpose);

INTEGER. The number of linear equations; the order of the matrix $A(n \geq 0)$.
nrhs INTEGER. The number of right hand sides; the number of columns of the matrices $B$ and $X$ ( $n r h s \geq 0$ ).

## $a, a f, b$, work

REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMP LEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Arrays: $a(I d a, *), a f(I d a f, *), b(I d b, *)$, work(*).

The array a contains the matrix $A$. If fact = ' $F$ ' and equed is not ' N ', then $A$ must have been equilibrated by the scaling factors in $r$ and/or $c$. The second dimension
of a must be at least $\max (1, n)$.
The array $a f$ is an input argument if fact $=$ ' $F$ '. It contains the factored form of the matrix $A$, i.e., the factors $L$ and $U$ from the factorization $A=P L U$ as computed by ?getrf. If equed is not ' $N$ ', then $a f$ is the factored form of the equilibrated matrix $A$. The second dimension of af must be at least max $(1, n)$.
The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$.
work (*) is a workspace array.
The dimension of work must be at least $\max \left(1,4 \star_{n}\right)$ for real flavors, and at least $\max \left(1,2 \star_{n}\right)$ for complex flavors.

Ida

INTEGER. The first dimension of $a ;$ Ida $\geq \max (1, n)$.
INTEGER. The first dimension of $a f ; 1$ da $f \geq \max (1, n)$.
INTEGER. The first dimension of $b ; ~ I d b \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least $\max (1, n)$.
The array ipiv is an input argument if fact $=$ ' $F$ '. It contains the pivot indices from the factorization $A=P L U$ as computed by ?getrf; row i of the matrix was interchanged with row ipiv(i).
CHARACTER*1. Must be 'N', 'R', 'C', or 'B'. equed is an input argument if fact $=$ ' $F$ '. It specifies the form of equilibration that was done: If equed = ' N ', no equilibration was done (always true if fact = ' N ');
If equed $=$ ' $\mathrm{R}^{\prime}$, row equilibration was done and $A$ has been premultiplied by diag( $r$ );
If equed $=$ ' C', column equilibration was done and $A$ has been postmultiplied by $\operatorname{diag}(c)$;
If equed = ' B ', both row and column equilibration was done; $A$ has been replaced by $\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$.

r, c	REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	The array $r$ contains the row scale factors for $A$, and the array $c$ contains the column scale factors for $A$. These arrays are input arguments if fact = ' $F$ ' only; otherwise they are output arguments.
	If equed $=$ ' R ' or ' B ', $A$ is multiplied on the left by $\operatorname{diag}(r)$; if equed $={ }^{\prime} N^{\prime}$ or ' $C^{\prime}$, $r$ is not accessed. If fact $=$ ' $F$ ' and equed $=$ ' $R$ ' or ' $B$ ', each element of $r$ must be positive.
	If equed $=$ ' C ' or ' B ', $A$ is multiplied on the right by $\operatorname{diag}(c)$; if equed $={ }^{\prime} N^{\prime}$ or 'R', $c$ is not accessed.   If fact $=$ ' $F$ ' and equed $=$ ' $C$ ' or ' $B$ ', each element of $c$ must be positive.
$1 d x$	INTEGER. The first dimension of the output array $x$; $I d x \geq \max (1, n)$.
iwork	INTEGER.   Workspace array, DIMENSION at least $\max (1, n)$; used in real flavors only.
rwork	REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors. Workspace array, DIMENSION at least $\max \left(1,2 \star_{n}\right)$; used in complex flavors only.

## Output Parameters

REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Array, DIMENSION (Idx,*).
If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the original system of equations.
Note that $A$ and $B$ are modified on exit if equed $\neq$ 'N', and the solution to the equilibrated system is:
$\operatorname{diag}(c)^{-1} \star X$, if trans $=' N$ ' and equed $=$ ' C ' or ' B ';

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
$\operatorname{diag}(r)^{-1} \star X$, if trans $=' T$ ' or ' $C$ ' and equed $=' R '$
or 'B'.
The second dimension of $x$ must be at least $\max (1, n r h s)$.
Array a is not modified on exit if fact $=$ ' $F$ ' or ' $N$ ', or if fact $=$ ' E ' and equed $=$ ' N '.
If equed $\neq$ ' $\mathrm{N}^{\prime}, A$ is scaled on exit as follows:
equed $=$ 'R': $A=\operatorname{diag}(r) \star A$
equed $=$ 'C': $A=A \star \operatorname{diag}(c)$
equed $=$ ' $\mathrm{B}^{\prime}: ~ A=\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$
af If fact $=$ ' $N$ ' or ' $E$ ', then $a f$ is an output argument and on exit returns the factors $L$ and $U$ from the factorization $A=P L U$ of the original matrix $A($ if fact $=$ ' N ') or of the equilibrated matrix $A$ (if fact $=$ ' $E$ '). See the description of a for the form of the equilibrated matrix.
Overwritten by $\operatorname{diag}(r)^{\star} B$ if trans $=' N$ ' and equed = 'R' or 'B';
overwritten by $\operatorname{diag}(c) \star B$ if trans $=$ 'T' and equed $=$ ' C' or 'B';
not changed if equed $=$ ' $N$ '.
These arrays are output arguments if fact $\neq{ }^{\prime} \mathrm{F}$ '. See the description of $r, c$ in Input Arguments section.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
ferr, berr REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least max( $1, n r h s$ ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.

ipiv	If fact = ' N ' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=P L U$ of the original matrix $A$ (if fact $=$ ' $N$ ') or of the equilibrated matrix $A$ (if fact = ' E ').
equed	If fact $\neq$ ' $F$ ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
work, rwork	On exit, work(1) for real flavors, or rwork(1) for complex flavors, contains the reciprocal pivot growth factor norm $(A) / \operatorname{norm}(U)$. The "max absolute element" norm is used. If work(1) for real flavors, or rwork(1) for complex flavors is much less than 1 , then the stability of the $L U$ factorization of the (equilibrated) matrix $A$ could be poor. This also means that the solution $x$, condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with $0<\operatorname{info} \leq_{n}$, then work(1) for real flavors, or rwork(1) for complex flavors contains the reciprocal pivot growth factor for the leading info columns of $A$.
info	INTEGER. If info= 0 , the execution is successful. If $i n f o=-i$, the $i$ th parameter had an illegal value. If info $=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor $U$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.   If $i n f O=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?gbsv

Computes the solution to the system of linear equations with a band matrix $A$ and multiple right-hand sides.

```
call sgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call dgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call cgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call zgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
```


## Discussion

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by- $n$ band matrix with $k l$ subdiagonals and $k u$ superdiagonals, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
The $L U$ decomposition with partial pivoting and row interchanges is used to factor $A$ as $A=L U$, where $L$ is a product of permutation and unit lower triangular matrices with kl subdiagonals, and $U$ is upper triangular with $k l+k u$ superdiagonals. The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

$n$	INTEGER. The order of $A$; the number of rows in $B$ ( $n \geq 0$ ).
$k 1$	INTEGER. The number of sub-diagonals within the band of $A(k I \geq 0)$.
$k u$	INTEGER. The number of super-diagonals within the band of $A(k u \geq 0)$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
$a b, b$	REAL for sgbsv
	DOUBLE PRECISION for dgbsv
	COMP LEX for cgbsv

DOUBLE COMPLEX for zgbsv .
Arrays: $a b(I d a b, *), b(I d b, *)$.
The array ab contains the matrix $A$ in band storage (see Matrix Storage Schemes).
The second dimension of $a b$ must be at least $\max (1, n)$. The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$.

Idab INTEGER. The first dimension of the array $a b$. $(I d a b \geq 2 k I+k u+1)$
$I d b \quad$ INTEGER. The first dimension of $b ; I d b \geq \max (1, n)$.

## Output Parameters

ab	Overwritten by $L$ and $U$. The diagonal and $k I+k u$   super-diagonals of $U$ are stored in the first $1+k I+k u$   rows of $a b$. The multipliers used to form $L$ are stored in
the next $k I$ rows.	
ipiv	Overwritten by the solution matrix $X$.
	INTEGER.
	Array, DIMENSION at least max $(1, n)$.
info	The pivot indices: row $i$ was interchanged with row
	ipiv(i).
	INTEGER. If info=0, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.
	If info $i, U(i, i)$ is exactly zero. The factorization
has been completed, but the factor $U$ is exactly singular,	
so the solution could not be computed.	

## ?gbsvx

Computes the solution to the real or complex system of linear equations with a band matrix $A$ and multiple right-hand sides, and provides error bounds on the solution.

```
call sgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
 ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,
 work, iwork, info)
call dgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
 ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,
 work, iwork, info)
call cgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
 ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,
 work, rwork, info)
call zgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
 ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,
 work, rwork, info)
```


## Discussion

This routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A X=B, A^{T} X=B$, or $A^{H} X=B$, where A is a band matrix of order $n$ with $k I$ subdiagonals and $k u$ superdiagonals, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?gbsvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors $r$ and $c$ are computed to equilibrate the system:

$$
\begin{aligned}
& \text { trans = 'N': } \quad \operatorname{diag}(r)^{\star} A \star \operatorname{diag}(c) \star \operatorname{diag}(c)^{-1} \star X=\operatorname{diag}(r)^{\star} B \\
& \text { trans }=\text { 'T': } \quad(\operatorname{diag}(r) \star A \star \operatorname{diag}(c))^{\mathrm{T}} \star \operatorname{diag}(r)^{-1} \star X=\operatorname{diag}(c) \star B \\
& \text { trans }=C^{\prime}: \quad(\operatorname{diag}(r) \star A * \operatorname{diag}(c))^{\mathrm{H}} \star \operatorname{diag}(r)^{-1} \star X=\operatorname{diag}(c) \star B
\end{aligned}
$$

Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by $\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$ and $B$ by $\operatorname{diag}(r)^{\star} B$ (if trans='N') or $\operatorname{diag}(c) \star B$ (if trans $=$ ' $T$ ' or ' $C$ ').
2. If fact $=$ ' $N$ ' or ' $E$ ', the $L U$ decomposition is used to factor the matrix $A$ (after equilibration if fact $=$ ' $E$ ') as $A=L U$, where $L$ is a product of permutation and unit lower triangular matrices with $k l$ subdiagonals, and $U$ is upper triangular with $k l+k u$ superdiagonals.
3. If some $U_{i, i}=0$, so that $U$ is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by $\operatorname{diag}(c)$ (if trans $=$ ' N ') or $\operatorname{diag}(r)$ (if trans $=$ ' $T$ ' or ' $C$ ') so that it solves the original system before equilibration.

## Input Parameters

fact	CHARACTER*1. Must be 'F', 'N', or 'E'.
	Specifies whether or not the factored form of the matrix $A$ is supplied on entry, and if not, whether the matrix $A$ should be equilibrated before it is factored.
	If fact $=$ ' F ': on entry, $a f b$ and ipiv contain the factored form of $A$. If equed is not ' N ', the matrix $A$ has been equilibrated with scaling factors given by $r$ and $c$. $a b, a f b$, and ipiv are not modified.
	If fact $=$ ' $N$ ', the matrix $A$ will be copied to $a f b$ and factored.   If fact $=$ ' $E$ ', the matrix $A$ will be equilibrated if necessary, then copied to $a f b$ and factored.
trans	CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:
If trans = 'N', the system has the form $A X=B$ (No transpose);
If trans $=$ ' T ', the system has the form $A^{\mathrm{T}} X=B$ (Transpose);
If trans = ' C ', the system has the form $A^{\mathrm{H}} X=B$ (Conjugate transpose);
integer. The number of linear equations; the order of the matrix $A(n \geq 0)$.
kl Integer. The number of sub-diagonals within the band of $A(k I \geq 0)$.
ku Integer. The number of super-diagonals within the band of $A(k u \geq 0)$.
nrhs INTEGER. The number of right hand sides; the number of columns of the matrices $B$ and $X$ ( $n r h s \geq 0$ ).
$a b, a f b, b$, work REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
double complex for zgesvx.
Arrays: $a(l d a, *), a f(l d a f, *), b(l d b, *)$, work (*).
The array $a b$ contains the matrix $A$ in band storage (see Matrix Storage Schemes).
The second dimension of $a b$ must be at least $\max (1, n)$. If fact = ' F ' and equed is not ' N ', then $A$ must have been equilibrated by the scaling factors in $r$ and/or $c$.
The array $a f b$ is an input argument if $f a c t=$ ' $F$ ' . The second dimension of $a f b$ must be at least $\max (1, n)$. It contains the factored form of the matrix $A$, i.e., the factors $L$ and $U$ from the factorization $A=L U$ as computed by ?gbtrf. $U$ is stored as an upper triangular band matrix with $k I+k u$ super-diagonals in the first $1+k I+k u$ rows of $a f b$. The multipliers used during
the factorization are stored in the next $k l$ rows. If equed is not ' $N$ ', then $a f b$ is the factored form of the equilibrated matrix $A$.
The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least max (1, nrhs).
work (*) is a workspace array.
The dimension of work must be at least $\max \left(1,3 \star_{n}\right)$ for real flavors, and at least $\max \left(1,2 \star_{n}\right)$ for complex flavors.

Idab	INTEGER. The first dimension of ab ; $1 \mathrm{dab} \geq \mathrm{kl}+\mathrm{k} u+1$.
Idafb	integer. The first dimension of $a f b$; $l d a f b \geq 2 * k I+k u+1$.
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
ipiv	INTEGER.   Array, DIMENSION at least max $(1, n)$.   The array ipiv is an input argument if fact $=$ ' $F$ '.   It contains the pivot indices from the factorization $A=L U$ as computed by ?gbtrf; row i of the matrix was interchanged with row ipiv(i).
equed	CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.   equed is an input argument if $f a c t=' F$ '. It specifies   the form of equilibration that was done:   If equed $=$ ' $N$ ', no equilibration was done (always true if fact = ' N ');   If equed $=$ ' R ', row equilibration was done and $A$ has been premultiplied by diag(r);   If equed $=$ ' C ', column equilibration was done and $A$ has been postmultiplied by diag (c);   If equed $=$ ' B ', both row and column equilibration was done; $A$ has been replaced by $\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$.
r, c	REAL for single precision flavors;   DOUBLE PRECISION for double precision flavors.   Arrays: $r(n), c(n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
array $c$ contains the column scale factors for $A$. These arrays are input arguments if fact $=$ ' $F$ ' only; otherwise they are output arguments.
If equed = 'R' or 'B', $A$ is multiplied on the left by $\operatorname{diag}(r)$; if equed $=$ ' $N$ ' or ' $C$ ', $r$ is not accessed. If fact $=$ ' $F$ ' and equed $=$ ' $R$ ' or ' $B$ ', each element of $r$ must be positive.
If equed = ' C' or ' B ', $A$ is multiplied on the right by $\operatorname{diag}(c)$; if equed $=$ ' $N$ ' or 'R', $c$ is not accessed. If fact $=$ ' F ' and equed $=$ ' C ' or ' B ', each element of $c$ must be positive.
integer. The first dimension of the output array $x$; $1 d x \geq \max (1, n)$.
INTEGER.
Workspace array, DIMENSION at least $\max (1, n)$; used in real flavors only.
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max $(1, n)$; used in complex flavors only.

## Output Parameters

REAL for sgbsvx
DOUBLE PRECISION for dgbsvx
COMPLEX for cgbsvx
DOUBLE COMPLEX for zgbsvx.
Array, DIMENSION (ldx,*).
If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the original system of equations. Note that $A$ and $B$ are modified on exit if equed $\neq$ ' N ', and the solution to the equilibrated system is:
$\operatorname{diag}(c)^{-1} \star X$, if trans $=$ ' $N$ ' and equed $=$ ' $C$ ' or ' $\mathrm{B}^{\prime}$; $\operatorname{diag}(r)^{-1} \star X$, if trans $=' \mathrm{~T}$ ' or ' C ' and equed $=$ ' R ' or ' $\mathrm{B}^{\prime}$.
The second dimension of $x$ must be at least $\max (1$, nrhs $)$.

$a b$	Array $a b$ is not modified on exit if fact $=$ ' $F$ ' or ' $N$ ', or if fact $=$ ' E ' and equed $=$ ' N '.   If equed $\neq$ ' $\mathrm{N}^{\prime}, A$ is scaled on exit as follows:   equed $=$ 'R': $A=\operatorname{diag}(r) \star A$   equed $=$ 'C': $A=A * \operatorname{diag}(c)$   equed $=$ ' B ': $A=\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$
$a f b$	If fact $=$ ' $N$ ' or ' $E$ ', then $a f b$ is an output argument and on exit returns details of the $L U$ factorization of the original matrix $A$ (if fact $=$ ' $N$ ') or of the equilibrated matrix $A$ (if fact = ' E '). See the description of ab for the form of the equilibrated matrix.
$b$	Overwritten by $\operatorname{diag}(r)^{\star} b$ if trans $={ }^{\prime} N$ ' and equed = 'R' or 'B';   overwritten by $\operatorname{diag}(c)^{\star} b$ if trans $=$ ' $T$ ' and equed = ' C' or 'B';   not changed if equed $={ }^{\prime} N^{\prime}$.
$r, \quad c$	These arrays are output arguments if fact $\neq$ ' $F$ '.   See the description of $r, c$ in Input Arguments section.
rcond	REAL for single precision flavors.   DOUBLE PRECISION for double precision flavors.   An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done).   If rcond is less than the machine precision (in particular, if $r$ cond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for single precision flavors.   DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
ipiv	If fact $=$ ' $N$ ' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=L U$ of the original matrix $A$ (if fact $=$ ' N ') or of the equilibrated matrix $A$ (if fact = ' E ').

equed
work, rwork

If fact $\neq$ ' $F$ ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
On exit, work(1) for real flavors, or rwork(1) for complex flavors, contains the reciprocal pivot growth factor $\operatorname{norm}(A) / \operatorname{norm}(U)$. The "max absolute element" norm is used. If work(1) for real flavors, or rwork(1) for complex flavors is much less than 1 , then the stability of the $L U$ factorization of the (equilibrated) matrix $A$ could be poor. This also means that the solution $x$, condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with $0<\operatorname{info} \leq_{n}$, then work(1) for real flavors, or rwork(1) for complex flavors contains the reciprocal pivot growth factor for the leading info columns of $A$.

INTEGER. If info=0, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor $U$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?gtsv

Computes the solution to the system of linear equations with a tridiagonal matrix $A$ and multiple right-hand sides.

```
call sgtsv (n, nrhs, dl, d, du, b, ldb, info)
call dgtsv (n, nrhs, dl, d, du, b, ldb, info)
call cgtsv (n, nrhs, dl, d, du, b, ldb, info)
call zgtsv (n, nrhs, dl, d, du, b, ldb, info)
```


## Discussion

This routine solves for $X$ the system of linear equations $A X=B$, where A is an $n$-by- $n$ tridiagonal matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions. The routine uses Gaussian elimination with partial pivoting.
Note that the equation $A^{\mathrm{T}} X=B$ may be solved by interchanging the order of the arguments $d u$ and $d l$.

## Input Parameters

```
n INTEGER. The order of A; the number of rows in B
 (}n\geq0)
nrhs INTEGER. The number of right-hand sides; the number
 of columns in B (nrhs \geq0).
dl, d, du, b REAL for sgtsv
 DOUBLE PRECISION for dgtsv
 COMPLEX for cgtsv
 DOUBLE COMPLEX for zgtsv.
 Arrays: dl(n-1),d(n),du(n-1),b(ldb,*).
 The array dl contains the (n-1) subdiagonal elements
 of A.
 The array d contains the diagonal elements of A.
 The array du contains the (n-1) superdiagonal
 elements of }A\mathrm{ .
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$.
INTEGER. The first dimension of $b ; ~ I d b \geq \max (1, n)$.

## Output Parameters

dl	Overwritten by the ( $n-2$ ) elements of the second superdiagonal of the upper triangular matrix $U$ from the $L U$ factorization of A. These elements are stored in $d l(1), \ldots, d l(n-2)$.
d	Overwritten by the $n$ diagonal elements of $U$.
du	Overwritten by the $(n-1)$ elements of the first superdiagonal of $U$.
$b$	Overwritten by the solution matrix $X$.
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i, U(i, i)$ is exactly zero, and the solution has not been computed. The factorization has not been completed unless $i=n$.

## ?gtsvx

Computes the solution to the real or complex system of linear equations with a tridiagonal matrix A and multiple right-hand sides, and provides error bounds on the solution.

```
call sgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
 ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
 iwork, info)
call dgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
 ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
 iwork, info)
call cgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
 ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
 rwork, info)
call zgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
 ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
 rwork, info)
```


## Discussion

This routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A X=B, A^{T} X=B$, or $A^{H} X=B$, where A is a tridiagonal matrix of order $n$, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?gtsvx performs the following steps:

1. If fact $=$ ' N ', the $L U$ decomposition is used to factor the matrix $A$ as $A=L U$, where $L$ is a product of permutation and unit lower bidiagonal matrices and $U$ is an upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.
2. If some $U_{i, i}=0$, so that $U$ is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number
is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

## Input Parameters

fact
trans
n
nrhs

CHARACTER*1. Must be ' $\mathrm{F}^{\prime}$ or ' N '.
Specifies whether or not the factored form of the matrix $A$ has been supplied on entry.
If fact = 'F': on entry, dlf, df, duf, du2, and ipiv contain the factored form of $A$; arrays $d l, d, d u$, dlf, df, duf, du2, and ipiv will not be modified.
If fact $=$ ' N ', the matrix $A$ will be copied to $d l f, d f$, and $d u f$ and factored.

CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' $N$ ', the system has the form $A X=B$ (No transpose);
If trans $=$ ' T ', the system has the form $A^{\mathrm{T}} X=B$ (Transpose);
If trans $=$ ' C', the system has the form $A^{\mathrm{H}} X=B$ (Conjugate transpose);
integer. The number of linear equations; the order of the matrix $A(n \geq 0)$.
INTEGER. The number of right hand sides; the number of columns of the matrices $B$ and $X(n r h s \geq 0)$.
$d l, d, d u, d l f, d f$,
duf, du2,b,x, work REAL for sgtsvx
DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx
double complex for zgtsvx.
Arrays:
$d l$, dimension ( $n-1$ ), contains the subdiagonal elements of $A$.
$d$, dimension ( $n$ ), contains the diagonal elements of $A$.
$d u$, dimension $(n-1)$, contains the superdiagonal elements of $A$.
$d l f$, dimension $(n-1)$. If fact $=$ ' $F$ ', then $d l f$ is an input argument and on entry contains the ( $n-1$ ) multipliers that define the matrix $L$ from the $L U$ factorization of $A$ as computed by ?gttrf.
$d f$, dimension ( $n$ ). If fact $=$ ' $F$ ', then $d f$ is an input argument and on entry contains the $n$ diagonal elements of the upper triangular matrix $U$ from the $L U$ factorization of $A$.
$d u f$, dimension $(n-1)$. If fact $=' F$ ', then duf is an input argument and on entry contains the $(n-1)$ elements of the first super-diagonal of $U$.
du2, dimension $(n-2)$. If fact $=F^{\prime}$, then du 2 is an input argument and on entry contains the $(n-2)$ elements of the second super-diagonal of $U$.
$b(I d b, *)$ contains the right-hand side matrix $B$. The second dimension of $b$ must be at least $\max (1, n r h s)$. $x(I d x, *)$ contains the solution matrix $X$. The second dimension of $x$ must be at least $\max (1, n r h s)$.
work (*) is a workspace array;
the dimension of work must be at least $\max \left(1,3 \star_{n}\right)$ for real flavors and $\max \left(1,2 \star_{n}\right)$ for complex flavors.
$1 d b$
$I d x$
ipiv
iwork

INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The first dimension of $x ; I d x \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least $\max (1, n)$. If fact $=' F$ ' , then ipiv is an input argument and on entry contains the pivot indices, as returned by ?gttrf.

INTEGER.
Workspace array, DIMENSION ( $n$ ). Used for real flavors only.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

rwork	REAL for cgtsvx
	DOUBLE PRECISION for zgtsvx.
	Workspace array, DIMENSION ( $n$ ). Used for complex flavors only
Output Parameters	
x	REAL for sgtsvx
	DOUBLE PRECISION for dgtsvx
	COMPLEX for cgtsvx
	DOUBLE COMPLex for zgtsvx.
	Array, dIMENSION ( $1 \mathrm{dx}, *$ ) .
	If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$. The second dimension of $x$ must be at least $\max (1, n r h s)$.
dlf	If fact $=$ ' n ', then $d l f$ is an output argument and on exit contains the $(n-1)$ multipliers that define the matrix $L$ from the $L U$ factorization of $A$.
$d f$	If fact $=$ ' N ', then $d f$ is an output argument and on exi contains the $n$ diagonal elements of the upper triangular matrix $U$ from the $L U$ factorization of $A$.
duf	If fact = ' N ' , then $d u f$ is an output argument and on exit contains the $(n-1)$ elements of the first super-diagonal of $U$.
du2	If fact = ' N ', then du 2 is an output argument and on exit contains the $(n-2)$ elements of the second super-diagonal of $U$.
ipiv	The array ipiv is an output argument if fact $=$ ' $N$ ' and, on exit, contains the pivot indices from the factorization $A=L U$; row $i$ of the matrix was interchanged with row ipiv(i). The value of ipiv(i) will always be either $i$ or $i+1 ; \operatorname{ipiv}(i)=i$ indicates a row interchange was not required.
rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors. An estimate of the reciprocal condition number of the

matrix $A$.
If rcond is less than the machine precision (in particular, if rcond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info INTEGER. If info=0, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has not been completed unless $i=n$, but the factor $U$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?posv

Computes the solution to the system of linear equations with a symmetric or Hermitian positive definite matrix $A$ and multiple right-hand sides.

```
call sposv (uplo, n, nrhs, a, lda, b, ldb, info)
call dposv (uplo, n, nrhs, a, lda, b, ldb, info)
call cposv (uplo, n, nrhs, a, lda, b, ldb, info)
call zposv (uplo, n, nrhs, a, lda, b, ldb, info)
```


## Discussion

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by- $n$ symmetric/Hermitian positive definite matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
The Cholesky decomposition is used to factor A as $A=U^{H} U$ if uplo $=$ ' U ' or $A=L L^{H}$ if uplo =' L ', where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix. The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
	If $u p I O=$ ' U ', the array a stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$.
	If uplo = ' L ', the array a stores the lower triangular part of the matrix $A ; A$ is factored as $L L^{H}$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ ( $n r h s \geq 0$ ).

```
a, b REAL for sposv
DOUBLE PRECISION for dposv
COMPLEX for cPosv
DOUBLE COMPLEX for zposv.
Arrays: a(lda,*), b(ldb,*).
The array a contains either the upper or the lower
triangular part of the matrix A (see uplo).
The second dimension of a must be at least max(1,n).
The array b contains the matrix B whose columns are
the right-hand sides for the systems of equations.
The second dimension of b must be at least
max(1,nrhs).
INTEGER. The first dimension of \(a ; I d a \geq \max (1, n)\).
```


## Output Parameters

a	If info=0, the upper or lower triangular part of $a$ is   overwritten by the Cholesky factor $U$ or $L$, as specified   by uplo.		
info	Overwritten by the solution matrix $X$.	$\quad$	INTEGER. If info=0, the execution is successful.
:---			
If info $=-i$, the $i$ th parameter had an illegal value.			
If info $=i$, the leading minor of order $i$ (and hence the			
matrix $A$ itself) is not positive definite, so the			
factorization could not be completed, and the solution			
has not been computed.			

## ?posvx

```
Uses the Cholesky factorization to compute
the solution to the system of linear
equations with a symmetric or Hermitian
positive definite matrix A, and provides
error bounds on the solution.
```

```
call sposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
```

call sposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call dposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
call dposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call cposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
call cposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
call zposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
call zposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

```
 ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
```


## Discussion

This routine uses the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- $n$ real symmetric/Hermitian positive definite matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?posvx performs the following steps:

1. If $f a c t=$ ' $E$ ', real scaling factors $s$ are computed to equilibrate the system:

$$
\operatorname{diag}(s)^{\star} A \star \operatorname{diag}(s) * \operatorname{diag}(s)^{-1} \star X=\operatorname{diag}(s)^{\star} B
$$

Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by $\operatorname{diag}(s) \star A \star \operatorname{diag}(s)$ and $B$ by $\operatorname{diag}(s) \star B$.
2. If fact = 'N' or ' E ', the Cholesky decomposition is used to factor the matrix $A$ (after equilibration if fact $=$ ' $E$ ') as
$A=U^{H} U$, if uplo = ' U ', or $A=L L^{H}$, if uplo $=$ ' L ',
where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix.
3. If the leading $i$-by- $i$ principal minor is not positive definite, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

## Input Parameters

fact	CHARACTER*1. Must be 'F', 'N', or 'e'
	Specifies whether or not the factored form of the matrix $A$ is supplied on entry, and if not, whether the matrix $A$ should be equilibrated before it is factored.
	If fact $={ }^{\prime} F^{\prime}$ : on entry, af contains the factored form of $A$. If equed $=' Y$ ', the matrix $A$ has been equilibrated with scaling factors given by $s$. $a$ and $a f$ will not be modified.
	If fact $=$ ' $N$ ', the matrix $A$ will be copied to $a f$ and factored.   If fact $=$ ' $E$ ', the matrix $A$ will be equilibrated if necessary, then copied to $a f$ and factored.
uplo	CHARACTER*1. Must be 'U' or 'L'.   Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
	If uplo $=$ ' U ', the array a stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$.   If uplo = ' L', the array a stores the lower triangular part of the matrix $A ; A$ is factored as $L L^{H}$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
$\left.\begin{array}{ll}n & \text { INTEGER. The order of matrix } A(n \geq 0) . \\ n r h s & \text { INTEGER. The number of right-hand sides; the number } \\ \text { of columns in } B \text { ( } n r h s \geq 0 \text { ). }\end{array}\right\}$
true if fact = 'N');
If equed $=$ ' $Y$ ', equilibration was done and $A$ has been replaced by $\operatorname{diag}(s) \star A * \operatorname{diag}(s)$.
REAL for single precision flavors; DOUBLE PRECISION for double precision flavors.
Array, DIMENSION ( $n$ ).
The array $s$ contains the scale factors for $A$. This array is an input argument if fact $=$ ' $F$ ' only; otherwise it is an output argument.
If equed $=$ ' $N$ ', $s$ is not accessed.
If fact $=$ ' $F$ ' and equed $=$ 'Y', each element of $s$ must be positive.
$I d x \quad$ INTEGER. The first dimension of the output array $x$; $l d x \geq \max (1, n)$.
iwork
rwork
INTEGER.
Workspace array, DIMENSION at least max $(1, n)$; used in real flavors only.
REAL for cposvx;
DOUBLE PRECISION for zposvx.
Workspace array, DIMENSION at least $\max (1, n)$; used in complex flavors only.

## Output Parameters

REAL for sposvx
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Array, DIMENSION ( $I d x, *$ ).
If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the original system of equations. Note that if equed $=' Y$ ', $A$ and $B$ are modified on exit, and the solution to the equilibrated system is $\operatorname{diag}(s)^{-1} \star X$.
The second dimension of $x$ must be at least $\max (1, n r h s)$.

Array a is not modified on exit if fact = ' F ' or ' N ', or if fact = ' E ' and equed = ' N '. If fact $=$ ' $E$ ' and equed $=$ ' $Y$ ', $A$ is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$
If fact = ' N ' or ' E ', then $a f$ is an output argument and on exit returns the triangular factor $U$ or $L$ from the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ of the original matrix $A$ (if fact $=$ ' N '), or of the equilibrated matrix $A$ (if fact = ' $E$ '). See the description of a for the form of the equilibrated matrix.
Overwritten by $\operatorname{diag}(s) \star B$, if equed $=Y^{\prime} Y^{\prime}$; not changed if equed $=$ ' $N$ '.
This array is an output argument if $f a c t \neq{ }^{\prime} F^{\prime}$. See the description of $s$ in Input Arguments section. REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). If $r c o n d$ is less than the machine precision (in particular, if $r$ cond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$. REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least max ( 1, nrhs $)$. Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
If fact $\neq$ ' $F$ ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, and $i \leq n$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed; $r$ cond $=0$ is
returned.
If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of reond would suggest.

## ?ppsv

Computes the solution to the system of linear
equations with a symmetric (Hermitian)
positive definite packed matrix $A$ and
multiple right-hand sides.

```
call sppsv (uplo, n, nrhs, ap, b, ldb, info)
call dppsv (uplo, n, nrhs, ap, b, ldb, info)
call cppsv (uplo, n, nrhs, ap, b, ldb, info)
call zppsv (uplo, n, nrhs, ap, b, ldb, info)
```


## Discussion

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by- $n$ real symmetric/Hermitian positive definite matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions. The Cholesky decomposition is used to factor A as $A=U^{H} U$ if uplo='U' or $A=L L^{H}$ if uplo $=$ ' $L$ ', where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix. The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
If uplo = ' $U$ ', the array a stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$.
If uplo = ' L', the array a stores the lower triangular part of the matrix $A ; A$ is factored as $L L^{H}$.
$n$
nrhs
$a p, \quad b$
$1 d b$
integer. The order of matrix $A(n \geq 0)$.
Integer. The number of right-hand sides; the number of columns in $B$ ( $n r h s \geq 0$ ).
REAL for sppsv
DOUBLE PRECISION for dppsv
COMPLEX for cppsv
DOUBLE COMPLEX for zppsv.
Arrays: $a p(*), b(l d b, *)$.
The array ap contains either the upper or the lower triangular part of the matrix $A$ (as specified by uplo) in packed storage (see Matrix Storage Schemes).
The dimension of ap must be at least $\max (1, n(n+1) / 2)$. The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
The second dimension of $b$ must be at least $\max (1, n r h s)$.
$\operatorname{INTEGER}$. The first dimension of $b ; 1 d b \geq \max (1, n)$.

## Output Parameters

$a p$	If $\inf f=0$, the upper or lower triangular part of $A$ in   packed storage is overwritten by the Cholesky factor $U$   or $L$, as specified by upIo.
$b$	Overwritten by the solution matrix $X$.

## ?ppsvx

Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite packed matrix $A$, and provides error bounds on the solution.

```
call sppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
 rcond, ferr, berr, work, iwork, info)
call dppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
 rcond, ferr, berr, work, iwork, info)
call cppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
 rcond, ferr, berr, work, rwork, info)
call zppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
 rcond, ferr, berr, work, rwork, info)
```


## Discussion

This routine uses the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- $n$ symmetric or Hermitian positive definite matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ? ppsvx performs the following steps:

1. If fact $=$ ' $E$ ', real scaling factors $s$ are computed to equilibrate the system:

$$
\operatorname{diag}(s) \star A \star \operatorname{diag}(s) * \operatorname{diag}(s)^{-1} \star X=\operatorname{diag}(s) \star B
$$

Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by $\operatorname{diag}(s) \star A \star \operatorname{diag}(s)$ and $B$ by $\operatorname{diag}(s) \star B$.
2. If fact = ' N ' or ' E ', the Cholesky decomposition is used to factor the matrix $A$ (after equilibration if fact $=$ ' $E$ ') as
$A=U^{H} U$, if uplo = ' U ', or $A=L L^{H}$, if uplo $=$ ' L ',
where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix.
3. If the leading $i$-by- $i$ principal minor is not positive definite, then the routine returns with $\operatorname{infO}=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by diag $(s)$ so that it solves the original system before equilibration.

## Input Parameters

fact	CHARACTER*1. Must be 'F', 'N', or 'E'
	Specifies whether or not the factored form of the matrix $A$ is supplied on entry, and if not, whether the matrix $A$ should be equilibrated before it is factored.
	If fact $=$ ' $F^{\prime}$ : on entry, afp contains the factored form of $A$. If equed $=' Y$ ', the matrix $A$ has been equilibrated with scaling factors given by $s$. $a p$ and $a f p$ will not be modified.
	If fact $=$ ' N ', the matrix $A$ will be copied to $a f p$ and factored.   If fact $=$ ' $E$ ', the matrix $A$ will be equilibrated if necessary, then copied to afp and factored.
uplo	CHARACTER*1. Must be 'U' or 'L'.   Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
	If uplo='U', the array ap stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$.   If uplo='L', the array $a p$ stores the lower triangular part of the matrix $A ; A$ is factored as $L L^{H}$.

Specifies whether or not the factored form of the matrix $A$ is supplied on entry, and if not, whether the matrix $A$ should be equilibrated before it is factored.
If fact $=$ ' $F$ ': on entry, $a f p$ contains the factored form of $A$. If equed $=$ ' $Y$ ', the matrix $A$ has been equilibrated with scaling factors given by $s$.
$a p$ and $a f p$ will not be modified.
If fact $=$ ' N ', the matrix $A$ will be copied to $a f p$ and factored.
If fact $=$ ' $E$ ', the matrix $A$ will be equilibrated if necessary, then copied to afp and factored.
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
If $u p I o=' U '$, the array $a p$ stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$. part of the matrix $A ; A$ is factored as $L L^{H}$.
n
nrhs
ap, afp,b, work

INTEGER. The order of matrix $A(n \geq 0)$.
INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).

REAL for sppsvx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Arrays: $a p(*), a f p(*), b(l d b, *)$, work (*).
The array ap contains the upper or lower triangle of the original symmetric/Hermitian matrix A in packed storage (see Matrix Storage Schemes). In case when fact $=$ ' $F$ ' and equed $=$ ' $Y$ ', ap must contain the equilibrated matrix $\operatorname{diag}(s) \star A \star \operatorname{diag}(s)$.
The array $a f p$ is an input argument if fact $=$ ' $F$ ' and contains the triangular factor $U$ or $L$ from the Cholesky factorization of $A$ in the same storage format as $A$. If equed is not ' N ', then $a f p$ is the factored form of the equilibrated matrix $A$.
The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. work (*) is a workspace array.
The dimension of arrays $a p$ and $a f p$ must be at least $\max (1, n(n+1) / 2)$; the second dimension of $b$ must be at least $\max (1, n r h s)$; the dimension of work must be at least $\max \left(1,3 \star_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
$I d b \quad$ INTEGER. The first dimension of $b ; I d b \geq \max (1, n)$.
equed
CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact $=$ ' $F$ '. It specifies the form of equilibration that was done:
If equed $=$ ' $N$ ', no equilibration was done (always true if fact $=$ ' N ');
If equed $=' Y$ ', equilibration was done and $A$ has been replaced by $\operatorname{diag}(s) \star A * \operatorname{diag}(s)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

S
ldx
iwork
rwork

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The array $s$ contains the scale factors for $A$. This array is an input argument if fact $=$ ' $F$ ' only; otherwise it is an output argument.
If equed $=$ ' $N$ ', $s$ is not accessed.
If fact $=$ ' $F$ ' and equed $=' Y$ ', each element of $s$ must be positive.
INTEGER. The first dimension of the output array $x$; $I d x \geq \max (1, n)$.
INTEGER.
Workspace array, DIMENSION at least $\max (1, n)$; used in real flavors only.
REAL for cppsvx;
DOUBLE PRECISION for zppsvx.
Workspace array, DIMENSION at least $\max (1, n)$; used in complex flavors only.

## Output Parameters

$x$
$a p$

REAL for sppsvx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Array, DIMENSION (ldx,*).
If infO $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the original system of equations.
Note that if equed $=' Y$ ', $A$ and $B$ are modified on exit, and the solution to the equilibrated system is $\operatorname{diag}(s)^{-1} \star X$.
The second dimension of $x$ must be at least $\max (1, n r h s)$.

Array ap is not modified on exit if fact $=$ ' $F$ ' or ' $N$ ', or if fact $=$ ' E ' and equed $=$ ' N '.
If fact $=$ ' $E$ ' and equed $=$ ' $Y$ ', $A$ is overwritten by $\operatorname{diag}(s) \star A * \operatorname{diag}(s)$

$a f p$	If fact $=$ ' $N$ ' or ' $E$ ', then $a f p$ is an output argument and on exit returns the triangular factor $U$ or $L$ from the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ of the original matrix $A$ (if fact $=$ ' N '), or of the equilibrated matrix $A$ (if fact = ' $E$ '). See the description of $a p$ for the form of the equilibrated matrix.
b	Overwritten by $\operatorname{diag}(s)^{\star} B$, if equed $=' Y$ '; not changed if equed $=$ ' $N$ '.
$s$	This array is an output argument if fact $\neq{ }^{\prime} F^{\prime}$.   See the description of $s$ in Input Arguments section.
rcond	REAL for single precision flavors.   DOUBLE PRECISION for double precision flavors. An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for single precision flavors.   DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
equed	If fact $\neq$ ' $F$ ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
info	INTEGER. If info=0, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, and $i \leq n$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond $=0$ is returned.   If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of reond would suggest.

## ?pbsv

Computes the solution to the system of linear equations with a symmetric or Hermitian positive definite band matrix A and multiple right-hand sides.

```
call spbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call dpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call cpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call zpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
```


## Discussion

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by- $n$ symmetric/Hermitian positive definite band matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
The Cholesky decomposition is used to factor A as $A=U^{H} U$ if uplo =' U ' or $A=L L^{H}$ if uplo =' L ', where $U$ is an upper triangular band matrix and $L$ is a lower triangular band matrix, with the same number of superdiagonals or subdiagonals as $A$. The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

uplo CHARACTER* 1 . Must be ' U ' or ' L '.
Indicates whether the upper or lower triangular part of $A$
is stored in the array ab, and how $A$ is factored:
If uplo ' U ', the array abstores the upper triangular
part of the matrix $A$, and $A$ is factored as $U^{H} U$.
If uplo= 'L', the array abstores the lower triangular
part of the matrix $A ; A$ is factored as $L L^{H}$.
InTEGER. The order of matrix $A(n \geq 0)$.
$k d$
nrhs INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).

REAL for spbsv
DOUBLE PRECISION for dpbsv
COMPLEX for cpbsv
DOUBLE COMPLEX for zpbsv.
Arrays: $a b(I d a b, *), b(I d b, *)$.
The array $a b$ contains either the upper or the lower triangular part of the matrix $A$ (as specified by uplo) in band storage (see Matrix Storage Schemes).
The second dimension of $a b$ must be at least $\max (1, n)$. The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$.
Idab INTEGER. The first dimension of the array $a b$. $(1 d a b \geq k d+1)$
$I d b \quad$ INTEGER. The first dimension of $b ; I d b \geq \max (1, n)$.

## Output Parameters

a.b	The upper or lower triangular part of $A$ (in band storage)   is overwritten by the Cholesky factor $U$ or $L$, as   specified by uplo, in the same storage format as $A$.		
info	Overwritten by the solution matrix $X$.	$\quad$	INTEGER. If info=0, the execution is successful.
:---			
If info $=-i$, the $i$ th parameter had an illegal value.			
If info $i$, the leading minor of order $i$ (and hence the			
matrix $A$ itself) is not positive definite, so the			
factorization could not be completed, and the solution			
has not been computed.			

## ?pbsvx

Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite band matrix $A$, and provides error bounds on the solution.

```
call spbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
 s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call dpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
 s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call cpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
 s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call zpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
 s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
```


## Discussion

This routine uses the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- $n$ symmetric or Hermitian positive definite band matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?pbsvx performs the following steps:

1. If fact = ' $E$ ', real scaling factors $s$ are computed to equilibrate the system:

$$
\operatorname{diag}(s)^{\star} A \star \operatorname{diag}(s) \star \operatorname{diag}(s)^{-1} \star X=\operatorname{diag}(s)^{\star} B
$$

Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by $\operatorname{diag}(s)^{\star} A \star \operatorname{diag}(s)$ and $B$ by $\operatorname{diag}(s) \star B$.
2. If fact = 'N' or ' E ', the Cholesky decomposition is used to factor the matrix $A$ (after equilibration if fact $=' E$ ') as
$A=U^{H} U$, if uplo = ' U ', or $A=L L^{H}$, if uplo = ' L ',
where $U$ is an upper triangular band matrix and $L$ is a lower triangular band matrix.
3. If the leading $i$-by- $i$ principal minor is not positive definite, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

## Input Parameters

fact CHARACTER*1. Must be 'E', 'N', or 'E'.
Specifies whether or not the factored form of the matrix $A$ is supplied on entry, and if not, whether the matrix $A$ should be equilibrated before it is factored.
If fact $=$ ' $\mathrm{F}^{\prime}$ : on entry, $a f b$ contains the factored form of $A$. If equed $=' Y$ ', the matrix $A$ has been equilibrated with scaling factors given by $s$.
$a b$ and $a f b$ will not be modified.
If fact $={ }^{\prime} \mathrm{N}$ ', the matrix $A$ will be copied to $a f b$ and factored.
If fact $=$ ' $E$ ', the matrix $A$ will be equilibrated if necessary, then copied to $a f b$ and factored.
uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:

	If uplo = 'U', the array $a b$ stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$. If uplo = 'L', the array $a b$ stores the lower triangular part of the matrix $A ; A$ is factored as $L L^{H}$.
$n$	Integer. The order of matrix $A(n \geq 0)$.
kd	INTEGER. The number of super-diagonals or sub-diagonals in the matrix $A(k d \geq 0)$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
$a b, a f b, b$, work	REAL for spbsvx
	DOUBLE PRECISION for dpbsvx
	COMPLEX for cpbsvx
	DOUBLE COMPLEX for zpbsvx.
	Arrays: $a b(1 d a b, *)$, $a f b(l d a b, *), b(I d b, *)$, work(*).
	The array $a b$ contains the upper or lower triangle of the matrix $A$ in band storage (see Matrix Storage Schemes).
	If fact $=$ ' $F$ ' and equed $=$ ' $Y$ ', then $a b$ must contain the equilibrated matrix $\operatorname{diag}(s) \star A \star \operatorname{diag}(s)$. The second dimension of $a . b$ must be at least $\max (1, n)$.
	The array $a \pm b$ is an input argument if fact = 'F' .
	It contains the triangular factor $U$ or $L$ from the
	Cholesky factorization of the band matrix $A$ in the same storage format as $A$. If equed $=$ ' $Y$ ', then $a f b$ is the factored form of the equilibrated matrix $A$.
	The second dimension of $a \pm b$ must be at least max (1,
	The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1$, nrhs $)$.
	work (*) is a workspace array.
	The dimension of work must be at least $\max \left(1,3 \star_{n}\right)$ for real flavors, and at least $\max \left(1,2 \star_{n}\right)$ for complex flavors.
Idab	INTEGER. The first dimension of $a b ; 1 d a b \geq k d+1$.
ldafb	INTEGER. The first dimension of $\mathrm{a} f \mathrm{f} ; 1 \mathrm{ldafb} \geq \mathrm{kd}+1$.

1 db
equed
$S$
rwork

INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
CHARACTER*1. Must be 'N' or 'Y'. equed is an input argument if fact $=$ ' $F$ '. It specifies the form of equilibration that was done:
If equed $=$ ' N ', no equilibration was done (always true if fact $=$ ' N ');
If equed $=$ ' $Y$ ', equilibration was done and $A$ has been replaced by $\operatorname{diag}(s) \star A * \operatorname{diag}(s)$.
REAL for single precision flavors; DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The array $s$ contains the scale factors for $A$. This array is an input argument if fact $=$ ' $F$ ' only; otherwise it is an output argument.
If equed $=$ ' $N$ ', $s$ is not accessed.
If fact $=$ ' $F$ ' and equed $=$ 'Y', each element of $s$ must be positive.

INTEGER. The first dimension of the output array $x$; $l d x \geq \max (1, n)$.
INTEGER.
Workspace array, DIMENSION at least max $(1, n)$; used in real flavors only.
REAL for cpbsvx;
DOUBLE PRECISION for zpbsvx.
Workspace array, DIMENSION at least $\max (1, n)$; used in complex flavors only.

## Output Parameters

REAL for spbsvx
DOUBLE PRECISION for dpbsvx
COMPLEX for cp.bsvx
DOUBLE COMPLEX for zpbsvx.
Array, DIMENSION (ldx,*).

	If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the original system of equations. Note that if equed $=Y^{\prime}, A$ and $B$ are modified on exit, and the solution to the equilibrated system is $\operatorname{diag}(s)^{-1} \star X$.   The second dimension of $x$ must be at least $\max (1, n r h s)$.
$a b$	On exit, if fact = 'E' and equed $=$ ' $Y$ ', $A$ is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$
$a f b$	If fact $=$ ' $N$ ' or ' $E$ ', then $a f b$ is an output argument and on exit returns the triangular factor $U$ or $L$ from the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ of the original matrix $A($ if fact $=$ ' N '), or of the equilibrated matrix $A$ (if fact = ' $E$ '). See the description of $a b$ for the form of the equilibrated matrix.
b	Overwritten by $\operatorname{diag}(s) * B$, if equed $=' Y^{\prime}$; not changed if equed $={ }^{\prime} \mathrm{N}$ '.
$s$	This array is an output argument if fact $\neq{ }^{\prime} F^{\prime}$. See the description of $s$ in Input Arguments section.
rcond	REAL for single precision flavors.   DOUBLE PRECISION for double precision flavors. An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). If $r$ cond is less than the machine precision (in particular, if rcond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for single precision flavors.   DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least max ( 1, nrhs). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
equed	If fact $\neq$ ' $F$ ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

info
INTEGER. If info=0, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, and $i \leq n$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond $=0$ is returned.
If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of reond would suggest.

## ?ptsv

Computes the solution to the system of linear equations with a symmetric or Hermitian positive definite tridiagonal matrix $A$ and multiple right-hand sides.

```
call sptsv (}n,nrhs,d,e, b, ldb, info
call dptsv (n, nrhs, d, e, b, ldb, info)
call cptsv (n, nrhs, d, e, b, ldb, info)
call zptsv (n, nrhs, d, e, b, ldb, info)
```


## Discussion

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by- $n$ symmetric/Hermitian positive definite tridiagonal matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
$A$ is factored as $A=L D L^{H}$, and the factored form of $A$ is then used to solve the system of equations $A X=B$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Input Parameters

$n \quad$ INTEGER. The order of matrix $A(n \geq 0)$.
nrhs INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
$d$
e, b

1 db

## Output Parameters

Overwritten by the $n$ diagonal elements of the diagonal matrix $D$ from the $L D L^{H}$ factorization of A.
Overwritten by the $(n-1)$ subdiagonal elements of the unit bidiagonal factor $L$ from the factorization of A.
b
info
Overwritten by the solution matrix $X$.
Integer. If info=0, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not positive definite, and the solution has not been computed. The factorization has not been completed unless $i=n$.

## ?ptsvx

Uses the factorization $A=L D L^{H}$ to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite tridiagonal matrix $A$, and provides error bounds on the solution.

```
call sptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
 ferr, berr, work, info)
call dptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
 ferr, berr, work, info)
call cptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
 ferr, berr, work, rwork, info)
call zptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
 ferr, berr, work, rwork, info)
```


## Discussion

This routine uses the Cholesky factorization $A=L D L^{H}$ to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- $n$ symmetric or Hermitian positive definite tridiagonal matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?ptsvx performs the following steps:

1. If fact $=$ ' N ', the matrix A is factored as $A=L D L^{H}$, where $L$ is a unit lower bidiagonal matrix and $D$ is diagonal. The factorization can also be regarded as having the form $A=U^{H} D U$.
2. If the leading $i$-by- $i$ principal minor is not positive definite, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

fact	ChARACTER*1. Must be 'F' or 'n'.
	Specifies whether or not the factored form of the matrix $A$ is supplied on entry.
	If fact $=$ ' $\mathrm{F}^{\prime}$ : on entry, $d f$ and ef contain the factored form of $A$. Arrays $d, e, d f$, and $e f$ will not be modified.
	If fact $=$ ' $N$ ', the matrix $A$ will be copied to $d f$ and ef and factored.
n	Integer. The order of matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ ( $n r h s \geq 0$ ).
d, df, rwork	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors
	Arrays: $d(n), d f(n), \operatorname{rwork}(n)$.
	The array $d$ contains the $n$ diagonal elements of the tridiagonal matrix $A$.
	The array $d f$ is an input argument if fact = 'F' and on entry contains the $n$ diagonal elements of the diagonal matrix $D$ from the $L D L^{H}$ factorization of $A$.
	The array rwork is a workspace array used for complex flavors only.
e, ef, b, work	REAL for sptsvx
	DOUBLE PRECISION for dptsvx
	COMPLex for cptsvx
	DOUBLE COMPLex for zptsvx.
	Arrays: e(n-1), ef(n-1),b(Idb,*), work(*).
	The array e contains the ( $n-1$ ) subdiagonal elements of the tridiagonal matrix $A$.

The array ef is an input argument if fact $=' F$ ' and on entry contains the $(n-1)$ subdiagonal elements of the unit bidiagonal factor $L$ from the $L D L^{H}$ factorization of $A$.
The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The array work is a workspace array. The dimension of work must be at least $2 *_{n}$ for real flavors, and at least $n$ for complex flavors.
$1 d b$
$I d x$
$\operatorname{INTEGER}$. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; I d x \geq \max (1, n)$.

## Output Parameters

$x$	REAL for sptsvx
	DOUBLE PRECISION for dptsvx
	COMPLEX for cptsvx
	DOUBLE COMPLEX for zptsvx.
	Array, DIMENSION ( $1 d x$, *)
	If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the system of equations. The second dimension of $x$ must be at least $\max (1, n r h s)$.
$d f, e f$	These arrays are output arguments if fact $=$ ' $N$ '. See the description of df, ef in Input Arguments section.
rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
ferr, berr	An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info>0. REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.

## info INTEGER. If info=0, the execution is successful.

 If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, and $i \leq n$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed; reond $=0$ is returned.If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?sysv

```
Computes the solution to the system of linear equations with a real or complex symmetric matrix A and multiple right-hand sides.
```

```
call ssysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
```

call ssysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call dsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call dsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call csysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call csysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call zsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

```
call zsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
```


## Discussion

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by- $n$ symmetric matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

The diagonal pivoting method is used to factor $A$ as $A=U D U^{T}$ or $A=L D L^{T}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
 Indicates whether the upper or lower triangular part of }
 is stored and how }A\mathrm{ is factored:
 If uplo = 'U', the array a stores the upper triangular
 part of the matrix A, and A is factored as UDU'T
 If uplo = 'L', the array a stores the lower triangular
 part of the matrix A;A is factored as LDL'T.
 INTEGER. The order of matrix A (}n\geq0)\mathrm{ .
 INTEGER. The number of right-hand sides; the number
 of columns in B (nrhs \geq0).
a, b, work REAL for ssysv
 DOUBLE PRECISION for dsysv
 COMPLEX for cSysv
 DOUBLE COMPLEX for zsysv.
 Arrays: a(lda,*),b(Idb,*),work(lwork).
 The array a contains either the upper or the lower
 triangular part of the symmetric matrix A (see uplo).
 The second dimension of a must be at least max (1,n).
 The array b contains the matrix B whose columns are
 the right-hand sides for the systems of equations.
 The second dimension of b must be at least
 max(1,nrhs).
 work(lwork) is a workspace array.
Ida INTEGER. The first dimension of a; lda \geq max (1,n).
ldb INTEGER. The first dimension of b; Idb \geq max (1,n).
lwork INTEGER. The size of the work array (lwork \geq 1)
See Application notes for the suggested value of lwork.
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Output Parameters

a	If info $=0$, $a$ is overwritten by the block-diagonal matrix $D$ and the multipliers used to obtain the factor $U$ (or $L$ ) from the factorization of $A$ as computed by ? sytrf.
b	If info $=0, b$ is overwritten by the solution matrix $X$.
ipiv	INTEGER.
	Array, DIMENSION at least max $(1, \mathrm{n})$.
	Contains details of the interchanges and the block structure of $D$, as determined by ?sytrf.
	If $i p i v(i)=k>0$, then $d_{i i}$ is a 1 -by- 1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the kth row and column.
	If uplo='U' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then $D$ has a 2 -by- 2 block in rows/columns $i$ and $i-1$, and $(i-1)$ th row and column of $A$ was interchanged with the $m$ th row and column.
	If uplo = 'L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2 -by- 2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the $m$ th row and column.
work (1)	If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info	INTEGER. If info $=0$, the execution is successful.   If info $=-i$, the $i$ th parameter had an illegal value.
	If $i n f o=i, d_{i i}$ is 0 . The factorization has been completed, but $D$ is exactly singular, so the solution could not be computed.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use 1 work $=-1$ for the first run. In this case, a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first
entry work (1) of the work array, and no error message related to lwork is issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

## ?sysvx

Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a real or complex symmetric matrix $A$, and provides error bounds on the solution.

```
call ssysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
 x, ldx, rcond, ferr, berr, work, lwork, iwork, info)
call dsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
 x, ldx, rcond, ferr, berr, work, lwork, iwork, info)
call csysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
 x, ldx, rcond, ferr, berr, work, lwork, rwork, info)
call zsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
 x, ldx, rcond, ferr, berr, work, lwork, rwork, info)
```


## Discussion

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- $n$ symmetric matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?sysvx performs the following steps:

1. If fact $=$ ' N ', the diagonal pivoting method is used to factor the matrix A. The form of the factorization is $A=U D U^{T}$ or $A=L D L^{T}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that $D$ is exactly singular, then the routine returns with $\operatorname{info}=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

fact	CHARACTER*1. Must be 'F' or 'N'.
	Specifies whether or not the factored form of the matrix $A$ has been supplied on entry.
	If fact = 'F': on entry, af and ipiv contain the factored form of $A$. Arrays $a, a f$, and ipiv will not be modified.
	If fact $=$ ' N ', the matrix $A$ will be copied to af and factored.
uplo	CHARACTER*1. Must be 'U' or 'L'.   Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
	If upIo = ' U ', the array a stores the upper triangular part of the symmetric matrix $A$, and $A$ is factored as $U D U^{T}$.
	If uplo = ' L ', the array a stores the lower triangular part of the symmetric matrix $A ; A$ is factored as $L D L^{T}$. integer. The order of matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ ( $n r h s \geq 0$ ).
a, af, b, work	REAL for ssysvx
	DOUBLE PRECISION for dsysvx
	COMPLEX for csysvx

DOUBLE COMPLEX for zsysvx.
Arrays: $a(I d a, *), a f(I d a f, *), b(I d b, *)$,
work(*).
The array a contains either the upper or the lower triangular part of the symmetric matrix $A$ (see uplo). The second dimension of a must be at least $\max (1, n)$.
The array $a f$ is an input argument if fact $=$ ' F ' . It contains he block diagonal matrix $D$ and the multipliers used to obtain the factor $U$ or $L$ from the factorization $A$ $=U D U^{T}$ or $A=L D L^{T}$ as computed by ?sytrf.
The second dimension of af must be at least max $(1, n)$.
The array b contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$. work (*) is a workspace array of dimension (lwork).
INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
Integer. The first dimension of $a f ; 1$ da $f \geq \max (1, n)$.
INTEGER. The first dimension of $b ; \_d b \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
The array ipiv is an input argument if fact = ' F '. It contains details of the interchanges and the block structure of $D$, as determined by ?sytrf.
If $\operatorname{ipiv}(i)=k>0$, then $d_{i j}$ is a 1 -by- 1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
If uplo='U' and $\operatorname{ipiv(i)=ipiv(i-1)=-m<0,~}$ then $D$ has a 2 -by- 2 block in rows/columns $i$ and $i-1$, and ( $i-1$ ) th row and column of $A$ was interchanged with the $m$ th row and column.
If uplo = 'L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2-by- 2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the mth row and column.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

$1 d x$	Integer. The leading dimension of the output array $x$; $I d x \geq \max (1, n)$.
Iwork	integer. The size of the work array .   See Application notes for the suggested value of lwork.
iwork	INTEGER.   Workspace array, DIMENSION at least $\max (1, n)$; used in real flavors only.
rwork	REAL for csysvx;   DOUBLE PRECISION for zsysvx.   Workspace array, DIMENSION at least $\max (1, n)$; used in complex flavors only.

## Output Parameters

$x$
af, ipiv
rcond

REAL for ssysvx
DOUBLE PRECISION for dsysvx
COMP LEX for csysvx
DOUBLE COMPLEX for zsysvx.
Array, DIMENSION (Idx,*).
If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the system of equations. The second dimension of $x$ must be at least $\max (1, n r h s)$.

These arrays are output arguments if fact $=$ ' N '. See the description of af, ipiv in Input Arguments section.

REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. An estimate of the reciprocal condition number of the matrix $A$. If rcond is less than the machine precision (in particular, if rcond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info>0.
ferr, berr REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
work(1)
info
If info=0, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
INTEGER. If info=0, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, and $i \leq n$, then $d_{i 1}$ is exactly zero. The factorization has been completed, but the block diagonal matrix $D$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then $D$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of $r$ cond would suggest.

## Application Notes

For real flavors, 1 work must be at least $3^{\star} n$, and for complex flavors at least $2 \star_{n}$. For better performance, try using 1 work $=n *$ blocksize, where blocksize is the optimal block size for ?sytrf.
If you are in doubt how much workspace to supply, use 1 work $=-1$ for the first run. In this case, a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry work (1) of the work array, and no error message related to 1 work is issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

## ?hesvx

Uses the diagonal pivoting factorization to compute the solution to the complex system of linear equations with a Hermitian matrix $A$, and provides error bounds on the solution.

```
call chesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
 x, ldx, rcond, ferr, berr, work, lwork, rwork, info)
call zhesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
 x, ldx, rcond, ferr, berr, work, lwork, rwork, info)
```


## Discussion

This routine uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations $A X=B$, where A is a $n$-by- $n$ Hermitian matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?hesvx performs the following steps:

1. If fact $=$ ' N ', the diagonal pivoting method is used to factor the matrix A. The form of the factorization is $A=U D U^{H}$ or $A=L D L^{H}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that $D$ is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, $\operatorname{info}=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

```
fact CHARACTER*1.Must be 'F' or 'N'.
Specifies whether or not the factored form of the matrix \(A\) has been supplied on entry.
If fact \(=\) ' \(\mathrm{F}^{\prime}\) : on entry, af and ipiv contain the factored form of \(A\). Arrays \(a, a f\), and \(i p i v\) will not be modified.
If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to af and factored.
uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored:
If uplo \(=\) 'U', the array a stores the upper triangular part of the Hermitian matrix \(A\), and \(A\) is factored as \(U D U^{H}\).
If uplo = 'L', the array a stores the lower triangular part of the Hermitian matrix \(A ; A\) is factored as \(L D L^{H}\). INTEGER. The order of matrix \(A(n \geq 0)\).
INTEGER. The number of right-hand sides; the number of columns in \(B(n r h s \geq 0)\).
COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Arrays: \(a(I d a, *), a f(I d a f, *), b(I d b, *)\), work(*).
```

The array a contains either the upper or the lower triangular part of the Hermitian matrix $A$ (see uplo). The second dimension of a must be at least $\max (1, n)$.

The array $a f$ is an input argument if fact $=$ ' $F$ ' . It contains he block diagonal matrix $D$ and the multipliers used to obtain the factor $U$ or $L$ from the factorization $A$ $=U D U^{H}$ or $A=L D L^{H}$ as computed by ?hetrf.
The second dimension of af must be at least max $(1, n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
lda
ldaf
$1 d b$ ipiv
$1 d x$
lwork rwork

The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$. work (*) is a workspace array of dimension (lwork).

INTEGER. The first dimension of $a ; ~ I d a \geq \max (1, n)$.
INTEGER. The first dimension of $a f ; \operatorname{ldaf} \geq \max (1, n)$.
INTEGER. The first dimension of $b ; I d b \geq \max (1, n)$. INTEGER.
Array, DIMENSION at least $\max (1, n)$.
The array ipiv is an input argument if fact $=$ ' $F$ '. It contains details of the interchanges and the block structure of $D$, as determined by ?hetrf.
If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by-1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
If uplo='U' and ipiv(i) =ipiv(i-1) $=-m<0$, then $D$ has a 2-by- 2 block in rows/columns $i$ and $i-1$, and (i-1) th row and column of $A$ was interchanged with the $m$ th row and column.
If uplo='L' and ipiv(i) =ipiv(i+1) $=-m<0$, then $D$ has a 2-by-2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the mth row and column.
INTEGER. The leading dimension of the output array $x$; $I d x \geq \max (1, n)$.

INTEGER. The size of the work array .
See Application notes for the suggested value of lwork.
REAL for chesvx;
DOUBLE PRECISION for zhesvx.
Workspace array, DIMENSION at least $\max (1, n)$.

## Output Parameters

COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Array, DIMENSION (ldx,*).

If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the system of equations. The second dimension of $x$ must be at least $\max (1, n r h s)$.
af, ipiv These arrays are output arguments if fact $=$ ' N '. See the description of af, ipiv in Input Arguments section.

REAL for chesvx;
DOUBLE PRECISION for zhesvx.
An estimate of the reciprocal condition number of the matrix $A$. If rcond is less than the machine precision (in particular, if $r$ cond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr REAL for chesvx; DOUBLE PRECISION for zhesvx.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
info value of lwork required for optimum performance. Use this lwork for subsequent runs.

INTEGER. If info=0, the execution is successful. If $i n f O=-i$, the $i$ th parameter had an illegal value. If info $i$, and $i \leq n$, then $d_{i i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix $D$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then $D$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of reond would suggest.

## Application Notes

The value of 1 work must be at least $2 \star$ n. For better performance, try using lwork $=n \star$ blocksize, where blocksize is the optimal block size for ?hetrf.

If you are in doubt how much workspace to supply, use 1 work $=-1$ for the first run. In this case, a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry work (1) of the work array, and no error message related to lwork is issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

## ?hesv

Computes the solution to the system of linear equations with a Hermitian matrix $A$ and multiple right-hand sides.

```
call chesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call zhesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
```


## Discussion

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by-n symmetric matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

The diagonal pivoting method is used to factor $A$ as $A=U D U^{H}$ or $A=L D L^{H}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
If uplo $=$ 'U', the array a stores the upper triangular part of the matrix $A$, and $A$ is factored as $U D U^{H}$. If uplo = 'L', the array a stores the lower triangular part of the matrix $A ; A$ is factored as $L D L^{H}$.
$n$
nrhs
$a, b$, work

Ida

## 1 db

l work

Integer. The order of matrix $A(n \geq 0)$.
Integer. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0)$.

COMP LEX for chesv
DOUBLE COMPLEX for zhesv.
Arrays: $a(I d a, *), b(I d b, *)$, work(lwork).
The array a contains either the upper or the lower triangular part of the Hermitian matrix $A$ (see uplo). The second dimension of a must be at least $\max (1, n)$. The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$. work (lwork) is a workspace array.

INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The size of the work array ( 1 work $\geq 1$ )
See Application notes for the suggested value of lwork.

## Output Parameters

If info $=0$, a is overwritten by the block-diagonal matrix $D$ and the multipliers used to obtain the factor $U$ (or $L$ ) from the factorization of $A$ as computed by ?hetrf.
b
If info $=0, b$ is overwritten by the solution matrix $X$.
ipiv
INTEGER.
Array, DIMENSION at least max $(1, n)$.
Contains details of the interchanges and the block structure of $D$, as determined by ?hetrf.

If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by- 1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
If uplo $=$ 'U' and $\operatorname{ipiv(i)=ipiv(i-1)=-m<0,~}$ then $D$ has a 2 -by- 2 block in rows/columns $i$ and $i-1$, and ( $i-1$ ) th row and column of $A$ was interchanged with the $m$ th row and column.
If uplo = 'L' and $\operatorname{ipiv(i)=\operatorname {ipiv}(i+1)=-m<0,~}$ then $D$ has a 2 -by- 2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the $m$ th row and column.
work (1) If info=0, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this $I$ work for subsequent runs.
info INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If $\operatorname{info}=i, d_{i i}$ is 0 . The factorization has been completed, but $D$ is exactly singular, so the solution could not be computed.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use 1 work $=-1$ for the first run. In this case, a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry work (1) of the work array, and no error message related to lwork is issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

## ?spsv

Computes the solution to the system of linear equations with a real or complex symmetric matrix A stored in packed format, and multiple right-hand sides.

```
call sspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call dspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call cspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call zspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
```


## Discussion

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by- $n$ symmetric matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
The diagonal pivoting method is used to factor $A$ as $A=U D U^{T}$ or $A=L D L^{T}$, where $U$ (or $L$ ) is a product of permutation and unit upper (lower) triangular matrices, and $D$ is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
	If uplo $=$ 'U', the array ap stores the upper triangular part of the matrix $A$, and $A$ is factored as $U D U^{T}$.
	If uplo $=$ 'L', the array ap stores the lower triangular part of the matrix $A ; A$ is factored as $L D L^{T}$.
$n$	INTEGER. The order of matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

$a p, b$	REAL for sspsv
	DOUBLE PRECISION for dspsv
	COMPLEX for cspsv
	Double Complex for zspsv.
	Arrays: ap (*) , b ( 1 db , *)
	The dimension of ap must be at least max $(1, n(n+1) / 2)$.
	The array ap contains the factor $U$ or $L$, as specified by uplo, in packed storage (see Matrix Storage Schemes).
	The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
	The second dimension of $b$ must be at least $\max (1, n r h s)$.
1 db	EGER. The first dimension of $b ; 1 d b \geq \max (1, n)$

## Output Parameters

The block-diagonal matrix $D$ and the multipliers used to obtain the factor $U$ (or $L$ ) from the factorization of $A$ as computed by ?sptrf, stored as a packed triangular matrix in the same storage format as $A$.
If info $=0, b$ is overwritten by the solution matrix $X$.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
Contains details of the interchanges and the block structure of $D$, as determined by ?sptrf.
If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1 -by- 1 block, and the ith row and column of $A$ was interchanged with the $k$ th row and column.
If uplo='U' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then $D$ has a 2 -by- 2 block in rows/columns $i$ and $i-1$, and $(i-1)$ th row and column of $A$ was interchanged with the $m$ th row and column.
If uplo='L'andipiv(i) $=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2 -by- 2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the $m$ th row and column.

INTEGER. If info=0, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i, d_{i i}$ is 0 . The factorization has been completed, but $D$ is exactly singular, so the solution could not be computed.

## ?spsvx

Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a real or complex symmetric matrix A stored in packed format, and provides error bounds on the solution.

```
call sspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
 rcond, ferr, berr, work, iwork, info)
call dspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
 rcond, ferr, berr, work, iwork, info)
call cspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
 rcond, ferr, berr, work, rwork, info)
call zspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
 rcond, ferr, berr, work, rwork, info)
```


## Discussion

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- $n$ symmetric matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?spsvx performs the following steps:

1. If fact $=$ ' N ', the diagonal pivoting method is used to factor the matrix A. The form of the factorization is $A=U D U^{T}$ or $A=L D L^{T}$, where $U$ (or $L$ ) is a product of permutation and unit upper (lower) triangular matrices, and $D$ is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that $D$ is exactly singular, then the routine returns with $\operatorname{info}=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number
is less than machine precision, $\operatorname{info}=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

## Input Parameters

```
fact CHARACTER*1.Must be 'F' or 'N'.
 Specifies whether or not the factored form of the matrix
 A has been supplied on entry.
 If fact = 'F': on entry, afp and ipiv contain the
 factored form of A. Arrays ap,afp, and ipiv will not
 be modified.
 If fact = 'N', the matrix A will be copied to afp and
 factored.
uplo CHARACTER*1. Must be 'U' or 'L'.
 Indicates whether the upper or lower triangular part of }
 is stored and how }A\mathrm{ is factored:
 If uplo = 'U', the array ap stores the upper triangular
 part of the symmetric matrix }A\mathrm{ , and A is factored
 as }UD\mp@subsup{U}{}{T}\mathrm{ .
 If uplo = 'L', the array ap stores the lower triangular
 part of the symmetric matrix A;A is factored as LDL'T
n INTEGER. The order of matrix A (n\geq0).
nrhs INTEGER. The number of right-hand sides; the number
 of columns in B (nrhs \geq0).
ap,afp,b,work REAL for sspsvx
 DOUBLE PRECISION for dspsvx
 COMPLEX for cspsvx
 DOUBLE COMPLEX for zspsvx.
 Arrays: ap(*), afp(*),b(ldb,*),work (*).
```

The array $a p$ contains the upper or lower triangle of the symmetric matrix A in packed storage (see Matrix Storage Schemes).
The array $a f p$ is an input argument if $f a c t=' F$ ' . It contains the block diagonal matrix $D$ and the multipliers used to obtain the factor $U$ or $L$ from the factorization $A=U D U^{T}$ or $A=L D L^{T}$ as computed by ?sptrf, in the same storage format as $A$.
The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. work (*) is a workspace array.
The dimension of arrays $a p$ and $a f p$ must be at least $\max (1, n(n+1) / 2)$; the second dimension of $b$ must be at least max( $1, n r h s$ ); the dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
The array ipiv is an input argument if fact $={ }^{\prime} F^{\prime}$. It contains details of the interchanges and the block structure of $D$, as determined by ?sptrf.
If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by- 1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
If uplo='U'andipiv(i) $=\operatorname{ipiv}(i-1)=-m<0$, then $D$ has a 2 -by- 2 block in rows/columns $i$ and $i-1$, and $(i-1)$ th row and column of $A$ was interchanged with the $m$ th row and column.
If uplo = 'L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2 -by- 2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the $m$ th row and column.
INTEGER. The leading dimension of the output array $x$; $l d x \geq \max (1, n)$.
iwork INTEGER.
Workspace array, DIMENSION at least $\max (1, n)$; used in real flavors only.
rwork REAL for cspsvx;
DOUBLE PRECISION for zspsvx.
Workspace array, DIMENSION at least max $(1, n)$; used in complex flavors only.

## Output Parameters

$x$	REAL for sspsvx
	DOUBLE PRECISION for dspsvx
	COMPLEX for cspsvx
	DOUBLE COMPLEX for zspsvx.
	Array, DIMENSION ( $1 d x, *$ )
	If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the system of equations. The second dimension of $x$ must be at least max (1,nrhs).
afp, ipiv	These arrays are output arguments if fact $=$ ' N '. See the description of afp, ipiv in Input Arguments section.
rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal condition number of the matrix $A$. If rcond is less than the machine precision (in particular, if rcond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
info	INTEGER. If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.
	If info $=i$, and $i \leq n$, then $d_{i i}$ is exactly zero. The factorization has been completed, but the block diagonal

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
matrix $D$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then $D$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of $r$ cond would suggest.

## ?hpsvx

Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a Hermitian matrix A stored in packed format, and provides error bounds on the solution.

```
call chpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
 rcond, ferr, berr, work, rwork, info)
call zhpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
 rcond, ferr, berr, work, rwork, info)
```


## Discussion

This routine uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations $A X=B$, where A is a $n$-by- $n$ Hermitian matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?hpsvx performs the following steps:

1. If fact $=$ ' N ', the diagonal pivoting method is used to factor the matrix A. The form of the factorization is $A=U D U^{H}$ or $A=L D L^{H}$, where $U($ or $L$ ) is a product of permutation and unit upper (lower) triangular matrices, and $D$ is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that $D$ is exactly singular, then the routine returns with $\operatorname{info}=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Input Parameters

fact	CHARACTER*1. Must be 'E' or 'N'.
	Specifies whether or not the factored form of the matrix $A$ has been supplied on entry.
	If fact $=$ ' $\mathrm{F}^{\prime}$ : on entry, afp and ipiv contain the factored form of $A$. Arrays $a p, a f p$, and ipiv will not be modified.
	If fact $=' N^{\prime}$, the matrix $A$ will be copied to afp and factored.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
	If uplo='U', the array ap stores the upper triangular part of the Hermitian matrix $A$, and $A$ is factored as $U D U^{H}$.
	If uplo = 'L', the array ap stores the lower triangular part of the Hermitian matrix $A ; A$ is factored as $L D L^{H}$.
$n$	INTEGER. The order of matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
ap,afp,b, work	COMPLEX for chpsvx
	DOUBLE COMPLEX for zhpsvx.
	Arrays: ap (*) , afp (*), b (ldb, *), work (*).

The array $a p$ contains the upper or lower triangle of the Hermitian matrix A in packed storage (see Matrix Storage Schemes).
The array $a f p$ is an input argument if $f a c t=$ ' F ' . It contains the block diagonal matrix $D$ and the multipliers used to obtain the factor $U$ or $L$ from the factorization $A=U D U^{H}$ or $A=L D L^{H}$ as computed by ?hptrf, in the same storage format as $A$.
The array b contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. work (*) is a workspace array.

The dimension of arrays $a p$ and $a f p$ must be at least $\max (1, n(n+1) / 2)$; the second dimension of $b$ must be at least $\max (1, n r h s)$; the dimension of work must be at least $\max \left(1,2^{\star_{n}}\right)$.
INTEGER. The first dimension of $b ; ~ I d b \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
The array ipiv is an input argument if fact $=$ ' $F$ '. It contains details of the interchanges and the block structure of $D$, as determined by ?hptrf.
If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by-1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
If uplo='U' and ipiv(i) $=\operatorname{ipiv}(i-1)=-m<0$, then $D$ has a 2 -by- 2 block in rows/columns $i$ and $i-1$, and ( $i-1$ ) th row and column of $A$ was interchanged with the $m$ th row and column.
If uplo = 'L' and ipiv(i) =ipiv(i+1) $=-m<0$, then $D$ has a 2-by-2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the mth row and column.
INTEGER. The leading dimension of the output array $x$; $I d x \geq \max (1, n)$.
REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
Workspace array, DIMENSION at least max $(1, n)$.

## Output Parameters

COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Array, DIMENSION ( $I d x, *$ ).
If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the system of equations. The second dimension of $x$ must be at least $\max (1, n r h s)$.

afp, ipiv	These arrays are output arguments if fact $=$ ' $N$ ' . See the description of afp, ipiv in Input Arguments section.
rcond	REAL for chpsvx;   DOUBLE PRECISION for zhpsvx.   An estimate of the reciprocal condition number of the matrix $A$. If rcond is less than the machine precision (in particular, if rcond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info> 0 .
ferr, berr	REAL for chpsvx;   DOUBLE PRECISION for zhpsvx.   Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, and $i \leq n$, then $d_{i j}$ is exactly zero. The factorization has been completed, but the block diagonal matrix $D$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then $D$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?hpsv

Computes the solution to the system of linear equations with a Hermitian matrix A stored in packed format, and multiple right-hand sides.

```
call chpsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call zhpsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
```


## Discussion

This routine solves for $X$ the system of linear equations $A X=B$, where A is an $n$-by- $n$ Hermitian matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
The diagonal pivoting method is used to factor $A$ as $A=U D U^{H}$ or $A=L D L^{H}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
If uplo $=$ ' $U$ ', the array $a p$ stores the upper triangular part of the matrix $A$, and $A$ is factored as $U D U^{H}$.
If uplo $=$ 'L', the array ap stores the lower triangular part of the matrix $A ; A$ is factored as $L D L^{H}$.
$\begin{array}{ll}n & \text { INTEGER. The order of matrix } A(n \geq 0) . \\ \text { nrhs } & \text { INTEGER. The number of right-hand sides; the number } \\ \text { of columns in } B \quad(n r h s \geq 0) .\end{array}$

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

$a p, b$	COMPLEX for chpsv
DOUBLE COMPLEX for zhpsv.	
Arrays: $a p(*), b(l d b, *)$	
	The dimension of $a p$ must be at least $\max (1, n(n+1) / 2)$.
	The array ap contains the factor $U$ or $L$, as specified by
	uplo, in packed storage (see Matrix Storage Schemes).
	The array $b$ contains the matrix $B$ whose columns are
the right-hand sides for the systems of equations.	
	The second dimension of $b$ must be at least
	$\max (1, n r h s)$.

## Output Parameters

The block-diagonal matrix $D$ and the multipliers used to obtain the factor $U$ (or $L$ ) from the factorization of $A$ as computed by ?hptrf, stored as a packed triangular matrix in the same storage format as $A$.
b
ipiv

If info $=0, b$ is overwritten by the solution matrix $X$.
INTEGER.
Array, DIMENSION at least $\max (1, n)$.
Contains details of the interchanges and the block structure of $D$, as determined by ?hptrf.
If ipiv(i) $=k>0$, then $d_{i i}$ is a 1-by-1 block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
If uplo='U' andipiv(i) =ipiv(i-1) $=-m<0$, then $D$ has a 2-by- 2 block in rows/columns $i$ and $i-1$, and ( $i-1$ ) th row and column of $A$ was interchanged with the $m$ th row and column.

If uplo='L' andipiv(i) =ipiv(i+1) $=-m<0$, then $D$ has a 2-by- 2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the $m$ th row and column.

INTEGER. If info=0, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i, d_{i i}$ is 0 . The factorization has been completed, but $D$ is exactly singular, so the solution could not be computed.

## LAPACK Routines: Least Squares and Eigenvalue Problems

This chapter describes the Intel ${ }^{\circledR}$ Math Kernel Library implementation of routines from the LAPACK package that are used for solving linear least-squares problems, eigenvalue and singular value problems, as well as performing a number of related computational tasks.
Sections in this chapter include descriptions of LAPACK computational routines and driver routines.
For full reference on LAPACK routines and related information see [LUG].
Least-Squares Problems. A typical least-squares problem is as follows: given a matrix $A$ and a vector $b$, find the vector $x$ that minimizes the sum of squares $\Sigma_{i}\left((A x)_{i}-b_{i}\right)^{2}$ or, equivalently, find the vector $x$ that minimizes the 2-norm ||Ax-b| | ${ }_{2}$.
In the most usual case, $A$ is an $m$ by $n$ matrix with $m \geq n$ and $\operatorname{rank}(A)=n$. This problem is also referred to as finding the least-squares solution to an overdetermined system of linear equations (here we have more equations than unknowns). To solve this problem, you can use the $Q R$ factorization of the matrix A (see QR Factorization on page 5-6).
If $m<n$ and $\operatorname{rank}(A)=m$, there exist an infinite number of solutions $x$ which exactly satisfy $A x=b$, and thus minimize the norm $||A x-b||_{2}$. In this case it is often useful to find the unique solution that minimizes $||x||_{2}$. This problem is referred to as finding the minimum-norm solution to an underdetermined system of linear equations (here we have more unknowns than equations). To solve this problem, you can use the $L Q$ factorization of the matrix A (see LQ Factorization on page 5-7).

In the general case you may have a rank-deficient least-squares problem, with $\operatorname{rank}(A)<\min (m, n)$ : find the minimum-norm least-squares solution that minimizes both $||x||_{2}$ and $||A x-b||_{2}$. In this case (or when the rank of A is in doubt) you can use the $Q R$ factorization with pivoting or singular value decomposition (see page 5-74).
Eigenvalue Problems (from German eigen "own") are stated as follows: given a matrix $A$, find the eigenvalues $\lambda$ and the corresponding eigenvectors $z$ that satisfy the equation

$$
A z=\lambda z(\text { right eigenvectors } z)
$$

or the equation
$z^{H} A=\lambda z^{H}$ (left eigenvectors $z$ ).
If $A$ is a real symmetric or complex Hermitian matrix, the above two equations are equivalent, and the problem is called a symmetric eigenvalue problem. Routines for solving this type of problems are described in the section Symmetric Eigenvalue Problems (see page 5-101).
Routines for solving eigenvalue problems with nonsymmetric or non-Hermitian matrices are described in the section Nonsymmetric Eigenvalue Problems (see page 5-174).
The library also includes routines that handle generalized symmetricdefinite eigenvalue problems: find the eigenvalues $\lambda$ and the corresponding eigenvectors $x$ that satisfy one of the following equations:

$$
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
$$

where $A$ is symmetric or Hermitian, and $B$ is symmetric positive-definite or Hermitian positive-definite. Routines for reducing these problems to standard symmetric eigenvalue problems are described in the section Generalized Symmetric-Definite Eigenvalue Problems (see page 5-157).

To solve a particular problem, you usually call several computational routines. Sometimes you need to combine the routines of this chapter with other LAPACK routines described in Chapter 4 as well as with BLAS routines (Chapter 2).

For example, to solve a set of least-squares problems minimizing ||Ax-b|| $\left.\right|_{2}$ for all columns $b$ of a given matrix $B$ (where $A$ and $B$ are real matrices), you can call ? geqre to form the factorization $A=Q R$, then call ?ormqr to compute $C=Q^{H} B$, and finally call the BLAS routine ?trsm to solve for $X$ the system of equations $R X=C$.
Another way is to call an appropriate driver routine that performs several tasks in one call. For example, to solve the least-squares problem the driver routine ? gels can be used.

## Routine Naming Conventions

For each routine in this chapter, you can use the LAPACK name.
LAPACK names have the structure xyyzzz, which is described below.
The initial letter x indicates the data type:
s real, single precision c complex, single precision
d real, double precision $\quad$ z complex, double precision
The second and third letters yy indicate the matrix type and storage scheme:
bd bidiagonal matrix
ge general matrix
gb general band matrix
hs upper Hessenberg matrix
or (real) orthogonal matrix
op (real) orthogonal matrix (packed storage)
un (complex) unitary matrix
up (complex) unitary matrix (packed storage)
pt symmetric or Hermitian positive-definite tridiagonal matrix
sy symmetric matrix
sp symmetric matrix (packed storage)
sb (real) symmetric band matrix
st (real) symmetric tridiagonal matrix
he Hermitian matrix
hp Hermitian matrix (packed storage)
hb (complex) Hermitian band matrix
tr triangular or quasi-triangular matrix.
The last three letters zzz indicate the computation performed, for example:
qre form the $Q R$ factorization
lqf form the $L Q$ factorization.
Thus, the routine sgeqrf forms the $Q R$ factorization of general real matrices in single precision; the corresponding routine for complex matrices is cgeqre.

## Matrix Storage Schemes

LAPACK routines use the following matrix storage schemes:

- Full storage: a matrix $A$ is stored in a two-dimensional array $a$, with the matrix element $a_{i j}$ stored in the array element $a(i, j)$.
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: an $m$ by $n$ band matrix with $k l$ sub-diagonals and $k u$ super-diagonals is stored compactly in a two-dimensional array $a b$ with $k l+k u+1$ rows and $n$ columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.
In Chapters 4 and 5, arrays that hold matrices in packed storage have names ending in $p$; arrays with matrices in band storage have names ending in $b$.
For more information on matrix storage schemes, see Matrix Arguments in Appendix A.


## Mathematical Notation

In addition to the mathematical notation used in previous chapters, descriptions of routines in this chapter use the following notation:

$\lambda_{i}$	Eigenvalues of the matrix $A$ (for the definition of eigenvalues, see Eigenvalue Problems on page 5-2).					
$\sigma_{i}$	Singular values of the matrix $A$. They are equal to square roots of the eigenvalues of $A^{H} A$. (For more information, see Singular Value Decomposition).					
$\left\|\|x\| \\|_{2}\right.$	The2-normofthevectorx: $\|\|x\|\|_{2}=\left(\sum_{i}\left\|x_{i}\right\|^{2}\right)^{1 / 2}=\|\|x\|\|_{E}$.					
$\\|A\\|_{2}$	The 2 -norm (or spectral norm) of the matrix $A$. $\\|A\\|_{2}=\max _{i} \sigma_{i}, \quad \\| A\| \|_{2}^{2}=\max _{\|x\|=1}(A x \cdot A x)$.					
$\\|\left. A\right\|_{E}$	The Euclideannormof thematrix $A:\|\|A\|\|_{E}^{2}=\Sigma_{i} \Sigma_{j}\left\|a_{i j}\right\|^{2}$ (for vectors, the Euclidean norm and the 2 -norm are equal: $\left.\|\|x\|\|_{E}=\\| x\| \|_{2}\right)$.					
$\theta(x, y)$	The acute angle between vectors $x$ and $y$ : $\cos \theta(x, y)=\|x \cdot y\| /\left(\|\|x\|\|_{2}\| \| y\| \|_{2}\right)$.					

## Computational Routines

In the sections that follow, the descriptions of LAPACK computational routines are given. These routines perform distinct computational tasks that can be used for:

Orthogonal Factorizations
Singular Value Decomposition
Symmetric Eigenvalue Problems
Generalized Symmetric-Definite Eigenvalue Problems
Nonsymmetric Eigenvalue Problems
Generalized Nonsymmetric Eigenvalue Problems
Generalized Singular Value Decomposition
See also the respective driver routines.

## Orthogonal Factorizations

This section describes the LAPACK routines for the $Q R(R Q)$ and $L Q(Q L)$ factorization of matrices. Routines for the $R Z$ factorization as well as for generalized $Q R$ and $R Q$ factorizations are also included.
QR Factorization. Assume that $A$ is an $m$ by $n$ matrix to be factored. If $m \geq n$, the $Q R$ factorization is given by

$$
A=Q\binom{R}{0}=\left(Q_{1}, Q_{2}\right)\binom{R}{0}
$$

where $R$ is an $n$ by $n$ upper triangular matrix with real diagonal elements, and $Q$ is an $m$ by $m$ orthogonal (or unitary) matrix.
You can use the $Q R$ factorization for solving the following least-squares problem: minimize $||A x-b||_{2}$ where A is a full-rank $m$ by $n$ matrix $(m \geq n)$. After factoring the matrix, compute the solution $x$ by solving $R x=\left(Q_{1}\right)^{T} b$.

If $m<n$, the $Q R$ factorization is given by

$$
A=Q R=Q\left(R_{1} R_{2}\right)
$$

where $R$ is trapezoidal, $R_{1}$ is upper triangular and $R_{2}$ is rectangular.
The LAPACK routines do not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

LQ Factorization of an $m$ by $n$ matrix $A$ is as follows. If $m \leq n$,

$$
A=\left(\begin{array}{ll}
L, & 0
\end{array}\right) Q=\left(\begin{array}{ll}
L, & 0
\end{array}\right)\binom{Q_{1}}{Q_{2}}=L Q_{1}
$$

where $L$ is an $m$ by $m$ lower triangular matrix with real diagonal elements, and $Q$ is an $n$ by $n$ orthogonal (or unitary) matrix.
If $m>n$, the $L Q$ factorization is

$$
A=\binom{L_{1}}{L_{2}} Q
$$

where $L_{1}$ is an $n$ by $n$ lower triangular matrix, $L_{2}$ is rectangular, and $Q$ is an $n$ by $n$ orthogonal (or unitary) matrix.
You can use the $L Q$ factorization to find the minimum-norm solution of an underdetermined system of linear equations $A x=b$ where $A$ is an $m$ by $n$ matrix of rank $m(m<n)$. After factoring the matrix, compute the solution vector $x$ as follows: solve $L y=b$ for $y$, and then compute $x=\left(Q_{1}\right)^{H} y$.
Table 5-1 lists LAPACK routines that perform orthogonal factorization of matrices.

Table 5-1 Computational Routines for Orthogonal Factorization

Matrix type, factorization	Factorize   without pivoting	Factorize   with pivoting	Generate   matrix Q	Apply   matrix Q
general matrices,   QR factorization   general matrices,   RQ factorization   general matrices,	$\underline{\text { ?geqrf }}$			

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ? geqrf

Computes the QR factorization of a general $m$ by $n$ matrix.

```
call sgeqrf (m, n, a, lda, tau, work, lwork, info)
call dgeqrf (m, n, a, lda, tau, work, lwork, info)
call cgeqrf (m, n, a, lda, tau, work, lwork, info)
call zgeqrf (m, n, a, lda, tau, work, lwork, info)
```


## Discussion

The routine forms the $Q R$ factorization of a general $m$ by $n$ matrix $A$ (see Orthogonal Factorizations on page 5-6). No pivoting is performed.
The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

m	Integer. The number of rows in the matrix $A(m \geq 0)$.
$n$	INTEGER. The number of columns in $A(n \geq 0)$.
a, work	REAL for sgeqrf
	DOUBLE PRECISION for dgeqrf
	COMPLEX for cgeqrf
	DOUBLE COMPLEX for zgeqrf.
	Arrays:
	$a(l d a, *)$ contains the matrix $A$.
	The second dimension of a must be at least $\max (1, n)$. work (1work) is a workspace array
$1 d a$	INTEGER. The first dimension of $a$; at least max $(1, m)$.
lwork	INTEGER. The size of the work array ( 1 work $\geq n$ )
	See Application notes for the suggested value

## Output Parameters

Overwritten by the factorization data as follows:
If $m \geq n$, the elements below the diagonal are overwritten
by the details of the unitary matrix $Q$, and the upper
triangle is overwritten by the corresponding elements of
the upper triangular matrix $R$.
If $m<n$, the strictly lower triangular part is overwritten
by the details of the unitary matrix $Q$, and the remaining
elements are overwritten by the corresponding elements
of the $m$ by $n$ upper trapezoidal matrix $R$.
REAL for sgeqrf
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Array, DIMENSION at least max (1, min $m$, $n$ )).
Contains additional information on the matrix $Q$.
work(1)
If info $=0$, on exit work (1) contains the minimum
value of $l w o r k$ required for optimum performance. Use
info
this $I$ work for subsequent runs.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed factorization is the exact factorization of a matrix $A+E$, where $\|E\|_{2}=\left.O(\varepsilon)\|A\|\right|_{2}$.

The approximate number of floating-point operations for real flavors is

$$
\begin{array}{ll}
(4 / 3) n^{3} & \text { if } m=n, \\
(2 / 3) n^{2}(3 m-n) & \text { if } m>n, \\
(2 / 3) m^{2}(3 n-m) & \text { if } m<n .
\end{array}
$$

The number of operations for complex flavors is 4 times greater.
To solve a set of least-squares problems minimizing || $A x-b| |_{2}$ for all columns $b$ of a given matrix $B$, you can call the following:
?geqrf (this routine) to factorize $A=Q R$;
?ormqr to compute $C=Q^{T} B$ (for real matrices);
?unmqr to compute $C=Q^{H} B$ (for complex matrices);
?trsm (a BLAS routine) to solve $R X=C$.
(The columns of the computed $X$ are the least-squares solution vectors $x$.)
To compute the elements of $Q$ explicitly, call

$\underline{\text { ?.orgqr }}$	(for real matrices)
?ungqr	(for complex matrices).

## ?geqpf

Computes the $Q R$ factorization of a
general $m$ by $n$ matrix with pivoting.

```
call sgeqpf (m, n, a, lda, jpvt, tau, work, info)
call dgeqpf (m, n, a, lda, jpvt, tau, work, info)
call cgeqpf (m, n, a, lda, jpvt, tau, work, rwork, info)
call zgeqpf (m, n, a, lda, jpvt, tau, work, rwork, info)
```


## Discussion

This routine is deprecated and has been replaced by routine ?geqp3.
The routine ?geqpf forms the $Q R$ factorization of a general $m$ by $n$ matrix $A$ with column pivoting: $A P=Q R$ (see Orthogonal Factorizations on page 5-6). Here $P$ denotes an $n$ by $n$ permutation matrix.
The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

m	Integer. The number of rows in the matrix $A(m \geq 0)$.
$n$	Integer. The number of columns in $A(n \geq 0)$.
a, work	REAL for sgeqpf
	DOUBLE PRECISION for dgeqpf
	COMPLEX for cgeqpf
	DOUBLE COMPLEX for zgeqpf.
	Arrays:
	a (lda,*) contains the matrix $A$.
	The second dimension of a must be at least $\max (1, n)$. work (lwork) is a workspace array.
Ida	INTEGER. The first dimension of $a$; at least max $(1, m)$.
Iwork	Integer. The size of the work array; must be at least $\max (1,3 * n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

jpvt	INTEGER. Array, DIMENSION at least max $(1, n)$.
	On entry, if $j p v t(i)>0$, the $i$ th column of $A$ is moved
to the beginning of $A P$ before the computation, and	
	fixed in place during the computation.
	If $j p v t(i)=0$, the $i$ th column of $A$ is a free column
(that is, it may be interchanged during the computation	
rwork	with any other free column).
	REAL for cgeqpf
	DOUBLE PRECISION for zgeqpf.
	A workspace array, DIMENSION at least $\max \left(1,2 \star_{n}\right)$.

## Output Parameters

a	Overwritten by the factorization data as follows:
	If $m \geq n$, the elements below the diagonal are overwritten by the details of the unitary (orthogonal) matrix $Q$, and the upper triangle is overwritten by the corresponding elements of the upper triangular matrix $R$.
	If $m<n$, the strictly lower triangular part is overwritten by the details of the matrix $Q$, and the remaining elements are overwritten by the corresponding elements of the $m$ by $n$ upper trapezoidal matrix $R$.
tau	REAL for sgeqpf
	DOUBLE PRECISION for dgeqpf
	COMPLEX for cgeqpf
	DOUBLE COMPLEX for zgeqpf.
	Array, DIMENSION at least max $(1, \min (m, n))$.
	Contains additional information on the matrix $Q$.
jpvt	Overwritten by details of the permutation matrix $P$ in the factorization $A P=Q R$. More precisely, the columns of $A P$ are the columns of $A$ in the following order: jpvt(1), jpvt (2), ..., jpvt(n).
info	Integer.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

The computed factorization is the exact factorization of a matrix $A+E$, where $\left.\|E\|\right|_{2}=O(\varepsilon)\|A\|_{2}$.

The approximate number of floating-point operations for real flavors is

$$
\begin{array}{ll}
(4 / 3) n^{3} & \text { if } m=n, \\
(2 / 3) n^{2}(3 m-n) & \text { if } m>n, \\
(2 / 3) m^{2}(3 n-m) & \text { if } m<n .
\end{array}
$$

The number of operations for complex flavors is 4 times greater.
To solve a set of least-squares problems minimizing $||A x-b||_{2}$ for all columns $b$ of a given matrix $B$, you can call the following:
?geqp $($ this routine) to factorize $A P=Q R$;
?ormqr to compute $C=Q^{T} B$ (for real matrices);
?unmqr to compute $C=Q^{H} B$ (for complex matrices);
?trsm (a BLAS routine) to solve $R X=C$.
(The columns of the computed $X$ are the permuted least-squares solution vectors $x$; the output array jpvt specifies the permutation order.)
To compute the elements of $Q$ explicitly, call
? orgqr (for real matrices)
? ungqr (for complex matrices).

## ?geqp3

```
Computes the QR factorization of a
general m by n matrix with column
pivoting using Level 3 BLAS.
```

```
call sgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, info)
```

call sgeqp3 ( m, n, a, lda, jpvt, tau, work, lwork, info )
call dgeqp3 ( m, n, a, lda, jpvt, tau, work, lwork, info )
call dgeqp3 ( m, n, a, lda, jpvt, tau, work, lwork, info )
call cgeqp3 ( m, n, a, lda, jpvt, tau, work, lwork, rwork, info )
call cgeqp3 ( m, n, a, lda, jpvt, tau, work, lwork, rwork, info )
call zgeqp3 ( m, n, a, lda, jpvt, tau, work, lwork, rwork, info )

```
call zgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, rwork, info)
```


## Discussion

The routine forms the $Q R$ factorization of a general $m$ by $n$ matrix $A$ with column pivoting: $A P=Q R$ (see Orthogonal Factorizations on page 5-6) using Level 3 BLAS. Here $P$ denotes an $n$ by $n$ permutation matrix. Use this routine instead of ?geqpf for better performance.

The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

m	Integer. The number of rows in the matrix $A(m \geq 0)$.
$n$	INTEGER. The number of columns in $A(n \geq 0)$.
a, work	REAL for sgeqp3
	DOUBLE PRECISION for dgeqp3
	COMPLEX for cgeqp3
	DOUBLE COMPLEX for zgeqp3.
	Arrays:
	a (lda, *) contains the matrix $A$.
	The second dimension of a must be at least $\max (1, n)$. work (lwork) is a workspace array.
Ida	INTEGER. The first dimension of $a$; at least $\max (1, m)$.


lwork	INTEGER. The size of the work array; must be at least $\max (1,3 * n+1)$ for real flavors, and at least $\max (1, n+1)$ for complex flavors.
jpvt	INTEGER. Array, DIMENSION at least max(1, $n$ ) .
	On entry, if jpvt ( $i$ ) $\neq 0$, the $i$ th column of $A$ is moved to the beginning of $A P$ before the computation, and fixed in place during the computation.
	If jpvt ( $i$ ) $=0$, the $i$ th column of $A$ is a free column (that is, it may be interchanged during the computation with any other free column).
rwork	REAL for cgeqp3
	DOUBLE PRECISION for zgeqp3.
	A workspace array, DIMENSION at least max (1, $2 * n$ ).
	Used in complex flavors only.


a	Overwritten by the factorization data as follows:
	If $m \geq n$, the elements below the diagonal are overwritten by the details of the unitary (orthogonal) matrix $Q$, and the upper triangle is overwritten by the corresponding elements of the upper triangular matrix $R$.
	If $m<n$, the strictly lower triangular part is overwritten by the details of the matrix $Q$, and the remaining elements are overwritten by the corresponding elements of the $m$ by $n$ upper trapezoidal matrix $R$.
tau	REAL for sgeqp3
	DOUBLE PRECISION for dgeqp3
	COMPLEX for cgeqp 3
	DOUBLE COMPLEX for zgeqp3.
	Array, DIMENSION at least max $(1, \min (m, n))$.
	Contains scalar factors of the elementary reflectors for the matrix $Q$.

jpvt $\quad$ Overwritten by details of the permutation matrix $P$ in the factorization $A P=Q R$. More precisely, the columns of $A P$ are the columns of $A$ in the following order:
jpvt(1), jpvt(2), ..., jpvt(n).
info
INTEGER.
If info $=0$, the execution is successful.
If $\operatorname{info}=-i$, the $i$ th parameter had an illegal value.

## Application Notes

To solve a set of least-squares problems minimizing $||A x-b||_{2}$ for all columns $b$ of a given matrix $B$, you can call the following:
?geqp3 (this routine) to factorize $A P=Q R$;
?ormqr to compute $C=Q^{T} B$ (for real matrices);
?unmqr to compute $C=Q^{H} B$ (for complex matrices);
?trsm (a BLAS routine) to solve $R X=C$.
(The columns of the computed $X$ are the permuted least-squares solution vectors $x$; the output array jpvt specifies the permutation order.)
To compute the elements of $Q$ explicitly, call
? orgqr
(for real matrices)
?ungqr (for complex matrices).

## ?orgqr

Generates the real orthogonal matrix $Q$ of the $Q R$ factorization formed by ?geqre.

```
call sorgqr (m, n, k, a, lda, tau, work, lwork, info)
call dorgqr (m, n, k, a, lda, tau, work, lwork, info)
```


## Discussion

The routine generates the whole or part of $m$ by $m$ orthogonal matrix $Q$ of the $Q R$ factorization formed by the routines sgeqrf/dgeqrf (see page 5-8) or sgeqp $£ /$ dgeqp $£$ (see page $5-11$ ). Use this routine after a call to sgeqr $f /$ dgeqrf or sgeqp $f / d g e q p f$.
Usually $Q$ is determined from the $Q R$ factorization of an $m$ by $p$ matrix $A$ with $m \geq p$. To compute the whole matrix $Q$, use:

```
call ?orgqr (m, m, p, a, lda, tau, work, lwork, info)
```

To compute the leading $p$ columns of $Q$ (which form an orthonormal basis in the space spanned by the columns of $A$ ):

```
call ?orgqr (m, p, p, a, lda, tau, work, lwork, info)
```

To compute the matrix $Q^{k}$ of the $Q R$ factorization of $A$ 's leading $k$ columns:

```
call ?orgqr (m, m, k, a, lda, tau, work, lwork, info)
```

To compute the leading $k$ columns of $Q^{k}$ (which form an orthonormal basis in the space spanned by $A$ 's leading $k$ columns):

```
call ?orgqr (m, k, k, a, lda, tau, work, lwork, info)
```


## Input Parameters

$m$	INTEGER. The order of the orthogonal matrix $Q(m \geq 0)$.
$n$	
$k$	INTEGER. The number of columns of $Q$ to be computed   $(0 \leq n \leq m)$.
	INTEGER. The number of elementary reflectors whose   product defines the matrix $Q(0 \leq k \leq n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

a, tau, work	REAL for sorgqr   DOUBLE PRECISION for dorgqr   Arrays:   $a(l d a, *)$ and $\operatorname{tau}(*)$ are the arrays returned by sgeqrf / dgeqrf or sgeqpf / dgeqpf.   The second dimension of a must be at least $\max (1, n)$.   The dimension of $t a u$ must be at least $\max (1, k)$.   work (lwork) is a workspace array.
Ida	INTEGER. The first dimension of $a$; at least max $(1, m)$.
lwork	INTEGER. The size of the work array ( 1 work $\geq n$ ) See Application notes for the suggested value of lwork.

## Output Parameters

a Overwritten by $n$ leading columns of the $m$ by $m$ orthogonal matrix $Q$.
work(1)
info
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed $Q$ differs from an exactly orthogonal matrix by a matrix $E$ such that $||E||_{2}=O(\varepsilon)| | A \mid \|_{2}$ where $\varepsilon$ is the machine precision.
The total number of floating-point operations is approximately $4 \star_{m} \star_{n}{ }^{*} k-2 \star(m+n) \star k^{2}+(4 / 3) \star_{k}{ }^{3}$.
If $n=k$, the number is approximately $(2 / 3) \star n^{2} \star(3 m-n)$.
The complex counterpart of this routine is ?ungqr.

## ?ormqr

```
Multiplies a real matrix by the orthogonal matrix \(Q\) of the \(Q R\) factorization formed by
?geqrf or ? geqpf.
```

```
call sormqr (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```

call sormqr ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )
call dormqr ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

```
call dormqr (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```


## Discussion

The routine multiplies a real matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the orthogonal matrix $Q$ of the $Q R$ factorization formed by the routines sgeqrf/dgeqrf (see page 5-8) or sgeqp $f /$ dgeqpf (see page 5-11).
Depending on the parameters side and trans, the routine can form one of the matrix products $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (overwriting the result on $C$ ).

## Input Parameters

```
side CHARACTER*1. Must be either 'L' or 'R'.
 If side='L',Q or Q Q is applied to C from the left.
 If side='R',Q or Q Q is applied to C from the right.
trans CHARACTER*1.Must be either 'N' or 'T'.
 If trans='N', the routine multiplies C by Q.
 If trans='T', the routine multiplies C by Q }\mp@subsup{Q}{}{T}\mathrm{ .
 INTEGER. The number of rows in the matrix C (}m\geq0)\mathrm{ .
 INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
 INTEGER. The number of elementary reflectors whose
 product defines the matrix Q. Constraints:
 0\leqk\leqm if side='L';
 0\leqk\leqn if side='R'.
a,work,tau,c REAL for sgeqre
 DOUBLE PRECISION for dgeqrf.
 Arrays:
 a(Ida,*) and tau(*) are the arrays returned by
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
sgeqrf / dgeqrf or sgeqpf / dgeqpf.
The second dimension of a must be at least max $(1, k)$. The dimension of $t a u$ must be at least $\max (1, k)$.
$c(I d c, *)$ contains the matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work (Iwork) is a workspace array.
lda
ldc
lwork
INTEGER. The first dimension of $a$. Constraints:
lda $\geq \max (1, m)$ if side $=$ 'L';
$I d a \geq \max (1, n)$ if side $={ }^{\prime} \mathrm{R}^{\prime}$.
integer. The first dimension of $c$. Constraint: $I d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
lwork $\geq \max (1, m)$ if side $={ }^{\prime} \mathrm{R}^{\prime}$.
See Application notes for the suggested value of lwork.

## Output Parameters

Overwritten by the product $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (as specified by side and trans).
info
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this $I$ work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize (if side $=$ 'L') or lwork $=m^{\star}$ blocksize (if side $=$ 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The complex counterpart of this routine is ?unmqr.

## ?ungqr

Generates the complex unitary matrix $Q$ of the $Q R$ factorization formed by ? geqre.

```
call cungqr (m, n, k, a, lda, tau, work, lwork, info)
call zungqr (m, n, k, a, lda, tau, work, lwork, info)
```


## Discussion

The routine generates the whole or part of $m$ by $m$ unitary matrix $Q$ of the $Q R$ factorization formed by the routines cgeqrf/zgeqrf (see page $5-8$ ) or cgeqpf/zgeqpf (see page 5-11). Use this routine after a call to cgeqrf/zgeqrf or cgeqpf/zgeqpf.
Usually $Q$ is determined from the $Q R$ factorization of an $m$ by $p$ matrix $A$ with $m \geq p$. To compute the whole matrix $Q$, use:

```
call ?ungqr (m, m, p, a, lda, tau, work, lwork, info)
```

To compute the leading $p$ columns of $Q$ (which form an orthonormal basis in the space spanned by the columns of $A$ ):

```
call ?ungqr (m, p, p, a, lda, tau, work, lwork, info)
```

To compute the matrix $Q^{k}$ of the $Q R$ factorization of $A$ 's leading $k$ columns:

```
call ?ungqr (m, m, k, a, lda, tau, work, lwork, info)
```

To compute the leading $k$ columns of $Q^{k}$ (which form an orthonormal basis in the space spanned by $A$ 's leading $k$ columns):

```
call ?ungqr (m, k, k, a, lda, tau, work, lwork, info)
```


## Input Parameters

$m$	INTEGER. The order of the unitary matrix $Q(m \geq 0)$.
$n$	INTEGER. The number of columns of $Q$ to be computed
$(0 \leq n \leq m)$.	

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

a, tau, work	COMPLEX for cungqr   DOUBLE COMPLEX for zungqr   Arrays:   $a(l d a, *)$ and $\operatorname{tau}(*)$ are the arrays returned by cgeqrf/zgeqrf or cgeqpf/zgeqpf.   The second dimension of a must be at least max $(1, n)$. The dimension of tau must be at least $\max (1, k)$. work (lwork) is a workspace array.
Ida	Integer. The first dimension of $a$; at least max $(1, m)$.
lwork	INTEGER. The size of the work array (lwork $\geq n$ ) See Application notes for the suggested value of lwork.

## Output Parameters

a
work(1)
info

Overwritten by $n$ leading columns of the $m$ by $m$ unitary matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed $Q$ differs from an exactly unitary matrix by a matrix $E$ such that $||E||_{2}=O(\varepsilon)| | A| |_{2}$ where $\varepsilon$ is the machine precision.
The total number of floating-point operations is approximately $16 \star_{m}{ }^{\star} n^{\star} k-8 *(m+n){ }^{*} k^{2}+(16 / 3) \star_{k}{ }^{3}$.
If $n=k$, the number is approximately $(8 / 3) \star n^{2} \star(3 m-n)$.
The real counterpart of this routine is ?orgqr.

## ?unmqr

Multiplies a complex matrix by the unitary matrix $Q$ of the $Q R$ factorization formed by ?geqrf.

```
call cunmqr (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
call zunmqr (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```


## Discussion

The routine multiplies a rectangular complex matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the unitary matrix $Q$ of the $Q R$ factorization formed by the routines cgeqrf/zgeqrf (see page 5-8) or cgeqpf/zgeqpf (see page 5-11).
Depending on the parameters side and trans, the routine can form one of the matrix products $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (overwriting the result on $C$ ).

## Input Parameters

```
side CHARACTER*1. Must be either 'L' or 'R'.
 If side='L',Q or Q Q is applied to C from the left.
 If side ='R',Q or Q Q is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'C'.
 If trans='N', the routine multiplies C by Q.
 If trans='C', the routine multiplies C by Q 缶.
m INTEGER. The number of rows in the matrix C (}m\geq0)\mathrm{ .
n INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
k INTEGER. The number of elementary reflectors whose
 product defines the matrix Q. Constraints:
 0\leqk\leqm if side='L';
 0\leqk\leqn if side='R'.
a,work,tau,c COMPLEX for cgeqrf
 DOUBLE COMPLEX for zgeqrf.
 Arrays:
 a(Ida,*) and tau(*) are the arrays returned by
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
cgeqrf/zgeqrf or cgeqpf/zgeqpf.
The second dimension of a must be at least max $(1, k)$. The dimension of $t a u$ must be at least $\max (1, k)$.
$c(I d c, *)$ contains the matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work (Iwork) is a workspace array.
Ida INTEGER. The first dimension of a. Constraints:
$I d a \geq \max (1, m)$ if side $=$ 'L';
$I d a \geq \max (1, n)$ if side $={ }^{\prime} \mathrm{R}^{\prime}$.
Idc INTEGER. The first dimension of c. Constraint: $l d c \geq \max (1, m)$.

Iwork INTEGER. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
lwork $\geq \max (1, m)$ if side $=$ ' $^{\prime}$.
See Application notes for the suggested value of 1 work.

## Output Parameters

Overwritten by the product $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (as specified by side and trans).
info
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize (if side $=$ 'L') or lwork $=m^{\star}$ blocksize (if side $=$ 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The real counterpart of this routine is ?ormqr.

## ?gelqf

Computes the LQ factorization of a general $m$ by $n$ matrix.

```
call sgelqf (m, n, a, lda, tau, work, lwork, info)
call dgelqf (m, n, a, lda, tau, work, lwork, info)
call cgelqf (m, n, a, lda, tau, work, lwork, info)
call zgelqf (m, n, a, lda, tau, work, lwork, info)
```


## Discussion

The routine forms the $L Q$ factorization of a general $m$ by $n$ matrix $A$ (see Orthogonal Factorizations on page 5-6). No pivoting is performed.
The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

m	INTEGER. The number of rows in the matrix $A(m \geq 0)$.
$n$	INTEGER. The number of columns in $A(n \geq 0)$.
a, work	REAL for sgelqf
	DOUBLE PRECISION for dgelqf
	COMPLEX for cgelqf
	DOUBLE COMPLEX for zgelqf.
	Arrays:
	a (Ida,*) contains the matrix $A$.
	The second dimension of a must be at least max $(1, n)$.
	work (lwork) is a workspace array.
Ida	integer. The first dimension of $a$; at least max ( $1, m$ )
Iwork	INTEGER. The size of the work array; at least max $(1, m)$.
	See Application notes for the suggested value of

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Output Parameters

a	Overwritten by the factorization data as follows:
	If $m \leq n$, the elements above the diagonal are overwritten by the details of the unitary (orthogonal) matrix $Q$, and the lower triangle is overwritten by the corresponding elements of the lower triangular matrix $L$.
	If $m>n$, the strictly upper triangular part is overwritten by the details of the matrix $Q$, and the remaining elements are overwritten by the corresponding elements of the $m$ by $n$ lower trapezoidal matrix $L$.
tau	REAL for sgelqf
	DOUBLE PRECISION for dgelqf
	COMPLEX for cgelqf
	DOUBLE COMPLEX for zgelqf.
	Array, DIMENSION at least max $(1, \min (m, n))$.
	Contains additional information on the matrix $Q$.
work(1)	If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=m *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed factorization is the exact factorization of a matrix $A+E$, where $||E||_{2}=O(\varepsilon)| | A| |_{2}$.

The approximate number of floating-point operations for real flavors is

$$
\begin{array}{ll}
(4 / 3) n^{3} & \text { if } m=n, \\
(2 / 3) n^{2}(3 m-n) & \text { if } m>n, \\
(2 / 3) m^{2}(3 n-m) & \text { if } m<n .
\end{array}
$$

The number of operations for complex flavors is 4 times greater.
To find the minimum-norm solution of an underdetermined least-squares problem minimizing $||A x-b||_{2}$ for all columns $b$ of a given matrix $B$, you can call the following:
? gelqf (this routine) to factorize $A=L Q$;
? trsm (a BLAS routine) to solve $L Y=B$ for $Y$;
?ormlq to compute $X=\left(Q_{1}\right)^{T} Y$ (for real matrices);
?unmlq to compute $X=\left(Q_{1}\right)^{H} Y$ (for complex matrices).
(The columns of the computed $X$ are the minimum-norm solution vectors $x$. Here $A$ is an $m$ by $n$ matrix with $m<n ; Q_{1}$ denotes the first $m$ columns of $Q$ ).
To compute the elements of $Q$ explicitly, call
?orglq (for real matrices)
?unglq (for complex matrices).

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?orglq

Generates the real orthogonal matrix $Q$ of the $L Q$ factorization formed by ?gelqf.

```
call sorglq (m, n, k, a, lda, tau, work, lwork, info)
call dorglq (m, n, k, a, lda, tau, work, lwork, info)
```


## Discussion

The routine generates the whole or part of $n$ by $n$ orthogonal matrix $Q$ of the $L Q$ factorization formed by the routines sgelqf/dgelqf (see page 5-25). Use this routine after a call to sgelqf/dgelqf.

Usually $Q$ is determined from the $L Q$ factorization of an $p$ by $n$ matrix $A$ with $n \geq p$. To compute the whole matrix $Q$, use:

```
call ?orglq (n, n, p, a, lda, tau, work, lwork, info)
```

To compute the leading $p$ rows of $Q$ (which form an orthonormal basis in the space spanned by the rows of $A$ ):

```
call ?orglq (p, n, p, a, lda, tau, work, lwork, info)
```

To compute the matrix $Q^{k}$ of the $L Q$ factorization of $A$ 's leading $k$ rows:

```
call ?orglq (n, n, k, a, lda, tau, work, lwork, info)
```

To compute the leading $k$ rows of $Q^{k}$ (which form an orthonormal basis in the space spanned by $A$ 's leading $k$ rows):

```
call ?orgqr (k, n, k, a, lda, tau, work, lwork, info)
```


## Input Parameters

INTEGER. The number of rows of $Q$ to be computed ( $0 \leq m \leq n$ ).
INTEGER. The order of the orthogonal matrix $Q(n \geq m)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q(0 \leq k \leq m)$.

```
a, tau, work REAL for sorglq
DOUBLE PRECISION for dorglq
Arrays:
a(Ida,*) and tau(*) are the arrays returned by
sgelqf/dgelqf.
The second dimension of a must be at least max(1,n).
The dimension of tau must be at least max(1,k).
work(Iwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1,m).
Iwork INTEGER. The size of the work array; at least max (1,m).
See Application notes for the suggested value of lwork.
```


## Output Parameters

info

Overwritten by $m$ leading rows of the $n$ by $n$ orthogonal matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=m \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed $Q$ differs from an exactly orthogonal matrix by a matrix $E$ such that $\left||E|_{2}=O(\varepsilon)\|A\|_{2}\right.$ where $\varepsilon$ is the machine precision.
The total number of floating-point operations is approximately $4^{\star} m^{\star} n^{\star} k-2 \star(m+n)^{\star} k^{2}+(4 / 3) \star k^{3}$.
If $m=k$, the number is approximately $(2 / 3) \star m^{2} *(3 n-m)$.
The complex counterpart of this routine is ?unglq.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?ormlq

Multiplies a real matrix by the orthogonal matrix $Q$ of the LQ factorization formed by ?gelqf.

```
call sormlq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
call dormlq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```


## Discussion

The routine multiplies a real $m$-by- $n$ matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the orthogonal matrix $Q$ of the $L Q$ factorization formed by the routine sgelqf/dgelqf (see page $5-25$ ).

Depending on the parameters side and trans, the routine can form one of the matrix products $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (overwriting the result on $C$ ).

Input Parameters

side	CHARACTER*1. Must be either 'L' or 'R'.
	If $s$ ide $=$ 'L',$Q$ or $Q^{T}$ is applied to $C$ from the left.
If $s$ ide $=' R ', Q$ or $Q^{T}$ is applied to $C$ from the right.	

trans CHARACTER*1. Must be either 'n' or 't'. If trans $=$ ' N ', the routine multiplies $C$ by $Q$. If trans = ' T ', the routine multiplies $C$ by $Q^{T}$.
integer. The number of rows in the matrix $C$ ( $m \geq 0$ ).
INTEGER. The number of columns in $C(n \geq 0)$.
integer. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
$0 \leq k \leq m$ if side =' L'; $0 \leq_{k} \leq_{n}$ if side='R'.
a, work, tau, c REAL for sormlq
DOUBLE PRECISION for dormlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf.

The second dimension of a must be:
at least $\max (1, m)$ if $s i d e=' \mathrm{~L}$ ';
at least $\max (1, n)$ if side $={ }^{\prime} \mathrm{R}^{\prime}$.
The dimension of $\operatorname{tau}$ must be at least $\max (1, k)$.
$c(I d c, *)$ contains the matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work (lwork) is a workspace array.

Ida
Idc
I work

INTEGER. The first dimension of $a ; 1 d a \geq \max (1, k)$.
INTEGER. The first dimension of $c ; l d c \geq \max (1, m)$.
Integer. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side ='L';
lwork $\geq \max (1, m)$ if side $=$ 'R'.
See Application notes for the suggested value of 1 work.

## Output Parameters

Overwritten by the product $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (as specified by side and trans).
If info $=0$, on exit work ( 1 ) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize (if side $=$ 'L') or 1 work $=m^{\star}$ blocksize (if side $=$ 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The complex counterpart of this routine is ?unmlq.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?unglq

Generates the complex unitary matrix $Q$ of the LQ factorization formed by ?gelqf.

```
call cunglq (m, n, k, a, lda, tau, work, lwork, info)
call zunglq (m, n, k, a, lda, tau, work, lwork, info)
```


## Discussion

The routine generates the whole or part of $n$ by $n$ unitary matrix $Q$ of the $L Q$ factorization formed by the routines cgelqf/zgelqf (see page 5-25). Use this routine after a call to cgelqf/zgelqf.
Usually $Q$ is determined from the $L Q$ factorization of an $p$ by $n$ matrix $A$ with $n \geq p$. To compute the whole matrix $Q$, use:

```
call ?unglq (n, n, p, a, lda, tau, work, lwork, info)
```

To compute the leading $p$ rows of $Q$ (which form an orthonormal basis in the space spanned by the rows of $A$ ):

```
call ?unglq (p, n, p, a, lda, tau, work, lwork, info)
```

To compute the matrix $Q^{k}$ of the $L Q$ factorization of $A$ 's leading $k$ rows:

```
call ?unglq (}n,n,k, a, lda, tau, work, lwork, info
```

To compute the leading $k$ rows of $Q^{k}$ (which form an orthonormal basis in the space spanned by $A$ 's leading $k$ rows):

```
call ?ungqr (k, n, k, a, lda, tau, work, lwork, info)
```


## Input Parameters

INTEGER. The number of rows of $Q$ to be computed ( $0 \leq m \leq n$ ).
INTEGER. The order of the unitary matrix $Q(n \geq m)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q(0 \leq k \leq m)$.

```
a, tau, work COMPLEX for cunglq
DOUBLE COMPLEX for zunglq
```


## Arrays:

$a(l d a, *)$ and $\operatorname{tau}(*)$ are the arrays returned by sgelqf/dgelqf.
The second dimension of a must be at least $\max (1, n)$.
The dimension of $t a u$ must be at least $\max (1, k)$.
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of $a$; at least $\max (1, m)$.
lwork INTEGER. The size of the work array; at least $\max (1, m)$. See Application notes for the suggested value of lwork.

## Output Parameters

info

Overwritten by $m$ leading rows of the $n$ by $n$ unitary matrix $Q$.

If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 wor $k=m \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed $Q$ differs from an exactly unitary matrix by a matrix $E$ such that $||E||_{2}=O(\varepsilon)\|A\|_{2}$ where $\varepsilon$ is the machine precision.
The total number of floating-point operations is approximately $16 \star_{m} \star_{n}{ }^{*} k-8 \star(m+n){ }_{k}^{2}+(16 / 3){ }^{\star} k^{3}$.
If $m=k$, the number is approximately $(8 / 3){ }^{\star} m^{2} \star(3 n-m)$.
The real counterpart of this routine is ?orglq.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?unmlq

Multiplies a complex matrix by the unitary matrix $Q$ of the LQ factorization formed by ?gelqf.

```
call cunmlq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
call zunmlq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```


## Discussion

The routine multiplies a real $m$-by- $n$ matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the unitary matrix $Q$ of the $L Q$ factorization formed by the routine cgelqf/zgelqf (see page 5-25).
Depending on the parameters side and trans, the routine can form one of the matrix products $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (overwriting the result on $C$ ).

Input Parameters

side	CHARACTER*1. Must be either 'L' or 'R'.
	If side $=$ 'L', Q or $Q^{H}$ is applied to $C$ from the left.
	If side = 'R', $Q$ or $Q^{H}$ is applied to $C$ from the right.
trans	CHARACTER*1. Must be either ' N ' or ' C '.
	If trans $=$ ' N ', the routine multiplies $C$ by $Q$.
	If trans $=$ ' ${ }^{\prime}$ ', the routine multiplies $C$ by $Q^{H}$.
m	INTEGER. The number of rows in the matrix $C$ ( $m \geq 0)$.
$n$	Integer. The number of columns in $C(n \geq 0)$.
k	INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
	$0 \leq k \leq m$ if side = 'L';
	$0 \leq k \leq n$ if side $=$ 'R'.
a, work, tau, c	COMPLEX for cunmlq
	DOUBLE COMPLEX for zunmlq.
	Arrays:
	$a(l d a, *)$ and $t a u(*)$ are arrays returned by ?gelqf.

The second dimension of a must be:
at least $\max (1, m)$ if $s i d e=' \mathrm{~L}$ ';
at least $\max (1, n)$ if side $={ }^{\prime} \mathrm{R}^{\prime}$.
The dimension of $\operatorname{tau}$ must be at least $\max (1, k)$.
$c(I d c, *)$ contains the matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work (lwork) is a workspace array.

Ida
Idc
I work

INTEGER. The first dimension of $a ; 1 d a \geq \max (1, k)$.
INTEGER. The first dimension of $c ; l d c \geq \max (1, m)$.
Integer. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side ='L';
lwork $\geq \max (1, m)$ if side $=$ 'R'.
See Application notes for the suggested value of 1 work.

## Output Parameters

Overwritten by the product $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (as specified by side and trans).
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize (if side $=$ 'L') or 1 work $=m^{\star}$ blocksize (if side $=$ 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The real counterpart of this routine is ?ormlq.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?geqlf

Computes the QL factorization of a general $m$ by $n$ matrix.

```
call sgeqlf (m, n, a, lda, tau, work, lwork, info)
call dgeqlf (m, n, a, lda, tau, work, lwork, info)
call cgeqlf (m, n, a, lda, tau, work, lwork, info)
call zgeqlf (m, n, a, lda, tau, work, lwork, info)
```


## Discussion

The routine forms the $Q L$ factorization of a general $m-b y-n$ matrix $A$. No pivoting is performed.
The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

m	INTEGER. The number of rows in the matrix $A(m \geq 0)$.
$n$	INTEGER. The number of columns in $A(n \geq 0)$.
a, work	REAL for sgeqlf
	DOUBLE PRECISION for dgeqlf
	COMPLEX for cgeqlf
	DOUBLE COMPLEX for zgeqlf.
	Arrays:
	$a(l d a, *)$ contains the matrix $A$.
	The second dimension of a must be at least max $(1, n)$. work (lwork) is a workspace array.
Ida	INTEGER. The first dimension of $a$; at least max $(1, m)$.
lwork	INTEGER. The size of the work array; at least max $(1, n)$.
	See Application notes for the suggested value of 1 wor

## Output Parameters

a

Overwritten on exit by the factorization data as follows:
if $m \geq n$, the lower triangle of the subarray $a(m-n+1: m, 1: n)$ contains the $n-b y-n$ lower triangular matrix $L$;
if $m \leq n$, the elements on and below the ( $n-m$ )th superdiagonal contain the $m$-by- $n$ lower trapezoidal matrix $L$;
in both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors.
REAL for sgeqle DOUBLE PRECISION for dgeqlf COMPLEX for cgeqlf DOUBLE COMPLEX for zgeqle.
Array, DIMENSION at least $\max (1, \min (m, n))$.
Contains scalar factors of the elementary reflectors for the matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance.

INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=_{n} \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
Related routines include:
?orgql to generate matrix Q (for real matrices);
?ungql to generate matrix Q (for complex matrices);
?ormql to apply matrix Q (for real matrices);
?unmql to apply matrix $Q$ (for complex matrices).

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?orgql

Generates the real matrix $Q$ of the $Q L$ factorization formed by ?geqle.

```
call sorgql (m, n, k, a, lda, tau, work, lwork, info)
call dorgql (m, n, k, a, lda, tau, work, lwork, info)
```


## Discussion

The routine generates an $m-$ by- $n$ real matrix $Q$ with orthonormal columns, which is defined as the last $n$ columns of a product of $k$ elementary reflectors $H_{\mathrm{i}}$ of order $m: Q=H_{k} \cdots H_{2} H_{1}$ as returned by the routines sgeqlfldgeqlf. Use this routine after a call to sgeqlf/dgeqlf.

## Input Parameters

$m \quad$ integer. The number of rows of the matrix $Q$ ( $m \geq 0$ ).

Integer. The number of columns of the matrix $Q$ ( $m \geq n \geq 0$ ).
$k \quad$ Integer. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
a, tau, work REAL for sorgql
DOUBLE PRECISION for dorgql
Arrays: a(lda,*), tau(*), work(lwork).
On entry, the $(n-k+i)$ th column of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=$ $1,2, \ldots, k$, as returned by sgeqlf/dgeqlf in the last $k$ columns of its array argument $a$; tau(i) must contain the scalar factor of the elementary reflector $H_{\mathrm{i}}$, as returned by sgeqlf/dgeqlf;
The second dimension of a must be at least $\max (1, n)$. The dimension of $t a u$ must be at least $\max (1, k)$.
work (Iwork) is a workspace array.
lda
lwork

INTEGER. The first dimension of $a$; at least $\max (1, m)$.
Integer. The size of the work array; at least $\max (1, n)$. See Application notes for the suggested value of lwork.

## Output Parameters

a $\quad$ Overwritten by the $m$-by- $n$ matrix $Q$.
work(1)
info

If $\operatorname{info}=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.

INTEGER.
If $\operatorname{info}=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The complex counterpart of this routine is ?ungql.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?ungql

Generates the complex matrix $Q$ of the $Q L$ factorization formed by ?geqle.

```
call cungql (m, n, k, a, lda, tau, work, lwork, info)
call zungql (m, n, k, a, lda, tau, work, lwork, info)
```


## Discussion

The routine generates an $m$-by- $n$ complex matrix $Q$ with orthonormal columns, which is defined as the last $n$ columns of a product of $k$ elementary reflectors $H_{\mathrm{i}}$ of order $m: Q=H_{k} \cdots H_{2} H_{1}$ as returned by the routines cgeqlflzgeqlf. Use this routine after a call to cgeqlf/zgeqlf.

## Input Parameters

m	integer. The number of rows of the matrix $Q$ ( $m \geq 0$ ).
$n$	INTEGER. The number of columns of the matrix $Q$ ( $m \geq n \geq 0$ ).
k	INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
a, tau, work	COMPLEX for cungql   DOUBLE COMPLEX for zungq1   Arrays: a(lda,*), tau(*), work(lwork).
	On entry, the $(n-k+i)$ th column of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=$ $1,2, \ldots, k$, as returned by cgeqlf/zgeqlf in the last $k$ columns of its array argument $a$; $\operatorname{tau}(\mathrm{i})$ must contain the scalar factor of the elementary reflector $H_{\mathrm{i}}$, as returned by cgeql $\mathrm{f} / \mathrm{zgeql} \mathrm{f}$;
	The second dimension of a must be at least $\max (1, n)$. The dimension of $t a u$ must be at least $\max (1, k)$. work (Iwork) is a workspace array.

lda
lwork

INTEGER. The first dimension of $a$; at least $\max (1, m)$.
integer. The size of the work array; at least $\max (1, n)$. See Application notes for the suggested value of lwork.

## Output Parameters

a $\quad$ Overwritten by the $m$-by- $n$ matrix $Q$.
work(1)
info
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs. INTEGER.
If info $=0$, the execution is successful. If $\operatorname{info}=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The real counterpart of this routine is ?orgql.

## ?ormql

Multiplies a real matrix by the orthogonal matrix $Q$ of the $Q L$ factorization formed by ?geqle.

```
call sormql (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
call dormql (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```


## Discussion

This routine multiplies a real $m$-by- $n$ matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the orthogonal matrix $Q$ of the $Q L$ factorization formed by the routine sgeqlfldgeqle.
Depending on the parameters side and trans, the routine ?ormql can form one of the matrix products $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (overwriting the result over $C$ ).

## Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'. If side $=$ 'L', $Q$ or $Q^{T}$ is applied to $C$ from the left. If $s i d e=$ 'R', $Q$ or $Q^{T}$ is applied to $C$ from the right.
trans CHARACTER*1. Must be either 'N' or 'T'. If trans $=$ ' N ', the routine multiplies $C$ by $Q$. If trans =' $T$ ', the routine multiplies $C$ by $Q^{T}$.
Integer. The number of rows in the matrix $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
$0 \leq k \leq m$ if side = 'L';
$0 \leq k \leq n$ if side ='R'.

```
a,tau,c,work REAL for sormql
DOUBLE PRECISION for dormql.
Arrays: a(lda,*), tau(*), c(ldc,*),
work(lwork)
On entry, the \(i\) th column of a must contain the vector which defines the elementary reflector \(H_{\mathrm{i}}\), for \(\mathrm{i}=\) \(1,2, \ldots, k\), as returned by sgeqlf/dgeqlf in the last \(k\) columns of its array argument \(a\). The second dimension of a must be at least \(\max (1, k)\). \(\operatorname{tau}(\mathrm{i})\) must contain the scalar factor of the elementary reflector \(H_{\mathrm{i}}\), as returned by sgeqlf/dgeqle.
The dimension of tau must be at least \(\max (1, k)\).
\(c(I d c, *)\) contains the \(m\)-by-n matrix \(C\).
The second dimension of \(c\) must be at least \(\max (1, n)\)
work (lwork) is a workspace array.
INTEGER. The first dimension of \(a\);
```

```
if side='L', lda }\geq max(1,m)
```

if side='L', lda }\geq max(1,m)
if side='R', lda \geq max(1,n).
$I d c \quad$ Integer. The first dimension of $c ; ~ I d c \geq \max (1, m)$.
lwork Integer. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
1 work $\geq \max (1, m)$ if side $=$ 'R $^{\prime}$.

```

See Application notes for the suggested value of 1 work.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline c & Overwritten by the product \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (as specified by side and trans). \\
\hline work(1) & If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize (if side \(=\) 'L') or lwork \(=m^{\star}\) blocksize (if side \(=\) 'R') where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The complex counterpart of this routine is ?unmql.

\section*{?unmql}

Multiplies a complex matrix by the unitary matrix \(Q\) of the QL factorization formed by ?geqlf.
```

call cunmql ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )
call zunmql ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

```

\section*{Discussion}

The routine multiplies a complex \(m\)-by- \(n\) matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) of the \(Q L\) factorization formed by the routine cgeqlfl_zgeqle.
Depending on the parameters side and trans, the routine ?unmql can form one of the matrix products \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (overwriting the result over \(C\)).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline side & CHARACTER*1. Must be either 'L' or 'R'. \\
\hline & \begin{tabular}{l}
If side ='L', \(Q\) or \(Q^{H}\) is applied to \(C\) from the left. \\
If side =' R', \(Q\) or \(Q^{H}\) is applied to \(C\) from the right.
\end{tabular} \\
\hline trans & \begin{tabular}{l}
CHARACTER*1. Must be either ' N ' or ' C '. \\
If trans \(=\) ' \(N\) ', the routine multiplies \(C\) by \(Q\). \\
If trans \(=' \mathrm{C}\), the routine multiplies \(C\) by \(Q^{H}\).
\end{tabular} \\
\hline m & Integer. The number of rows in the matrix \(C\) (\(m \geq 0\)). \\
\hline n & Integer. The number of columns in \(C\) (\(n \geq 0)\). \\
\hline k & Integer. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
\[
0 \leq k \leq m \text { if side }=\text { ' L'; }
\]
\[
0 \leq k \leq n \text { if side ='R'. }
\] \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{9}{*}{a,tau, c, work} & COMPLEX for cunmql \\
\hline & DOUBLE COMPLEX for zunmql. \\
\hline & \[
\begin{aligned}
& \text { Arrays: a(lda,*), tau(*), c(Idc,*), } \\
& \text { work(lwork). }
\end{aligned}
\] \\
\hline & On entry, the \(i\) th column of a must contain the vector which defines the elementary reflector \(H_{\mathrm{i}}\), for \(\mathrm{i}=\) \(1,2, \ldots, k\), as returned by cgeqlf/zgeqlf in the last \(k\) columns of its array argument \(a\). \\
\hline & The second dimension of a must be at least max \((1, k)\). \\
\hline & tau(i) must contain the scalar factor of the elementary reflector \(H_{\mathrm{i}}\), as returned by cgeqlı/zgeqlf. \\
\hline & The dimension of tau must be at least max (1,k). \\
\hline & \(c(I d c, *)\) contains the \(m\)-by- \(n\) matrix \(C\). \\
\hline & work (lwork) is a workspace array. \\
\hline \multirow[t]{2}{*}{lda} & Integer. The first dimension of \(a\); \\
\hline & \begin{tabular}{l}
if side \(=\) 'L', Ida \(\geq \max (1, m)\); \\
if side \(=\) 'R', \(I d a \geq \max (1, n)\).
\end{tabular} \\
\hline \(1 d c\) & INTEGER. The first dimension of \(c ; 1 d c \geq \max (1, m)\). \\
\hline \multirow[t]{4}{*}{lwork} & Integer. The size of the work array. Constraints: \\
\hline & lwork \(\geq \max (1, n)\) if side \(=\) 'L'; \\
\hline & lwork \(\geq \max (1, m)\) if side \(=\) 'R'. \\
\hline & See Application notes for the suggested value of 1 work. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline c & Overwritten by the product \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (as specified by side and trans). \\
\hline work (1) & If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & Integer. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize (if side \(=\) 'L') or lwork \(=m^{\star}\) blocksize (if side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The real counterpart of this routine is ?ormql.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?gerqf}

Computes the RQ factorization of a general \(m\) by \(n\) matrix.
```

call sgerqf ( m, n, a, lda, tau, work, lwork, info )
call dgerqf ( m, n, a, lda, tau, work, lwork, info )
call cgerqf ( m, n, a, lda, tau, work, lwork, info )
call zgerqf ( m, n, a, lda, tau, work, lwork, info )

```

\section*{Discussion}

The routine forms the \(R Q\) factorization of a general \(m\)-by- \(n\) matrix \(A\). No pivoting is performed.
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & Integer. The number of rows in the matrix \(A(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns in \(A(n \geq 0)\). \\
\hline \multirow[t]{7}{*}{a, work} & REAL for sgerqf \\
\hline & DOUBLE PRECISION for dgerqf \\
\hline & COMPLEX for cgerqf \\
\hline & DOUBLE COMPLEX for zgerqf. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) contains the \(m\)-by-n matrix \(A\). \\
\hline & The second dimension of a must be at least \(\max (1, n)\). work (lwork) is a workspace array. \\
\hline Ida & INTEGER. The first dimension of \(a\); at least max \((1, m)\). \\
\hline \multirow[t]{3}{*}{lwork} & INTEGER. The size of the work array; \\
\hline & lwork \(\geq \max (1, m)\). \\
\hline & See Application notes for the suggested value of Iwork. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & \begin{tabular}{l}
Overwritten on exit by the factorization data as follows: if \(m \leq n\), the upper triangle of the subarray \(a(1: m, n-m+1: n)\) contains the \(m\)-by- \(m\) upper triangular matrix \(R\); \\
if \(m \geq n\), the elements on and above the (\(m-n\))th subdiagonal contain the \(m\)-by- \(n\) upper trapezoidal matrix \(R\); \\
in both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of \(\min (m, n)\) elementary reflectors.
\end{tabular} \\
\hline \multirow[t]{5}{*}{tau} & REAL for sgerqf \\
\hline & DOUBLE PRECISION for dgerqf \\
\hline & COMPLEX for cgerqf \\
\hline & DOUBLE COMPLEX for zgerqf. \\
\hline & Array, DIMENSION at least \(\max (1, \min (m, n))\). Contains scalar factors of the elementary reflectors for the matrix \(Q\). \\
\hline work(1) & If info \(=0\), on exit work (1) contains the minimum value of \(l\) work required for optimum performance. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using 1 work \(=m^{*}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs. Related routines include:
?orgrq to generate matrix Q (for real matrices);
?ungrq to generate matrix Q (for complex matrices);
?ormrq to apply matrix Q (for real matrices);
? unmrq to apply matrix Q (for complex matrices).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?orgrq}

Generates the real matrix \(Q\) of the \(R Q\) factorization formed by ?gerqf.
```

call sorgrq ( m, n, k, a, lda, tau, work, lwork, info )
call dorgrq ( m, n, k, a, lda, tau, work, lwork, info )

```

\section*{Discussion}

The routine generates an \(m\)-by- \(n\) real matrix \(Q\) with orthonormal rows, which is defined as the last \(m\) rows of a product of \(k\) elementary reflectors \(H_{\mathrm{i}}\) of order \(n: Q=H_{1} H_{2} \cdots H_{k}\) as returned by the routines sgerqf/dgerqf. Use this routine after a call to sgerqf/dgerqf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & Integer. The number of rows of the matrix \(Q\) (\(m \geq 0\)). \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(Q\) (\(n \geq m\)). \\
\hline k & INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(m \geq k \geq 0)\). \\
\hline a, tau, work & \begin{tabular}{l}
REAL for sorgrq \\
DOUBLE PRECISION for dorgrq \\
Arrays: a(lda,*), tau(*), work(lwork).
\end{tabular} \\
\hline & On entry, the \((m-k+i)\) th row of a must contain the vector which defines the elementary reflector \(H_{\mathrm{i}}\), for \(\mathrm{i}=\) \(1,2, \ldots, k\), as returned by sgerqf/dgerqf in the last \(k\) rows of its array argument \(a\); \(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(H_{\mathrm{i}}\), as returned by sgerqf/dgerqf; \\
\hline & The second dimension of a must be at least \(\max (1, n)\). The dimension of \(t a u\) must be at least \(\max (1, k)\). work (1 work) is a workspace array. \\
\hline
\end{tabular}
lda
lwork

INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).
integer. The size of the work array; at least \(\max (1, m)\). See Application notes for the suggested value of lwork.

\section*{Output Parameters}
a \(\quad\) Overwritten by the \(m\)-by- \(n\) matrix \(Q\).
work(1)
info

If \(\operatorname{info}=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If \(\operatorname{info}=0\), the execution is successful. If \(\operatorname{infO}=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=m *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The complex counterpart of this routine is ?ungrq.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?ungrq}

Generates the complex matrix \(Q\) of the \(R Q\) factorization formed by ?gerqf.
```

call cungrq ( m, n, k, a, lda, tau, work, lwork, info )
call zungrq ( m, n, k, a, lda, tau, work, lwork, info )

```

\section*{Discussion}

The routine generates an \(m\)-by- \(n\) complex matrix \(Q\) with orthonormal rows, which is defined as the last \(m\) rows of a product of \(k\) elementary reflectors \(H_{\mathrm{i}}\) of order \(n: Q=H_{1}{ }^{H} H_{2}{ }^{H} \cdots H_{k}{ }^{H}\) as returned by the routines sgerqfldgerqf. Use this routine after a call to sgerqf/dgerqf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows of the matrix \(Q\) (\(m \geq 0\)). \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(Q\) (\(n \geq m\)). \\
\hline k & INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(m \geq k \geq 0)\). \\
\hline \multirow[t]{6}{*}{a, tau, work} & REAL for cungrq \\
\hline & DOUBLE PRECISION for zungrq \\
\hline & Arrays: a(lda,*), tau(*), work(lwork). \\
\hline & On entry, the \((m-k+i)\) th row of a must contain the vector which defines the elementary reflector \(H_{\mathrm{i}}\), for \(\mathrm{i}=\) \(1,2, \ldots, k\), as returned by sgerqf/dgerqf in the last \(k\) rows of its array argument \(a\); tau(i) must contain the scalar factor of the elementary reflector \(H_{\mathrm{i}}\), as returned by sgerqf/dgerqf; \\
\hline & The second dimension of a must be at least \(\max (1, n)\). The dimension of tau must be at least \(\max (1, k)\). \\
\hline & work (lwork) is a workspace array. \\
\hline
\end{tabular}
lda
lwork

INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).
Integer. The size of the work array; at least \(\max (1, m)\). See Application notes for the suggested value of lwork.

\section*{Output Parameters}
a \(\quad\) Overwritten by the \(m\)-by- \(n\) matrix \(Q\).
work(1)
info

If \(\operatorname{info}=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.

INTEGER.
If \(\operatorname{info}=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=m *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The real counterpart of this routine is ?orgrq.

\section*{?ormrq}

Multiplies a real matrix by the orthogonal matrix \(Q\) of the \(R Q\) factorization formed by ?gerqf.
```

call sormrq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )
call dormrq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

```

\section*{Discussion}

The routine multiplies a real \(m\)-by- \(n\) matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the real orthogonal matrix defined as a product of \(k\) elementary reflectors \(H_{\mathrm{i}}\) : \(Q=H_{1} H_{2} \cdots H_{k}\) as returned by the \(R Q\) factorization routine sgerqf/dgerqf.
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (overwriting the result over \(C\)).

Input Parameters
side CHARACTER*1. Must be either 'L' or 'R'. If side \(=\) 'L', \(Q\) or \(Q^{T}\) is applied to \(C\) from the left. If side ='R', \(Q\) or \(Q^{T}\) is applied to \(C\) from the right.
trans CHARACTER*1. Must be either 'N' or 'T'. If trans \(=\) ' N ', the routine multiplies \(C\) by \(Q\). If trans =' \(T\) ', the routine multiplies \(C\) by \(Q^{T}\).
Integer. The number of rows in the matrix \(C(m \geq 0)\).
INTEGER. The number of columns in \(C(n \geq 0)\).
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
\(0 \leq k \leq m\), if side \(=\) 'L';
\(0 \leq k \leq n\), if side \(=\) 'R'.
```

a,tau,c,work REAL for sormrq
DOUBLE PRECISION for dormrq.
Arrays: a(lda,*), tau(*), c(ldc,*),
work(lwork)
On entry, the $i$ th row of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by sgerqf/dgerqf in the last $k$ rows of its array argument $a$.
The second dimension of a must be at least $\max (1, m)$ if side $=$ 'L', and at least max $(1, n)$ if side $=$ ' $\mathrm{R}^{\prime}$.
$\operatorname{tau}(\mathrm{i})$ must contain the scalar factor of the elementary reflector $H_{\mathrm{i}}$, as returned by sgerqf/dgerqf.
The dimension of $t a u$ must be at least $\max (1, k)$.
$c(I d c, *)$ contains the $m$-by- $n$ matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work (I work) is a workspace array.
REAL for sormrq
DOUBLE PRECISION for dormrq.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).
integer. The first dimension of $a ; \quad l d a \geq \max (1, k)$.
INTEGER. The first dimension of $c ; l d c \geq \max (1, m)$.
integer. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
1 work $\geq \max (1, m)$ if side $=$ 'R'. $^{\prime}$.

```

See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

Overwritten by the product \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (as specified by side and trans).

If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize (if side \(=\) 'L') or lwork \(=m^{\star}\) blocksize (if side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The complex counterpart of this routine is ?unmrq.

\section*{?unmrq}

Multiplies a complex matrix by the unitary matrix \(Q\) of the \(R Q\) factorization formed by ?gerqf.
```

call cunmrq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )
call zunmrq ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

```

\section*{Discussion}

The routine multiplies a complex m-by-n matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the complex unitary matrix defined as a product of \(k\) elementary reflectors \(H_{\mathrm{i}}: Q=H_{1}{ }^{H} H_{2}{ }^{H} \cdots H_{k}{ }^{H}\) as returned by the \(R Q\) factorization routine cgerqflzgerqf.
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (overwriting the result over \(C\)).

Input Parameters
\begin{tabular}{|c|c|}
\hline side & CHARACTER*1. Must be either 'L' or 'R'. \\
\hline & \begin{tabular}{l}
If side ='L', \(Q\) or \(Q^{H}\) is applied to \(C\) from the left. \\
If side ='R', \(Q\) or \(Q^{H}\) is applied to \(C\) from the right.
\end{tabular} \\
\hline trans & \begin{tabular}{l}
CHARACTER*1. Must be either ' N ' or ' C ' . \\
If trans ='N', the routine multiplies \(C\) by \(Q\). \\
If trans \(=\) ' \(\mathrm{C}^{\prime}\), the routine multiplies \(C\) by \(Q^{H}\).
\end{tabular} \\
\hline m & Integer. The number of rows in the matrix \(C\) (\(m \geq 0\)). \\
\hline n & integer. The number of columns in \(C\) (\(n \geq 0\)). \\
\hline k & INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
\[
0 \leq k \leq m, \text { if side }=\text { 'L'; }
\]
\[
0 \leq k \leq n, \text { if side }=\text { 'R'. }
\] \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll}
a, tau, \(c\), work & COMPLEX for cunmrq \\
& DOUBLE COMPLEX for zunmrq. \\
& Arrays: \(a(I d a, *)\), tau \((*), c(I d c, *)\), \\
& work \((I\) work \()\).
\end{tabular}

\section*{Output Parameters}
info
,

Overwritten by the product \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (as specified by side and trans).
If info \(=0\), on exit work (1) contains the minimum value of \(I\) work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize (if side \(=\) 'L') or lwork \(=m^{\star}\) blocksize (if side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The real counterpart of this routine is ?ormrq.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?tzrzf}

Reduces the upper trapezoidal matrix A to upper triangular form.
```

call stzrzf ( m, n, a, lda, tau, work, lwork, info )
call dtzrzf ( m, n, a, lda, tau, work, lwork, info )
call ctzrzf ( m, n, a, lda, tau, work, lwork, info )
call ztzrzf ( m, n, a, lda, tau, work, lwork, info )

```

\section*{Discussion}

This routine reduces the \(m\)-by- \(n(m \leq n)\) real/complex upper trapezoidal matrix \(A\) to upper triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix \(A\) is factored as
\[
A=\left(\begin{array}{ll}
R & 0
\end{array}\right) * Z,
\]
where \(Z\) is an \(n\)-by- \(n\) orthogonal/unitary matrix and R is an \(m\)-by- \(m\) upper triangular matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows in the matrix \(A\) (\(m \geq 0\)). \\
\hline \(n\) & INTEGER. The number of columns in \(A(n \geq m)\). \\
\hline \multirow[t]{7}{*}{a, work} & REAL for stzrzf \\
\hline & DOUBLE PRECISION for dtzrzf \\
\hline & COMPLEX for ctzrzf \\
\hline & DOUBLE COMPLEX for ztzrzf. \\
\hline & Arrays: a(lda,*), work (lwork). \\
\hline & The leading \(m\)-by- \(n\) upper trapezoidal part of the array a contains the matrix \(A\) to be factorized. \\
\hline & The second dimension of a must be at least \(\max (1, n)\). work is a workspace array. \\
\hline Ida & integer. The first dimension of \(a\); at least max \((1, m)\). \\
\hline lwork & integer. The size of the work array; \\
\hline
\end{tabular}

Iwork \(\geq \max (1, m)\).
See Application notes for the suggested value of lwork.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & Overwritten on exit by the factorization data as follows: the leading \(m\)-by- \(m\) upper triangular part of a contains the upper triangular matrix \(R\), and elements \(m+1\) to \(n\) of the first \(m\) rows of \(a\), with the array \(t a u\), represent the orthogonal matrix \(Z\) as a product of \(m\) elementary reflectors. \\
\hline \multirow[t]{6}{*}{tau} & REAL for stzrzf \\
\hline & DOUBLE PRECISION for dtzrzf \\
\hline & COMPLEX for ctzrzf \\
\hline & DOUBLE COMPLEX for ztzrzf. \\
\hline & Array, DIMENSION at least max (\(1, m\)). \\
\hline & Contains scalar factors of the elementary reflectors for the matrix \(Z\). \\
\hline work(1) & If info \(=0\), on exit work (1) contains the minimum value of \(l\) work required for optimum performance. Use this 1 work for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using 1 wor \(k=m *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
Related routines include:
\begin{tabular}{ll}
?ormrz & to apply matrix Q (for real matrices); \\
\(\underline{\text { ?unmrz }}\) & to apply matrix Q (for complex matrices).
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?ormrz}

> Multiplies a real matrix by the orthogonal matrix defined from the factorization formed by ?tzrzf.
```

call sormrz ( side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info )
call dormrz ( side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info )

```

\section*{Discussion}

The routine multiplies a real \(m\)-by- \(n\) matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the real orthogonal matrix defined as a product of \(k\) elementary reflectors \(H_{\mathrm{i}}\) : \(Q=H_{1} H_{2} \cdots H_{k}\) as returned by the factorization routine stzrzf/dtzrzf.
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (overwriting the result over \(C\)).

The matrix \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{side} & CHARACTER*1. Must be either 'L' or 'R'. \\
\hline & If side = 'L', \(Q\) or \(Q^{T}\) is applied to \(C\) from the left. \\
\hline & If side = 'R', \(Q\) or \(Q^{T}\) is applied to \(C\) from the right. \\
\hline \multirow[t]{3}{*}{trans} & CHARACTER*1. Must be either 'N' or 'T'. \\
\hline & If trans \(=\) 'N ', the routine multiplies \(C\) by \(Q\). \\
\hline & If trans \(=\) 'T', the routine multiplies \(C\) by \(Q^{T}\). \\
\hline m & INTEGER. The number of rows in the matrix \(C\) (\(m \geq 0\)). \\
\hline \(n\) & INTEGER. The number of columns in C (\(n \geq 0)\). \\
\hline \multirow[t]{3}{*}{\(k\)} & INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints: \\
\hline & \(0 \leq k \leq m\), if side \(=1 \mathrm{~L}\) '; \\
\hline & \(0 \leq k \leq n\), if side \(={ }^{\text {R }}\) '. \\
\hline 1 & INTEGER. \\
\hline
\end{tabular}

The number of columns of the matrix \(A\) containing the meaningful part of the Householder reflectors. Constraints:
\(0 \leq 1 \leq m\), if side = 'L';
\(0 \leq 1 \leq n\), if side = 'R'.
a, tau, c, work REAL for sormrz
DOUBLE PRECISION for dormrz.
Arrays: a(lda,*), tau(*), c(Idc,*), work (lwork).
On entry, the \(i\) th row of a must contain the vector which defines the elementary reflector \(H_{\mathrm{i}}\), for \(\mathrm{i}=1,2, \ldots, k\), as returned by stzrzf/dtzrzf in the last \(k\) rows of its array argument \(a\).
The second dimension of a must be at least \(\max (1, m)\) if side \(=\) ' L ', and at least \(\max (1, n)\) if side \(=\) 'R'.
\(\operatorname{tau}(\mathbf{i})\) must contain the scalar factor of the elementary reflector \(H_{\mathrm{i}}\), as returned by stzrzf/dtzrzf.
The dimension of \(t a u\) must be at least \(\max (1, k)\).
\(c(l d c, *)\) contains the \(m\)-by- \(n\) matrix \(C\).
The second dimension of \(c\) must be at least max \((1, n)\)
work (1 work) is a workspace array.

Ida
Idc
lwork

Integer. The first dimension of \(a ; \quad l d a \geq \max (1, k)\).
integer. The first dimension of \(c ; 1 d c \geq \max (1, m)\).
integer. The size of the work array. Constraints:
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
lwork \(\geq \max (1, m)\) if side \(=\) 'R'.
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

Overwritten by the product \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (as specified by side and trans).
If info \(=0\), on exit work (1) contains the minimum value of \(l_{\text {work }}\) required for optimum performance. Use this 1 work for subsequent runs.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize (if side \(=\) 'L') or lwork \(=m^{*}\) blocksize (if side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The complex counterpart of this routine is ?unmrz.

\section*{?unmrz}
```

Multiplies a complex matrix by the unitary
matrix defined from the factorization
formed by ?tzrzf.

```
```

call cunmrz ( side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info )

```
call cunmrz (side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info)
call zunmrz (side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info)
```

call zunmrz ( side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info )

```

\section*{Discussion}

The routine multiplies a complex m-by- \(n\) matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix defined as a product of \(k\) elementary reflectors \(H_{\mathrm{i}}\) :
\(Q=H_{1}{ }^{H} H_{2}{ }^{H} \cdots H_{k}{ }^{H}\) as returned by the factorization routine ctzrzflztzrzf.
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (overwriting the result over \(C\)).
The matrix \(Q\) is of order \(m\) if side='L' and of order \(n\) if \(s i d e=\) 'R'.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{side} & CHARACTER*1. Must be either 'L' or 'R'. \\
\hline & If side = 'L', Q or \(Q^{H}\) is applied to \(C\) from the left. \\
\hline & If side = 'R', \(Q\) or \(Q^{H}\) is applied to \(C\) from the right. \\
\hline \multirow[t]{3}{*}{trans} & CHARACTER* 1 . Must be either ' N ' or ' C '. \\
\hline & If trans \(=\) ' \({ }^{\prime}\) ', the routine multiplies \(C\) by \(Q\). \\
\hline & If trans \(=\) ' C', the routine multiplies \(C\) by \(Q^{H}\). \\
\hline m & Integer. The number of rows in the matrix \(C\) (\(m \geq 0\)). \\
\hline \(n\) & INTEGER. The number of columns in \(C\) (\(n \geq 0)\). \\
\hline \multirow[t]{3}{*}{k} & INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints: \\
\hline & \(0 \leq k \leq m\), if side \(=\) ' L'; \\
\hline & \(0 \leq k \leq n\), if side \(=\) 'R'. \\
\hline 1 & INTEGER. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

The number of columns of the matrix \(A\) containing the meaningful part of the Householder reflectors.
Constraints:
\(0 \leq 1 \leq m\), if side ='L';
\(0 \leq 1 \leq n\), if side = 'R'.
a,tau, c, work COMPLEX for cunmrz
DOUBLE COMPLEX for zunmrz.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).
On entry, the \(i\) th row of a must contain the vector which defines the elementary reflector \(H_{\mathrm{i}}\), for \(\mathrm{i}=1,2, \ldots, k\), as returned by ctzrzf/ztzrzf in the last \(k\) rows of its array argument \(a\).
The second dimension of a must be at least \(\max (1, m)\) if side \(=\) 'L', and at least \(\max (1, n)\) if side \(={ }^{\prime} \mathrm{R}^{\prime}\).
tau(i) must contain the scalar factor of the elementary reflector \(H_{\mathrm{i}}\), as returned by ctzrzf/ztzrzf. The dimension of \(t a u\) must be at least \(\max (1, k)\).
\(c(I d c, *)\) contains the \(m\)-by- \(n\) matrix \(C\).
The second dimension of \(c\) must be at least \(\max (1, n)\)
work (I work) is a workspace array.
Ida INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, k)\).
ldc INTEGER. The first dimension of \(c ; 1 d c \geq \max (1, m)\).
lwork INTEGER. The size of the work array. Constraints:
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
1 work \(\geq \max (1, m)\) if side \(='^{\prime}\) '.
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

Overwritten by the product \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (as specified by side and trans).
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize (if side \(=\) ' \(\mathrm{L}^{\prime}\)) or lwork \(=m^{\star}\) blocksize (if side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The real counterpart of this routine is ?ormrz.

\section*{?ggqrf}

Computes the generalized \(Q R\)
factorization of two matrices.
```

call sggqrf ( }n,m,p,a, lda, taua, b, ldb, taub, work, lwork, info
call dggqrf ( }n,m,p,a, lda, taua, b, ldb, taub, work, lwork, info
call cggqrf ( }n,m,p,a, lda, taua, b, ldb, taub, work, lwork, info
call zggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

```

\section*{Discussion}

The routine forms the generalized \(Q R\) factorization of an \(n\)-by-m matrix \(A\) and an \(n\)-by-p matrix \(B\) as \(A=Q R, \quad B=Q T Z\), where \(Q\) is an \(n\)-by- \(n\) orthogonal/unitary matrix, \(Z\) is a \(p\)-by- \(p\) orthogonal/unitary matrix, and \(R\) and \(T\) assume one of the forms:
\(m\)
\[
R=\begin{array}{r}
m \\
n-m
\end{array}\binom{R_{11}}{0}, \quad \text { if } n \geq m
\]
or
\[
\left.R=n \quad \begin{array}{ll}
n & m-n \\
\left(R_{11}\right. & R_{12}
\end{array}\right) \quad, \quad \text { if } n<m,
\]
where \(R_{11}\) is upper triangular, and
\[
\begin{aligned}
& p-n \quad n \\
& T=n \quad\left(0 \quad T_{12}\right), \text { if } n \leq p, \text { or } \\
& T=\begin{array}{c}
\\
n-p \\
p
\end{array}\left(\begin{array}{c}
p \\
T_{11} \\
T_{21}
\end{array}\right) \quad, \quad \text { if } n>p
\end{aligned}
\]
where \(T_{12}\) or \(T_{21}\) is a \(p\)-by-p upper triangular matrix.

In particular, if \(B\) is square and nonsingular, the \(G Q R\) factorization of \(A\) and \(B\) implicitly gives the \(Q R\) factorization of \(B^{-1} A\) as:
\[
B^{-1} A=\mathrm{Z}^{H}\left(T^{-1} R\right)
\]

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. The number of rows of the matrices \(A\) and \(B\) \\
\((n \geq 0)\).
\end{tabular}
```

m INTEGER. The number of columns in A (m\geq0).
p INTEGER. The number of columns in B ( p \geq 0).
a, b, work REAL for sggqre
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.

```
 Arrays:
 a (lda,*) contains the matrix \(A\).
 The second dimension of a must be at least \(\max (1, m)\).
 \(b(I d b, *)\) contains the matrix \(B\).
 The second dimension of \(b\) must be at least \(\max (1, p)\).
 work (1 work) is a workspace array.
Ida INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
ldb INTEGER. The first dimension of \(b\); at least \(\max (1, n)\).
lwork INTEGER. The size of the work array; must be at least
 \(\max (1, n, m, p)\)
 See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

Overwritten by the factorization data as follows: on exit, the elements on and above the diagonal of the array a contain the \(\min (n, m)\)-by- \(m\) upper trapezoidal matrix \(R\) (\(R\) is upper triangular if \(n \geq m\)); the elements below the diagonal, with the array taua, represent the orthogonal/unitary matrix \(Q\) as a product of \(\min (n, m)\) elementary reflectors;

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
if \(n \leq 0\), the upper triangle of the subarray \(b(1: n, p-n+1: p)\) contains the \(n\)-by- \(n\) upper triangular matrix \(T\);
if \(n>p\), the elements on and above the \((n-p)\) th subdiagonal contain the \(n\)-by- \(p\) upper trapezoidal matrix \(T\); the remaining elements, with the array taub, represent the orthogonal/unitary matrix \(Z\) as a product of elementary reflectors.
taua, taub
REAL for sggqrf
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays, DIMENSION at least max \((1, \min (n, m)\)) for taua and at least \(\max (1, \min (n, p))\) for taub. The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Q\).
The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Z\).
work(1)
info

If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this \(I\) work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using
lwork \(\geq \max (n, m, p) * \max (n b 1, n b 2, n b 3)\),
where \(n b 1\) is the optimal blocksize for the \(Q R\) factorization of an \(n\)-by \(-m\) matrix, \(n b 2\) is the optimal blocksize for the \(R Q\) factorization of an \(n\)-by- \(p\) matrix, and \(n b 3\) is the optimal blocksize for a call of ?ormqr/?unmqr.

\section*{?ggrqf}

Computes the generalized \(R Q\)
factorization of two matrices.
```

call sggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call dggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call cggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call zggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

```

\section*{Discussion}

The routine forms the generalized \(R Q\) factorization of an \(m\)-by- \(n\) matrix \(A\) and an \(p\)-by- \(n\) matrix \(B\) as \(A=R Q, \quad B=Z T Q\), where \(Q\) is an \(n\)-by- \(n\) orthogonal/unitary matrix, \(Z\) is a \(p\)-by- \(p\) orthogonal/unitary matrix, and \(R\) and \(T\) assume one of the forms:
\[
\left.R=m \quad \begin{array}{cl}
n-m & m \\
(0 & R_{12}
\end{array}\right), \quad \text { if } m \leq n,
\]
or
\[
\left.R=\begin{array}{c}
m-n \\
n
\end{array} \begin{array}{c}
n \\
R_{11} \\
R_{21}
\end{array}\right) \quad, \quad \text { if } m>n
\]
where \(R_{11}\) or \(R_{21}\) is upper triangular, and
\[
T=\begin{gathered}
n \\
p-n
\end{gathered}\left(\begin{array}{c}
n \\
T_{11} \\
0
\end{array}\right) \quad, \quad \text { if } p \geq n
\]
or
\[
\left.T=p \quad \begin{array}{ll}
p & n-p \\
\left(T_{11}\right. & T_{12}
\end{array}\right) \quad, \quad \text { if } p<n,
\]
where \(T_{11}\) is upper triangular.
In particular, if \(B\) is square and nonsingular, the \(G R Q\) factorization of \(A\) and \(B\) implicitly gives the \(R Q\) factorization of \(A B^{-1}\) as:
\[
A B^{-1}=\left(R T^{-1}\right) \mathrm{Z}^{H}
\]

\section*{Input Parameters}
m
n
\(a, b\), work
lda
1 db
I work
\(p \quad\) INTEGER. The number of rows in \(B(p \geq 0)\).
INTEGER. The number of rows of the matrix \(A(m \geq 0)\).

INTEGER. The number of columns of the matrices \(A\) and \(B(n \geq 0)\).
REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays:
a (lda,*) contains the \(m\)-by- \(n\) matrix \(A\).
The second dimension of a must be at least max \((1, n)\).
\(b(I d b, *)\) contains the \(p\)-by-n matrix \(B\).
The second dimension of \(b\) must be at least \(\max (1, n)\). work (1 work) is a workspace array.
Integer. The first dimension of \(a\); at least \(\max (1, m)\).
INTEGER. The first dimension of \(b\); at least \(\max (1, p)\).
INTEGER. The size of the work array; must be at least \(\max (1, n, m, p)\)
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

Overwritten by the factorization data as follows: on exit, if \(m \leq n\), the upper triangle of the subarray \(a(1: m, n-m+1: n)\) contains the \(m\)-by- \(m\) upper triangular matrix \(R\);
if \(m>n\), the elements on and above the \((m-n)\) th subdiagonal contain the \(m\)-by- \(n\) upper trapezoidal
```

taua, taub REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays, DIMENSION at least max (1, min}(m,n)) for taua
and at least max (1, min}(p,n))\mathrm{ for taub.
The array taua contains the scalar factors of the
elementary reflectors which represent the
orthogonal/unitary matrix Q.
The array taub contains the scalar factors of the
elementary reflectors which represent the
orthogonal/unitary matrix Z.
work(1)
info
If info = 0, on exit work (1) contains the minimum
value of lwork required for optimum performance. Use
this I work for subsequent runs.
INTEGER.
If info = 0, the execution is successful.
If info =-i, the ith parameter had an illegal value.

```

\section*{Application Notes}

For better performance, try using
\(l_{\text {work }} \geq \max (n, m, p) * \max (n b 1, n b 2, n b 3)\),
where \(n b l\) is the optimal blocksize for the \(R Q\) factorization of an \(m-b y-n\) matrix, \(n b 2\) is the optimal blocksize for the \(Q R\) factorization of an \(p\)-by-n matrix, and \(n b 3\) is the optimal blocksize for a call of ?ormrq/?unmrq. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Singular Value Decomposition}

This section describes LAPACK routines for computing the singular value decomposition (SVD) of a general \(m\) by \(n\) matrix \(A\) :
\[
A=U \Sigma V^{H}
\]

In this decomposition, \(U\) and \(V\) are unitary (for complex \(A\)) or orthogonal (for real \(A\)); \(\Sigma\) is an \(m\) by \(n\) diagonal matrix with real diagonal elements \(\sigma_{i}\) :
\[
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\min (m, n)} \geq 0
\]

The diagonal elements \(\sigma_{i}\) are singular values of \(A\). The first \(\min (m, n)\) columns of the matrices \(U\) and \(V\) are, respectively, left and right singular vectors of \(A\). The singular values and singular vectors satisfy
\[
A v_{i}=\sigma_{i} u_{i} \text { and } A^{H} u_{i}=\sigma_{i} v_{i}
\]
where \(u_{i}\) and \(v_{i}\) are the \(i\) th columns of \(U\) and \(V\), respectively.
To find the SVD of a general matrix \(A\), call the LAPACK routine ? gebrd or ? gbbrd for reducing \(A\) to a bidiagonal matrix \(B\) by a unitary (orthogonal) transformation: \(A=Q B P^{H}\). Then call ?bdsqr, which forms the SVD of a bidiagonal matrix: \(B=U_{1} \Sigma V_{1}^{H}\).
Thus, the sought-for SVD of \(A\) is given by \(A=U \Sigma V^{H}=\left(Q U_{1}\right) \Sigma\left(V_{1}^{H} P^{H}\right)\).
Table 5-2 Computational Routines for Singular Value Decomposition (SVD)
\begin{tabular}{|c|c|c|}
\hline Operation & Real matrices & Complex matrices \\
\hline Reduce \(A\) to a bidiagonal matrix \(B\) : \(A=Q B P^{H}\) (full storage) & ? gebrd & ? gebrd \\
\hline Reduce \(A\) to a bidiagonal matrix \(B\) : \(A=Q B P^{H}\) (band storage) & ? gbbrd & ? gbbrd \\
\hline Generate the orthogonal (unitary) matrix \(Q\) or \(P\) & ? orgbr & ? ungbr \\
\hline Apply the orthogonal (unitary) matrix \(Q\) or \(P\) & ? ormbr & ? unmbr \\
\hline Form singular value decomposition of the bidiagonal matrix \(B\) :
\[
B=U \Sigma V^{H}
\] & \[
\begin{aligned}
& \text { ?bdsqr } \\
& \text { ?bdsdc }
\end{aligned}
\] & ? bdsqr \\
\hline
\end{tabular}

Figure 5-1 Decision Tree: Singular Value Decomposition

Figure 5-1 presents a decision tree that helps you choose the right sequence of routines for SVD, depending on whether you need singular values only or singular vectors as well, whether \(A\) is real or complex, and so on.
You can use the SVD to find a minimum-norm solution to a (possibly) rank-deficient least-squares problem of minimizing \(||A x-b||_{2}\). The effective rank \(k\) of the matrix \(A\) can be determined as the number of singular values which exceed a suitable threshold. The minimum-norm solution is
\[
x=V_{k}\left(\Sigma_{k}\right)^{-1} c
\]
where \(\Sigma_{k}\) is the leading \(k\) by \(k\) submatrix of \(\Sigma\), the matrix \(V_{k}\) consists of the first \(k\) columns of \(V=P V_{1}\), and the vector \(c\) consists of the first \(k\) elements of \(U^{H} b=U_{1}^{H} Q^{H} b\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?gebrd}

\section*{Reduces a general matrix to bidiagonal form.}
```

call sgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )
call dgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )
call cgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )
call zgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )

```

\section*{Discussion}

The routine reduces a general \(m\) by \(n\) matrix \(A\) to a bidiagonal matrix \(B\) by an orthogonal (unitary) transformation.
If \(m \geq n\), the reduction is given by
\[
A=Q B P^{H}=Q\binom{B_{1}}{0} P^{H}=Q_{1} B_{1} P^{H},
\]
where \(B_{1}\) is an \(n\) by \(n\) upper diagonal matrix, \(Q\) and \(P\) are orthogonal or, for a complex \(A\), unitary matrices; \(Q_{1}\) consists of the first \(n\) columns of \(Q\).
If \(m<n\), the reduction is given by
\[
A=Q B P^{H}=Q\left(B_{1} 0\right) P^{H}=Q_{1} B_{1} P_{1}^{H}
\]
where \(B_{1}\) is an \(m\) by \(m\) lower diagonal matrix, \(Q\) and \(P\) are orthogonal or, for a complex \(A\), unitary matrices; \(P_{1}\) consists of the first \(m\) rows of \(P\).
The routine does not form the matrices \(Q\) and \(P\) explicitly, but represents them as products of elementary reflectors. Routines are provided to work with the matrices \(Q\) and \(P\) in this representation:
If the matrix \(A\) is real,
- to compute \(Q\) and \(P\) explicitly, call ?orgbr.
- to multiply a general matrix by \(Q\) or \(P\), call ?ormbr.

If the matrix \(A\) is complex,
- to compute \(Q\) and \(P\) explicitly, call ?ungbr.
- to multiply a general matrix by \(Q\) or \(P\), call ?unmbr.

\section*{Input Parameters}
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n INTEGER. The number of columns in A ( }n\geq0)\mathrm{ .
a, work REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.

```
 Arrays:
 a (lda,*) contains the matrix \(A\).
 The second dimension of a must be at least \(\max (1, n)\).
 work (lwork) is a workspace array.
Ida INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).
lwork
Integer. The dimension of work; at least \(\max (1, m, n)\).
 See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

If \(m \geq n\), the diagonal and first super-diagonal of a are overwritten by the upper bidiagonal matrix \(B\). Elements below the diagonal are overwritten by details of \(Q\), and the remaining elements are overwritten by details of \(P\).

If \(m<n\), the diagonal and first sub-diagonal of a are overwritten by the lower bidiagonal matrix \(B\). Elements above the diagonal are overwritten by details of \(P\), and the remaining elements are overwritten by details of \(Q\).
REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least \(\max (1, \min (m, n))\). Contains the diagonal elements of \(B\).
REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least \(\max (1, \min (m, n)-1)\). Contains the off-diagonal elements of \(B\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll}
tauq, taup & REAL for sgebrd \\
& DOUBLE PRECISION for dgebrd \\
& COMPLEX for cgebrd \\
& DOUBLE COMPLEX for zgebrd. \\
& Arrays, DIMENSION at least max \((1, \min (m, n))\). \\
& Contain further details of the matrices \(Q\) and \(P\). \\
work(1) & If info \(=0\), on exit work (1) contains the minimum \\
& value of \(l w o r k\) required for optimum performance. Use \\
& this \(l\) work for subsequent runs. \\
& INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the ith parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

For better performance, try using Iwork \(=(m+n) \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed matrices \(Q, B\), and \(P\) satisfy \(Q B P^{H}=A+E\), where \(\| E| |_{2}=c(n) \varepsilon| | A| |_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations for real flavors is \((4 / 3){ }^{2} n^{2} *\left(3 \star_{m}-n\right)\) for \(m \geq n\), \((4 / 3) \star m^{2} \star\left(3 \star_{n}-m\right)\) for \(m<n\).
The number of operations for complex flavors is four times greater.
If \(n\) is much less than \(m\), it can be more efficient to first form the \(Q R\) factorization of \(A\) by calling ?geqrf and then reduce the factor \(R\) to bidiagonal form. This requires approximately \(2 \star n^{2} \star(m+n)\) floating-point operations.

If \(m\) is much less than \(n\), it can be more efficient to first form the \(L Q\) factorization of \(A\) by calling ?gelqf and then reduce the factor \(L\) to bidiagonal form. This requires approximately \(2 \star m^{2} \star(m+n)\) floating-point operations.

\section*{?gbbrd}

\section*{Reduces a general band matrix to bidiagonal form.}
```

call sgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, info )
call dgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, info )
call cgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, rwork, info )
call zgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, rwork, info )

```

\section*{Discussion}

This routine reduces an \(m\) by \(n\) band matrix \(A\) to upper bidiagonal matrix \(B\) : \(A=Q B P^{H}\). Here the matrices \(Q\) and \(P\) are orthogonal (for real \(A\)) or unitary (for complex \(A\)). They are determined as products of Givens rotation matrices, and may be formed explicitly by the routine if required. The routine can also update a matrix \(C\) as follows: \(C=Q^{H} C\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline vect & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'Q' or 'P' or 'B'. \\
If vect \(=\) ' \(\mathrm{N}^{\prime}\), neither \(Q\) nor \(P^{H}\) is generated. \\
If vect \(=\) ' Q ', the routine generates the matrix \(Q\). \\
If vect \(=\) ' P ', the routine generates the matrix \(P^{H}\). \\
If vect \(=\) ' B', the routine generates both \(Q\) and \(P^{H}\).
\end{tabular} \\
\hline m & INTEGER. The number of rows in the matrix \(A(m \geq 0)\). \\
\hline \(n\) & Integer. The number of columns in \(A(n \geq 0)\). \\
\hline ncc & INTEGER. The number of columns in C (\(n C c \geq 0\)). \\
\hline kI & INTEGER. The number of sub-diagonals within the band of \(A(k I \geq 0)\). \\
\hline ku & INTEGER. The number of super-diagonals within the band of \(A(k u \geq 0)\). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline ab, c, work & REAL for sgbbrd \\
\hline & DOUBLE PRECISION for dgbbrd \\
\hline & COMPLEX for cgbbrd \\
\hline & DOUBLE COMPLEX for zgbbrd. \\
\hline & Arrays: \\
\hline & \(a b\) (Idab,*) contains the matrix \(A\) in band storage (see Matrix Storage Schemes) \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(c(l d c, *)\) contains an mby ncc matrix \(C\). \\
\hline & If \(n c c=0\), the array \(c\) is not referenced. The second dimension of \(c\) must be at least \(\max (1, n c c)\). \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least \(2 * \max (m, n)\) for real flavors, or \(\max (m, n)\) for complex flavors. \\
\hline Idab & INTEGER. The first dimension of the array \(a b\) \\
\hline & \((I d a b \geq k I+k u+1)\). \\
\hline \(1 d q\) & INTEGER. The first dimension of the output array \(q\). \\
\hline & \(I d q \geq m a x(1, m)\) if vect \(=\) ' Q ' or ' B ', \\
\hline & \(1 d q \geq 1\) otherwise. \\
\hline ldpt & INTEGER. The first dimension of the output array pt. \\
\hline & Idpt \(\geq \max (1, n)\) if vect \(=\) ' P ' or ' B ', \\
\hline & \(1 \mathrm{dpt} \geq 1\) otherwise. \\
\hline \(1 d c\) & INTEGER. The first dimension of the array \(c\). \\
\hline & \(l d c \geq m a x(1, m)\) if \(n C c>0 ; 1 d c \geq 1\) if \(n C c=0\). \\
\hline rwork & REAL for cgbbrd \\
\hline & DOUBLE PRECISION for zgbbrd. \\
\hline & A workspace array, DIMENSION at least max \((m, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by values generated during the reduction.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max \((1, \min (m, n))\).
Contains the diagonal elements of the matrix \(B\).
```

e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, min(m,n) -1).
Contains the off-diagonal elements of B.
q, pt REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays:
q(Idq,*) contains the output m by m matrix Q.
The second dimension of q must be at least max (1,m).
p(Idpt,*) contains the output n by n matrix PH
The second dimension of pt must be at least max (1,n).
INTEGER.
If info = 0, the execution is successful.
If info=-i, the ith parameter had an illegal value.

```

\section*{Application Notes}

The computed matrices \(Q, B\), and \(P\) satisfy \(Q B P^{H}=A+E\), where \(\|\left. E\right|_{2}=c(n) \varepsilon| | A| |_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.
If \(m=n\), the total number of floating-point operations for real flavors is approximately the sum of:
\[
\begin{array}{ll}
6^{\star} n^{2} \star(k I+k u) & \text { if vect }='^{\prime} \text { and } n c c=0, \\
3^{\star} n^{2}{ }^{2} n c c^{\star}(k I+k u-1) /(k I+k u) & \text { if } C \text { is updated, and } \\
3^{\star} n^{3} *(k I+k u-1) /(k I+k u) & \text { if either } Q \text { or } P^{H} \text { is generated } \\
& \text { (double this if both). }
\end{array}
\]

To estimate the number of operations for complex flavors, use the same formulas with the coefficients 20 and 10 (instead of 6 and 3).

\section*{?orgbr}

Generates the real orthogonal matrix \(Q\) or \(P^{T}\) determined by ?gebrd.
```

call sorgbr ( vect, m, n, k, a, lda, tau, work, lwork, info )
call dorgbr ( vect, m, n, k, a, lda, tau, work, lwork, info )

```

\section*{Discussion}

The routine generates the whole or part of the orthogonal matrices \(Q\) and \(P^{T}\) formed by the routines sgebrd/dgebrd (see page 5-76). Use this routine after a call to sgebrd/dgebrd. All valid combinations of arguments are described in Input parameters. In most cases you'll need the following:
To compute the whole \(m\) by \(m\) matrix \(Q\) :
call ?orgbr ('Q', m, m, \(n, ~ a . .\).
(note that the array a must have at least \(m\) columns).
To form the \(n\) leading columns of \(Q\) if \(m>n\) : call ?orgbr ('Q', m, \(n, n, a \ldots\))
To compute the whole \(n\) by \(n\) matrix \(P^{T}\) :
call ?orgbr ('P', \(n, n, m, a \quad .\).)
(note that the array a must have at least \(n\) rows).
To form the \(m\) leading rows of \(P^{T}\) if \(m<n\) :
call ?orgbr ('P', m, \(n, m, a \ldots\))

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline vect & CHARACTER*1. Must be 'Q' or 'P'. \\
\hline & \begin{tabular}{l}
If vect \(=\) ' \(Q\) ', the routine generates the matrix \(Q\). \\
If vect \(=\) ' \(P^{\prime}\), the routine generates the matrix \(P^{T}\).
\end{tabular} \\
\hline m & INTEGER. The number of required rows of \(Q\) or \(P^{T}\). \\
\hline n & Integer. The number of required columns of Q or \(P^{T}\). \\
\hline k & \begin{tabular}{l}
Integer. One of the dimensions of \(A\) in ?gebrd: \\
If vect \(=\) ' \(Q\) ', the number of columns in \(A\); \\
If vect \(=\) ' \(P^{\prime}\), the number of rows in \(A\).
\end{tabular} \\
\hline
\end{tabular}

Constraints: \(m \geq 0, n \geq 0, k \geq 0\).
For vect \(={ }^{\prime} Q^{\prime}: k \leq n \leq m\) if \(m>k\), or \(m=n\) if \(m \leq k\). For vect \(=\) 'P' \(^{\prime}: k \leq m \leq n\) if \(n>k\), or \(m=n\) if \(n \leq k\).
a, work REAL for sorgbr
DOUBLE PRECISION for dorgbr.
Arrays:
\(a(I d a, *)\) is the array \(a\) as returned by ?gebrd.
The second dimension of a must be at least max \((1, n)\).
work (lwork) is a workspace array.
Ida Integer. The first dimension of \(a\); at least \(\max (1, m)\).
tau REAL for sorgbr
DOUBLE PRECISION for dorgbr.
For vect = ' Q ', the array tauq as returned by ?gebrd.
For vect = ' \(\mathrm{P}^{\prime}\), the array taup as returned by ?gebrd.
The dimension of tau must be at least \(\max (1, \min (m, k))\)
for vect \(=' Q^{\prime}\), or \(\max (1, \min (m, k))\) for vect \(=' P^{\prime}\).
lwork Integer. The size of the work array.
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}
info

Overwritten by the orthogonal matrix \(Q\) or \(P^{T}\) (or the leading rows or columns thereof) as specified by vect, \(m\), and \(n\).
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
INTEGER.
If \(\operatorname{info}=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using \(l_{\text {work }}=\min (m, n) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\).
The approximate numbers of floating-point operations for the cases listed in Discussion are as follows:
To form the whole of \(Q\) :
\[
\begin{array}{ll}
(4 / 3) n\left(3 m^{2}-3 m^{\star} n+n^{2}\right) & \text { if } m>n ; \\
(4 / 3) m^{3} & \text { if } m \leq n .
\end{array}
\]

To form the \(n\) leading columns of \(Q\) when \(m>n\) :
\[
(2 / 3) n^{2}\left(3 m-n^{2}\right) \quad \text { if } m>n
\]

To form the whole of \(P^{T}\) :
\[
\begin{array}{ll}
(4 / 3) n^{3} & \text { if } m \geq n ; \\
(4 / 3) m\left(3 n^{2}-3 m^{\star} n+m^{2}\right) & \text { if } m<n .
\end{array}
\]

To form the \(m\) leading columns of \(P^{T}\) when \(m<n\) :
\[
(2 / 3) n^{2}\left(3 m-n^{2}\right) \quad \text { if } m>n
\]

The complex counterpart of this routine is ?ungbr.

\section*{?ormbr}
```

Multiplies an arbitrary real matrix by
the real orthogonal matrix Q or P}\mp@subsup{P}{}{T
determined by ?gebrd.

```
```

call sormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

```
call sormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
call dormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```

call dormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

```

\section*{Discussion}

Given an arbitrary real matrix \(C\), this routine forms one of the matrix products \(Q C, Q^{T} C, C Q, C Q^{T}, P C, P^{T} C, C P\), or \(C P^{T}\), where \(Q\) and \(P\) are orthogonal matrices computed by a call to sgebrd/dgebrd (see page 5-76). The routine overwrites the product on \(C\).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) or \(P^{T}\) : If side \(=\) 'L', \(r=m\); if side \(=\) 'R', \(r=n\).
vect CHARACTER*1. Must be ' \(Q\) ' or 'P'. If vect \(=\) ' \(Q\) ', then \(Q\) or \(Q^{T}\) is applied to \(C\). If vect \(=\) ' \(\mathrm{P}^{\prime}\), then \(P\) or \(P^{T}\) is applied to \(C\).
side CHARACTER*1. Must be 'L' or 'R'. If side \(=\) 'L', multipliers are applied to \(C\) from the left. If side='R', they are applied to \(C\) from the right.
trans CHARACTER*1. Must be 'N' or 'T'. If trans ='N', then \(Q\) or \(P\) is applied to \(C\). If trans = ' \(T\) ', then \(Q^{T}\) or \(P^{T}\) is applied to \(C\).
INTEGER. The number of rows in \(C\).
INTEGER. The number of columns in \(C\).
integer. One of the dimensions of \(A\) in ?gebrd:
If vect \(=\) ' \(Q\) ', the number of columns in \(A\);
If vect \(=\) ' P ', the number of rows in \(A\).
Constraints: \(m \geq 0, n \geq 0, k \geq 0\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{9}{*}{a, c, work} & REAL for sormbr \\
\hline & DOUBLE PRECISION for dormbr. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is the array a as returned by ? gebrd. \\
\hline & Its second dimension must be at least \(\max (1, \min (r, k))\) \\
\hline & for vect \(=\) ' Q ', or \(\max (1, r))\) for vect \(=' \mathrm{P}^{\prime}\). \\
\hline & \(c(I d c, *)\) holds the matrix \(C\). \\
\hline & Its second dimension must be at least \(\max (1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline \multirow[t]{3}{*}{Ida} & INTEGER. The first dimension of \(a\). Constraints: \\
\hline & \(I d a \geq \max (1, r)\) if vect \(=\) ' \(Q\) '; \\
\hline & \(l d a \geq \max (1, \min (r, k))\) if vect \(=\) ' \(\mathrm{P}^{\prime}\). \\
\hline Idc & INTEGER. The first dimension of \(c ; 1 d c \geq \max (1, m)\). \\
\hline \multirow[t]{5}{*}{tau} & REAL for sormbr \\
\hline & DOUBLE PRECISION for dormbr. \\
\hline & Array, DIMENSION at least max (1, min \((r, k)\)). \\
\hline & For vect = ' Q ', the array tauq as returned by ? gebrd. \\
\hline & For vect = ' \({ }^{\prime}\) ', the array taup as returned by ? gebrd. \\
\hline \multirow[t]{4}{*}{Iwork} & INTEGER. The size of the work array. Constraints: \\
\hline & lwork \(\geq \max (1, n)\) if side = 'L'; \\
\hline & lwork \(\geq \max (1, m)\) if side \(=^{\prime} \mathrm{R}^{\prime}\). \\
\hline & See Application notes for the suggested value of 1 work. \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the product \(Q C, Q^{T} C, C Q, C Q^{T}, P C\), \(P^{T} C, C P\), or \(C P^{T}\), as specified by vect, side, and trans.
work(1)
info

If info \(=0\), on exit work (1) contains the minimum value of \(I\) work required for optimum performance. Use this 1 work for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using
lwork \(=n *\) blocksize for side \(=\) 'L', or
lwork \(=m^{*}\) blocksize for side \(={ }^{\prime} \mathrm{R}^{\prime}\),
where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed product differs from the exact product by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)| | C| |_{2}\).
The total number of floating-point operations is approximately
\[
\begin{array}{ll}
2 \star_{n} \star_{k}\left(2 \star_{m}-k\right) & \text { if side }=' \text { ' ' and } m \geq k ; \\
2 \star_{m}{ }^{\star} k\left(2 \star_{n}-k\right) & \text { if side }=\text { 'R' and } n \geq k ; \\
2 \star_{m}^{2} \star_{n} & \text { if side }=' \text { ' } \text { ' and } m<k ; \\
2 \star_{n} \star_{m} & \text { if side }=' \mathbf{R}^{\prime} \text { and } n<k .
\end{array}
\]

The complex counterpart of this routine is ?unmbr.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?ungbr}

> Generates the complex unitary matrix \(Q\) or \(P^{H}\) determined by ?gebrd.
```

call cungbr ( vect, m, n, k, a, lda, tau, work, lwork, info )
call zungbr ( vect, m, n, k, a, lda, tau, work, lwork, info )

```

\section*{Discussion}

The routine generates the whole or part of the unitary matrices \(Q\) and \(P^{H}\) formed by the routines cgebrd/zgebrd (see page 5-76). Use this routine after a call to cgebrd/zgebrd. All valid combinations of arguments are described in Input Parameters; in most cases you'll need the following:
To compute the whole \(m\) by \(m\) matrix \(Q\) :
call ?ungbr ('Q', m, m, n, a ...)
(note that the array a must have at least \(m\) columns).
To form the \(n\) leading columns of \(Q\) if \(m>n\) :
```

call ?ungbr ( 'Q', m, n, n, a ... )

```

To compute the whole \(n\) by \(n\) matrix \(P^{H}\) :
call ?ungbr ('P', n, n, m, a ...)
(note that the array a must have at least \(n\) rows).
To form the \(m\) leading rows of \(P^{H}\) if \(m<n\) :
call ?ungbr ('P', m, \(n, m, a \quad .\).)

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline vect & CHARACTER*1. Must be 'Q' or 'P'. \\
\hline & \begin{tabular}{l}
If vect \(=\) ' \(Q\) ', the routine generates the matrix \(Q\). \\
If vect \(=\) ' P ', the routine generates the matrix \(P^{H}\).
\end{tabular} \\
\hline m & INTEGER. The number of required rows of \(Q\) or \(P^{H}\). \\
\hline n & Integer. The number of required columns of \(Q\) or \(P^{H}\). \\
\hline k & \begin{tabular}{l}
Integer. One of the dimensions of \(A\) in ?gebrd: \\
If vect \(=\) ' \(Q\) ', the number of columns in \(A\); \\
If vect \(=' P\) ', the number of rows in \(A\).
\end{tabular} \\
\hline
\end{tabular}

Constraints: \(m \geq 0, n \geq 0, k \geq 0\).
For vect \(={ }^{\prime} Q^{\prime}: k \leq n \leq m\) if \(m>k\), or \(m=n\) if \(m \leq k\). For vect \(=\) 'P' \(^{\prime}: k \leq m \leq n\) if \(n>k\), or \(m=n\) if \(n \leq k\).

COMP LEX for cungbr DOUBLE COMPLEX for zungbr.

\section*{Arrays:}
\(a(I d a, *)\) is the array a as returned by ?gebrd. The second dimension of a must be at least \(\max (1, n)\). work (lwork) is a workspace array.
integer. The first dimension of \(a\); at least \(\max (1, m)\).
COMPLEX for cungbr
DOUBLE COMPLEX for zungbr.
For vect = ' \(Q\) ', the array tauq as returned by ? gebrd.
For vect = ' P ', the array taup as returned by ?gebrd.
The dimension of \(t a u\) must be at least \(\max (1, \min (m, k))\)
for vect \(=' Q\) ', or \(\max (1, \min (m, k))\) for vect \(=' P^{\prime}\).
integer. The size of the work array.
Constraint: 1 work \(\geq \max (1, \min (m, n)\)).
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}
info

Overwritten by the orthogonal matrix \(Q\) or \(P^{T}\) (or the leading rows or columns thereof) as specified by vect, \(m\), and \(n\).

If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Application Notes}

For better performance, try using 1 work \(=\min (m, n) \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\).

The approximate numbers of floating-point operations for the cases listed in Discussion are as follows:

To form the whole of \(Q\) :
\[
\begin{array}{ll}
(16 / 3) n\left(3 m^{2}-3 m^{\star} n+n^{2}\right) & \text { if } m>n ; \\
(16 / 3) m^{3} & \text { if } m \leq n .
\end{array}
\]

To form the \(n\) leading columns of \(Q\) when \(m>n\) :
\[
(8 / 3) n^{2}\left(3 m-n^{2}\right) \quad \text { if } m>n
\]

To form the whole of \(P^{T}\) :
\[
\begin{array}{ll}
(16 / 3) n^{3} & \text { if } m \geq n ; \\
(16 / 3) m\left(3 n^{2}-3 m^{\star} n+m^{2}\right) & \text { if } m<n
\end{array}
\]

To form the \(m\) leading columns of \(P^{T}\) when \(m<n\) :
\[
(8 / 3) n^{2}\left(3 m-n^{2}\right) \quad \text { if } m>n
\]

The real counterpart of this routine is ?orgbr.

\section*{? unmbr}
```

Multiplies an arbitrary complex matrix
by the unitary matrix Q or P determined
by ?gebrd.
call cunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
call zunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

```

\section*{Discussion}

Given an arbitrary complex matrix \(C\), this routine forms one of the matrix products \(Q C, Q^{H} C, C Q, C Q^{H}, P C, P^{H} C, C P\), or \(C P^{H}\), where \(Q\) and \(P\) are orthogonal matrices computed by a call to \(c\) ebebrd/zgebrd (see page 5-76). The routine overwrites the product on \(C\).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) or \(P^{H}\) : If side \(=\) 'L', \(r=m\); if side \(=\) 'R', \(r=n\).
vect CHARACTER*1. Must be ' \(Q\) ' or 'P'. If vect = ' \(Q\) ', then \(Q\) or \(Q^{H}\) is applied to \(C\). If vect \(=\) ' \(\mathrm{P}^{\prime}\), then \(P\) or \(P^{H}\) is applied to \(C\).
side CHARACTER*1. Must be 'L' or 'R'. If side \(=\) 'L', multipliers are applied to \(C\) from the left. If side='R', they are applied to \(C\) from the right.
trans CHARACTER*1. Must be 'N' or 'C'. If trans \(=\) 'N', then \(Q\) or \(P\) is applied to \(C\). If trans \(=\) ' C', then \(Q^{H}\) or \(P^{H}\) is applied to \(C\).
INTEGER. The number of rows in \(C\).
INTEGER. The number of columns in \(C\).
integer. One of the dimensions of \(A\) in ?gebrd:
If vect \(=\) ' \(Q\) ', the number of columns in \(A\);
If vect \(=\) ' P ', the number of rows in \(A\).
Constraints: \(m \geq 0, n \geq 0, k \geq 0\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{9}{*}{a, c, work} & COMPLEX for cunmbr \\
\hline & DOUBLE COMPLEX for zunmbr. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is the array a as returned by ? gebrd. \\
\hline & Its second dimension must be at least max \((1, \min (r, k))\) \\
\hline & for vect = ' Q ', or \(\max (1, r)\)) for vect \(=\) ' \(\mathrm{P}^{\prime}\). \\
\hline & \(c(I d C, *)\) holds the matrix \(C\). \\
\hline & Its second dimension must be at least \(\max (1, n)\). \\
\hline & work (I work) is a workspace array. \\
\hline \multirow[t]{3}{*}{Ida} & INTEGER. The first dimension of a. Constraints: \\
\hline & \(I d a \geq \max (1, r)\) if vect \(=\) ' \(\mathrm{Q}^{\prime}\); \\
\hline & \(l d a \geq \max (1, \min (r, k))\) if vect \(=\) ' \(\mathrm{P}^{\prime}\). \\
\hline Idc & INTEGER. The first dimension of \(c ; 1 d c \geq m a x(1, m)\). \\
\hline \multirow[t]{5}{*}{tau} & COMPLEX for cunmbr \\
\hline & DOUBLE COMPLEX for zunmbr. \\
\hline & Array, DIMENSION at least max (1, min \((r, k)\)). \\
\hline & For vect = ' Q ', the array tauq as returned by ? gebrd. \\
\hline & For vect = ' P ', the array taup as returned by ? gebrd. \\
\hline \multirow[t]{4}{*}{Iwork} & INTEGER. The size of the work array. Constraints: \\
\hline & lwork \(\geq \max (1, n)\) if side \(=\) 'L'; \\
\hline & I work \(\geq \max (1, m)\) if side \({ }^{\prime} \mathrm{R}^{\prime}\). \\
\hline & See Application notes for the suggested value of lwork. \\
\hline
\end{tabular}

\section*{Output Parameters}

Overwritten by the product \(Q C, Q^{H} C, C Q, C Q^{H}, P C\), \(P^{H} C, C P\), or \(C P^{H}\), as specified by vect, side, and trans.
work(1)
info

If info \(=0\), on exit work (1) contains the minimum value of \(I\) work required for optimum performance. Use this 1 work for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using
lwork \(=n *\) blocksize for side \(=\) 'L', or
lwork \(=m^{*}\) blocksize for side \(={ }^{\prime} \mathrm{R}^{\prime}\),
where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed product differs from the exact product by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)| | C| |_{2}\).
The total number of floating-point operations is approximately
\[
\begin{aligned}
& 8 *_{n}{ }^{*} k\left(2{ }^{*} m-k\right) \\
& \text { if side }=\text { 'L' and } m \geq k \text {; } \\
& 8 \star_{m}{ }^{*} k\left(2 \star_{n}-k\right) \\
& \text { if side }=\text { 'R' and } n \geq k \text {; } \\
& 8 \star_{m}{ }^{2} \star_{n} \quad \text { if side }=\text { 'L' and } m<k \text {; } \\
& 8 \star_{n}{ }^{2} \star_{m} \quad \text { if side }=\text { 'R' and } n<k \text {. }
\end{aligned}
\]

The real counterpart of this routine is ?ormbr.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?bdsqr}

Computes the singular value decomposition of a general matrix that has been reduced to bidiagonal form.
```

call sbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )
call dbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )
call cbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )
call zbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )

```

\section*{Discussion}

This routine computes the singular values and, optionally, the right and/or left singular vectors from the Singular Value Decomposition (SVD) of a real \(n\)-by- \(n\) (upper or lower) bidiagonal matrix \(B\) using the implicit zero-shift \(Q R\) algorithm. The SVD of \(B\) has the form \(B=Q \star S * P^{H}\) where \(S\) is the diagonal matrix of singular values, \(Q\) is an orthogonal matrix of left singular vectors, and \(P\) is an orthogonal matrix of right singular vectors. If left singular vectors are requested, this subroutine actually returns \(U \star Q\) instead of \(Q\), and, if right singular vectors are requested, this subroutine returns \(P^{H} \star V T\) instead of \(P^{H}\), for given real/complex input matrices \(U\) and \(V T\). When \(U\) and \(V T\) are the orthogonal/unitary matrices that reduce a general matrix \(A\) to bidiagonal form: \(A=U \star B \star V T\), as computed by ?gebrd, then \(A=(U \star Q) \star S *\left(P^{H} \star V T\right)\)
is the SVD of \(A\). Optionally, the subroutine may also compute \(Q^{H}{ }^{\star} C\) for a given real/complex input matrix \(C\).

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U'or 'L'.
If upIO='U', B is an upper bidiagonal matrix.
If uplo = 'L', B is a lower bidiagonal matrix.

```
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The order of the matrix \(B(n \geq 0)\). \\
\hline ncvt & INTEGER. The number of columns of the matrix \(V T\), that is, the number of right singular vectors (ncvt \(\geq 0\)). Set \(n c v t=0\) if no right singular vectors are required. \\
\hline nru & \begin{tabular}{l}
INTEGER. The number of rows in \(U\), that is, the number of left singular vectors (\(n r u \geq 0\)). \\
Set \(n r u=0\) if no left singular vectors are required.
\end{tabular} \\
\hline ncc & INTEGER. The number of columns in the matrix \(C\) used for computing the product \(Q^{H} C\) (\(n c c \geq 0\)). Set \(n c c=0\) if no matrix \(C\) is supplied. \\
\hline d, e, work & \begin{tabular}{l}
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors. \\
Arrays: \\
\(d(*)\) contains the diagonal elements of \(B\). \\
The dimension of \(d\) must be at least \(\max (1, n)\). \\
\(e(*)\) contains the \((n-1)\) off-diagonal elements of \(B\). \\
The dimension of e must be at least \(\max (1, n)\). \\
\(e(n)\) is used for workspace. \\
work (*) is a workspace array. \\
The dimension of work must be at least \(\max \left(1,2 \star_{n}\right)\) if \(n c v t=n r u=n c c=0\); \(\max (1,4 *(n-1))\) otherwise.
\end{tabular} \\
\hline vt, u, c & \begin{tabular}{l}
REAL for sbdsqr \\
DOUBLE PRECISION for dbdsqr \\
COMPLEX for cbdsqr \\
DOUBLE COMPLEX for zbdsqr. \\
Arrays: \\
vt (ldvt, *) contains an \(n\) by ncvt matrix VT. \\
The second dimension of vt must be at least \(\max (1, n c v t)\). \\
\(v t\) is not referenced if \(n c v t=0\). \\
\(u(I d u, *)\) contains an nru by \(n\) unit matrix \(U\). \\
The second dimension of \(u\) must be at least \(\max (1, n)\). \(u\) is not referenced if \(n r u=0\).
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\(c(I d c, *)\) contains the matrix \(C\) for computing the product \(Q^{H}{ }^{\star} C\). The second dimension of \(c\) must be at least \(\max (1, n c c)\). The array is not referenced if \(n c c=0\).
Idvt INTEGER. The first dimension of \(v t\). Constraints: ldvt \(\geq \max (1, n)\) if \(n c v t>0\); ldvt \(\geq 1\) if \(n c v t=0\).
INTEGER. The first dimension of \(u\). Constraint: \(I d u \geq \max (1, n r u)\).

INTEGER. The first dimension of \(c\). Constraints:
\(l_{d c} \geq \max (1, n)\) if \(n c c>0\);
\(I d c \geq 1\) otherwise.

\section*{Output Parameters}
d On exit, if info=0, overwritten by the singular values in decreasing order (see info).
e On exit, if info \(=0, e\) is destroyed. See also info below.
Overwritten by the product \(Q^{H}{ }^{\star} C\).
vt On exit, this array is overwritten by \(P^{H} \star V T\).
\(u \quad\) On exit, this array is overwritten by \(U \star Q\).
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), the algorithm failed to converge;
\(i\) specifies how many off-diagonals did not converge. In this case, \(d\) and e contain on exit the diagonal and off-diagonal elements, respectively, of a bidiagonal matrix orthogonally equivalent to \(B\).

\section*{Application Notes}

Each singular value and singular vector is computed to high relative accuracy. However, the reduction to bidiagonal form (prior to calling the routine) may decrease the relative accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.

If \(\sigma_{i}\) is an exact singular value of \(B\), and \(s_{i}\) is the corresponding computed value, then
\[
\left|s_{i}-\sigma_{i}\right| \leq p(m, n) \varepsilon \sigma_{i}
\]
where \(p(m, n)\) is a modestly increasing function of \(m\) and \(n\), and \(\varepsilon\) is the machine precision. If only singular values are computed, they are computed more accurately than when some singular vectors are also computed (that is, the function \(p(m, n)\) is smaller).

If \(u_{i}\) is the corresponding exact left singular vector of \(B\), and \(w_{i}\) is the corresponding computed left singular vector, then the angle \(\theta\left(u_{i}, w_{i}\right)\) between them is bounded as follows:
\[
\theta\left(u_{i}, w_{i}\right) \leq p(m, n) \varepsilon / \min _{i \neq j}\left(\left|\sigma_{i}-\sigma_{j}\right| /\left|\sigma_{i}+\sigma_{j}\right|\right) .
\]

Here \(\min _{i \neq j}\left(\left|\sigma_{i}-\sigma_{j}\right|\left|\sigma_{i}+\sigma_{j}\right|\right)\) is the relative gap between \(\sigma_{i}\) and the other singular values. A similar error bound holds for the right singular vectors.
The total number of real floating-point operations is roughly proportional to \(n^{2}\) if only the singular values are computed. About \(6 n^{2} \star_{n r u}\) additional operations (\(12 n^{2} *_{n r u}\) for complex flavors) are required to compute the left singular vectors and about \(6 n^{2} \star_{n C v t}\) operations (\(12 n^{2} \star_{n C v t}\) for complex flavors) to compute the right singular vectors.

\section*{?bdsdc}

Computes the singular value decomposition of a real bidiagonal matrix using a divide and conquer method.
```

call sbdsdc ( uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
iwork, info )
call dbdsdc ( uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
iwork, info )

```

\section*{Discussion}

This routine computes the Singular Value Decomposition (SVD) of a real \(n\)-by- \(n\) (upper or lower) bidiagonal matrix \(B: B=U \Sigma V^{\mathrm{T}}\), using a divide and conquer method, where \(\Sigma\) is a diagonal matrix with non-negative diagonal elements (the singular values of \(B\)), and \(U\) and \(V\) are orthogonal matrices of left and right singular vectors, respectively. ?bdsdc can be used to compute all singular values, and optionally, singular vectors or singular vectors in compact form.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo \({ }^{\prime}\) ' \(\mathrm{U}^{\prime}, B\) is an upper bidiagonal matrix. \\
\hline & If uplo = 'L', \(B\) is a lower bidiagonal matrix. \\
\hline \multirow[t]{4}{*}{compq} & CHARACTER*1. Must be 'N', 'P', or 'I'. \\
\hline & If compq \(=\) ' \(N^{\prime}\), compute singular values only. \\
\hline & If compq = ' \(\mathrm{P}^{\prime}\), compute singular values and compute singular vectors in compact form. \\
\hline & If compq = ' I', compute singular values and singular vectors. \\
\hline \(n\) & INTEGER. The order of the matrix \(B(n \geq 0)\). \\
\hline \multirow[t]{3}{*}{d, e, work} & REAL for sbdsdc \\
\hline & DOUBLE PRECISION for sbdsdc. \\
\hline & Arrays: \\
\hline
\end{tabular}
\(d(*)\) contains the \(n\) diagonal elements of the bidiagonal matrix \(B\). The dimension of \(d\) must be at least \(\max (1, n)\). \(e(*)\) contains the off-diagonal elements of the bidiagonal matrix \(B\). The dimension of e must be at least \(\max (1, n)\).
work (*) is a workspace array.
The dimension of work must be at least:
\(\max \left(1,4 \star_{n}\right)\), if compq= 'N';
\(\max \left(1,6 \star_{n}\right)\), if compq \(={ }^{\prime} \mathrm{P}^{\prime}\);
\(\max \left(1,3 \star_{n}{ }^{2}+4 \star_{n}\right)\), if compq \(=' I^{\prime}\).
\begin{tabular}{|c|c|}
\hline \(1 d u\) & Integer. The first dimension of the output array \(u\); \(l d u \geq 1\). If singular vectors are desired, then \(I d u \geq \max (1, n)\). \\
\hline Idvt & INTEGER. The first dimension of the output array \(v t\); \(l d v t \geq 1\). If singular vectors are desired, then \(l d v t \geq \max (1, n)\). \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, dimension at least \(\max \left(1,8 \star_{n}\right)\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
d
\(e \quad\) On exit, \(e\) is overwritten.
\(u, v t, q\) REAL for sbdsdc
DOUBLE PRECISION for sbdsdc.
Arrays: u(ldu,*), vt(Idvt,*), \(q\left({ }^{*}\right)\).
If compq \(=\) ' I', then on exit \(u\) contains the left singular vectors of the bidiagonal matrix \(B\), unless info \(\neq 0\) (see info). For other values of compq, \(u\) is not referenced. The second dimension of \(u\) must be at least \(\max (1, n)\).
If compq \(=\) ' I', then on exit \(v t\) contains the right singular vectors of the bidiagonal matrix \(B\), unless info \(\neq 0\) (see info). For other values of compq, vt is not referenced. The second dimension of vt must be at least \(\max (1, n)\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

If compq \(=\) ' \(P^{\prime}\), then on exit, if info \(=0, q\) and iq contain the left and right singular vectors in a compact form. Specifically, \(q\) contains all the REAL (for sbdsdc) or DOUBLE PRECISION (for dbdsdc) data for singular vectors. For other values of compq, \(q\) is not referenced. See Application notes for details.

INTEGER.
Array: iq(*).
If compq = ' \(P\) ', then on exit, if info \(=0, q\) and \(i q\) contain the left and right singular vectors in a compact form. Specifically, iq contains all the INTEGER data for singular vectors. For other values of compq, \(i q\) is not referenced. See Application notes for details.

\section*{INTEGER.}

If \(\operatorname{info}=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i\), the algorithm failed to compute a singular value. The update process of divide and conquer failed.

\section*{Symmetric Eigenvalue Problems}

Symmetric eigenvalue problems are posed as follows: given an \(n\) by \(n\) real symmetric or complex Hermitian matrix \(A\), find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy the equation
\[
A z=\lambda z .\left(\text { or, equivalently, } z^{H} A=\lambda z^{H}\right)
\]

In such eigenvalue problems, all \(n\) eigenvalues are real not only for real symmetric but also for complex Hermitian matrices \(A\), and there exists an orthonormal system of \(n\) eigenvectors. If \(A\) is a symmetric or Hermitian positive-definite matrix, all eigenvalues are positive.
To solve a symmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to tridiagonal form and then solve the eigenvalue problem with the tridiagonal matrix obtained. LAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or unitary) similarity transformation \(A=Q T Q^{H}\) as well as for solving tridiagonal symmetric eigenvalue problems. These routines are listed in Table 5-3.
There are different routines for symmetric eigenvalue problems, depending on whether you need all eigenvectors or only some of them or eigenvalues only, whether the matrix \(A\) is positive-definite or not, and so on. These routines are based on three primary algorithms for computing eigenvalues and eigenvectors of symmetric problems: the divide and conquer algorithm, the QR algorithm, and bisection followed by inverse iteration. The divide and conquer algorithm is generally more efficient and is recommended for computing all eigenvalues and eigenvectors. Furthermore, to solve an eigenvalue problem using the divide and conquer algorithm, you need to call only one routine. In general, more than one routine has to be called if the QR algorithm or bisection followed by inverse iteration is used.

Decision tree in Figure 5-2 will help you choose the right routine or sequence of routines for eigenvalue problems with real symmetric matrices. A similar decision tree for complex Hermitian matrices is presented in Figure 5-3.

Figure 5-2 Decision Tree: Real Symmetric Eigenvalue Problems

Figure 5-3 Decision Tree: Complex Hermitian Eigenvalue Problems

\begin{tabular}{lll}
Table 5-3 & \multicolumn{2}{l}{\begin{tabular}{l}
Computational Routines for Solving Symmetric Eigenvalue \\
Problems
\end{tabular}} \\
\hline Operation & \begin{tabular}{l}
Real symmetric \\
matrices
\end{tabular} & \begin{tabular}{l}
Complex Hermitian \\
matrices
\end{tabular} \\
\hline \begin{tabular}{l}
Reduce to tridiagonal form \\
\(A=Q T Q^{H}\) (full storage)
\end{tabular} & \(\underline{\text { ?sytrd }}\) & ?hetrd \\
Reduce to tridiagonal form \\
\(A=Q T Q^{H}\) (packed storage) & \(\underline{\text { ?sptrd }}\) & ?hptrd \\
Reduce to tridiagonal form \\
\(A=Q T Q^{H}\) (band storage). & \(\underline{\text { ?sbtrd }}\)\begin{tabular}{l}
Generate matrix \(Q\) \\
(full storage) \\
Generate matrix \(Q\) \\
(packed storage)
\end{tabular} & \(\underline{\text { ?orgtr }}\)
\end{tabular}

\section*{?sytrd}

Reduces a real symmetric matrix to tridiagonal form.
```

call ssytrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )
call dsytrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )

```

\section*{Discussion}

This routine reduces a real symmetric matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q T Q^{T}\). The orthogonal matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation. (They are described later in this section.)

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo= 'U', a stores the upper triangular part of A.
If uplo= 'L', a stores the lower triangular part of A.
n
a, work REAL for ssytrd
DOUBLE PRECISION for dsytrd.
a(Ida,*) is an array containing either upper or lower
triangular part of the matrix }A\mathrm{ , as specified by uplo.
The second dimension of a must be at least max( }1,n)\mathrm{ .
work (lwork) is a workspace array.
Ida Integer. The first dimension of a; at least max(1,n).
lwork INTEGER. The size of the work array (lwork \geqn)
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}

Overwritten by the tridiagonal matrix \(T\) and details of the orthogonal matrix \(Q\), as specified by uplo.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{9}{*}{d, e, tau} & REAL for ssytrd \\
\hline & DOUBLE PRECISION for dsytrd. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the diagonal elements of the matrix \(T\). \\
\hline & The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & The dimension of e must be at least \(\max (1, n-1)\). \\
\hline & \(\operatorname{tau}(*)\) stores further details of the orthogonal matrix \\
\hline & \(Q\). The dimension of tau must be at least max \((1, n-1)\). \\
\hline work(1) & If info=0, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using 1 work \(=_{n} \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left\|\left.E\left|\left.\right|_{2}=c(n) \varepsilon \| A\right|\right|_{2}, c(n)\right.\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((4 / 3) n^{3}\).
After calling this routine, you can call the following:
?orgtr to form the computed matrix \(Q\) explicitly;
?ormtr to multiply a real matrix by \(Q\).
The complex counterpart of this routine is ?hetrd.

\section*{?orgtr}

Generates the real orthogonal matrix \(Q\) determined by ?sytrd.
```

call sorgtr ( uplo, n, a, lda, tau, work, lwork, info )
call dorgtr ( uplo, n, a, lda, tau, work, lwork, info )

```

\section*{Discussion}

The routine explicitly generates the \(n\) by \(n\) orthogonal matrix \(Q\) formed by ?sytrd (see page 5-105) when reducing a real symmetric matrix \(A\) to tridiagonal form: \(A=Q T Q^{T}\). Use this routine after a call to ?sytrd.

\section*{Input Parameters}
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Use the same uplo as supplied to ?sytrd.
n INTEGER. The order of the matrix Q ( }n\geq0)\mathrm{ .
a, tau, work REAL for sorgtr
DOUBLE PRECISION for dorgtr.
Arrays:
a(lda,*) is the array a as returned by ?sytrd.
The second dimension of a must be at least max(1,n).
tau(*) is the array tau as returned by ?sytrd.
The dimension of tau must be at least max(1,n-1).
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1,n).
lwork INTEGER. The size of the work array (lwork \geqn)
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}

Overwritten by the orthogonal matrix \(Q\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
work(1)
info

If info \(=0\), on exit work (1) contains the minimum value of \(I\) work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=(n-1) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((4 / 3) n^{3}\).
The complex counterpart of this routine is ?ungtr.

\section*{? ormtr}
```

Multiplies a real matrix by the real
orthogonal matrix Q determined by
?sytrd.
call sormtr ( side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info )
call dormtr ( side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info )

```

\section*{Discussion}

The routine multiplies a real matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) formed by ?sytrd (see page 5-105) when reducing a real symmetric matrix \(A\) to tridiagonal form: \(A=Q T Q^{T}\). Use this routine after a call to ?sytrd.
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (overwriting the result on \(C\)).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) : If side \(=\) 'L', \(r=m\); if side \(=\) 'R', \(r=n\).
\begin{tabular}{|c|c|}
\hline side & \begin{tabular}{l}
CHARACTER*1. Must be either 'L' or 'R'. \\
If side =' L',\(Q\) or \(Q^{T}\) is applied to \(C\) from the left. \\
If side ='R', \(Q\) or \(Q^{T}\) is applied to \(C\) from the right.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
Use the same uplo as supplied to ?sytrd.
\end{tabular} \\
\hline trans & \begin{tabular}{l}
CHARACTER*1. Must be either 'N' or 'T'. \\
If trans \(=\) 'N', the routine multiplies \(C\) by \(Q\). \\
If trans \(=\) ' T ', the routine multiplies \(C\) by \(Q^{T}\).
\end{tabular} \\
\hline m & integer. The number of rows in the matrix \(C\) (\(m \geq 0\)). \\
\hline \(n\) & integer. The number of columns in C (\(n \geq 0\)). \\
\hline a, work, tau, c & \begin{tabular}{l}
REAL for sormtr \\
DOUBLE PRECISION for dormtr. \\
a(Ida,*) and tau are the arrays returned by ?sytrd.
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

The second dimension of a must be at least max \((1, r)\). The dimension of tau must be at least \(\max (1, r-1)\).
\(c(I d c, *)\) contains the matrix \(C\).
The second dimension of \(c\) must be at least \(\max (1, n)\)
work (1 work) is a workspace array.
lda
ldc
I work

INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, r)\).
INTEGER. The first dimension of \(c ; I d c \geq \max (1, n)\).
integer. The size of the work array. Constraints:
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
lwork \(\geq \max (1, m)\) if side \(=\) 'R' \(^{\prime}\).
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

Overwritten by the product \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (as specified by side and trans).
work (1) If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize for side \(=\) 'L', or 1 work \(=m^{*}\) blocksize for side \(=\) 'R', where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed product differs from the exact product by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)| | C| |_{2}\).
The total number of floating-point operations is approximately \(2 \star_{m^{2}}{ }_{n}\) if side \(=\) 'L' or \(2 \star_{n}{ }^{2} \star_{m}\) if side \(=\) 'R'.
The complex counterpart of this routine is ? unmtr.

\section*{?hetrd}

\section*{Reduces a complex Hermitian matrix to tridiagonal form.}
```

call chetrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )
call zhetrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )

```

\section*{Discussion}

This routine reduces a complex Hermitian matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q T Q^{H}\). The unitary matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided to work with \(Q\) in this representation. (They are described later in this section.)

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplO= 'U', a stores the upper triangular part of A.
If uplo= 'L', a stores the lower triangular part of }A\mathrm{ .
n
a, work
Ida INTEGER. The first dimension of a; at least max (1,n).
Iwork INTEGER. The size of the work array (lwork \geqn)
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}

Overwritten by the tridiagonal matrix \(T\) and details of the unitary matrix \(Q\), as specified by uplo.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{\(d, e\)} & REAL for chetrd \\
\hline & DOUBLE PRECISION for zhetrd. \\
\hline & Arrays: \\
\hline & \(d\) (*) contains the diagonal elements of the matrix \(T\). \\
\hline & The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & The dimension of e must be at least max \((1, n-1)\). \\
\hline \multirow[t]{4}{*}{tau} & COMPLEX for chetrd \\
\hline & DOUBLE COMPLEX for zhetrd. \\
\hline & Array, DIMENSION at least max \((1, n-1)\). \\
\hline & Stores further details of the unitary matrix \(Q\). \\
\hline work(1) & If info \(=0\), on exit work (1) contains the minimum value of \(I\) work required for optimum performance. Use this lwork for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\left\|E\left|\left.\right|_{2}=c(n) \varepsilon\|A \mid\|_{2}, c(n)\right.\right.\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((16 / 3) n^{3}\).
After calling this routine, you can call the following:
?ungtr to form the computed matrix \(Q\) explicitly;
? unmtr to multiply a complex matrix by \(Q\).
The real counterpart of this routine is ?sytrd.

\section*{?ungtr}

Generates the complex unitary matrix \(Q\) determined by ?hetrd.
```

call cungtr ( uplo, n, a, lda, tau, work, lwork, info )
call zungtr ( uplo, n, a, lda, tau, work, lwork, info )

```

\section*{Discussion}

The routine explicitly generates the \(n\) by \(n\) unitary matrix \(Q\) formed by ?hetrd (see page 5-111) when reducing a complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q T Q^{H}\). Use this routine after a call to ?hetrd.

\section*{Input Parameters}
```

uplo CHARACTER*1.Must be 'U' or 'L'.

```
 Use the same uplo as supplied to ?hetrd.
\(n \quad\) INTEGER. The order of the matrix \(Q(n \geq 0)\).
a, tau, work COMPLEX for cungtr
 DOUBLE COMPLEX for zungtr.
 Arrays:
 \(a(I d a, *)\) is the array \(a\) as returned by ?hetrd.
 The second dimension of a must be at least max \((1, n)\).
 \(\operatorname{tau}(*)\) is the array tau as returned by ?hetrd.
 The dimension of tau must be at least \(\max (1, n-1)\).
 work (lwork) is a workspace array.
Ida INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
lwork INTEGER. The size of the work array (lwork \(\geq n\))
 See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

\footnotetext{
a
Overwritten by the unitary matrix \(Q\).
}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
work(1)
info

If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=(n-1) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from an exactly unitary matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((16 / 3) n^{3}\).
The real counterpart of this routine is ?orgtr.

\section*{? unmtr}

\section*{Multiplies a complex matrix by the complex unitary matrix \(Q\) determined by ?hetrd.}
```

call cunmtr ( side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info )
call zunmtr ( side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info )

```

\section*{Discussion}

The routine multiplies a complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) formed by ?hetrd (see page 5-111) when reducing a complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q T Q^{H}\). Use this routine after a call to ?hetrd.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (overwriting the result on \(C\)).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) : If side \(=\) 'L', \(r=m\); if side \(=\) 'R', \(r=n\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

The second dimension of a must be at least max \((1, r)\). The dimension of tau must be at least \(\max (1, r-1)\).
\(c(I d c, *)\) contains the matrix \(C\).
The second dimension of \(c\) must be at least \(\max (1, n)\)
work (1 work) is a workspace array.
lda
ldc
I work

INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, r)\).
INTEGER. The first dimension of \(c ; I d c \geq \max (1, n)\).
integer. The size of the work array. Constraints:
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
lwork \(\geq \max (1, m)\) if side \(=\) 'R' \(^{\prime}\).
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline c & Overwritten by the product \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (as specified by side and trans). \\
\hline work(1) & If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & Integer. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize (for side \(=\) 'L') or lwork \(=m^{\star}\) blocksize (for side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed product differs from the exact product by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)| | C| |_{2}\), where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(8 \star_{m^{2}}{ }_{n}\) if side \(=\) 'L' or \(8 \star_{n}{ }^{2} \star_{m}\) if side \(=\) 'R'.
The real counterpart of this routine is ?ormtr.

\section*{?sptrd}

Reduces a real symmetric matrix to tridiagonal form using packed storage.
```

call ssptrd ( uplo,n,ap,d,e,tau,info )
call dsptrd ( uplo,n,ap,d,e,tau,info )

```

\section*{Discussion}

This routine reduces a packed real symmetric matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q T Q^{T}\). The orthogonal matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation. (They are described later in this section.)

\section*{Input Parameters}
```

ChARACTER*1. Must be 'U' or 'L'.

```

If uplo='U', ap stores the packed upper triangle of \(A\).
If uplo='L', ap stores the packed lower triangle of \(A\).
InTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Array, DIMENSION at least max \((1, n(n+1) / 2)\).
Contains either upper or lower triangle of \(A\) (as specified by uplo) in packed form.

\section*{Output Parameters}
ap
Overwritten by the tridiagonal matrix \(T\) and details of the orthogonal matrix \(Q\), as specified by uplo.
```

d, e, tau

```
REAL for ssptrd
DOUBLE PRECISION for dsptrd.

Arrays:
\(d\) (*) contains the diagonal elements of the matrix \(T\). The dimension of \(d\) must be at least \(\max (1, n)\).
e (*) contains the off-diagonal elements of \(T\). The dimension of \(e\) must be at least \(\max (1, n-1)\). \(\operatorname{tau}(*)\) stores further details of the matrix \(Q\). The dimension of \(t a u\) must be at least \(\max (1, n-1)\).

\section*{info} INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(||E||_{2}=c(n) \varepsilon| | A| |_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((4 / 3) n^{3}\).
After calling this routine, you can call the following:
?opgtr \(\quad\) to form the computed matrix \(Q\) explicitly;
?opmtr to multiply a real matrix by \(Q\).
The complex counterpart of this routine is ?hptrd.

\section*{?opgtr}

Generates the real orthogonal matrix \(Q\) determined by ?sptrd.
```

call sopgtr ( uplo, n, ap, tau, q, ldq, work, info )
call dopgtr ( uplo, n, ap, tau, q, ldq, work, info )

```

\section*{Discussion}

The routine explicitly generates the \(n\) by \(n\) orthogonal matrix \(Q\) formed by ?sptrd (see page 5-117) when reducing a packed real symmetric matrix \(A\) to tridiagonal form: \(A=Q T Q^{T}\). Use this routine after a call to ?sptrd.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Use the same uplo as supplied to ?sptrd. \\
\hline \(n\) & Integer. The order of the matrix \(Q(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{ap, tau} & REAL for sopgtr \\
\hline & DOUBLE PRECISION for dopgtr. \\
\hline & Arrays \(a p\) and \(t a u\), as returned by ?sptrd. \\
\hline & The dimension of ap must be at least max (1, \(n(n+1) / 2\)). \\
\hline & The dimension of tau must be at least \(\max (1, n-1)\). \\
\hline \(1 d q\) & INTEGER. The first dimension of the output array \(q\); at least \(\max (1, n)\). \\
\hline \multirow[t]{3}{*}{work} & REAL for sopgtr \\
\hline & DOUBLE PRECISION for dopgtr. \\
\hline & Workspace array, DIMENSION at least max (1, \(n-1\)). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

q REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Array, DIMENSION (ldq,*).
Contains the computed matrix Q.
The second dimension of q must be at least max (1,n).

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{info INTEGER.}

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\|\left. E\right|_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision. The approximate number of floating-point operations is \((4 / 3) n^{3}\).

The complex counterpart of this routine is ?upgtr.

\section*{?opmtr}

Multiplies a real matrix by the real orthogonal matrix \(Q\) determined by
?sptrd.
```

call sopmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)
call dopmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

```

\section*{Discussion}

The routine multiplies a real matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) formed by ?sptrd (see page 5-117) when reducing a packed real symmetric matrix \(A\) to tridiagonal form: \(A=Q T Q^{T}\). Use this routine after a call to ?sptrd.
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (overwriting the result on \(C\)).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) :
\[
\text { If side }=\text { 'L', } r=m \text {; if side }='^{\prime} \text { ', } r=n \text {. }
\]
\begin{tabular}{ll}
CHARACTER* 1. Must be either 'L' or 'R'. \\
& If \(\operatorname{side}=\) 'L',\(Q\) or \(Q^{T}\) is applied to \(C\) from the left. \\
& If side \(=\) 'R',\(Q\) or \(Q^{T}\) is applied to \(C\) from the right.
\end{tabular}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sptrd.
trans CHARACTER*1. Must be either 'N' or 'T'.
If trans='N', the routine multiplies C by Q.
If trans='T', the routine multiplies C by Q }\mp@subsup{Q}{}{T}\mathrm{ .
INTEGER. The number of rows in the matrix C ( }m\geq0)\mathrm{ .
INTEGER. The number of columns in C ( }n\geq0)\mathrm{ .
ap,work,tau,c REAL for sopmtr
DOUBLE PRECISION for dopmtr.
ap and tau are the arrays returned by ?sptrd.
The dimension of ap must be at least max(1,r(r+1)/2).
The dimension of tau must be at least max(1,r-1).
c(Idc,*) contains the matrix C.
The second dimension of c must be at least max (1,n)
work (*) is a workspace array.
The dimension of work must be at least
max(1,n) if side='L';
max(1,m) if side ='R'.

```
\(\operatorname{ldc} \quad \operatorname{INTEGER}\). The first dimension of \(c ; 1 d c \geq \max (1, n)\).

\section*{Output Parameters}
\begin{tabular}{ll}
C \\
info \(\quad\) & \begin{tabular}{l}
Overwritten by the product \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) \\
(as specified by side and trans).
\end{tabular} \\
& INTEGER. \\
& If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The computed product differs from the exact product by a matrix \(E\) such that \(\left\|\left.E\left|\left.\right|_{2}=O(\varepsilon) \| C\right|\right|_{2}\right.\), where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(2 \star_{m}{ }^{2}{ }_{n}\) if side \(=\) 'L' or \(2 \star_{n}{ }^{2} \star_{m}\) if side \(=\) 'R'.
The complex counterpart of this routine is ?upmtr.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?hptrd}
```

Reduces a complex Hermitian matrix to tridiagonal form using packed storage.

```
```

call chptrd ( uplo,n,ap,d,e,tau,info )

```
call chptrd (uplo,n,ap,d,e,tau,info)
call zhptrd (uplo,n,ap,d,e,tau,info)
```

call zhptrd ( uplo,n,ap,d,e,tau,info )

```

\section*{Discussion}

This routine reduces a packed complex Hermitian matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q T Q^{H}\). The unitary matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation. (They are described later in this section.)

\section*{Input Parameters}
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo='U', ap stores the packed upper triangle of \(A\). If uplo='L',ap stores the packed lower triangle of \(A\).
n
INTEGER. The order of the matrix \(A(n \geq 0)\).
COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Array, DIMENSION at least max \((1, n(n+1) / 2)\).
Contains either upper or lower triangle of \(A\) (as specified by uplo) in packed form.

\section*{Output Parameters}
ap
\(d, e \quad\)\begin{tabular}{l}
Overwritten by the tridiagonal matrix \(T\) and details of \\
the orthogonal matrix \(Q\), as specified by uplo.
\end{tabular}
REAL for chptrd
DOUBLE PRECISION for zhptrd.
Arrays:
\(d(*)\) contains the diagonal elements of the matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
e(*) contains the off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\).
tau
info

COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Arrays, DIMENSION at least \(\max (1, n-1)\).
Contains further details of the orthogonal matrix \(Q\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\|\left. E\right|_{2}=c(n) \varepsilon| | A| |_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((16 / 3) n^{3}\).
After calling this routine, you can call the following:
?upgtr to form the computed matrix \(Q\) explicitly;
?upmtr to multiply a complex matrix by \(Q\).
The real counterpart of this routine is?sptrd.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?upgtr}

Generates the complex unitary matrix \(Q\) determined by ?hptrd.
```

call cupgtr ( uplo, n, ap, tau, q, ldq, work, info )
call zupgtr ( uplo, n, ap, tau, q, ldq, work, info )

```

\section*{Discussion}

The routine explicitly generates the \(n\) by \(n\) unitary matrix \(Q\) formed by ?hptrd (see page 5-122) when reducing a packed complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q T Q^{H}\). Use this routine after a call to ?hptrd.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Use the same uplo as supplied to ?sptrd. \\
\hline \(n\) & Integer. The order of the matrix \(Q(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{ap, tau} & COMPLEX for cupgtr \\
\hline & DOUBLE COMPLEX for zupgtr. \\
\hline & Arrays \(a p\) and \(t a u\), as returned by ?hptrd. \\
\hline & The dimension of ap must be at least max \((1, n(n+1) / 2)\). \\
\hline & The dimension of tau must be at least \(\max (1, n-1)\). \\
\hline \(1 d q\) & INTEGER. The first dimension of the output array \(q\); at least \(\max (1, n)\). \\
\hline \multirow[t]{3}{*}{work} & COMPLEX for cupgtr \\
\hline & DOUBLE COMPLEX for zupgtr. \\
\hline & Workspace array, DIMENSION at least max (1, \(n-1\)). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

q COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Array, DIMENSION (Idq,*).
Contains the computed matrix Q .
The second dimension of q must be at least max (1,n).
info INTEGER.
If infO=0, the execution is successful.
If info =-i, the ith parameter had an illegal value.

```

\section*{Application Notes}

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\|\left. E\right|_{\left.\right|_{2}}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision. The approximate number of floating-point operations is \((16 / 3) n^{3}\).
The real counterpart of this routine is ?opgtr.

\section*{? upmtr}

Multiplies a complex matrix by the unitary
matrix \(Q\) determined by ?hptrd.
```

call cupmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

```
call zupmtr (side, uplo,trans,m,n,ap,tau, c, ldc,work,info)

\section*{Discussion}

The routine multiplies a complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) formed by ?hptrd (see page \(5-122\)) when reducing a packed complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q T Q^{H}\). Use this routine after a call to ?hptrd.
Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (overwriting the result on \(C\)).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) :
If side \(=\) 'L', \(r=m\); if side \(=\) 'R', \(r=n\).
\begin{tabular}{|c|c|}
\hline side & \begin{tabular}{l}
CHARACTER*1. Must be either 'L' or 'R'. \\
If side ='L', \(Q\) or \(Q^{H}\) is applied to \(C\) from the left. \\
If \(s i d e=\) 'R', \(Q\) or \(Q^{H}\) is applied to \(C\) from the right.
\end{tabular} \\
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. Use the same uplo as supplied to ?hptrd. \\
\hline trans & \begin{tabular}{l}
CHARACTER*1. Must be either ' \(N\) ' or 'T'. \\
If \(\operatorname{trans}=\) 'N', the routine multiplies \(C\) by \(Q\). \\
If trans \(=\) ' \(T\) ', the routine multiplies \(C\) by \(Q^{H}\).
\end{tabular} \\
\hline m & Integer. The number of rows in the matrix \(C(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns in C (\(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{ap,tau, c, work} & COMPLEX for cupmtr \\
\hline & DOUBLE COMPLEX for zupmtr. ap and tau are the arrays returned by ?hptrd. \\
\hline & The dimension of ap must be at least max \((1, r(r+1) / 2)\). The dimension of \(t a u\) must be at least \(\max (1, r-1)\). \(c(I d c, *)\) contains the matrix \(C\). \\
\hline & The second dimension of \(c\) must be at least \(\max (1, n)\) work (*) is a workspace array. \\
\hline & \begin{tabular}{l}
The dimension of work must be at least \(\max (1, n)\) if side \(=\) 'L'; \\
\(\max (1, m)\) if side \(=\) 'R'.
\end{tabular} \\
\hline
\end{tabular}

Idc INTEGER. The first dimension of \(c ; I d c \geq \max (1, n)\).

\section*{Output Parameters}
```

c Overwritten by the product QC, QH}C,CQ, or CQ H
(as specified by side and trans).
info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

```

\section*{Application Notes}

The computed product differs from the exact product by a matrix \(E\) such that \(\left\|\left.E\left|\left.\right|_{2}=O(\varepsilon) \| C\right|\right|_{2}\right.\), where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(8{ }^{*} m^{2} \star_{n}\) if side \(=\) 'L' or \(8{ }^{\star} n^{2} \star_{m}\) if side \(=\) 'R'.

The real counterpart of this routine is ?opmtr.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?sbtrd}

Reduces a real symmetric band matrix to tridiagonal form.
call ssbtrd (vect, uplo, \(n, k d, a b, l d a b, d, e, q, l d q, w o r k, i n f o)\)
call dsbtrd (vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

\section*{Discussion}

This routine reduces a real symmetric band matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q T Q^{T}\). The orthogonal matrix \(Q\) is determined as a product of Givens rotations. If required, the routine can also form the matrix \(Q\) explicitly.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{vect} & CHARACTER*1. Must be 'V' or 'N'. \\
\hline & If vect \(=\) ' V ', the routine returns the explicit matrix \(Q\). \\
\hline & If vect \(=\) ' N ', the routine does not return \(Q\). \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo \(=\) ' U', ab stores the upper triangular part of \(A\). \\
\hline & If uplo \(=\) 'L', ab stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \(k d\) & INTEGER. The number of super- or sub-diagonals in \(A\) (\(k d \geq 0\)). \\
\hline \multirow[t]{8}{*}{ab, work} & REAL for ssbtrd \\
\hline & DOUBLE PRECISION for dsbtrd. \\
\hline & \(a b\) (\(1 \mathrm{dab}, *\)) is an array containing either upper or \\
\hline & lower triangular part of the matrix \(A\) (as specified by \\
\hline & uplo) in band storage format. \\
\hline & The second dimension of ab must be at least max \((1, n)\). \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least max \((1, n)\). \\
\hline Idab & INTEGER. The first dimension of \(a b ;\) at least \(k d+1\). \\
\hline
\end{tabular}
```

ldq
INTEGER. The first dimension of $q$. Constraints:
$I d q \geq \max (1, n)$ if vect $=$ ' $V$ ';
$l d q \geq 1$ if vect = 'N'.

```

\section*{Output Parameters}
\(a b\)
d, e, \(q\)

On exit, the array ab is overwritten.
REAL for ssbtrd DOUBLE PRECISION for dsbtrd.

\section*{Arrays:}
\(d(*)\) contains the diagonal elements of the matrix \(T\). The dimension of \(d\) must be at least \(\max (1, n)\).
\(e\) (*) \(^{*}\) contains the off-diagonal elements of \(T\). The dimension of \(e\) must be at least \(\max (1, n-1)\).
\(q(I d q, *)\) is not referenced if vect \(=\) ' \(N\) '. If vect \(=\) ' \(\mathrm{V}^{\prime}, q\) contains the \(n\) by \(n\) matrix \(Q\).
The second dimension of \(q\) must be:
at least \(\max (1, n)\) if vect \(=' \mathrm{~V}\) '; at least 1 if vect \(=\) ' \(N\) '. INTEGER.
If \(i n f o=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(||E||_{2}=c(n) \varepsilon| | A| |_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision. The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\).
The total number of floating-point operations is approximately \(6 n^{2} \star k d\) if vect \(=' N^{\prime}\), with \(3 n^{3} *(k d-1) / k d\) additional operations if vect \(=' V^{\prime}\). The complex counterpart of this routine is ?hbtrd.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?hbtrd}

\section*{Reduces a complex Hermitian band matrix to tridiagonal form.}
```

call ch.btrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)
call zhbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

```

\section*{Discussion}

This routine reduces a complex Hermitian band matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q T Q^{H}\). The unitary matrix \(Q\) is determined as a product of Givens rotations. If required, the routine can also form the matrix \(Q\) explicitly.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{vect} & CHARACTER*1. Must be 'V' or 'N'. \\
\hline & If vect \(=\) ' \(\mathrm{V}^{\prime}\), the routine returns the explicit matrix \(Q\). \\
\hline & If vect \(=\) ' \(N^{\prime}\), the routine does not return \(Q\). \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo \(=\) 'U', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline kd & INTEGER. The number of super- or sub-diagonals in \(A\) (\(k d \geq 0\)). \\
\hline \multirow[t]{6}{*}{ab, work} & COMPLEX for chbtrd \\
\hline & DOUBLE COMPLEX for zhbtrd. \\
\hline & \(a b\) (\(1 \mathrm{dab},{ }^{*}\)) is an array containing either upper or \\
\hline & lower triangular part of the matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of \(a b\) must be at least \(\max (1, n)\). work (*) is a workspace array. \\
\hline & The dimension of work must be at least max \((1, n)\). \\
\hline Idab & INTEGER. The first dimension of \(a b\); at least \(k d+1\). \\
\hline
\end{tabular}
```

ldq INTEGER. The first dimension of q. Constraints:
ldq\geqmax(1,n) if vect = 'V';
ldq\geq1 if vect = 'N'.

```

\section*{Output Parameters}
\(a b\)
\(d, e\)
q
info

On exit, the array \(a b\) is overwritten.
REAL for chbtrd DOUBLE PRECISION for zhbtrd.

\section*{Arrays:}
\(d(*)\) contains the diagonal elements of the matrix \(T\). The dimension of \(d\) must be at least \(\max (1, n)\).
e(*) contains the off-diagonal elements of \(T\). The dimension of e must be at least \(\max (1, n-1)\).

COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
Array, DIMENSION (Idq,*).
If vect \(={ }^{\prime} N^{\prime}\), \(q\) is not referenced.
If vect \(=\) ' \(\mathrm{V}^{\prime}, q\) contains the \(n\) by \(n\) matrix \(Q\).
The second dimension of \(q\) must be:
at least \(\max (1, n)\) if vect \(={ }^{\prime} V^{\prime}\);
at least 1 if vect \(=\) ' \(N\) '.
INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\| E| |_{2}=c(n) \varepsilon| | A| |_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision. The computed matrix \(Q\) differs from an exactly unitary matrix by a matrix \(E\) such that \(\left||E|_{2}=O(\varepsilon)\right.\).
The total number of floating-point operations is approximately \(20 n^{2} \star_{k d}\) if vect \(=\) ' N ', with \(10_{n}^{3} \star(k d-1) / k d\) additional operations if vect \(=\) ' V '.

The real counterpart of this routine is ?sbtrd.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?sterf}

\author{
Computes all eigenvalues of a real symmetric tridiagonal matrix using \(Q R\) algorithm.
}
```

call ssterf ( n, d, e, info )
call dsterf ( n, d, e, info )

```

\section*{Discussion}

This routine computes all the eigenvalues of a real symmetric tridiagonal matrix \(T\) (which can be obtained by reducing a symmetric or Hermitian matrix to tridiagonal form). The routine uses a square-root-free variant of the \(Q R\) algorithm.
If you need not only the eigenvalues but also the eigenvectors, call ?steqr (page 5-134).

\section*{Input Parameters}
\(n \quad\) integer. The order of the matrix \(T(n \geq 0)\).
d, e REAL for ssterf
DOUBLE PRECISION for dsterf.
Arrays:
\(d\left({ }^{*}\right)\) contains the diagonal elements of \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e^{(*)}\) contains the off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\).

\section*{Output Parameters}

The \(n\) eigenvalues in ascending order, unless info>0. See also info.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), the algorithm failed to find all the eigenvalues after \(30 n\) iterations: \(i\) off-diagonal elements have not converged to zero. On exit, \(d\) and e contain, respectively, the diagonal and off-diagonal elements of a tridiagonal matrix orthogonally similar to \(T\). If info \(=-i\), the \(i\) th parameter had an illegal value .

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\left.\left||E|_{2}=O(\varepsilon)\right||T|\right|_{2}\), where \(\varepsilon\) is the machine precision.
If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\[
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \varepsilon \|\left. T\right|_{2}
\]
where \(c(n)\) is a modestly increasing function of \(n\).
The total number of floating-point operations depends on how rapidly the algorithm converges. Typically, it is about \(14 n^{2}\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?steqr}

> Computes all eigenvalues and eigenvectors of a symmetric or Hermitian matrix reduced to tridiagonal form (QR algorithm).
```

call ssteqr ( compz, n, d, e, z, ldz, work, info )
call dsteqr ( compz, n, d, e, z, ldz, work, info )
call csteqr ( compz, n, d, e, z, ldz, work, info )
call zsteqr ( compz, n, d, e, z, ldz, work, info )

```

\section*{Discussion}

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization: \(T=Z \Lambda Z^{T}\).
Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\); \(Z\) is an orthogonal matrix whose columns are eigenvectors. Thus,
\[
T z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
\]
(The routine normalizes the eigenvectors so that \(\left|\mid z_{i} \|_{2}=1\right.\).)
You can also use the routine for computing the eigenvalues and eigenvectors of an arbitrary real symmetric (or complex Hermitian) matrix \(A\) reduced to tridiagonal form \(T: A=Q T Q^{H}\). In this case, the spectral factorization is as follows: \(A=Q T Q^{H}=(Q Z) \Lambda(Q Z)^{H}\). Before calling ?steqr, you must reduce \(A\) to tridiagonal form and generate the explicit matrix \(Q\) by calling the following routines:
\begin{tabular}{lll}
& for real matrices: & for complex matrices: \\
full storage & ?sytrd, ?orgtr & ?hetrd, ?ungtr \\
packed storage & ?sptrd, ?opgtr & ?hptrd, ?upgtr \\
band storage & ?sbtrd (vect='V') & ?hbtrd (vect='V')
\end{tabular}

If you need eigenvalues only, it's more efficient to call ?sterf (page 5-132). If \(T\) is positive-definite, ?pteqr (page 5-146) can compute small eigenvalues more accurately than ?steqr.

To solve the problem by a single call, use one of the divide and conquer routines ?stevd, ? syevd, ?spevd, or ?sbevd for real symmetric matrices or ?heevd, ?hpevd, or ?hbevd for complex Hermitian matrices.

\section*{Input Parameters}
```

compz
CHARACTER*1. Must be 'N' or 'I' or 'V'
If compz='N', the routine computes eigenvalues only.
If compz='I', the routine computes the eigenvalues
and eigenvectors of the tridiagonal matrix }T\mathrm{ .
If compz='V', the routine computes the eigenvalues
and eigenvectors of }A\mathrm{ (and the array z must contain the
matrix }Q\mathrm{ on entry).
INTEGER. The order of the matrix T ( }n\geq0)\mathrm{ .
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max (1,n).
e (*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1,n-1).
work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz= 'N';
at least max (1, 2* n-2) if compz ='V' or 'I'.
z REAL for ssteqr
DOUBLE PRECISION for dsteqr
COMPLEX for csteqr
DOUBLE COMPLEX for zsteqr.
Array, DIMENSION (Idz,*)
If compz='N' or 'I', z need not be set.
If vect ='V', z must contain the n by n matrix Q.
The second dimension of z must be:
at least 1 if compz='N';
at least max (1,n) if compz ='V' or 'I'.
work (Iwork) is a workspace array.
INTEGER. The first dimension of z. Constraints:
ldz\geq1 if compz= 'N';
ldz\geqmax(1,n) if compz='V' or 'I'.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}

The \(n\) eigenvalues in ascending order, unless info \(>0\). See also info.

On exit, the array is overwritten; see info.
If info \(=0\), contains the \(n\) orthonormal eigenvectors, stored by columns. (The \(i\) th column corresponds to the \(i\) th eigenvalue.)

INTEGER.
If info \(=0\), the execution is successful.
If \(i n f \circ=i\), the algorithm failed to find all the eigenvalues after 30n iterations: \(i\) off-diagonal elements have not converged to zero. On exit, \(d\) and e contain, respectively, the diagonal and off-diagonal elements of a tridiagonal matrix orthogonally similar to \(T\). If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon)| | T| |_{2}\), where \(\varepsilon\) is the machine precision.
If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\[
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \varepsilon \| T| |_{2}
\]
where \(c(n)\) is a modestly increasing function of \(n\).
If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\[
\theta\left(z_{i}, w_{i}\right) \leq c(n) \varepsilon| | T| |_{2} / \min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right| .
\]

The total number of floating-point operations depends on how rapidly the algorithm converges. Typically, it is about
\[
\begin{aligned}
& 24 n^{2} \text { if compz = 'N'; } \\
& 7 n^{3}\left(\text { for complex flavors, } 14 n^{3}\right) \text { if } c o m p z=\text { 'V' or 'I'. }
\end{aligned}
\]

\section*{?stedc}
```

Computes all eigenvalues and
eigenvectors of a symmetric tridiagonal
matrix using the divide and conquer
method.

```
```

call sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork,info)

```
call sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork,info)
call dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
call dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
call cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
call cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
 iwork, liwork,info)
 iwork, liwork,info)
call zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
call zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
 iwork, liwork,info)
```

    iwork, liwork,info)
    ```

\section*{Discussion}

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.
The eigenvectors of a full or band real symmetric or complex Hermitian matrix can also be found if ?sytrd/?hetrd or ?sptrd/?hptrd or ?sbtrd/?hbtrd has been used to reduce this matrix to tridiagonal form.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline compz & CHARACTER*1. Must be 'N' or 'I' or \\
\hline & If compz \(={ }^{\prime} N\) ', the routine computes eigenvalues only. If \(c o m p z=\) 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix. \\
\hline & If \(c o m p z=' V\) ', the routine computes the eigenvalues and eigenvectors of original symmetric/Hermitian matrix. On entry, the array \(z\) must contain the orthogonal/unitary matrix used to reduce the original matrix to tridiagonal form. \\
\hline \(n\) & INTEGER. The order of the symmetric tridiagonal matrix \((n \geq 0)\). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{d, e, rwork} & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & \\
\hline & \(d(*)\) contains the diagonal elements of the tridiagonal matrix. The dimension of \(d\) must be at least \(\max (1, n)\). \\
\hline & \(e(*)\) contains the subdiagonal elements of the \\
\hline & tridiagonal matrix. The dimension of e must be at least \\
\hline & rwork (lrwork) is a workspace array used in complex \\
\hline & flavors only. \\
\hline \multirow[t]{7}{*}{\(z\), work} & REAL for sstedc \\
\hline & DOUBLE PRECISION for dstedc \\
\hline & COMPLEX for cstedc \\
\hline & DOUBLE COMPLEX for zstedc. \\
\hline & Arrays: \(z(I d z, *)\), work (*). \\
\hline & If comp \(z=' V\) ', then, on entry, \(z\) must contain the orthogonal/unitary matrix used to reduce the original matrix to tridiagonal form. \\
\hline & The second dimension of \(z\) must be at least \(\max (1, n)\). work (lwork) is a workspace array. \\
\hline \multirow[t]{3}{*}{\(1 d z\)} & INTEGER. The first dimension of \(z\). Constraints: \\
\hline & \(l d z \geq 1\) if compz = 'N'; \\
\hline & \(I d z \geq \max (1, n)\) if compz = 'V' or 'I'. \\
\hline \multirow[t]{2}{*}{lwork} & INTEGER. The dimension of the array work. \\
\hline & See Application Notes for the required value of lwork. \\
\hline \multirow[t]{2}{*}{lrwork} & INTEGER. The dimension of the array rwork (used for complex flavors only). \\
\hline & See Application Notes for the required value of Irwork. \\
\hline iwork & Integer. Workspace array, dimension (liwork). \\
\hline \multirow[t]{2}{*}{liwork} & INTEGER. The dimension of the array iwork. \\
\hline & See Application Notes for the required value of liwork. \\
\hline
\end{tabular}

\section*{Output Parameters}
\(d \quad\) The \(n\) eigenvalues in ascending order, unless info \(\neq 0\). See also info.

On exit, the array is overwritten; see info.
If info \(=0\), then if \(c o m p z=' V ', z\) contains the orthonormal eigenvectors of the original symmetric/Hermitian matrix, and if compz = 'I', z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If \(c o m p z=' N ', z\) is not referenced.
work (1) On exit, if info=0, then work (1) returns the optimal lwork.
rwork (1) On exit, if info \(=0\), then rwork (1) returns the optimal lrwork (for complex flavors only).
iwork(1) On exit, if info \(=0\), then iwork (1) returns the optimal liwork.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.If info \(=i\), the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns \(i /(n+1)\) through \(\bmod (i, n+1)\).

\section*{Application Notes}

The required size of workspace arrays must be as follows.
For sstedc/dstedc:
If compz='N' or \(n \leq 1\) then lwork must be at least 1 . If compz \(=\) ' \(V\) ' and \(n>1\) then lwork must be at least \(\left(1+3 n+2 n \cdot \lg n+3 n^{2}\right)\), where \(\lg (n)=\) smallest integer \(k\) such that \(2^{k} \geq n\).
If compz \(=\) ' I' and \(n>1\) then lwork must be at least \(\left(1+4 n+n^{2}\right)\).
If compz \(={ }^{\prime} N\) ' or \(n \leq 1\) then liwork must be at least 1 .
If compz \(=\) 'V' and \(n>1\) then liwork must be at least \((6+6 n+5 n \cdot \lg n)\).
If compz \(=\) 'I' and \(n>1\) then liwork must be at least \((3+5 n)\).
For cstedc/zstedc:

If compz='N' or'I', or \(n \leq 1\), Iwork must be at least 1 .
If compz \(='^{\prime} \mathrm{V}^{\prime}\) and \(n>1\), I work must be at least \(n^{2}\).
If compz \(=\) ' \(N\) ' or \(n \leq 1\), lrwork must be at least 1 .
If compz \(=\) 'V' and \(n>1\), lrwork must be at least
\(\left(1+3 n+2 n \cdot \lg n+3 n^{2}\right)\), where \(\lg (n)=\) smallest integer \(k\) such that \(2^{k} \geq\) n.

If compz \(=\) ' I' and \(n>1\), Irwork must be at least \(\left(1+4 n+2 n^{2}\right)\).
The required value of liwork for complex flavors is the same as for real flavors.

\section*{?stegr}

Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.
```

call sstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)
call dstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)
call cstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)
call zstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

```

\section*{Discussion}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. The eigenvalues are computed by the \(d q d s\) algorithm, while orthogonal eigenvectors are computed from various "good" \(L D L^{T}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of \(T\),
(a) Compute \(T-\sigma_{\mathrm{i}}=L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\), such that \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) is a relatively robust representation;
(b) Compute the eigenvalues, \(\lambda_{\mathrm{j}}\), of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) to high relative accuracy by the \(d q d s\) algorithm;
(c) If there is a cluster of close eigenvalues, "choose" \(\sigma_{1}\) close to the cluster, and go to step (a);
(d) Given the approximate eigenvalue \(\lambda_{\mathrm{j}}\) of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\), compute the corresponding eigenvector by forming a rank-revealing twisted factorization.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

The desired accuracy of the output can be specified by the input parameter abstol.

Input Parameters
\begin{tabular}{|c|c|}
\hline jobz & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If job \(=\) ' \(N\) ', then only eigenvalues are computed. If job \(=\) ' \(V\) ', then eigenvalues and eigenvectors are computed. \\
\hline range & \begin{tabular}{l}
CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
If range \(=\) ' A ', the routine computes all eigenvalues. \\
If range \(=^{\prime} V\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v l<\lambda_{i} \leq v u\). \\
If range \(=\) ' I', the routine computes eigenvalues with indices il to \(i u\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\hline d, e, work & REAL for single precision flavors \\
\hline & DOUBLE PRECISION for double precision flavors. Arrays: \\
\hline & \(d(*)\) contains the diagonal elements of \(T\). \\
\hline & The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & \(e\) (*) contains the subdiagonal elements of \(T\) in \(^{\text {a }}\) elements 1 to \(n-1 ; e(n)\) need not be set. \\
\hline & The dimension of e must be at least \(\max (1, n)\). work (lwork) is a workspace array. \\
\hline vl, vu & REAL for single precision flavors \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for double precision flavors. If range \(=' V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
Constraint: vl<vu.
\end{tabular} \\
\hline & If range \(=\) 'A' or 'I', vl and vu are not referenced. \\
\hline il, iu & INTEGER. \\
\hline & \begin{tabular}{l}
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\).
\end{tabular} \\
\hline
\end{tabular}
```

abstol
ldz
lwork INTEGER. The dimension of the array work,
lwork \geq max(1,18n).
iwork INTEGER.
Workspace array, DIMENSION (liwork).
liwork INTEGER. The dimension of the array iwork,
lwork \geq max(1,10n).

```

\section*{Output Parameters}
```

d,e On exit, d and e are overwritten.
m INTEGER. The total number of eigenvalues found,
0\leqm\leqn. If range = 'A', m=n, and if range =' I',
m = iu-il+1.
REAL for single precision flavors DOUBLE PRECISION for double precision flavors. Array, DIMENSION at least max $(1, n)$.
The selected eigenvalues in ascending order, stored in $w(1)$ to $w(m)$.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
z
work(1)
iwork(1)
info

REAL for sstegr
DOUBLE PRECISION for dstegr
COMPLEX for cstegr
DOUBLE COMPLEX for zstegr.
Array \(z(I d z, *)\), the second dimension of \(z\) must be at least \(\max (1, m)\).
If jobz \(=\) ' \(V^{\prime}\), then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If jobz \(={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

INTEGER.
Array, DIMENSION at least \(2 * \max (1, m)\).
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The i-th eigenvector is nonzero only in elements isuppz(\(2 i-1\)) through \(i \operatorname{suppz}(2 i)\).
On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work.

On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=1\), internal error in slarre occurred,
If \(\operatorname{info}=2\), internal error in ?larrv occurred.

\section*{Application Notes}

Currently ?stegr is only set up to find all the \(n\) eigenvalues and eigenvectors of \(T\) in \(\mathrm{O}\left(n^{2}\right)\) time, that is, only range ='A' is supported.

Currently the routine ? stein is called when an appropriate \(\sigma_{1}\) cannot be chosen in step (c) above. ?stein invokes modified Gram-Schmidt when eigenvalues are close.
?stegr works only on machines which follow IEEE-754 floating-point standard in their handling of infinities and NaNs. Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not conform to the IEEE-754 standard.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?pteqr}

Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric positive-definite tridiagonal matrix.
```

call spteqr ( compz, n, d, e, z, ldz, work, info )
call dpteqr ( compz, n, d, e, z, ldz, work, info )
call cpteqr ( compz, n, d, e, z, ldz, work, info )
call zpteqr ( compz, n, d, e, z, ldz, work, info )

```

\section*{Discussion}

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric positive-definite tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization: \(T=Z \Lambda Z^{T}\). Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\); \(Z\) is an orthogonal matrix whose columns are eigenvectors. Thus,
\[
T z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n
\]
(The routine normalizes the eigenvectors so that \(\left|\mid z_{i} \|_{2}=1\right.\).)
You can also use the routine for computing the eigenvalues and eigenvectors of real symmetric (or complex Hermitian) positive-definite matrices \(A\) reduced to tridiagonal form \(T: A=Q T Q^{H}\). In this case, the spectral factorization is as follows: \(A=Q T Q^{H}=(Q Z) \Lambda(Q Z)^{H}\). Before calling ?pteqr, you must reduce \(A\) to tridiagonal form and generate the explicit matrix \(Q\) by calling the following routines:
for real matrices: for complex matrices:
full storage ?sytrd, ?orgtr ?hetrd, ?ungtr packed storage
?sptrd,?opgtr ?hptrd,?upgtr band storage ?sbtrd (vect='V') ?hbtrd (vect='V')
The routine first factorizes \(T\) as \(L D L^{H}\) where \(L\) is a unit lower bidiagonal matrix, and \(D\) is a diagonal matrix. Then it forms the bidiagonal matrix \(B=L D^{1 / 2}\) and calls ?bdsqr to compute the singular values of \(B\), which are the same as the eigenvalues of \(T\).

\section*{Input Parameters}
```

compz CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz='N', the routine computes eigenvalues only.
If compz='I', the routine computes the eigenvalues
and eigenvectors of the tridiagonal matrix }T\mathrm{ .
If compz='V', the routine computes the eigenvalues
and eigenvectors of }A\mathrm{ (and the array z must contain the
matrix }Q\mathrm{ on entry).
INTEGER. The order of the matrix T ( }n\geq0)\mathrm{ .
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max (1,n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1,n-1).
work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz= 'N';
at least max(1,4* n-4) if compz ='V' or 'I'.
REAL for spteqr
DOUBLE PRECISION for dpteqr
COMPLEX for cpteqr
DOUBLE COMPLEX for zpteqr.
Array, DIMENSION (Idz,*)
If compz='N' or 'I', z need not be set.
If vect ='V', z must contains the n by n matrix Q
The second dimension of z must be:
at least 1 if compz= 'N';
at least max (1,n) if compz ='V' or 'I'.
ldz INTEGER. The first dimension of z. Constraints:
ldz\geq1 if compz='N';
Idz \geqmax(1,n) if compz='V' or 'I'.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}

The \(n\) eigenvalues in descending order, unless info \(>0\). See also info.

On exit, the array is overwritten.
If info \(=0\), contains the \(n\) orthonormal eigenvectors, stored by columns. (The \(i\) th column corresponds to the ith eigenvalue.)

INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=i\), the leading minor of order \(i\) (and hence \(T\) itself) is not positive-definite.
If \(i n f o=n+i\), the algorithm for computing singular values failed to converge; \(i\) off-diagonal elements have not converged to zero.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\[
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \varepsilon K \lambda_{i}
\]
where \(c(n)\) is a modestly increasing function of \(n, \varepsilon\) is the machine precision, and \(K=\|D T D\|_{2}| |(D T D)^{-1}| |_{2}, D\) is diagonal with \(d_{i i}=t_{i i}{ }^{-1 / 2}\).
If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\[
\theta\left(u_{i}, w_{i}\right) \leq c(n) \varepsilon K / \min _{i \neq j}\left(\left|\lambda_{i}-\lambda_{j}\right| /\left|\lambda_{i}+\lambda_{j}\right|\right)
\]

Here \(\min _{i \neq j}\left(\left|\lambda_{i}-\lambda_{j}\right| /\left|\lambda_{i}+\lambda_{j}\right|\right)\) is the relative gap between \(\lambda_{i}\) and the other eigenvalues.

The total number of floating-point operations depends on how rapidly the algorithm converges. Typically, it is about
\[
\begin{aligned}
& 30 n^{2} \text { if compz }=\text { 'N'; } \\
& 6 n^{3}\left(\text { for complex flavors, } 12 n^{3}\right) \text { if compz }=\text { 'V' or 'I'. }
\end{aligned}
\]

\section*{?stebz}

Computes selected eigenvalues of a real symmetric tridiagonal matrix by bisection.
```

call sstebz (range, order, n, vl, vu, il, iu, abstol,
d, e, m, nsplit, w, iblock, isplit, work, iwork, info)
call dstebz (range, order, n, vl, vu, il, iu, abstol,
d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

```

\section*{Discussion}

This routine computes some (or all) of the eigenvalues of a real symmetric tridiagonal matrix \(T\) by bisection. The routine searches for zero or negligible off-diagonal elements to see if \(T\) splits into block-diagonal form \(T=\operatorname{diag}\left(T_{1}, T_{2}, \ldots\right)\). Then it performs bisection on each of the blocks \(T_{i}\) and returns the block index of each computed eigenvalue, so that a subsequent call to ?stein can also take advantage of the block structure.

\section*{Input Parameters}
range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range \(=\) 'A', the routine computes all eigenvalues.
If range \(=\) ' \(V\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v l<\lambda_{i} \leq v u\).
If range \(=\) 'I', the routine computes eigenvalues with indices il to iu.
order CHARACTER*1. Must be 'B' or 'E'.
If order \(=\) ' \(\mathrm{B}^{\prime}\), the eigenvalues are to be ordered from smallest to largest within each split-off block.
If order ='E', the eigenvalues for the entire matrix are to be ordered from smallest to largest.
n
INTEGER. The order of the matrix \(T(n \geq 0)\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{vl, vu} & REAL for sstebz \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dstebz. \\
If range \(=\) ' \(V^{\prime}\), the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v l<\lambda_{i} \leq v u\).
\end{tabular} \\
\hline il, iu & \begin{tabular}{l}
If range ='A' or 'I', vI and vu are not referenced. Integer. Constraint: \(1 \leq i 1 \leq i u \leq n\). \\
If range \(=\) ' I', the routine computes eigenvalues \(\lambda_{i}\) such that \(i 1 \leq i \leq i u\) (assuming that the eigenvalues \(\lambda_{i}\) are in ascending order).
\end{tabular} \\
\hline & If range \(=\) ' \(A\) ' or ' \(V\) ', il and \(i u\) are not referenced. REAL for sstebz \\
\hline abstol & \begin{tabular}{l}
DOUBLE PRECISION for dstebz. \\
The absolute tolerance to which each eigenvalue is required. An eigenvalue (or cluster) is considered to have converged if it lies in an interval of width abstol. If abstol \(\leq 0.0\), then the tolerance is taken as \(\varepsilon \| T| |_{1}\), where \(\varepsilon\) is the machine precision.
\end{tabular} \\
\hline \multirow[t]{5}{*}{d, e} & REAL for sstebz \\
\hline & DOUBLE PRECISION for dstebz. \\
\hline & \begin{tabular}{l}
Arrays: \\
\(d\) (*) contains the diagonal elements of \(T\)
\end{tabular} \\
\hline & The dimension of \(d\) must be at least max (1, \(n\)). \\
\hline & \begin{tabular}{l}
\(e(*)\) contains the off-diagonal elements of \(T\). \\
The dimension of \(e\) must be at least \(\max (1, n-1)\).
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
integer. Workspace. \\
Array, DIMENSION at least max \((1,3 n)\).
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline m & INTEGER. The actual number of eigenvalues found. \\
\hline nsplit & Integer. The number of diagonal blocks detected in \(T\). \\
\hline \multirow[t]{4}{*}{w} & REAL for sstebz \\
\hline & DOUBLE PRECISION for dstebz. \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & The computed eigenvalues, stored in \(w(1)\) to \(w(m)\). \\
\hline
\end{tabular}

\section*{iblock,isplit INTEGER.}

Arrays, DIMENSION at least \(\max (1, n)\).
A positive value iblock(i) is the block number of the eigenvalue stored in \(w(i)\) (see also info).
The leading nsplit elements of isplit contain points at which \(T\) splits into blocks \(T_{i}\) as follows: the block \(T_{1}\) contains rows/columns 1 to isplit(1); the block \(T_{2}\) contains rows/columns isplit(1)+1 to isplit (2), and so on.

INTEGER.
If \(i n f o=0\), the execution is successful.
If info \(=1\), for range \(=\) ' \(A\) ' or ' \(V\) ', the algorithm
failed to compute some of the required eigenvalues to the desired accuracy; iblock (i)<0 indicates that the eigenvalue stored in \(w(i)\) failed to converge.
If info \(=2\), for range \(=\) 'I', the algorithm failed to compute some of the required eigenvalues. Try calling the routine again with range \(=\) ' A '.
If info \(=3\) :
for range \(=\) 'A' or ' V ', same as info \(=1\);
for range \(=\) 'I', same as info \(=2\).
If info \(=4\), no eigenvalues have been computed. The floating-point arithmetic on the computer is not behaving as expected.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The eigenvalues of \(T\) are computed to high relative accuracy which means that if they vary widely in magnitude, then any small eigenvalues will be computed more accurately than, for example, with the standard \(Q R\) method. However, the reduction to tridiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative accuracy in the small eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

\section*{?stein}

\section*{Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix.}
```

call sstein ( n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info )
call dstein ( n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info )
call cstein ( n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info )
call zstein ( n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info )

```

\section*{Discussion}

This routine computes the eigenvectors of a real symmetric tridiagonal matrix \(T\) corresponding to specified eigenvalues, by inverse iteration. It is designed to be used in particular after the specified eigenvalues have been computed by ?stebz with order='B', but may also be used when the eigenvalues have been computed by other routines. If you use this routine after ?stebz, it can take advantage of the block structure by performing inverse iteration on each block \(T_{i}\) separately, which is more efficient than using the whole matrix \(T\).
If \(T\) has been formed by reduction of a full symmetric or Hermitian matrix \(A\) to tridiagonal form, you can transform eigenvectors of \(T\) to eigenvectors of A by calling ?ormtr or ?opmtr (for real flavors) or by calling ?unmtr or ?upmtr (for complex flavors).

\section*{Input Parameters}
\(\begin{array}{ll}n & \text { INTEGER. The order of the matrix } T(n \geq 0) . \\ m & \text { INTEGER. The number of eigenvectors to be returned. }\end{array}\)
\begin{tabular}{|c|c|}
\hline d, e, w & \begin{tabular}{l}
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors. Arrays: \\
\(d(*)\) contains the diagonal elements of \(T\). The dimension of \(d\) must be at least \(\max (1, n)\). \(e^{(*)}\) contains the off-diagonal elements of \(T\). The dimension of \(e\) must be at least \(\max (1, n-1)\). \(w(*)\) contains the eigenvalues of \(T\), stored in \(w(1)\) to \(w(m)\) (as returned by ?stebz, see page 5-149). Eigenvalues of \(T_{1}\) must be supplied first, in non-decreasing order; then those of \(T_{2}\), again in non-decreasing order, and so on. Constraint: if iblock(i) \(=\) iblock(i+1), w(i) \(\leq_{w}(i+1)\). \\
The dimension of \(w\) must be at least \(\max (1, n)\).
\end{tabular} \\
\hline iblock,isplit & \begin{tabular}{l}
INTEGER. \\
Arrays, DIMENSION at least max \((1, n)\). \\
The arrays iblock and isplit, as returned by ?stebz with order = 'B'. \\
If you did not call ?stebz with order = 'B', set all elements of iblock to 1 , and isplit (1) to n.)
\end{tabular} \\
\hline \(1 d z\) & integer. The first dimension of the output array \(z\); \(I d z \geq \max (1, n)\). \\
\hline work & \begin{tabular}{l}
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors. \\
Workspace array, DIMENSION at least max \((1,5 n)\).
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION at least max \((1, n)\).
\end{tabular} \\
\hline Output Parame & \\
\hline \(z\) & \begin{tabular}{l}
REAL for sstein \\
DOUBLE PRECISION for dstein \\
COMPLEX for cstein \\
DOUBLE COMPLEX for zstein. \\
Array, DIMENSION (Idz, *).
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
If info \(=0, z\) contains the \(m\) orthonormal eigenvectors,
stored by columns. (The \(i\) th column corresponds to the
ith specified eigenvalue.)
ifailv
INTEGER. Array, DIMENSION at least max \((1, m)\).
If info \(=i>0\), the first \(i\) elements of \(i f a i l v\) contain
the indices of any eigenvectors that failed to converge.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), then \(i\) eigenvectors (as indicated by the
parameter \(i f a i l v\)) each failed to converge in 5
iterations. The current iterates are stored in the
corresponding columns of the array \(z\).

\section*{Application Notes}

Each computed eigenvector \(z_{i}\) is an exact eigenvector of a matrix \(T+E_{i}\), where \(\left|\left|E_{i}\right|\right|_{2}=O(\varepsilon)| | T| |_{2}\). However, a set of eigenvectors computed by this routine may not be orthogonal to so high a degree of accuracy as those computed by ?steqr.

\section*{?disna}

Computes the reciprocal condition numbers for the eigenvectors of a symmetric/ Hermitian matrix or for the left or right singular vectors of a general matrix.
```

call sdisna (job, m, n, d, sep, info)
call ddisna (job, m, n, d, sep, info)

```

\section*{Discussion}

This routine computes the reciprocal condition numbers for the eigenvectors of a real symmetric or complex Hermitian matrix or for the left or right singular vectors of a general \(m\)-by- \(n\) matrix.

The reciprocal condition number is the 'gap' between the corresponding eigenvalue or singular value and the nearest other one.
The bound on the error, measured by angle in radians, in the \(i\)-th computed vector is given by
```

slamch( 'E' ) * ( anorm/ sep(i))

```
where anorm \(=\|A\|_{2}=\max (|d(\mathrm{j})|)\). \(\operatorname{sep}(i)\) is not allowed to be smaller than slamch('E')* anorm in order to limit the size of the error bound.
?disna may also be used to compute error bounds for eigenvectors of the generalized symmetric definite eigenproblem.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline job & ChARACTER*1. Must be 'E', 'L', or 'R'. \\
\hline & \begin{tabular}{l}
Specifies for which problem the reciprocal condition numbers should be computed: \\
job='E': for the eigenvectors of a symmetric/Hermitian matrix ; \\
job='L': for the left singular vectors of a general matrix; \\
job='R': for the right singular vectors of a general matrix .
\end{tabular} \\
\hline m & Integer. The number of rows of the matrix (\(m \geq 0\)). \\
\hline n & INTEGER. If job='L', or 'R', the number of columns of the matrix \((n \geq 0)\). Ignored if job \(={ }^{\prime} E\). \\
\hline d & REAL for sdisna \\
\hline & DOUBLE PRECISION for ddisna. \\
\hline & Array, dimension at least \(\max (1, m)\) if \(j o b=' E '\), and at least \(\max (1, \min (m, n))\) if \(j o b=\) 'L'or 'R'. \\
\hline & This array must contain the eigenvalues (if \(j 0 b={ }^{\prime} \mathrm{E}^{\prime}\)) or singular values (if \(j 0 b=\) 'L' or 'R') of the matrix, in either increasing or decreasing order. If singular values, they must be non-negative. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}

REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least \(\max (1, m)\) if job \(=' E\) ', and at least \(\max (1, \min (m, n))\) if job \(=\) 'L'or 'R'.
The reciprocal condition numbers of the vectors.
INTEGER.
If \(i n f o=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Generalized Symmetric-Definite Eigenvalue Problems}

Generalized symmetric-definite eigenvalue problems are as follows: find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy one of these equations:
\[
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
\]
where \(A\) is an \(n\) by \(n\) symmetric or Hermitian matrix, and \(B\) is an \(n\) by \(n\) symmetric positive-definite or Hermitian positive-definite matrix.
In these problems, there exist \(n\) real eigenvectors corresponding to real eigenvalues (even for complex Hermitian matrices \(A\) and \(B\)).

Routines described in this section allow you to reduce the above generalized problems to standard symmetric eigenvalue problem \(C y=\lambda y\), which you can solve by calling LAPACK routines described earlier in this chapter (see page 5-101).

Different routines allow the matrices to be stored either conventionally or in packed storage. Prior to reduction, the positive-definite matrix \(B\) must first be factorized using either ?potrf or ?pptrf.
The reduction routine for the banded matrices \(A\) and \(B\) uses a split Cholesky factorization for which a specific routine ?pbstf is provided. This refinement halves the amount of work required to form matrix \(C\).

Table 5-4 Computational Routines for Reducing Generalized Eigenproblems to Standard Problems
\begin{tabular}{lllll}
\hline & \begin{tabular}{l}
Reduce to standard \\
problems \\
(full storage)
\end{tabular} & \begin{tabular}{l}
Reduce to standard \\
problems \\
(packed storage)
\end{tabular} & \begin{tabular}{l}
Reduce to standard \\
problems \\
(band matrices)
\end{tabular} & \begin{tabular}{l}
Factorize \\
band \\
matrix
\end{tabular} \\
\hline \begin{tabular}{l}
real \\
symmetric \\
matrices
\end{tabular} & \(\underline{? s y g s t}\) & \(\underline{? s p g s t}\) & \(\underline{? \text { ?bogst }}\) & \\
\begin{tabular}{l}
complex \\
Hermitian \\
matrices
\end{tabular} & \(\underline{\text { ?hegst } /}\) & \(\underline{\text { ?hpgst }}\) & \(\underline{\text { ?hbgst }}\) & \(\underline{? p b s t f}\) \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?sygst}

\section*{Reduces a real symmetric-definite generalized eigenvalue problem to the standard form.}
```

call ssygst ( itype, uplo, n, a, lda, b, ldb, info )
call dsygst ( itype, uplo, n, a, lda, b, ldb, info )

```

\section*{Discussion}

This routine reduces real symmetric-definite generalized eigenproblems
\[
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
\]
to the standard form \(C y=\lambda y\). Here \(A\) is a real symmetric matrix, and \(B\) is a real symmetric positive-definite matrix. Before calling this routine, call ?potrf to compute the Cholesky factorization: \(B=U^{T} U\) or \(B=L L^{T}\) (see page 4-14).

\section*{Input Parameters}
```

INTEGER. Must be 1 or 2 or 3 .
If itype $=1$, the generalized eigenproblem is $A z=\lambda B z$; for uplo = 'U': $C=U^{-T} A U^{-1}, z=U^{-1} y$; for uplo = 'L': $C=L^{-1} A L^{-T}, z=L^{-T} y$.
If itype $=2$, the generalized eigenproblem is $A B z=\lambda z$; for uplo= 'U': $C=U A U^{T}, z=U^{-1} y$; for uplo = 'L': $C=L^{T} A L, z=L^{-T} y$.
If itype $=3$, the generalized eigenproblem is $B A z=\lambda z$;
for uplo='U': $C=U A U^{T}, z=U^{T} y$; for uplo = 'L': $C=L^{T} A L, z=L y$.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the array a stores the upper triangle of $A$; you must supply $B$ in the factored form $B=U^{T} U$.
If uplo = 'L', the array a stores the lower triangle of $A$; you must supply $B$ in the factored form $B=L L^{T}$.
INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.

```
```

a, b

## REAL for ssygst

```
DOUBLE PRECISION for dsygst.
```


## Arrays:

```
a (lda,*) contains the upper or lower triangle of \(A\). The second dimension of a must be at least \(\max (1, n)\).
\(b(I d b, *)\) contains the Cholesky-factored matrix \(B\) : \(B=U^{T} U\) or \(B=L L^{T}\) (as returned by ?potrf). The second dimension of \(b\) must be at least \(\max (1, n)\).
INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
Integer. The first dimension of \(b\); at least \(\max (1, n)\).
```


## Output Parameters

The upper or lower triangle of $A$ is overwritten by the upper or lower triangle of $C$, as specified by the arguments itype and uplo.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

Forming the reduced matrix $C$ is a stable procedure. However, it involves implicit multiplication by $B^{-1}$ (if itype $=1$ ) or $B$ (if itype $=2$ or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is $n^{3}$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?hegst

## Reduces a complex Hermitian-definite generalized eigenvalue problem to the standard form.

```
call chegst (itype, uplo, n, a, lda, b, ldb, info)
call zhegst (itype, uplo, n, a, lda, b, ldb, info)
```


## Discussion

This routine reduces complex Hermitian-definite generalized eigenvalue problems

$$
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
$$

to the standard form $C y=\lambda y$. Here the matrix $A$ is complex Hermitian, and $B$ is complex Hermitian positive-definite. Before calling this routine, you must call ?potrf to compute the Cholesky factorization: $B=U^{H} U$ or $B=$ $L L^{H}$ (see page 4-14).

## Input Parameters

```
itype
plo CHARACTER*1. Must be 'U' or 'L'.
If \(u p I o=\) ' \(U\) ', the array a stores the upper triangle of \(A\);
you must supply \(B\) in the factored form \(B=U^{H} U\).
If uplo = ' L', the array a stores the lower triangle of \(A\);
you must supply \(B\) in the factored form \(B=L L^{H}\).
```


## n

INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
COMPLEX for chegst
DOUBLE COMPLEX for zhegst.
Arrays:
a (Ida,*) contains the upper or lower triangle of $A$. The second dimension of a must be at least $\max (1, n)$.
$b(I d b, *)$ contains the Cholesky-factored matrix $B$ : $B=U^{H} U$ or $B=L L^{H}$ (as returned by ?potrf). The second dimension of $b$ must be at least $\max (1, n)$.

INTEGER. The first dimension of $a$; at least $\max (1, n)$.
INTEGER. The first dimension of $b$; at least $\max (1, n)$.

## Output Parameters

The upper or lower triangle of $A$ is overwritten by the upper or lower triangle of $C$, as specified by the arguments itype and uplo.
info
INTEGER.
If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

Forming the reduced matrix $C$ is a stable procedure. However, it involves implicit multiplication by $B^{-1}$ (if itype $=1$ ) or $B$ (if itype $=2$ or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is $n^{3}$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?spgst

Reduces a real symmetric-definite generalized eigenvalue problem to the standard form using packed storage.

```
call sspgst (itype, uplo, n, ap, bp, info)
call dspgst (itype, uplo, n, ap, bp, info)
```


## Discussion

This routine reduces real symmetric-definite generalized eigenproblems

$$
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
$$

to the standard form $C y=\lambda y$, using packed matrix storage. Here $A$ is a real symmetric matrix, and $B$ is a real symmetric positive-definite matrix.
Before calling this routine, call ?pptrf to compute the Cholesky factorization: $B=U^{T} U$ or $B=L L^{T}$ (see page 4-16).

## Input Parameters

Integer. Must be 1 or 2 or 3 .
If itype $=1$, the generalized eigenproblem is $A z=\lambda B z$; for uplo = 'U': $C=U^{-T} A U^{-1}, z=U^{-1} y$; for uplo= 'L': $C=L^{-1} A L^{-T}, z=L^{-T} y$.
If itype $=2$, the generalized eigenproblem is $A B z=\lambda z$; for uplo= 'U': $C=U A U^{T}, z=U^{-1} y$; for uplo = 'L': $C=L^{T} A L, z=L^{-T} y$.
If itype $=3$, the generalized eigenproblem is $B A z=\lambda z$;
for uplo = 'U': $C=U A U^{T}, \quad z=U^{T} y$; for uplo = 'L': $C=L^{T} A L, z=L y$.

CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of $A$; you must supply $B$ in the factored form $B=U^{T} U$.
If uplo = 'L', ap stores the packed lower triangle of $A$; you must supply $B$ in the factored form $B=L L^{T}$.
integer. The order of the matrices $A$ and $B(n \geq 0)$.

## ap, bp REAL for sspgst

DOUBLE PRECISION for dspgst.
Arrays:
$a p(*)$ contains the packed upper or lower triangle of $A$.
The dimension of ap must be at least max (1,
$n *(n+1) / 2)$.
bp (*) contains the packed Cholesky factor of $B$ (as returned by ?pptrf with the same uplo value). The dimension of $b p$ must be at least $\max (1$, $n *(n+1) / 2)$.

## Output Parameters

The upper or lower triangle of $A$ is overwritten by the upper or lower triangle of $C$, as specified by the arguments itype and uplo.
info
INTEGER.
If $i n f o=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

Forming the reduced matrix $C$ is a stable procedure. However, it involves implicit multiplication by $B^{-1}$ (if itype $=1$ ) or $B$ (if itype $=2$ or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is $n^{3}$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?hpgst

## Reduces a complex Hermitian-definite

 generalized eigenvalue problem to the standard form using packed storage.```
call chpgst ( itype, uplo, n, ap, bp, info )
call zhpgst ( itype, uplo, n, ap, bp, info )
```


Discussion

This routine reduces real symmetric-definite generalized eigenproblems

$$
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
$$

to the standard form $C y=\lambda y$, using packed matrix storage. Here A is a real symmetric matrix, and B is a real symmetric positive-definite matrix.
Before calling this routine, you must call ?pptrf to compute the Cholesky factorization: $B=U^{H} U$ or $B=L L^{H}$ (see page 4-16).

Input Parameters

itype	Integer. Must be 1 or 2 or 3 . If itype $=1$, the generalized eigenproblem is $A z=\lambda B z$; for uplo = 'U': $C=U^{-H} A U^{-1}, z=U^{-1} y$; for uplo = 'L': $C=L^{-1} A L^{-H}, z=L^{-H} y$. If itype $=2$, the generalized eigenproblem is $A B z=\lambda z$; for uplo = 'U': $C=U A U^{H}, z=U^{-1} y$; for uplo= 'L': $C=L^{H} A L, z=L^{-H} y$. If itype $=3$, the generalized eigenproblem is $B A z=\lambda z$; for uplo = 'U': $C=U A U^{H}, z=U^{H} y$; for uplo = 'L': $C=L^{H} A L, z=L y$.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo= 'U', ap stores the packed upper triangle of A; you must supply B in the factored form $B=U^{H} U$. If up $\mathcal{I}=$ ' L ', ap stores the packed lower triangle of A; you must supply B in the factored form $B=L L^{H}$.
n	INTEGER. The order of the matrices A and $B(n \geq 0)$.

ap, bp COMP LEX for chpgst

DOUBLE COMPLEX for zhpgst.

Arrays:

$a p(*)$ contains the packed upper or lower triangle of A.
The dimension of a must be at least $\max \left(1, n^{\star}(n+1) / 2\right)$.
bp (*) contains the packed Cholesky factor of B (as returned by ?pptrf with the same uplo value). The dimension of b must be at least $\max \left(1, n^{\star}(n+1) / 2\right)$.

Output Parameters

The upper or lower triangle of A is overwritten by the upper or lower triangle of C, as specified by the arguments itype and uplo.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication by B^{-1} (if itype $=1$) or B (if itype $=2$ or 3). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is n^{3}.

?sbgst

Reduces a real symmetric-definite

 generalized eigenproblem for banded matrices to the standard form using the factorization performed by ?pbstf.```
call ssbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
 work, info)
call dsbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
 work, info)
```


## Discussion

To reduce the real symmetric-definite generalized eigenproblem $A z=\lambda B z$ to the standard form $C y=\lambda y$, where $A, B$ and $C$ are banded, this routine must be preceded by a call to spbstf/dpbstf, which computes the split Cholesky factorization of the positive-definite matrix $B: B=S^{T} S$. The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.
This routine overwrites $A$ with $C=X^{T} A X$, where $X=S^{-1} Q$ and $Q$ is an orthogonal matrix chosen (implicitly) to preserve the bandwidth of $A$. The routine also has an option to allow the accumulation of $X$, and then, if $z$ is an eigenvector of $C, X z$ is an eigenvector of the original system.

## Input Parameters

| vect | CHARACTER*1. Must be 'n' or 'V'. |
| :---: | :---: |
|  | If vect $=$ ' $\mathrm{N}^{\prime}$, then matrix $X$ is not returned; |
|  | If vect $=$ ' V ', then matrix $X$ is returned. |
| uplo | CHARACTER*1. Must be 'U' or 'L'. |
|  | If uplo $=$ 'U', ab stores the upper triangular part of $A$. |
|  | If uplo = 'L', ab stores the lower triangular part of $A$. |
| $n$ | INTEGER. The order of the matrices $A$ and $B(n \geq 0)$. |
| ka | INTEGER. The number of super- or sub-diagonals in $A$ ( $k a \geq 0$ ). |

```
kb
INTEGER. The number of super- or sub-diagonals in \(B\) (\(k a \geq k b \geq 0\)).
ab,bb, work REAL for ssbgst DOUBLE PRECISION for ds.bgst \(a b\) (\(I d a b, *\)) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. The second dimension of the array \(a b\) must be at least \(\max (1, n)\). \(b b b(l d b b, *)\) is an array containing the banded split Cholesky factor of \(B\) as specified by uplo, \(n\) and \(k . b\) and returned by spbstf/dpbstf. The second dimension of the array bb must be at least \(\max (1, n)\). work (*) is a workspace array, DIMENSION at least \(\max \left(1,2 *_{n}\right)\)
INTEGER. The first dimension of the array \(a b\); must be at least \(k a+1\).
ldbb INTEGER. The first dimension of the array \(b b ;\) must be at least \(k b+1\).
Idx The first dimension of the output array x. Constraints: if vect \(={ }^{\prime} N\) ', then \(1 d x \geq 1\); if vect \(=' \mathrm{~V}\) ', then \(I d x \geq \max (1, n)\).
```


## Output Parameters

ab
$x$

On exit, this array is overwritten by the upper or lower triangle of $C$ as specified by uplo.

REAL for ssbgst DOUBLE PRECISION for dsbgst Array.
If vect $=' V^{\prime}$, then $x(I d x, *)$ contains the $n$ by $n$
matrix $X=S^{-1} Q$.
If vect $=$ 'N', then $x$ is not referenced.
The second dimension of $x$ must be:
at least $\max (1, n)$, if vect $=' V^{\prime}$;
at least 1 , if vect $={ }^{\prime} N$ '.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

Forming the reduced matrix $C$ involves implicit multiplication by $B^{-1}$. When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion. The total number of floating-point operations is approximately $6 n^{2} * k b$, when vect $=' N$ '. Additional $(3 / 2) n^{3} *(k b / k a) \quad$ operations are required when vect $=$ ' V '. All these estimates assume that both $k a$ and $k b$ are much less than $n$.

## ?hbgst

```
Reduces a complex Hermitian-definite generalized eigenproblem for banded matrices to the standard form using the factorization performed by ?pbstf.
```

```
call chbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
```

call chbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, rwork, info )
work, rwork, info )
call zhbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
call zhbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, rwork, info )

```
 work, rwork, info)
```


## Discussion

To reduce the complex Hermitian-definite generalized eigenproblem $A z=$ $\lambda B z$ to the standard form $C y=\lambda y$, where $A, B$ and $C$ are banded, this routine must be preceded by a call to cpbstf/zpbstf, which computes the split Cholesky factorization of the positive-definite matrix $B: B=S^{H} S$. The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.
This routine overwrites $A$ with $C=X^{H} A X$, where $X=S^{-1} Q$ and $Q$ is a unitary matrix chosen (implicitly) to preserve the bandwidth of $A$. The routine also has an option to allow the accumulation of $X$, and then, if $z$ is an eigenvector of $C, X z$ is an eigenvector of the original system.

## Input Parameters

| vect | ChARACTER*1. Must be 'N' or 'v'. |
| :---: | :---: |
|  | If vect $=$ ' ${ }^{\mathrm{N}}$, then matrix $X$ is not returned; If vect $=' \mathrm{~V}$ ', then matrix $X$ is returned. |
| uplo | CHARACTER*1. Must be 'U' or 'L'. |
|  | If uplo = ' U ', ab stores the upper triangular part of $A$ |
|  | If upIo= 'L', ab stores the lower triangular part of $A$. |
| $n$ | Integer. The order of the matrices $A$ and $B(n \geq 0)$. |
| ka | INTEGER. The number of super- or sub-diagonals in $A$ |
|  | ( $k a \geq 0$ ). |

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

| kb | INTEGER. The number of super- or sub-diagonals in $B$ ( $k a \geq k b \geq 0$ ). |
| :---: | :---: |
| ab, bb, work | COMPLEX for chbgst |
|  | DOUBLE COMPLEX for zhbgst |
|  | $a b$ (Idab,*) is an array containing either upper or lower triangular part of the Hermitian matrix $A$ (as specified by uplo) in band storage format. The second dimension of the array $a b$ must be at least $\max (1, n)$. |
|  | bb (ldbb, *) is an array containing the banded split |
|  | Cholesky factor of $B$ as specified by uplo, $n$ and $k b$ and returned by cpbstf/zpbstf. The second dimension of the array $b b$ must be at least $\max (1, n)$. work (*) is a workspace array, DIMENSION at least $\max (1, n)$ |
| Idab | INTEGER. The first dimension of the array $a b ;$ must be at least $k a+1$. |
| 1 dbb | integer. The first dimension of the array bb; must be at least $k b+1$. |
| $1 d x$ | The first dimension of the output array x. Constraints: <br> if vect $={ }^{\prime} \mathrm{N}^{\prime}$, then $I d x \geq 1$; <br> if vect $=$ ' $V$ ' , then $I d x \geq \max (1, n)$. |
| rwork | REAL for chbgst |
|  | DOUBLE PRECISION for zhbgst |
|  | Workspace array, DIMENSION at least max $(1, n)$ |


| $a b$ | On exit, this array is overwritten by the upper or lower |
| :--- | :--- |
| triangle of $C$ as specified by uplo. |  |
| $x$ | COMPLEX for chbgst |
|  | DOUBLE COMPLEX for zhbgst |
| Array. |  |
|  | If vect $=V^{\prime} V^{\prime}$, then $x(I d x, *)$ contains the $n$ by $n$ |
|  | matrix $X=S^{-1} Q$. |
|  | If vect $=N^{\prime}$, then $x$ is not referenced. |

The second dimension of $x$ must be:
at least $\max (1, n)$, if vect $=\mathrm{V}^{\prime}$ ';
at least 1 , if vect $={ }^{\prime} \mathrm{N}^{\prime}$.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

Forming the reduced matrix $C$ involves implicit multiplication by $B^{-1}$. When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.
The total number of floating-point operations is approximately $20 n^{2} * k b$, when vect $=$ ' $N$ '. Additional $5 n^{3} *(k b / k a)$ operations are required when vect $=$ ' V '. All these estimates assume that both $k a$ and $k b$ are much less than $n$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?pbstf

> Computes a split Cholesky factorization of a real symmetric or complex Hermitian positive-definite banded matrix used in ? sbgst/?hbgst .

```
call spbstf (uplo, n, kb, bb, ldbb, info)
call dpbstf (uplo, n, kb, bb, ldbb, info)
call cpbstf (uplo, n, kb, bb, ldbb, info)
call zpbstf (uplo, n, kb, bb, ldbb, info)
```


## Discussion

This routine computes a split Cholesky factorization of a real symmetric or complex Hermitian positive-definite band matrix $B$. It is to be used in conjunction with ?sbgst/?hbgst.
The factorization has the form $B=S^{T} S$ (or $B=S^{H} S$ for complex flavors), where $S$ is a band matrix of the same bandwidth as $B$ and the following structure: S is upper triangular in the first $(n+k b) / 2$ rows and lower triangular in the remaining rows.

## Input Parameters

| uplo | CHARACTER*1. Must be 'U' or 'L'. |
| :---: | :---: |
|  | If uplo = 'U', bb stores the upper triangular part of B. |
|  | If uplo = 'L', bb stores the lower triangular part of $B$. |
| $n$ | INTEGER. The order of the matrix $B(n \geq 0)$. |
| kb | Integer. The number of super- or sub-diagonals in $B$ ( $k b \geq 0$ ). |
| bb | REAL for spbstf |
|  | DOUBLE PRECISION for dpbstf |
|  | COMPLEX for cpbstf |
|  | DOUBLE COMPLEX for zpbstf. |
|  | bb ( $1 \mathrm{dbb},{ }^{*}$ ) is an array containing either upper or lower triangular part of the matrix $B$ (as specified by |

uplo) in band storage format.
The second dimension of the array $b b$ must be at least $\max (1, n)$.
Idbb INTEGER. The first dimension of $b b ;$ must be at least $k b+1$.

## Output Parameters

On exit, this array is overwritten by the elements of the split Cholesky factor $S$.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=i$, then the factorization could not be completed, because the updated element $b_{i i}$ would be the square root of a negative number; hence the matrix $B$ is not positive-definite. If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

The computed factor $S$ is the exact factor of a perturbed matrix $B+E$, where

$$
|E| \leq c(k b+1) \varepsilon\left|S^{H}\right||S|, \quad\left|e_{i j}\right| \leq c(k b+1) \varepsilon \sqrt{b_{i i} b_{j j}}
$$

$c(n)$ is a modest linear function of $n$, and $\varepsilon$ is the machine precision.
The total number of floating-point operations for real flavors is approximately $n(k b+1)^{2}$. The number of operations for complex flavors is 4 times greater. All these estimates assume that $k b$ is much less than $n$.

After calling this routine, you can call ?sbgst/? h.bgst to solve the generalized eigenproblem $A z=\lambda B z$, where $A$ and $B$ are banded and $B$ is positive-definite.

## Nonsymmetric Eigenvalue Problems

This section describes LAPACK routines for solving nonsymmetric eigenvalue problems, computing the Schur factorization of general matrices, as well as performing a number of related computational tasks.
A nonsymmetric eigenvalue problem is as follows: given a nonsymmetric (or non-Hermitian) matrix $A$, find the eigenvalues $\lambda$ and the corresponding eigenvectors $z$ that satisfy the equation

$$
A z=\lambda z \text { (right eigenvectors } z)
$$

or the equation

$$
z^{H} A=\lambda z^{H} \text { (left eigenvectors } z \text { ). }
$$

Nonsymmetric eigenvalue problems have the following properties:

- The number of eigenvectors may be less than the matrix order (but is not less than the number of distinct eigenvalues of $A$ ).
- Eigenvalues may be complex even for a real matrix $A$.
- If a real nonsymmetric matrix has a complex eigenvalue $a+b i$ corresponding to an eigenvector $z$, then $a-b i$ is also an eigenvalue. The eigenvalue $a-b i$ corresponds to the eigenvector whose elements are complex conjugate to the elements of $z$.
To solve a nonsymmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg matrix obtained. Table 5-5 lists LAPACK routines for reducing the matrix to the upper Hessenberg form by an orthogonal (or unitary) similarity transformation $A=Q H Q^{H}$ as well as routines for solving eigenvalue problems with Hessenberg matrices, forming the Schur factorization of such matrices and computing the corresponding condition numbers.
Decision tree in Figure 5-4 helps you choose the right routine or sequence of routines for an eigenvalue problem with a real nonsymmetric matrix. If you need to solve an eigenvalue problem with a complex non-Hermitian matrix, use the decision tree shown in Figure 5-5.

| Table 5-5 $\begin{aligned} & \text { Computational Routines for Solving Nonsymmetric Eigenvalue } \\ & \text { Problems }\end{aligned}$ |  |  |
| :---: | :---: | :---: |
| Operation performed | Routines for real matrices | Routines for complex matrices |
| Reduce to Hessenberg form $A=Q H Q^{H}$ | ? gehrd, | ? gehrd |
| Generate the matrix $Q$ | ?orghr | ?unghr |
| Apply the matrix $Q$ | ? ormhr | ?unmhr |
| Balance matrix | ? gebal | ? gebal |
| Transform eigenvectors of balanced matrix to those of the original matrix | ? gebak | ? gebak |
| Find eigenvalues and Schur factorization (QR algorithm) | ?hseqr | ?hseqr |
| Find eigenvectors from Hessenberg form (inverse iteration) | ?hsein | ?hsein |
| Find eigenvectors from Schur factorization | ?trevc | ?trevc |
| Estimate sensitivities of eigenvalues and eigenvectors | ?trsna | ?trsna |
| Reorder Schur factorization | ?trexc | ?trexc |
| Reorder Schur factorization, find the invariant subspace and estimate sensitivities | ?trsen | ?trsen |
| Solves Sylvester's equation. | ?trsyl | ?trsyl |

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Figure 5-4 Decision Tree: Real Nonsymmetric Eigenvalue Problems


Figure 5-5 Decision Tree: Complex Non-Hermitian Eigenvalue Problems


Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?gehrd

## Reduces a general matrix to upper Hessenberg form.

```
call sgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)
call dgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)
call cgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)
call zgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)
```


## Discussion

The routine reduces a general matrix $A$ to upper Hessenberg form $H$ by an orthogonal or unitary similarity transformation $A=Q H Q^{H}$. Here $H$ has real subdiagonal elements.
The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

n
ilo, ihi
a, work
lda

INTEGER. The order of the matrix $A(n \geq 0)$.
INTEGER. If $A$ has been output by ? gebal, then ilo and ihi must contain the values returned by that routine. Otherwise $i l o=1$ and $i h i=n$. (If $n>0$, then 1 $\leq i l o \leq i h i \leq n ;$ if $n=0$, ilo $=1$ and ihi $=0$.)

REAL for sgehrd DOUBLE PRECISION for dgehrd COMPLEX for cgehrd DOUBLE COMPLEX for zgehrd. Arrays:
a ( lda, *) contains the matrix $A$.
The second dimension of a must be at least $\max (1, n)$. work (Iwork) is a workspace array. Integer. The first dimension of $a$; at least $\max (1, n)$.

Iwork INTEGER. The size of the work array; at least max $(1, n)$. See Application notes for the suggested value of lwork.

## Output Parameters

```
a
Overwritten by the upper Hessenberg matrix \(H\) and details of the matrix \(Q\). The subdiagonal elements of \(H\) are real.
REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Array, DIMENSION at least max \((1, n-1)\).
Contains additional information on the matrix \(Q\).
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
```


## Application Notes

For better performance, try using lwork $=n \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed Hessenberg matrix $H$ is exactly similar to a nearby matrix $A+E$, where $\left.|E|\right|_{2}<c(n) \varepsilon| | A| |_{2}, c(n)$ is a modestly increasing function of $n$, and $\varepsilon$ is the machine precision.

The approximate number of floating-point operations for real flavors is $(2 / 3)(i h i-i l o)^{2}(2 i h i+2 i l o+3 n)$; for complex flavors it is 4 times greater.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?orghr

Generates the real orthogonal matrix $Q$ determined by ?gehrd.

```
call sorghr (n, ilo, ihi, a, lda, tau, work, lwork, info)
call dorghr (n, ilo, ihi, a, lda, tau, work, lwork, info)
```


## Discussion

This routine explicitly generates the orthogonal matrix $Q$ that has been determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix $A$ to upper Hessenberg form $H$ by an orthogonal similarity transformation, $A=Q H Q^{T}$, and represents the matrix $Q$ as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, ilo $=1$ and $i h i=n$.)
The matrix $Q$ generated by ?orghr has the structure:

$$
Q=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & Q_{22} & 0 \\
0 & 0 & I
\end{array}\right]
$$

where $Q_{22}$ occupies rows and columns ilo to ihi.

## Input Parameters

```
ilo, ihi
```

a, tau, work
integer. The order of the matrix $Q(n \geq 0)$.
integer. These must be the same parameters ilo and $i h i$, respectively, as supplied to ?gehrd. (If $n>0$, then $1 \leq i l o \leq i h i \leq n ;$ if $n=0$, ilo $=1$ and $i h i=0$.)

REAL for sorghr
DOUBLE PRECISION for dorghr
Arrays:
$a(I d a, *)$ contains details of the vectors which define the elementary reflectors, as returned by ? gehrd.
The second dimension of a must be at least max $(1, n)$.
$\operatorname{tau}(*)$ contains further details of the elementary reflectors, as returned by ?gehrd.
The dimension of tau must be at least max $(1, n-1)$.
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of $a$; at least $\max (1, n)$.
lwork
INTEGER. The size of the work array;
lwork $\geq \max (1$,ihi-ilo).
See Application notes for the suggested value of 1 work.

## Output Parameters

info

Overwritten by the $n$ by $n$ orthogonal matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using lwork $=(i h i-i l o) *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix $Q$ differs from the exact result by a matrix $E$ such that $||E||_{2}=O(\varepsilon)$, where $\varepsilon$ is the machine precision.
The approximate number of floating-point operations is $(4 / 3)(i h i-i l o)^{3}$.
The complex counterpart of this routine is ?unghr.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?ormhr

```
Multiplies an arbitrary real matrix C by
the real orthogonal matrix Q
determined by ?gehrd.
```

```
call sormhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
```

call sormhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info )
work, lwork, info )
call dormhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
call dormhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info )

```
 work, lwork, info)
```


## Discussion

This routine multiplies a matrix $C$ by the orthogonal matrix $Q$ that has been determined by a preceding call to sgehrd/dgehrd. (The routine ? gehrd reduces a real general matrix $A$ to upper Hessenberg form $H$ by an orthogonal similarity transformation, $A=Q H Q^{T}$, and represents the matrix $Q$ as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, $i l o=1$ and $i h i=n$.)

With ?ormhr, you can form one of the matrix products $Q C, Q^{T} C, C Q$, or $C Q^{T}$, overwriting the result on $C$ (which may be any real rectangular matrix).
A common application of ?ormhr is to transform a matrix $V$ of eigenvectors of $H$ to the matrix $Q V$ of eigenvectors of $A$.

## Input Parameters

| side | CHARACTER*1. Must be 'L' or 'R'. |
| :---: | :---: |
|  | If side = 'L', then the routine forms $Q C$ or $Q^{T} \mathrm{C}$. |
|  | If side $=$ 'R', then the routine forms $C Q$ or $C Q^{T}$. |
| trans | CHARACTER*1. Must be 'N' or 'T'. |
|  | If trans $=$ ' ${ }^{\text {' }}$, then $Q$ is applied to $C$. |
|  | If trans $=$ ' T', then $Q^{T}$ is applied to $C$. |
| m | INTEGER. The number of rows in $C(m \geq 0)$. |
| $n$ | INTEGER. The number of columns in $C$ ( $n \geq 0)$. |


| ilo, ihi | INTEGER. These must be the same parameters ilo and $i h i$, respectively, as supplied to ?gehrd. <br> If $m>0$ and side $=$ 'L', then $1 \leq i l o \leq i h i \leq m$. <br> If $m=0$ and side $=$ 'L', then ilo $=1$ and $i h i=0$. <br> If $n>0$ and side $=' R$ ', then $1 \leq i l o \leq i h i \leq n$. <br> If $n=0$ and side $='^{\prime}$ ', then ilo $=1$ and ihi $=0$. |
| :---: | :---: |
| a,tau, c, work | REAL for sormhr |
|  | DOUBLE PRECISION for dormhr Arrays: |
|  | a (Ida,*) contains details of the vectors which define the elementary reflectors, as returned by ? gehrd. <br> The second dimension of a must be at least $\max (1, m)$ if side $=$ 'L' and at least $\max (1, n)$ if side $=$ ' $R$ '. |
|  | tau (*) contains further details of the elementary reflectors, as returned by ?gehrd. <br> The dimension of tau must be at least max $(1, m-1)$ if side $=$ 'L' and at least $\max (1, n-1)$ if side $=$ 'R'. |
|  | $C(I d c, *)$ contains the $m$ by $n$ matrix $C$. The second dimension of $c$ must be at least $\max (1, n)$. work (lwork) is a workspace array. |
| Ida | INTEGER. The first dimension of $a$; at least $\max (1, m)$ if side $=$ 'L' and at least max $(1, n)$ if side $=$ 'R'. |
| $1 d c$ | INTEGER. The first dimension of $c$; at least max $(1, m)$. |
| lwork | Integer. The size of the work array. |
|  | If side $=$ 'L', Iwork $\geq \max (1, n)$. |
|  | If side = 'R', lwork $\geq \max (1, m)$. |

## Output Parameters

$C$ is overwritten by $Q C$ or $Q^{T} C$ or $C Q^{T}$ or $C Q$ as specified by side and trans.

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this 1 work for subsequent runs.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, lwork should be at least $n \star$ blocksize if side $=$ 'L' and at least $m *$ blocksize if side $=$ ' I , where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed matrix $Q$ differs from the exact result by a matrix $E$ such that $||E||_{2}=O(\varepsilon)| | C| |_{2}$, where $\varepsilon$ is the machine precision.
The approximate number of floating-point operations is
$2 n(i h i-i l o)^{2}$ if side $=$ 'L';
$2 m(\text { ihi-ilo })^{2}$ if side $=$ 'R'.
The complex counterpart of this routine is ?unmhr.

## ?unghr

Generates the complex unitary matrix $Q$
determined by ?gehrd.

```
call cunghr (n, ilo, ihi, a, lda, tau, work, lwork, info)
call zunghr (n, ilo, ihi, a, lda, tau, work, lwork, info)
```


## Discussion

This routine is intended to be used following a call to cgehrd/zgehrd, which reduces a complex matrix $A$ to upper Hessenberg form $H$ by a unitary similarity transformation: $A=Q H Q^{H}$. ?gehrd represents the matrix $Q$ as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, $i l o=1$ and $i h i=n$.
Use the routine ? unghr to generate $Q$ explicitly as a square matrix. The matrix $Q$ has the structure:

$$
Q=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & Q_{22} & 0 \\
0 & 0 & I
\end{array}\right]
$$

where $Q_{22}$ occupies rows and columns ilo to ihi.

## Input Parameters

```
n Integer. The order of the matrix Q (}n\geq0)\mathrm{ .
ilo, ihi INTEGER. These must be the same parameters ilo and
 ihi, respectively, as supplied to ?gehrd. (If n>0, then
 1\leqilo \leqihi <n. If n=0, then ilo=1 and ihi=0.)
a, tau, work COMPLEX for cunghr
 DOUBLE COMPLEX for zunghr.
 Arrays:
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
$a(I d a, *)$ contains details of the vectors which define the elementary reflectors, as returned by ? gehrd. The second dimension of a must be at least $\max (1, n)$.
tau (*) contains further details of the elementary reflectors, as returned by ?gehrd.
The dimension of tau must be at least max $(1, n-1)$.
work (Iwork) is a workspace array.
Ida
I work
INTEGER. The first dimension of $a$; at least $\max (1, n)$.
INTEGER. The size of the work array;
lwork $\geq \max (1$, ihi-ilo).
See Application notes for the suggested value of lwork.

## Output Parameters

info

Overwritten by the $n$ by $n$ unitary matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this $I$ work for subsequent runs.

INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=($ ihi-ilo $) \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed matrix $Q$ differs from the exact result by a matrix $E$ such that $||E||_{2}=O(\varepsilon)$, where $\varepsilon$ is the machine precision.

The approximate number of real floating-point operations is (16/3)(ihi-ilo) ${ }^{3}$.
The real counterpart of this routine is ?orghr.

## ? unmhr

## Multiplies an arbitrary complex matrix

$C$ by the complex unitary matrix $Q$
determined by ?gehrd.

```
call cunmhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
 work, lwork, info)
call zunmhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
 work, lwork, info)
```


## Discussion

This routine multiplies a matrix $C$ by the unitary matrix $Q$ that has been determined by a preceding call to cgehrd/zgehrd. (The routine ?gehrd reduces a real general matrix $A$ to upper Hessenberg form $H$ by an orthogonal similarity transformation, $A=Q H Q^{H}$, and represents the matrix $Q$ as a product of ihi-ilo elementary reflectors. Here $i l o$ and $i h i$ are values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, $i l o=1$ and $i h i=n$.)
With ?unmhr, you can form one of the matrix products $Q C, Q^{H} C, C Q$, or $C Q^{H}$, overwriting the result on $C$ (which may be any complex rectangular matrix). A common application of this routine is to transform a matrix $V$ of eigenvectors of $H$ to the matrix $Q V$ of eigenvectors of $A$.

## Input Parameters

| side | CHARACTER*1. Must be 'L' or 'R'. |
| :--- | :--- |
|  | If side $=$ 'L', then the routine forms $Q C$ or $Q^{H} C$. |
| If $s i d e=~ ' R ', ~ t h e n ~ t h e ~ r o u t i n e ~ f o r m s ~$ |  | or $C Q^{H}$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

| ilo, ihi | INTEGER. These must be the same parameters ilo and $i h i$, respectively, as supplied to ?gehrd. <br> If $m>0$ and side $=$ 'L', then $1 \leq i l o \leq i h i \leq m$. <br> If $m=0$ and side $=$ 'L', then $i l o=1$ and ihi $=0$. <br> If $n>0$ and side $=R^{\prime}$ ', then $1 \leq i l o \leq i h i \leq n$. <br> If $n=0$ and side $=$ 'R', then $i l o=1$ and $i h i=0$. |
| :---: | :---: |
| a, tau, c, work | COMP LEX for cunmhr |
|  | DOUBLE COMPLEX for zunmhr. Arrays: |
|  | a (Ida,*) contains details of the vectors which define the elementary reflectors, as returned by ? gehrd. The second dimension of a must be at least $\max (1, m)$ if side $=$ ' L' and at least $\max (1, n)$ if side $=$ ' $\mathrm{R}^{\prime}$. |
|  | tau (*) contains further details of the elementary reflectors, as returned by ?gehrd. <br> The dimension of $t a u$ must be at least $\max (1, m-1)$ if side $=$ 'L' and at least $\max (1, n-1)$ if side $=$ 'R'. |
|  | $c(I d c, *)$ contains the $m$ by $n$ matrix $C$. |
|  | The second dimension of $c$ must be at least $\max (1, n)$. work (lwork) is a workspace array. |
| lda | INTEGER. The first dimension of $a$; at least $\max (1, m)$ if side $=$ 'L' and at least max $(1, n)$ if side $=$ 'R'. |
| $1 d \mathrm{c}$ | Integer. The first dimension of $c$; at least $\max (1, m)$. |
| lwork | Integer. The size of the work array. |
|  | If side $=$ 'L', lwork $\geq \max (1, n)$. |
|  | If side $=$ 'R', lwork $\geq \max (1, m)$. |
|  | See Application notes for the suggested value of 1 work. |

## Output Parameters

c $\quad C$ is overwritten by $Q C$ or $Q^{H} C$ or $C Q^{H}$ or $C Q$ as specified by side and trans.
work(1)
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, 1 work should be at least $n \star$ blocksize if side $=$ ' L ' and at least $m \star$ blocksize if side $=$ ' $\mathrm{R}^{\prime}$, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The computed matrix $Q$ differs from the exact result by a matrix $E$ such that $\|\left. E\right|_{2}=O(\varepsilon)| | C| |_{2}$, where $\varepsilon$ is the machine precision.
The approximate number of floating-point operations is
$8 n(\text { ihifilo })^{2}$ if side $=$ L ' $^{\prime}$;
$8 \mathrm{~m}(\text { ihilillo })^{2}$ if side $=$ 'R'.
The real counterpart of this routine is ? ormhr.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?gebal

Balances a general matrix to improve the accuracy of computed eigenvalues and eigenvectors.

```
call sgebal (job, n, a, lda, ilo, ihi, scale, info)
call dgebal (job, n, a, lda, ilo, ihi, scale, info)
call cgebal (job, n, a, lda, ilo, ihi, scale, info)
call zgebal (job, n, a, lda, ilo, ihi, scale, info)
```


## Discussion

This routine balances a matrix $A$ by performing either or both of the following two similarity transformations:
(1) The routine first attempts to permute $A$ to block upper triangular form:

$$
P A P^{T}=A^{\prime}=\left[\begin{array}{ccc}
A_{11}^{\prime} & A_{12}^{\prime} & A_{13}^{\prime} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} \\
0 & 0 & A_{33}^{\prime}
\end{array}\right]
$$

where $P$ is a permutation matrix, and $A^{\prime}{ }_{11}$ and $A^{\prime}{ }_{33}$ are upper triangular. The diagonal elements of $A_{11}{ }_{11}$ and $A^{\prime}{ }_{33}$ are eigenvalues of $A$. The rest of the eigenvalues of $A$ are the eigenvalues of the central diagonal block $A^{\prime}{ }_{22}$, in rows and columns ilo to ihi. Subsequent operations to compute the eigenvalues of $A$ (or its Schur factorization) need only be applied to these rows and columns; this can save a significant amount of work if $i l 0>1$ and ihi< $n$. If no suitable permutation exists (as is often the case), the routine sets $i l o=1$ and $\operatorname{ihi}=n$, and $A^{\prime}{ }_{22}$ is the whole of $A$.
(2) The routine applies a diagonal similarity transformation to $A^{\prime}$, to make the rows and columns of $A^{\prime}{ }_{22}$ as close in norm as possible:

$$
A^{\prime \prime}=D A^{\prime} D^{-1}=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & D_{22} & 0 \\
0 & 0 & I
\end{array}\right] \times\left[\begin{array}{ccc}
A_{11}^{\prime} & A_{12}^{\prime} & A_{13}^{\prime} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} \\
0 & 0 & A_{33}^{\prime}
\end{array}\right] \times\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & D_{22}^{-1} & 0 \\
0 & 0 & I
\end{array}\right]
$$

This scaling canreduce the normofthematrix (thatis, $\left|\left|A^{\prime}{ }_{22}\right|\right|<\left|\left|A^{\prime}{ }_{22}\right|\right|$ ), and hence reduce the effect of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

## Input Parameters

```
job CHARACTER*1.Must be 'N' or 'P' or 'S' or 'B'.
 If job ='N', then A is neither permuted nor scaled (but
 ilo, ihi, and scale get their values).
 If job='P', then A is permuted but not scaled.
 If job='S', then A is scaled but not permuted.
 If job ='B', then A is both scaled and permuted.
 INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
REAL for sgebal
DOUBLE PRECISION for dgebal
COMPLEX for cgebal
DOUBLE COMPLEX for zgebal.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1,n).
a is not referenced if job='N'.
Ida INTEGER. The first dimension of a; at least max (1, n).
```


## Output Parameters

| a | Overwritten by the balanced matrix ( $a$ is not referenced if job='N'). |
| :---: | :---: |
| ilo, ihi | INTEGER. The values ilo and ihi such that on exit $a(i, j)$ is zero if $i>j$ and $1 \leq j<i l o$ or $i h i<i \leq n$. If job='N' or 'S', then $i l o=1$ and $i h i=n$. |
| scale | REAL for single-precision flavors <br> DOUBLE PRECISION for double-precision flavors Array, DIMENSION at least max $(1, n)$. |

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

More precisely, if $p_{j}$ is the index of the row and column interchanged with row and column $j$, and $d_{j}$ is the scaling factor used to balance row and column $j$, then

$$
\begin{aligned}
& \operatorname{scale}(j)=p_{j} \text { for } j=1,2, \ldots, i l o-1, \text { ihi }+1, \ldots, n ; \\
& \operatorname{scale}(j)=d_{j} \text { for } j=i l o, i l o+1, \ldots, \text { ihi. }
\end{aligned}
$$

The order in which the interchanges are made is $n$ to $i h i+1$, then 1 to $i l o-1$.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

The errors are negligible, compared with those in subsequent computations.
If the matrix $A$ is balanced by this routine, then any eigenvectors computed subsequently are eigenvectors of the matrix $A^{\prime \prime}$ and hence you must call ?gebak (see page 5-193) to transform them back to eigenvectors of $A$.
If the Schur vectors of $A$ are required, do not call this routine with $j 0 b=$ 'S' or ' B ', because then the balancing transformation is not orthogonal (not unitary for complex flavors). If you call this routine with $j 0 b=$ ' $P^{\prime}$, then any Schur vectors computed subsequently are Schur vectors of the matrix $A^{\prime \prime}$, and you'll need to call ?gebak (with side='R') to transform them back to Schur vectors of $A$.
The total number of floating-point operations is proportional to $n^{2}$.

## ?gebak

## Transforms eigenvectors of a balanced

 matrix to those of the original nonsymmetric matrix.```
call sgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )
call dgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )
call cgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )
call zgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )
```


Discussion

This routine is intended to be used after a matrix A has been balanced by a call to ? gebal, and eigenvectors of the balanced matrix $A^{\prime}{ }_{22}$ have subsequently been computed.
For a description of balancing, see ?gebal (page 5-190). The balanced matrix $A^{\prime \prime}$ is obtained as $A^{\prime \prime}=D P A P^{T} D^{-1}$, where P is a permutation matrix and D is a diagonal scaling matrix. This routine transforms the eigenvectors as follows:
if x is a right eigenvector of $A^{\prime \prime}$, then $P^{T} D^{-1} x$ is a right eigenvector of A; if x is a left eigenvector of $A^{\prime \prime}$, then $P^{T} D y$ is a left eigenvector of A.

Input Parameters

job	CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'. The same parameter job as supplied to ?gebal.
side	CHARACTER*1. Must be 'L' or 'R'. If side $=$ 'L', then left eigenvectors are transformed. If side $=$ ' ${ }^{\prime}$ ', then right eigenvectors are transformed.
n	INTEGER. The number of rows of the matrix of eigenvectors $(n \geq 0)$.
ilo, ihi	INTEGER. The values ilo and ihi, as returned by ?gebal. (If $n>0$, then $1 \leq i l o \leq i h i \leq n$; if $n=0$, then $i l o=1$ and $i h i=0$.)

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

scale	REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors	
Array, DIMENSION at least max $(1, n)$.	
	Contains details of the permutations and/or the scaling
factors used to balance the original general matrix, as	
returned by ?gebal.	
m	INTEGER. The number of columns of the matrix of
	eigenvectors $(m \geq 0)$.
	REAL for sgebak
	DOUBLE PRECISION for dgebak
	COMPLEX for cgebak
	DOUBLE COMPLEX for zgebak.
	Arrays:
	$v(I d v, *)$ contains the matrix of left or right
	eigenvectors to be transformed.
	The second dimension of v must be at least max $(1, m)$.
	INTEGER. The first dimension of $v ;$ at least max $(1, n)$.

Output Parameters

```
v Overwritten by the transformed eigenvectors.
info INTEGER.
    If info = 0, the execution is successful.
    If info = -i, the ith parameter had an illegal value.
```


Application Notes

The errors in this routine are negligible.
The approximate number of floating-point operations is approximately proportional to $m^{\star} n$.

?hseqr

Computes all eigenvalues and (optionally) the Schur factorization of a matrix reduced to Hessenberg form.

```
call shseqr (job, compz,n,ilo,ihi,h,ldh,wr,wi,z,ldz,work,lwork,info)
call dhseqr (job, compz,n,ilo,ihi,h,ldh,wr,wi,z,ldz,work,lwork,info)
call chseqr (job, compz,n,ilo,ihi,h,ldh,w, z, ldz,work,lwork,info)
call zhseqr (job, compz,n,ilo,ihi,h,ldh,w, z,ldz,work,lwork,info)
```


Discussion

This routine computes all the eigenvalues, and optionally the Schur factorization, of an upper Hessenberg matrix $H: H=Z T Z^{H}$, where T is an upper triangular (or, for real flavors, quasi-triangular) matrix (the Schur form of H), and Z is the unitary or orthogonal matrix whose columns are the Schur vectors z_{i}.

You can also use this routine to compute the Schur factorization of a general matrix A which has been reduced to upper Hessenberg form H :
$A=Q H Q^{H}$, where Q is unitary (orthogonal for real flavors);
$A=(Q Z) T(Q Z)^{H}$.
In this case, after reducing A to Hessenberg form by ?gehrd (page 5-178), call ?orghr to form Q explicitly (page 5-180) and then pass Q to ?hseqr with $\operatorname{compz}=$ ' V '.
You can also call ?gebal (page 5-190) to balance the original matrix before reducing it to Hessenberg form by ?hseqr, so that the Hessenberg matrix H will have the structure:

$$
\left[\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \\
0 & H_{22} & H_{23} \\
0 & 0 & H_{33}
\end{array}\right]
$$

where H_{11} and H_{33} are upper triangular.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

If so, only the central diagonal block H_{22} (in rows and columns ilo to ihi) needs to be further reduced to Schur form (the blocks H_{12} and H_{23} are also affected). Therefore the values of $i l o$ and i hi can be supplied to ?hseqr directly. Also, after calling this routine you must call ?gebak (page 5-193) to permute the Schur vectors of the balanced matrix to those of the original matrix.
If ?gebal has not been called, however, then ilo must be set to 1 and ihi to n. Note that if the Schur factorization of A is required, ?gebal must not be called with job='S' or ' B ', because the balancing transformation is not unitary (for real flavors, it is not orthogonal).
?hseqr uses a multishift form of the upper Hessenberg $Q R$ algorithm. The Schur vectors are normalized so that $\left|\left|z_{i}\right|_{2}=1\right.$, but are determined only to within a complex factor of absolute value 1 (for the real flavors, to within a factor ± 1).

Input Parameters

job	CHARACTER*1. Must be 'E' or 'S'.
	If job $=^{\prime} \mathrm{E}^{\prime}$, then eigenvalues only are require
	If job $=$ 'S', then the Schur form T is required.
compz	CHARACTER*1. Must be 'N' or 'I' or 'V'. If compz $=$ ' N ', then no Schur vectors are computed (and the array z is not referenced).
	If compz='I', then the Schur vectors of H are computed (and the array z is initialized by the routine). If compz = ' V ', then the Schur vectors of A are computed (and the array z must contain the matrix Q on entry).
n	Integer. The order of the matrix $H(n \geq 0)$.
ilo, ihi	Integer. If A has been balanced by ?gebal, then ilo and i hi must contain the values returned by ?gebal. Otherwise, ilo must be set to 1 and ihi to n.
h, z, work	REAL for shseqr
	DOUBLE PRECISION for dhseqr
	COMPLEX for chseqr
	DOUBLE COMPLEX for zhseq

```
Arrays:
\(h(I d h, *)\) The \(n\) by \(n\) upper Hessenberg matrix \(H\).
The second dimension of \(h\) must be at least \(\max (1, n)\).
\(z(l d z, *)\)
If compz \(=\) ' V ', then \(z\) must contain the matrix \(Q\) from the reduction to Hessenberg form.
If compz = 'I', then \(z\) need not be set.
If compz='N', then \(z\) is not referenced.
The second dimension of \(z\) must be
at least \(\max (1, n)\) if compz \(=\) ' \(V\) ' or 'I';
at least 1 if compz \(={ }^{\prime} \mathrm{N}^{\prime}\).
work (lwork) is a workspace array.
The dimension of work must be at least max \((1, n)\).
INTEGER. The first dimension of \(h\); at least \(\max (1, n)\).
Idz INTEGER. The first dimension of \(z\);
If compz \(=\) 'N', then \(I d z \geq 1\).
If \(c o m p z=\) 'V' or 'I', then \(I d z \geq \max (1, n)\).
IWork INTEGER. The dimension of the array work. I work \(\geq \max (1, n)\). If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
```


Output Parameters

w	COMPLEX for chseqr
DOUBLE COMPLEX for zhseqr.	
Array, DIMENSION at least max $(1, n)$.	
Contains the computed eigenvalues, unless info>0. The	
eigenvalues are stored in the same order as on the	
diagonal of the Schur form T (if computed).	

computed eigenvalues, unless info >0. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first. The eigenvalues are stored in the same order as on the diagonal of the Schur form T (if computed).

If compz = 'V' or ' I', then z contains the unitary (orthogonal) matrix of the required Schur vectors, unless info >0.
If compz='N', then z is not referenced.
On exit, if info $=0$, then work (1) returns the optimal lwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value. If info >0, the algorithm has failed to find all the eigenvalues after a total 30 ($\mathrm{ihi}-\mathrm{il} \mathrm{lo+1}$) iterations. If info $=i$, elements $1,2, \ldots$, ilo- and $i+1, i+2, \ldots, n$ of $w r$ and $w i$ contain the real and imaginary parts of the eigenvalues which have been found.

Application Notes

The computed Schur factorization is the exact factorization of a nearby matrix $H+E$, where $||E||_{2}<O(\varepsilon)| | H| |_{2} / s_{i}$, and ε is the machine precision. If λ_{i} is an exact eigenvalue, and μ_{i} is the corresponding computed value, then $\left|\lambda_{i}-\mu_{i}\right| \leq c(n) \varepsilon| | H| |_{2} / s_{i}$ where $c(n)$ is a modestly increasing function of n, and s_{i} is the reciprocal condition number of λ_{i}. You can compute the condition numbers s_{i} by calling ?trsna (see page 5-210).

The total number of floating-point operations depends on how rapidly the algorithm converges; typical numbers are as follows.

If only eigenvalues are computed:	$7 n^{3}$ for real flavors
	$25 n^{3}$ for complex flavors.
If the Schur form is computed:	$10 n^{3}$ for real flavors
	$35 n^{3}$ for complex flavors.

If the full Schur factorization is computed: $20_{n}{ }^{3}$ for real flavors
$70 n^{3}$ for complex flavors.

?hsein

Computes selected eigenvectors of an upper Hessenberg matrix that correspond to specified eigenvalues.

```
call shsein ( job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
    ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info )
call dhsein ( job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
    ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info )
call chsein ( job, eigsrc, initv, select, n, h, ldh, w, vl,
    ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info )
call zhsein ( job, eigsrc, initv, select, n, h, ldh, w, vl,
    ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info )
```


Discussion

This routine computes left and/or right eigenvectors of an upper Hessenberg matrix H, corresponding to selected eigenvalues.
The right eigenvector x and the left eigenvector y, corresponding to an eigenvalue λ, are defined by: $H x=\lambda x$ and $y^{H} H=\lambda y^{H}$ (or $H^{H} y=\lambda^{*} y$). Here λ^{*} denotes the conjugate of λ.
The eigenvectors are computed by inverse iteration. They are scaled so that, for a real eigenvector $x, \max \left|x_{i}\right|=1$, and for a complex eigenvector, $\max \left(\left|\operatorname{Re} x_{i}\right|+\left|\operatorname{Im} x_{i}\right|\right)=1$.
If H has been formed by reduction of a general matrix A to upper Hessenberg form, then eigenvectors of H may be transformed to eigenvectors of A by ? ormhr (page 5-182) or ?unmhr (page 5-187).

Input Parameters

job CHARACTER*1. Must be 'R' or 'L' or 'B'. If $j o b=$ 'R', then only right eigenvectors are computed. If $j 0 b=$ ' L ', then only left eigenvectors are computed. If $j o b={ }^{\prime} B^{\prime}$, then all eigenvectors are computed.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

eigsrc	CHARACTER*1. Must be ' 2 ' or 'N'.
	If eigsrc ='Q', then the eigenvalues of H were found using ?hseqr (see page 5-195); thus if H has any zero sub-diagonal elements (and so is block triangular), then the j th eigenvalue can be assumed to be an eigenvalue of the block containing the j th row/column. This property allows the routine to perform inverse iteration on just one diagonal block. If eigsrc $={ }^{\prime} \mathrm{N}^{\prime}$, then no such assumption is made and the routine performs inverse iteration using the whole matrix.
initv	CHARACTER*1. Must be 'N' or 'U'. If initv='N', then no initial estimates for the selected eigenvectors are supplied. If initv='U', then initial estimates for the selected eigenvectors are supplied in $v I$ and/or $v r$.
select	LOGICAL. Array, DIMENSION at least max $(1, n)$. Specifies which eigenvectors are to be computed. For real flavors: To obtain the real eigenvector corresponding to the real eigenvalue $w r(j)$, set select (j) to .TRUE. To select the complex eigenvector corresponding to the complex eigenvalue ($w r(j), w i(j))$ with complex conjugate (wr(j+1),wi(j+1)), set select(j) and/or select $(j+1)$ to .TRUE.; the eigenvector corresponding to the first eigenvalue in the pair is computed. For complex flavors: To select the eigenvector corresponding to the eigenvalue $w(j)$, set select (j) to .TRUE.
n	INTEGER. The order of the matrix $H(n \geq 0)$.
h, vl, vr,work	REAL for shsein DOUBLE PRECISION for dhsein COMPLEX for chsein DOUBLE COMPLEX for zhsein.

Arrays:

$h(I d h, *)$ The n by n upper Hessenberg matrix H. The second dimension of h must be at least $\max (1, n)$.

```
vl(ldvl,*)
```

If initv='V' and job='L' or 'B', then vl must contain starting vectors for inverse iteration for the left eigenvectors. Each starting vector must be stored in the same column or columns as will be used to store the corresponding eigenvector. If initv='N', then $v l$ need not be set. The second dimension of $v l$ must be at least $\max (1, \mathrm{~mm})$ if job $=$ 'L' or ' B ' and at least 1 if job='R'. The array $v I$ is not referenced if $j o b=\prime^{\prime} \mathbf{R}^{\prime}$.

```
vr(ldvr,*)
```

If initv='V' and job='R' or 'B', then vr must contain starting vectors for inverse iteration for the right eigenvectors. Each starting vector must be stored in the same column or columns as will be used to store the corresponding eigenvector.
If initv='N', then vr need not be set.
The second dimension of vr must be at least $\max (1, \mathrm{~mm})$ if job $=$ 'R' or 'B' and at least 1 if job='L'. The array $v r$ is not referenced if job='L'. work (*) is a workspace array. DIMENSION at least max $\left(1, n^{\star}(n+2)\right)$ for real flavors and at least max $\left(1, n^{\star} n\right)$ for complex flavors.
INTEGER. The first dimension of h; at least $\max (1, n)$.
COMPLEX for chsein
DOUBLE COMPLEX for zhsein.
Array, DIMENSION at least max $(1, n)$.
Contains the eigenvalues of the matrix H.
If eigsrc = 'Q', the array must be exactly as returned by ?hseqr.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

wr, wi	REAL for shsein
	DOUBLE PRECISION for dhsein
	Arrays, DIMENSION at least max $(1, n)$ each.
	Contain the real and imaginary parts, respectively, of the eigenvalues of the matrix H. Complex conjugate pairs of values must be stored in consecutive elements of the arrays. If eigsrc $=$ ' Q ', the arrays must be exactly as returned by ?hseqr.
Idvl	INTEGER. The first dimension of $v 1$.
	If job $=$ 'L' or 'B', $I d v I \geq \max (1, n)$.
	If job='R', $1 d v 1 \geq 1$.
$1 d v r$	INTEGER. The first dimension of $v r$.
	If job ='R' or 'B', Idvr $\geq \max (1, n)$.
	If job $=$ 'L', Idvr ≥ 1.
mm	INTEGER. The number of columns in $v 1$ and/or vr.
	Must be at least m, the actual number of columns required (see Output Parameters below).
	For real flavors, m is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector (see select).
	For complex flavors, m is the number of selected eigenvectors (see select). Constraint: $0 \leq m m \leq n$.
rwork	REAL for chsein
	DOUBLE PRECISION for zhsein.
	Array, DIMENSION at least max $(1, n)$.
Output Parameters	
select	Overwritten for real flavors only. If a complex eigenvector was selected as specified above, then select (j) is set to .TRUE. and select $(j+1)$
	to . FALSE.
w	The real parts of some elements of w may be modified, as close eigenvalues are perturbed slightly in searching for independent eigenvectors.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value. If info>0, then i eigenvectors (as indicated by the parameters ifaill and/or ifailr above) failed to converge. The corresponding columns of vl and/or vr contain no useful information.

Application Notes

Each computed right eigenvector x_{i} is the exact eigenvector of a nearby matrix $A+E_{i}$, such that $\left|\left|E_{i}\right|\right|<O(\varepsilon)| | A| |$. Hence the residual is small: $\left\|A x_{i}-\lambda_{i} x_{i}| |=O(\varepsilon)\right\| A|\mid$.

However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span the relevant subspaces.
Similar remarks apply to computed left eigenvectors.

?trevc

```
Computes selected eigenvectors of an
upper (quasi-) triangular matrix
computed by ?hseqr.
```

```
call strevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
    mm, m, work, info )
call dtrevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
    mm, m, work, info )
call ctrevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
    mm, m, work, rwork, info )
call ztrevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
    mm, m, work, rwork, info )
```


Discussion

This routine computes some or all of the right and/or left eigenvectors of an upper triangular matrix T (or, for real flavors, an upper quasi-triangular matrix T). Matrices of this type are produced by the Schur factorization of a general matrix: $A=Q T Q^{H}$, as computed by ?hseqr (see page 5-195).

The right eigenvector x and the left eigenvector y of T corresponding to an eigenvalue w, are defined by:

$$
T x=w x, \quad y^{H} T=w y^{H}
$$

where y^{H} denotes the conjugate transpose of y.
The eigenvalues are not input to this routine, but are read directly from the diagonal blocks of T.
This routine returns the matrices X and/or Y of right and left eigenvectors of T, or the products $Q X$ and/or $Q Y$, where Q is an input matrix.
If Q is the orthogonal/unitary factor that reduces a matrix A to Schur form T, then $Q X$ and $Q Y$ are the matrices of right and left eigenvectors of A.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Input Param	
side	CHARACTER*1. Must be 'R' or 'L' or 'B'. If side $=$ ' R^{\prime}, then only right eigenvectors are computed. If side $=$ 'L', then only left eigenvectors are computed. If side $=$ ' B^{\prime}, then all eigenvectors are computed.
howmny	CHARACTER*1. Must be 'A' or 'B' or 'S'. If howmny $=$ ' A^{\prime}, then all eigenvectors (as specified by side) are computed. If howmny $=$ ' B ', then all eigenvectors (as specified by side) are computed and backtransformed by the matrices supplied in $v I$ and $v r$. If howmny = ' S ', then selected eigenvectors (as specified by side and select) are computed.
select	LOGICAL. Array, DIMENSION at least max $(1, n)$. If howmny='S', select specifies which eigenvectors are to be computed. If howmny= 'A'or 'B', select is not referenced. For real flavors: If ω is a real eigenvalue, the corresponding real eigenvector is computed if select (j) is .TRUE.. If $\omega_{\text {and }} \omega_{+l}$ are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either select (j) or select $(j+1)$ is . TRUE. , and on exit select (j) is set to .TRUE. and select $(j+1)$ is set to .FALSE.. For complex flavors: The eigenvector corresponding to the j-th eigenvalue is computed if select (j) is . TRUE..
n	Integer. The order of the matrix $T(n \geq 0)$.
$t, \mathrm{vl}, \mathrm{vr}$, work	REAL for strevc DOUBLE PRECISION for dtrevc COMPLEX for ctrevc DOUBLE COMPLEX for ztrevc. Arrays:

t (Idt,*) contains the n by n matrix T in Schur canonical form.
The second dimension of t must be at least $\max (1, n)$.
vl(ldvl,*)
If howmny ='B' and side $=$ 'L' or 'B', then vl must contain an n by n matrix Q (usually the matrix of Schur vectors returned by ?hseqr).
If howmny = 'A' or 'S', then vl need not be set. The second dimension of $v l$ must be at least $\max (1, \mathrm{~mm})$ if side $=$ 'L' or 'B' and at least 1 if side $=$ 'R'. The array $v l$ is not referenced if side $={ }^{\prime} R^{\prime}$.
vr (Idvr,*)
If howmny $=$ 'B' and side $=$ 'R' or 'B', then vr must contain an n by n matrix Q (usually the matrix of Schur vectors returned by ?hseqr). .
If howmny = 'A' or 'S', then vr need not be set.
The second dimension of $v r$ must be at least $\max (1, \mathrm{~mm})$ if side $=$ 'R' or 'B' and at least 1 if side ='L'. The array vr is not referenced if side = 'L'.
work (*) is a workspace array.
DIMENSION at least max $\left(1,3 \star_{n}\right)$ for real flavors and at least $\max \left(1,2 *_{n}\right)$ for complex flavors.
$l d t$

INTEGER. The first dimension of t; at least $\max (1, n)$.
INTEGER. The first dimension of $v l$.
If side $=$ 'L' or ' B ', $\operatorname{ldvl} \geq \max (1, n)$.
If side $=$ 'R', $I d v I \geq 1$.
INTEGER. The first dimension of $v r$.
If side $=$ 'R' or 'B', $\operatorname{ldvr} \geq \max (1, n)$.
If side $=$ 'L', Idvr ≥ 1.
INTEGER. The number of columns in the arrays $v I$ and/or vr. Must be at least m (the precise number of columns required). If howmny $=$ ' A ' or ' B ', $m=n$. If howmny $=$ ' S ': for real flavors, m is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector;

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
for complex flavors, m is the number of selected eigenvectors (see select). Constraint: $0 \leq m \leq n$.
rwork REAL for ctrevc
DOUBLE PRECISION for ztrevc.
Workspace array, DIMENSION at least max $(1, n)$.

Output Parameters

select
vl, vr
m
info

If a complex eigenvector of a real matrix was selected as specified above, then $\operatorname{select}(j)$ is set to .TRUE. and select $(j+1)$ to . FALSE.

If side='L' or 'B', vl contains the computed left eigenvectors (as specified by howmy and select). If side='R' or 'B', vr contains the computed right eigenvectors (as specified by howmy and select).

The eigenvectors are stored consecutively in the columns of the array, in the same order as their eigenvalues.
For real flavors: corresponding to each real eigenvalue is a real eigenvector, occupying one column; corresponding to each complex conjugate pair of eigenvalues is a complex eigenvector, occupying two columns; the first column holds the real part and the second column holds the imaginary part.

INTEGER.
For complex flavors: the number of selected eigenvectors. If howmny $=$ ' A ' or ' B ', m is set to n. For real flavors: the number of columns of $v 1$ and/or vr actually used to store the selected eigenvectors. If howmny ='A' or ' B ', m is set to n.
INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

If x_{i} is an exact right eigenvector and y_{i} is the corresponding computed eigenvector, then the angle $\theta\left(y_{i}, x_{i}\right)$ between them is bounded as follows: $\theta\left(y_{i}, x_{i}\right) \leq\left(\mathrm{c}(n) \varepsilon| | T| |_{2}\right) / \operatorname{sep}_{i}$ where sep $_{i}$ is the reciprocal condition number of x_{i}. The condition number sep ${ }_{i}$ may be computed by calling ?trsna.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

?trsna

Estimates condition numbers for specified eigenvalues and right eigenvectors of an upper (quasi-) triangular matrix.

```
call strsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
    s, sep, mm, m, work, ldwork, iwork, info )
call dtrsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
    s, sep, mm, m, work, ldwork, iwork, info )
call ctrsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
    s, sep, mm, m, work, ldwork, rwork, info )
call ztrsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
    s, sep, mm, m, work, ldwork, rwork, info)
```


Discussion

This routine estimates condition numbers for specified eigenvalues and/or right eigenvectors of an upper triangular matrix T (or, for real flavors, upper quasi-triangular matrix T in canonical Schur form). These are the same as the condition numbers of the eigenvalues and right eigenvectors of an original matrix $A=Z T Z^{H}$ (with unitary or, for real flavors, orthogonal Z), from which T may have been derived.
The routine computes the reciprocal of the condition number of an eigenvalue λ_{i} as $s_{i}=\left|v^{H} u\right| /\left(||u||_{E}| | v| |_{E}\right)$, where u and v are the right and left eigenvectors of T, respectively, corresponding to λ_{i}. This reciprocal condition number always lies between zero (ill-conditioned) and one (well-conditioned).
An approximate error estimate for a computed eigenvalue λ_{i} is then given by $\varepsilon \| T| | / s_{i}$, where ε is the machine precision.

To estimate the reciprocal of the condition number of the right eigenvector corresponding to λ_{i}, the routine first calls ?trexc (see page 5-215) to reorder the eigenvalues so that λ_{i} is in the leading position:

$$
T=Q\left[\begin{array}{ll}
\lambda_{i} & C^{H} \\
0 & T_{22}
\end{array}\right] Q^{H}
$$

The reciprocal condition number of the eigenvector is then estimated as sep_{i}, the smallest singular value of the matrix $T_{22}-\lambda_{i} I$. This number ranges from zero (ill-conditioned) to very large (well-conditioned).

An approximate error estimate for a computed right eigenvector u corresponding to λ_{i} is then given by $\varepsilon \| T| | /$ sep $_{i}$.

Input Parameters

job	CHARACTER*1. Must be 'E' or 'V' or 'B'. If job $=$ ' E^{\prime}, then condition numbers for eigenvalues only are computed. If job $=$ ' V ', then condition numbers for eigenvectors only are computed. If job='B', then condition numbers for both eigenvalues and eigenvectors are computed.
howmny	CHARACTER*1. Must be 'A' or 'S'. If howmny $=$ ' A ', then the condition numbers for all eigenpairs are computed. If howmny = 'S ', then condition numbers for selected eigenpairs (as specified by select) are computed.
select	LOGICAL. Array, DIMENSION at least $\max (1, n)$ if howmny $=$ ' S ' and at least 1 otherwise. Specifies the eigenpairs for which condition numbers are to be computed if howmny $=$ ' S '. For real flavors: To select condition numbers for the eigenpair corresponding to the real eigenvalue λ_{j}, select (j) must be set .TRUE.; to select condition numbers for the

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
$t, v l, v r, w o r k$
eigenpair corresponding to a complex conjugate pair of eigenvalues λ_{j} and $\lambda_{j+1}, \operatorname{select}(j)$ and/or $\operatorname{select}(j+1)$ must be set . TRUE.
For complex flavors:
To select condition numbers for the eigenpair corresponding to the eigenvalue λ_{j}, select (j) must be set. TRUE.
select is not referenced if howmny $=$ ' A '.
INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for strsna
DOUBLE PRECISION for dtrsna
COMPLEX for ctrsna
DOUBLE COMPLEX for ztrsna.
Arrays:
t (ldt,*) contains the n by n matrix T.
The second dimension of t must be at least $\max (1, n)$.
vl(ldvl,*)
If job $=$ 'E' or 'B', then $v l$ must contain the left eigenvectors of T (or of any matrix $Q T Q^{H}$ with Q unitary or orthogonal) corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of $v l$, as returned by ?trevc or ?hsein.
The second dimension of $v l$ must be at least $\max (1, \mathrm{~mm})$ if $j o b=' E$ ' or ' B^{\prime} and at least 1 if job='V'.
The array vl is not referenced if $j \circ b=' \mathrm{~V}$ '.
vr(ldvr,*)
If job $=$ ' E ' or 'B', then vr must contain the right eigenvectors of T (or of any matrix $Q T Q^{H}$ with Q unitary or orthogonal) corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of $v r$, as returned by ?trevc or ?hsein.
The second dimension of $v r$ must be at least $\max (1, \mathrm{~mm})$ if $j o b=' E$ ' or ' B ' and at least 1 if $j o b=' V$ '. The array $v r$ is not referenced if $j o b=' \mathrm{~V}$ '.

```
Idt INTEGER. The first dimension of }t\mathrm{ ; at least max (1,n).
ldvl INTEGER. The first dimension of vl.
If job='E' or 'B', ldvl\geqmax (1,n).
If job='V',ldvl\geq1.
ldvr INTEGER. The first dimension of vr.
If job='E' or'B', ldvr\geqmax(1,n).
If job='R', ldvr\geq1.
INTEGER. The number of elements in the arrays \(s\) and sep, and the number of columns in \(v l\) and \(v r\) (if used). Must be at least \(m\) (the precise number required).
If howmny='A', \(m=n\); if howmny \(=\) ' S ', for real flavors \(m\) is obtained by counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues. for complex flavors \(m\) is the number of selected eigenpairs (see select). Constraint: \(0 \leq m \leq n\).
Idwork INTEGER. The first dimension of work. If job='V' or 'B', ldwork \(\geq \max (1, n)\). If job='E', ldwork \(\geq 1\).
rwork REAL for ctrsna, ztrsna. Array, DIMENSION at least max \((1, n)\).
iwork INTEGER for strsna, dtrsna.
Array, dIMENSION at least max \((1, n)\).
```


Output Parameters

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least $\max (1, \mathrm{~mm})$ if job $=\mathrm{E}^{\prime}$ or ' B ' and at least 1 if job='V'.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Contains the reciprocal condition numbers of the selected eigenvalues if job='E' or 'B', stored in consecutive elements of the array. Thus $s(j)$, $\operatorname{sep}(j)$ and the j th columns of $v 1$ and $v r$ all correspond to the same eigenpair (but not in general the j th eigenpair unless all eigenpairs have been selected). For real flavors: For a complex conjugate pair of eigenvalues, two consecutive elements of S are set to the same value.
The array s is not referenced if job=' V .
REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors. Array, dimension at least max $(1, \mathrm{~mm})$ if $j o b=' V$ ' or ' B ' and at least 1 if $j o b=' E$ '. Contains the estimated reciprocal condition numbers of the selected right eigenvectors if $j o b=' \mathrm{~V}$ ' or ' B ', stored in consecutive elements of the array. For real flavors: for a complex eigenvector, two consecutive elements of sep are set to the same value; if the eigenvalues cannot be reordered to compute $\operatorname{sep}(j)$, then $\operatorname{sep}(j)$ is set to zero; this can only occur when the true value would be very small anyway.
The array sep is not referenced if job=' E .
INTEGER.
For complex flavors: the number of selected eigenpairs. If howmny = ' A ', m is set to n.
For real flavors: the number of elements of s and/or sep actually used to store the estimated condition numbers. If howmny = ' A ', m is set to n.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed values sep $_{i}$ may overestimate the true value, but seldom by a factor of more than 3 .

?trexc

```
Reorders the Schur factorization of a
general matrix.
```

```
call strexc ( compq, n, t, ldt, q, ldq, ifst, ilst, work, info )
```

call strexc (compq, n, t, ldt, q, ldq, ifst, ilst, work, info)
call dtrexc (compq, n, t, ldt, q, ldq, ifst, ilst, work, info)
call dtrexc (compq, n, t, ldt, q, ldq, ifst, ilst, work, info)
call ctrexc (compq, n, t, ldt, q, ldq, ifst, ilst, info)
call ctrexc (compq, n, t, ldt, q, ldq, ifst, ilst, info)
call ztrexc (compq, n, t, ldt, q, ldq, ifst, ilst, info)

```
call ztrexc ( compq, n, t, ldt, q, ldq, ifst, ilst, info )
```


Discussion

This routine reorders the Schur factorization of a general matrix $A=Q T Q^{H}$, so that the diagonal element or block of T with row index ifst is moved to row ilst.
The reordered Schur form S is computed by an unitary (or, for real flavors, orthogonal) similarity transformation: $S=Z^{H} T Z$. Optionally the updated matrix P of Schur vectors is computed as $P=Q Z$, giving $A=P S P^{H}$.

Input Parameters

```
compq CHARACTER*1. Must be 'V' or 'N'.
    If compq=' }\textrm{V}\mathrm{ ', then the Schur vectors (Q) are updated.
    If compq='N', then no Schur vectors are updated.
n INTEGER. The order of the matrix T( }n\geq0)\mathrm{ .
t, q REAL for strexc
    DOUBLE PRECISION for dtrexc
    COMPLEX for ctrexc
    DOUBLE COMPLEX for ztrexc.
    Arrays:
    t (ldt,*) contains the n by n matrix T.
    The second dimension of t must be at least max(1,n).
    q(ldq,*)
    If compq='v', then q must contain Q (Schur vectors).
    If compq='N', then q}\mathrm{ is not referenced.
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

	The second dimension of q must be at least $\max (1, n)$ if compq $=' \mathrm{~V}$ ' and at least 1 if compq $={ }^{\prime} \mathrm{N}^{\prime}$.
$1 d t$	Integer. The first dimension of t; at least max $(1, n)$.
$1 d q$	INTEGER. The first dimension of q; If compq $={ }^{\prime} N^{\prime}$, then $I d q \geq 1$. If compq $=$ ' V ', then $I d q \geq \max (1, n)$.
ifst, ilst	INTEGER. $1 \leq$ ifst $\leq n ; 1 \leq$ ilst $\leq n$. Must specify the reordering of the diagonal elements (or blocks, which is possible for real flavors) of the matrix T. The element (or block) with row index ifst is moved to row ilst by a sequence of exchanges between adjacent elements (or blocks).
work	REAL for strexc DOUBLE PRECISION for dtrexc. Array, DIMENSION at least max $(1, n)$.
Output Para	
t	Overwritten by the updated matrix S.
q	If compq $=$ ' V ', q contains the updated matrix of Schur vectors.
ifst, ilst	Overwritten for real flavors only. If ifst pointed to the second row of a 2 by 2 block on entry, it is changed to point to the first row; ilst always points to the first row of the block in its final position (which may differ from its input value by ± 1).
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed matrix S is exactly similar to a matrix $T+E$, where $||E||_{2}=O(\varepsilon)| | T| |_{2}$, and ε is the machine precision.

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become purely real.
The values of eigenvalues however are never changed by the re-ordering.
The approximate number of floating-point operations is

$$
\begin{array}{ll}
\text { for real flavors: } & 6 n(i f s t-i l s t) \text { if compq='N'; } \\
& 12 n(i f s t-i l s t) \text { if compq='V'; } \\
\text { for complex flavors: } & 20 n(i f s t-i l s t) \text { if compq='N'; } \\
& 40 n(i f s t-i l s t) \text { if } c o m p q=' V ' .
\end{array}
$$

?trsen

Reorders the Schur factorization of a matrix and (optionally) computes the reciprocal condition numbers and invariant subspace for the selected cluster of eigenvalues.

```
call strsen (job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
    sep, work, lwork, iwork, liwork, info)
call dtrsen (job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
    sep, work, lwork, iwork, liwork, info)
call ctrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s,
    sep, work, lwork, info)
call ztrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s,
    sep, work, lwork, info)
```


Discussion

This routine reorders the Schur factorization of a general matrix $A=Q T Q^{H}$ so that a selected cluster of eigenvalues appears in the leading diagonal elements (or, for real flavors, diagonal blocks) of the Schur form.

The reordered Schur form R is computed by an unitary(orthogonal) similarity transformation: $R=Z^{H} T Z$. Optionally the updated matrix P of Schur vectors is computed as $P=Q Z$, giving $A=P R P^{H}$.
Let

$$
R=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{13}
\end{array}\right]
$$

where the selected eigenvalues are precisely the eigenvalues of the leading m by m submatrix T_{11}. Let P be correspondingly partitioned as $\left(Q_{1} Q_{2}\right)$ where Q_{1} consists of the first m columns of Q. Then $A Q_{1}=Q_{1} T_{11}$, and so the m columns of Q_{1} form an orthonormal basis for the invariant subspace corresponding to the selected cluster of eigenvalues.
Optionally the routine also computes estimates of the reciprocal condition numbers of the average of the cluster of eigenvalues and of the invariant subspace.

Input Parameters

job	CHARACTER*1. Must be 'N' or 'E' or 'V' or 'B'. If job $=$ ' N ', then no condition numbers are required. If job $=$ ' E ', then only the condition number for the cluster of eigenvalues is computed. If job $=$ ' V^{\prime}, then only the condition number for the invariant subspace is computed. If job $=$ ' B^{\prime}, then condition numbers for both the cluster and the invariant subspace are computed.
compq	CHARACTER*1. Must be 'V' or 'N'. If compq='v', then Q of the Schur vectors is updated. If compq='N', then no Schur vectors are updated.
select	LOGICAL. Array, DIMENSION at least max $(1, n)$. Specifies the eigenvalues in the selected cluster. To select an eigenvalue λ_{j}, select (j) must be .TRUE. For real flavors: to select a complex conjugate pair of eigenvalues λ_{j} and λ_{j+1} (corresponding 2 by 2 diagonal

```
n
n
```

```
t, q, work
```

```
t, q, work
```

block), select (j) and/or select $(j+1)$ must be .TRUE.; the complex conjugate λ_{j} and λ_{j+1} must be either both included in the cluster or both excluded.
INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for strsen
DOUBLE PRECISION for dtrsen
COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Arrays:
t (ldt,*) The n by $n T$.
The second dimension of t must be at least $\max (1, n)$.
$q(I d q, *)$
If compq $=$ ' V^{\prime}, then q must contain Q of Schur vectors. If compq='N', then q is not referenced.
The second dimension of q must be at least $\max (1, n)$ if compq $={ }^{\prime} \mathrm{V}^{\prime}$ and at least 1 if compq $=\mathrm{I}^{\prime}$ '.
work (lwork) is a workspace array.
For complex flavors: the array work is not referenced if job='N'.
The actual amount of workspace required cannot exceed $n^{2} / 4$ if $j 0 b=' E$ ' or $n^{2} / 2$ if $j 0 b=' V$ ' or 'B'.
INTEGER. The first dimension of t; at least $\max (1, n)$.
Integer. The first dimension of q;
If compq='N', then $I d q \geq 1$.
If compq $=$ ' V ', then $I d q \geq \max (1, n)$.
INTEGER. The dimension of the array work.
If job='V' or 'B', lwork $\geq \max (1,2 m(n \rightarrow n))$.
If job $={ }^{\prime} \mathrm{E}$ ', then 1 work $\geq \max (1, m(n \rightarrow n))$
If job $=$ ' N ', then 1 work ≥ 1 for complex flavors and lwork $\geq \max (1, n)$ for real flavors.

INTEGER.
iwork(liwork) is a workspace array.
The array iwork is not referenced if job='N' or 'E'. The actual amount of workspace required cannot exceed $n^{2} / 2$ if job='V' or 'B'.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

liwork INTEGER.

The dimension of the array iwork.
If job $=$ 'V' or 'B', liwork $\geq \max (1,2 m(n+n))$.
If job $=$ 'E' or 'E', liwork ≥ 1.

Output Parameters

Overwritten by the updated matrix R.
If compq='V', q contains the updated matrix of Schur vectors; the first m columns of the Q form an orthogonal basis for the specified invariant subspace.

COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Array, DIMENSION at least $\max (1, n)$.
The recorded eigenvalues of R. The eigenvalues are stored in the same order as on the diagonal of R.

REAL for strsen
DOUBLE PRECISION for dtrsen
Arrays, DIMENSION at least $\max (1, n)$.
Contain the real and imaginary parts, respectively, of the reordered eigenvalues of R. The eigenvalues are stored in the same order as on the diagonal of R. Note that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.

INTEGER.
For complex flavors: the number of the specified invariant subspaces, which is the same as the number of selected eigenvalues (see select).
For real flavors: the dimension of the specified invariant subspace. The value of m is obtained by counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues (see select).

Constraint: $0 \leq m \leq n$.
info
iwork (1) On exit, if info $=0$, then iwork (1) returns the required minimal size of liwork.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. If $j o b=' E$ ' or ' B^{\prime}, s is a lower bound on the reciprocal condition number of the average of the selected cluster of eigenvalues. If $m=0$ or n, then $s=1$.
For real flavors: if info $=1$, then s is set to zero. s is not referenced if $j o b=' N$ ' or ' V '.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. If $j o b=' V$ ' or ' B^{\prime}, sep is the estimated reciprocal condition number of the specified invariant subspace. If $m=0$ or n, then sep $=||T||$. For real flavors: if info $=1$, then sep is set to zero. sep is not referenced if job $=$ ' N ' or ' E '.
On exit, if info $=0$, then work (1) returns the required minimal size of 1 work.

If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed matrix R is exactly similar to a matrix $T+E$, where $||E||_{2}=O(\varepsilon)| | T| |_{2}$, and ε is the machine precision.
The computed s cannot underestimate the true reciprocal condition number by more than a factor of $(\min (m, n-m))^{1 / 2}$; sep may differ from the true value by $\left(m^{*} n-m^{2}\right)^{1 / 2}$. The angle between the computed invariant subspace and the true subspace is $O(\varepsilon)||A||_{2} /$ sep.
Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become purely real. The values of eigenvalues however are never changed by the re-ordering.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

?trsyl

Solves Sylvester's equation for real quasi-triangular or complex triangular matrices.

```
call strsyl ( trana, tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info )
call dtrsyl ( trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info )
call ctrsyl ( trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info )
call ztrsyl ( trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info )
```


Discussion

This routine solves the Sylvester matrix equation $\mathrm{op}(A) X \pm X \mathrm{op}(B)=\alpha C$, where $\operatorname{op}(A)=A$ or A^{H}, and the matrices A and B are upper triangular (or, for real flavors, upper quasi-triangular in canonical Schur form); $\alpha \leq 1$ is a scale factor determined by the routine to avoid overflow in $X ; A$ is m by m, B is n by n, and C and X are both m by n. The matrix X is obtained by a straightforward process of back substitution.
The equation has a unique solution if and only if $\alpha_{i} \pm \beta_{i} \neq 0$, where $\left\{\alpha_{i}\right\}$ and $\left.\beta_{\mathrm{i}}\right\}$ are the eigenvalues of A and B, respectively, and the sign (+ or \rightarrow is the same as that used in the equation to be solved.

Input Parameters

trana	$\begin{aligned} & \text { CHARACTER* }{ }^{\star} \text {. Must be 'N' or ' } \mathrm{T}^{\prime} \text { or }{ }^{\prime} \mathrm{C}^{\prime} . \\ & \text { If } \operatorname{trana}=\mathrm{N}^{\prime} \text {, then } \operatorname{op}(A)=A \text {. } \\ & \text { If } \operatorname{trana}={ }^{\prime} \mathrm{T}^{\prime} \text {, then } \operatorname{op}(A)=A^{T} \text { (real flavors only). } \\ & \text { If } t \text { rana }=' C^{\prime} \text { then } \operatorname{op}(A)=A^{H} . \end{aligned}$
tranb	
isgn	integer. Indicates the form of the Sylvester equation. If isgn $=+1, \operatorname{op}(A) X+X o p(B)=\alpha C$. If i sgn $=-1, \operatorname{op}(A) X-X \operatorname{op}(B)=\alpha C$.

m	INTEGER. The order of A, and the number of rows in X and $C(m \geq 0)$.
n	INTEGER. The order of B, and the number of columns in X and $C(n \geq 0)$.
a, b, c	REAL for strsyl
	DOUBLE PRECISION for dtrsyl
	COMPLEX for ctrsyl
	DOUBLE COMPLEX for ztrsyl.
	Arrays:
	a (lda,*) contains the matrix A.
	The second dimension of a must be at least max $(1, m)$.
	$b(I d b, *)$ contains the matrix B.
	The second dimension of b must be at least $\max (1, n)$.
	$c(I d C, *)$ contains the matrix C.
	The second dimension of c must be at least $\max (1, n)$.
Ida	Integer. The first dimension of a; at least max $(1, m)$.
$1 d b$	INTEGER. The first dimension of b; at least $\max (1, n)$.
$l d c$	INTEGER. The first dimension of c; at least $\max (1, n)$.

Output Parameters

C	Overwritten by the solution matrix X.
SCale	REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.	
info	The value of the scale factor α.
	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.
	If info $=1, A$ and B have common or close eigenvalues
perturbed values were used to solve the equation.	

Application Notes

Let X be the exact, Y the corresponding computed solution, and R the residual matrix: $R=C-(A Y \pm Y B)$. Then the residual is always small:

$$
\left\|\left.R\left|\left.\right|_{F}=\mathrm{O}(\varepsilon)\left(\left\|A| |_{F}+\right\| B| |_{F}\right) \| Y\right|\right|_{F} .\right.
$$

However, Y is not necessarily the exact solution of a slightly perturbed equation; in other words, the solution is not backwards stable.

For the forward error, the following bound holds:
$||Y-X||_{F} \leq\left.|R|\right|_{F} / \operatorname{sep}(A, B)$
but this may be a considerable overestimate. See [Golub96] for a definition of $\operatorname{sep}(A, B)$.
The approximate number of floating-point operations for real flavors is $m^{\star} n^{\star}(m+n)$. For complex flavors it is 4 times greater.

Generalized Nonsymmetric Eigenvalue Problems

This section describes LAPACK routines for solving generalized nonsymmetric eigenvalue problems, reordering the generalized Schur factorization of a pair of matrices, as well as performing a number of related computational tasks.
A generalized nonsymmetric eigenvalue problem is as follows: given a pair of nonsymmetric (or non-Hermitian) n-by-n matrices A and B, find the generalized eigenvalues λ and the corresponding generalized eigenvectors x and y that satisfy the equations

$$
A x=\lambda B x \quad \text { (right generalized eigenvectors } x \text {) }
$$

and

$$
y^{H} A=\lambda y^{H} B \text { (left generalized eigenvectors } y \text {). }
$$

Table 5-6 lists LAPACK routines used to solve the generalized nonsymmetric eigenvalue problems and the generalized Sylvester equation.

Table 5-6 Computational Routines for Solving Generalized Nonsymmetric Eigenvalue Problems
Routine Operation performed

name

? g gh r d Reduces a pair of matrices to generalized upper Hessenberg form using orthogonal/unitary transformations.
?ggbal Balances a pair of general real or complex matrices.
? ggbak Forms the right or left eigenvectors of a generalized eigenvalue problem.
?hgeqz Implements the QZ method for finding the generalized eigenvalues of the matrix pair (H, T).
?tgevc Computes some or all of the right and/or left generalized eigenvectors of a pair of upper triangular matrices
?tgexc Reorders the generalized Schur decomposition of a pair of matrices (A, B) so that one diagonal block of (A, B) moves to another row index.
?tgsen Reorders the generalized Schur decomposition of a pair of matrices (A, B) so that a selected cluster of eigenvalues appears in the leading diagonal blocks of (A, B).
?tgsyl Solves the generalized Sylvester equation.
?tgsna Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a pair of matrices in generalized real Schur canonical form.

?gghrd

```
Reduces a pair of matrices to generalized
upper Hessenberg form using
orthogonal/unitary transformations.
call sgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
        z, ldz, info )
call dgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
        z, ldz, info )
call cgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
        z, ldz, info )
call zgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
    z, ldz, info )
```


Discussion

This routine reduces a pair of real/complex matrices (A,B) to generalized upper Hessenberg form using orthogonal/unitary transformations, where A is a general matrix and B is upper triangular. The form of the generalized eigenvalue problem is $A x=\lambda B x$, and B is typically made upper triangular by computing its $Q R$ factorization and moving the orthogonal matrix Q to the left side of the equation.
This routine simultaneously reduces A to a Hessenberg matrix H :

$$
Q^{H} A Z=H
$$

and transforms B to another upper triangular matrix T :
$Q^{H} B \quad Z=T$
in order to reduce the problem to its standard form $H y=\lambda T y$ where $y=Z^{H} x$.
The orthogonal/unitary matrices Q and Z are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices Q_{1} and Z_{1}, so that

$$
\begin{aligned}
& Q_{1} A Z_{1}^{H}=\left(Q_{1} Q\right) H\left(Z_{1} Z\right)^{H} \\
& Q_{1} B Z_{1}^{H}=\left(Q_{1} Q\right) T\left(Z_{1} Z\right)^{H}
\end{aligned}
$$

If Q_{1} is the orthogonal matrix from the $Q R$ factorization of B in the original equation $A x=\lambda B x$, then ?gghrd reduces the original problem to generalized Hessenberg form.

Input Parameters

compq	ChARACTER*1. Must be 'N', 'I', or 'V'.
	If compq $=$ ' ${ }^{\prime}$ ', matrix Q is not computed.
	If compq $=$ 'I', Q is initialized to the unit matrix, and the orthogonal/unitary matrix Q is returned;
	If compq $=$ ' V^{\prime}, Q must contain an orthogonal/unitary matrix Q_{1} on entry, and the product $Q_{1} Q$ is returned.
compz	CHARACTER*1. Must be 'N', 'I', or 'V'.
	If compz $=$ ' N ', matrix Z is not computed.
	If $c o m p z=$ ' I', Z is initialized to the unit matrix, and the orthogonal/unitary matrix Z is returned;
	If compz $=$ ' V^{\prime}, Z must contain an orthogonal/unitary matrix Z_{1} on entry, and the product $Z_{1} Z$ is returned.
n	Integer. The order of the matrices A and $B(n \geq 0)$.
ilo, ihi	INTEGER. ilo and ihi mark the rows and columns of
	A which are to be reduced. It is assumed that A is already upper triangular in rows and columns 1:ilo-1 and
	$i h i+1: n$. Values of ilo and ihi are normally set by a previous call to ? ggbal; otherwise they should be set to 1 and n respectively. Constraint:
	If $n>0$, then $1 \leq i l o \leq i h i \leq n ;$
	if $n=0$, then ilo $=1$ and ihi $=0$.
a, b, q, z	REAL for sgghrd
	DOUBLE PRECISION for dgghrd
	COMPLEX for cgghrd
	DOUBLE COMPLEX for zgghrd.
	Arrays:
	a (lda, *) contains the n-by-n general matrix A.
	The second dimension of a must be at least $\max (1, n)$.
	$b(I d b, *)$ contains the n-by- n upper triangular matrix
	B.
	The second dimension of b must be at least max $(1, n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
$q(I d q, *)$
If compq='N', then q is not referenced.
If compq $=$ ' I ', then, on entry, q need not be set.
If compq=' V ', then q must contain the orthogonal/unitary matrix Q_{1}, typically from the $Q R$ factorization of B.
The second dimension of q must be at least $\max (1, n)$.
$z(l d z, *)$
If compq=' N^{\prime}, then z is not referenced.
If compq=' I', then, on entry, z need not be set.
If compq $=$ ' V^{\prime}, then z must contain the orthogonal/unitary matrix Z_{1}.
The second dimension of z must be at least $\max (1, n)$.
lda
integer. The first dimension of a; at least $\max (1, n)$.
INTEGER. The first dimension of b; at least $\max (1, n)$.
INTEGER. The first dimension of q;
If compq=' N^{\prime}, then $l d q \geq 1$.
If compq='I' or ' V ', then $I \mathrm{dq} \geq \max (1, n)$.
integer. The first dimension of z;
If compq=' N^{\prime}, then $l d z \geq 1$.
If compq='I' or ' V ', then $I d z \geq \max (1, n)$.

Output Parameters

On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the rest is set to zero.
On exit, overwritten by the upper triangular matrix $T=Q^{H} B \quad Z$. The elements below the diagonal are set to zero.
If compq='I ', then q contains the orthogonal/unitary matrix Q, where Q^{H} is the product of the Givens transformations which are applied to A and B on the left;
If compq = ' V ', then q is overwritten by the product $Q_{1} Q$.

If compq='I', then z contains the orthogonal/unitary matrix Z, which is the product of the Givens transformations which are applied to A and B on the right;
If compq='V', then z is overwritten by the product $Z_{1} Z$.
INTEGER.
If $i n f o=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

?ggbal

Balances a pair of general real or complex matrices.

```
call sggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
    work, info )
call dggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
    work, info )
call cggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
    work, info )
call zggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
    work, info )
```


Discussion

This routine balances a pair of general real/complex matrices (A, B). This involves, first, permuting A and B by similarity transformations to isolate eigenvalues in the first 1 to $i l o-1$ and last $i h i+1$ to n elements on the diagonal; and second, applying a diagonal similarity transformation to rows and columns ilo to ihi to make the rows and columns as close in norm as possible. Both steps are optional.
Balancing may reduce the 1 -norm of the matrices, and improve the accuracy of the computed eigenvalues and/or eigenvectors in the generalized eigenvalue problem $A x=\lambda B x$.

Input Parameters

job	CHARACTER*1. Specifies the operations to be performed
on A and B. Must be 'N' or 'P' or 'S' or 'B'.	
If $j o b=' N$ ', then no operations are done; simply set	
ilo=1, $i h i=n, ~ I s c a l e(i)=1.0$ and $r s c a l e(i)=1.0$ for	
i $=1, \ldots, n$.	
If job='P', then permute only.	
If job='S', then scale only.	
If job='B', then both permute and scale.	
n	INTEGER. The order of the matrices A and $B(n \geq 0)$.

```
a, b REAL for sggbal
DOUBLE PRECISION for dggbal
COMPLEX for cggbal
DOUBLE COMPLEX for zggbal.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1,n).
b(Idb,*) contains the matrix B.
The second dimension of b must be at least max(1,n).
Ida Integer. The first dimension of a; at least max(1,n).
ldb INTEGER. The first dimension of b; at least max (1,n).
work REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1,6n).
```


Output Parameters

```
\(a, b \quad\) Overwritten by the balanced matrices \(A\) and \(B\), respectively. If job \(=\) 'N', \(a\) and \(b\) are not referenced.
ilo, ihi INTEGER. ilo and ihi are set to integers such that on exit \(a(i, j)=0\) and \(b(i, j)=0\) if \(i>j\) and \(j=1, \ldots, i l o-1\) or \(i=i h i+1, \ldots, n\). If job='N'or'S', then ilo \(=1\) and \(i h i=n\).
Iscale, rscale REAL for single precision flavors DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least \(\max (1, n)\).
Iscale contains details of the permutations and scaling factors applied to the left side of \(A\) and \(B\). If \(P_{\mathrm{j}}\) is the index of the row interchanged with row \(j\), and \(D_{\mathrm{j}}\) is the scaling factor applied to row \(j\), then
\[
\begin{aligned}
\operatorname{lscale}(j) & =P_{\mathrm{j}}, \text { for } j=1, \ldots, \text { ilo }-1 \\
& =D_{\mathrm{j}}, \text { for } j=i l o, \ldots, i h i \\
& =P_{\mathrm{j}}, \text { for } j=i h i+1, \ldots, n .
\end{aligned}
\]
rscale contains details of the permutations and scaling factors applied to the right side of \(A\) and \(B\).
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

If P_{j} is the index of the column interchanged with column j, and D_{j} is the scaling factor applied to column j, then

$$
\begin{aligned}
\operatorname{rscale}(j) & =P_{\mathrm{j}}, \text { for } j=1, \ldots, i l o-1 \\
& =D_{\mathrm{j}}, \text { for } j=i l o, \ldots, i h i \\
& =P_{\mathrm{j}}, \text { for } j=i h i+1, \ldots, n
\end{aligned}
$$

The order in which the interchanges are made is n to ihitl, then 1 to ilo-1.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

?ggbak

Forms the right or left eigenvectors of a generalized eigenvalue problem.

```
call sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call cggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call zggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
```


Discussion

This routine forms the right or left eigenvectors of a real/complex generalized eigenvalue problem

$$
A x=\lambda B x
$$

by backward transformation on the computed eigenvectors of the balanced pair of matrices output by ? ggbal.

Input Parameters

job	CHARACTER*1. Specifies the type of backward transformation required. Must be 'N', 'P', 'S', or 'B'. If job $=$ ' N^{\prime} ', then no operations are done; return. If job='P', then do backward transformation for permutation only. If job='S', then do backward transformation for scaling only. If job $=$ ' B ', then do backward transformation for both permutation and scaling. This argument must be the same as the argument job supplied to ? ggbal.
side	CHARACTER*1. Must be 'L' or 'R'. If side $=$ ' L ', then v contains left eigenvectors . If side $=$ ' R ', then v contains right eigenvectors .
	INTEGER. The number of rows of the matrix $V(n \geq 0)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

ilo, ihi	Integer. The integers ilo and ihi determined by ?gebal. Constraint: If $n>0$, then $1 \leq i l o \leq i h i \leq n$; if $n=0$, then $i l o=1$ and $i h i=0$.
Iscale, rscale	REAL for single precision flavors DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least max $(1, n)$.
	The array Iscale contains details of the permutations and/or scaling factors applied to the left side of A and B, as returned by ?ggbal. The array rscale contains details of the permutations and/or scaling factors applied to the right side of A and B, as returned by ?ggbal.
m	INTEGER. The number of columns of the matrix V ($m \geq 0$).
v	REAL for sggbak
	DOUBLE PRECISION for dggbak
	COMPLEX for cggbak
	DOUBLE COMPLEX for zggbak.
	Array $v(I d v, *)$. Contains the matrix of right or left eigenvectors to be transformed, as returned by ?tgevc. The second dimension of v must be at least $\max (1, m)$.
$l d v$	Integer. The first dimension of v; at least $\max (1, n)$.

Output Parameters

```
v Overwritten by the transformed eigenvectors
info INTEGER.
If info = 0, the execution is successful.
If infO = -i, the ith parameter had an illegal value.
```


?hgeqz

```
Implements the QZ method for finding
the generalized eigenvalues of the
matrix pair (H,T).
call shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
    alphai, beta, q, ldq, z, ldz, work, lwork, info )
call dhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
    alphai, beta, q, ldq, z, ldz, work, lwork, info )
call chgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
    beta, q, ldq, z, ldz, work, lwork, rwork, info )
call zhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
    beta, q, ldq, z, ldz, work, lwork, rwork, info )
```


Discussion

This routine computes the eigenvalues of a real/complex matrix pair (H, T), where H is an upper Hessenberg matrix and T is upper triangular, using the double-shift version (for real flavors) or single-shift version (for complex flavors) of the $Q Z$ method.
Matrix pairs of this type are produced by the reduction to generalized upper Hessenberg form of a real/complex matrix pair (A, B) :

$$
A=Q_{1} H Z_{l}^{H}, \quad B=Q_{1} T Z_{l}^{H}
$$

as computed by ? gghrd.
For real flavors:
If job='S', then the Hessenberg-triangular pair (H, T) is also reduced to generalized Schur form,

$$
H=Q S Z^{T}, \quad T=Q P Z^{T}
$$

where Q and Z are orthogonal matrices, P is an upper triangular matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks. The 1-by-1 blocks correspond to real eigenvalues of the matrix pair (H, T) and the 2-by-2 blocks correspond to complex conjugate pairs of eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks of P
corresponding to 2 -by- 2 blocks of S are reduced to positive diagonal form, that is, if $S(\mathrm{j}+1, \mathrm{j})$ is non-zero, then $P(\mathrm{j}+1, \mathrm{j})=P(\mathrm{j}, \mathrm{j}+1)=0, P(\mathrm{j}, \mathrm{j})>0$, and $P(\mathrm{j}+1, \mathrm{j}+1)>0$.
For complex flavors:
If job='S', then the Hessenberg-triangular pair (H, T) is also reduced to generalized Schur form,

$$
H=Q S Z^{H}, \quad T=Q P Z^{H}
$$

where Q and Z are unitary matrices, and S and P are upper triangular.
For all function flavors:
Optionally, the orthogonal/unitary matrix Q from the generalized Schur factorization may be postmultiplied into an input matrix Q_{1}, and the orthogonal/unitary matrix Z may be postmultiplied into an input matrix Z_{1}. If Q_{1} and Z_{1} are the orthogonal/unitary matrices from ?gghrd that reduced the matrix pair (A, B) to generalized upper Hessenberg form, then the output matrices $Q_{1} Q$ and $Z_{l} Z$ are the orthogonal/unitary factors from the generalized Schur factorization of (A, B) :

$$
A=\left(Q_{1} Q\right) S\left(Z_{1} Z\right)^{H}, \quad B=\left(Q_{1} Q\right) P\left(Z_{1} Z\right)^{H} .
$$

To avoid overflow, eigenvalues of the matrix pair (H, T) (equivalently, of (A, B)) are computed as a pair of values (alpha,beta). For chgeqz/zhgeqz, alpha and beta are complex, and for shgeqz/dhgeqz, alpha is complex and beta real. If beta is nonzero, $\lambda=$ alpha / beta is an eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)

$$
A x=\lambda B x
$$

and if alpha is nonzero, $\mu=$ beta / alpha is an eigenvalue of the alternate form of the GNEP

$$
\mu A y=B y .
$$

Real eigenvalues (for real flavors) or the values of alpha and beta for the i-th eigenvalue (for complex flavors) can be read directly from the generalized Schur form:
alpha $=S(\mathrm{i}, \mathrm{i}), \quad$ beta $=P(\mathrm{i}, \mathrm{i})$.

Input Parameters

job	CHARACTER*1. Specifies the operations to be performed. Must be ' E ' or ' S '. If $j o b=' E$ ', then compute eigenvalues only; If job $=$ 'S', then compute eigenvalues and the Schur form.
compq	CHARACTER*1. Must be 'N', 'I', or 'V'. If compq $=$ ' N ', left Schur vectors (q) are not computed; If compq $=$ ' I', q is initialized to the unit matrix and the matrix of left Schur vectors of (H, T) is returned; If compq $=$ ' V^{\prime}, q must contain an orthogonal/unitary matrix Q_{1} on entry and the product $Q_{1} Q$ is returned.
compz	CHARACTER*1. Must be 'N', 'I', or 'V'. If compz $=$ ' N ', left Schur vectors (q) are not computed; If compz='I', z is initialized to the unit matrix and the matrix of right Schur vectors of (H, T) is returned; If compz = ' $\mathrm{V}^{\prime}, \quad z$ must contain an orthogonal/unitary matrix Z_{l} on entry and the product $Z_{1} Z$ is returned.
n	Integer. The order of the matrices H, T, Q, and Z ($n \geq 0$).
ilo, ihi	INTEGER. ilo and ihi mark the rows and columns of H which are in Hessenberg form. It is assumed that H is already upper triangular in rows and columns 1:ilo-1 and ihitl:n. Constraint: If $n>0$, then $1 \leq i l o \leq i h i \leq n$; if $n=0$, then $i l o=1$ and $i h i=0$.
h, t, q, z work	REAL for shgeqz
	DOUBLE PRECISION for dhgeqz
	COMPLEX for chgeqz
	DOUBLE COMPLEX for zhgeqz.

Arrays:
On entry, $h(I d h, *)$ contains the n-by- n upper
Hessenberg matrix H.
The second dimension of h must be at least $\max (1, n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

On entry, $t(I d t, *)$ contains the n-by- n upper triangular matrix T.
The second dimension of t must be at least $\max (1, n)$.
$q(I d q, *)$:
On entry, if compq='V', this array contains the orthogonal/unitary matrix Q_{1} used in the reduction of (A, B) to generalized Hessenberg form.
If compq=' N ', then q is not referenced.
The second dimension of q must be at least $\max (1, n)$.
$z(l d z, *)$:
On entry, if compz='V', this array contains the orthogonal/unitary matrix Z_{l} used in the reduction of (A, B) to generalized Hessenberg form. If compz $=$ ' N ', then z is not referenced. The second dimension of z must be at least $\max (1, n)$. work (1 work) is a workspace array.

INTEGER. The first dimension of t; at least $\max (1, n)$.
INTEGER. The first dimension of q; If compq='N', then $l d q \geq 1$. If compq='I' or ' V ', then $I d q \geq \max (1, n)$.
Integer. The first dimension of z; If compq=' N^{\prime}, then $l d z \geq 1$. If compq='I' or ' V ', then $l d z \geq \max (1, n)$.
integer. The dimension of the array work. lwork $\geq \max (1, n)$.
REAL for chgeqz DOUBLE PRECISION for $z h g e q z$. Workspace array, DIMENSION at least max $(1, n)$. Used in complex flavors only.

Output Parameters

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

	If alphai(j) is zero, then the j -th eigenvalue is real; if positive, then the j -th and $(\mathrm{j}+1)$-th eigenvalues are a complex conjugate pair, with alphai $(\mathrm{j}+1)=-\operatorname{alphai}(\mathrm{j})$.
alpha	COMPLEX for chgeqz;
	DOUBLE COMPLEX for zhgeqz.
	Array, DIMENSION at least max $(1, n)$.
	The complex scalars alpha that define the eigenvalues of GNEP. alphai(i) $=S(\mathbf{i}, \mathrm{i})$ in the generalized Schur factorization.
beta	REAL for shgeqz
	DOUBLE PRECISION for dhgeqz
	COMPLEX for chgeqz
	DOUBLE COMPLEX for zhgeqz.
	Array, DIMENSION at least max $(1, n)$.
	For real flavors:
	The scalars beta that define the eigenvalues of GNEP. Together, the quantities alpha $=(\operatorname{alphar}(\mathrm{j})$, alphai $(\mathrm{j}))$ and beta $=$ bet $a(\mathrm{j})$ represent the j -th eigenvalue of the matrix pair (A, B), in one of the forms $\lambda=$ alpha/beta or $\mu=$ beta/alpha. Since either λ or μ may overflow, they should not, in general, be computed.
	For complex flavors:
	The real non-negative scalars beta that define the eigenvalues of GNEP. beta(i) $=P(\mathrm{i}, \mathrm{i})$ in the generalized Schur factorization.
	Together, the quantities alpha $=a l p h a(\mathrm{j})$ and beta $=$ beta(\mathbf{j}) represent the j -th eigenvalue of the matrix pair (A, B), in one of the forms $\lambda=$ alpha/beta or $\mu=$ beta/alpha. Since either λ or μ may overflow, they should not, in general, be computed.
q	On exit, if compq='I', q is overwritten by the orthogonal/unitary matrix of left Schur vectors of the pair (H, T), and if compq $=$ ' V^{\prime}, q is overwritten by the orthogonal/unitary matrix of left Schur vectors of (A, B).

Z

On exit, if compz='I', z is overwritten by the orthogonal/unitary matrix of right Schur vectors of the pair (H, T), and if compz $=$ ' V^{\prime}, z is overwritten by the orthogonal/unitary matrix of right Schur vectors of (A, B).
If info ≥ 0, on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If $\operatorname{info}=1, \ldots, n$, the $Q Z$ iteration did not converge.
(H, T) is not in Schur form, but alphar(i), alphai(i) (for real flavors), alpha(i) (for complex flavors), and beta(i), $\mathrm{i}=$ info $+1, \ldots, n$ should be correct.
If info $=n+1, \ldots, 2 n$, the shift calculation failed. (H, T) is not in Schur form, but alphar(i), alphai(i) (for real flavors), alpha(i) (for complex flavors), and beta(i), $\mathrm{i}=$ info $-n+1, \ldots, n$ should be correct.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

?tgevc

```
Computes some or all of the right
and/or left generalized eigenvectors of a
pair of upper triangular matrices.
call stgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
    ldvr, mm, m, work, info )
call dtgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
    ldvr, mm, m, work, info )
call ctgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
    ldvr, mm, m, work, rwork, info )
call ztgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
    ldvr, mm, m, work, rwork, info )
```


Discussion

This routine computes some or all of the right and/or left eigenvectors of a pair of real/complex matrices (S, P), where S is quasi-triangular (for real flavors) or upper triangular (for complex flavors) and P is upper triangular.
Matrix pairs of this type are produced by the generalized Schur factorization of a real/complex matrix pair (A, B) :

$$
A=Q S Z^{H}, \quad B=Q P Z^{H}
$$

as computed by ?gghrd plus ?hgeqz.
The right eigenvector x and the left eigenvector y of (S, P) corresponding to an eigenvalue w are defined by:

$$
S x=w P x, \quad y^{H} S=w y^{H} P
$$

The eigenvalues are not input to this routine, but are computed directly from the diagonal blocks or diagonal elements of S and P.
This routine returns the matrices X and/or Y of right and left eigenvectors of (S, P), or the products $Z X$ and/or $Q Y$, where Z and Q are input matrices. If Q and Z are the orthogonal/unitary factors from the generalized Schur factorization of a matrix pair (A, B), then $Z X$ and $Q Y$ are the matrices of right and left eigenvectors of (A, B).

Input Parameters

side	CHARACTER*1. Must be 'R', 'L', or 'B'. If side $=$ ' R^{\prime}, compute right eigenvectors only. If side $=$ 'L', compute left eigenvectors only. If side $=$ ' B ', compute both right and left eigenvectors.
howmny	CHARACTER*1. Must be 'A', 'B', or 'S'. If howmny = ' A ', compute all right and/or left eigenvectors. If howmny $=$ ' B ', compute all right and/or left eigenvectors, backtransformed by the matrices in vr and/or vl. If howmny = ' S ', compute selected right and/or left eigenvectors, specified by the logical array select.
select	LOGICAL. Array, DIMENSION at least max $(1, n)$. If howmny = 'S', select specifies the eigenvectors to be computed. If howmny= 'A' or 'B', select is not referenced. For real flavors: If ω_{0} is a real eigenvalue, the corresponding real eigenvector is computed if select (j) is . TRUE.. If ω_{j} and ω_{+l} are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either select (j) or select $(j+1)$ is .TRUE., and on exit $\operatorname{select}(j)$ is set to .TRUE. and select $(j+1)$ is set to .FALSE.. For complex flavors: The eigenvector corresponding to the j-th eigenvalue is computed if select (j) is . TRUE..
n	Integer. The order of the matrices A and $B(n \geq 0)$.
$s, p, v 1, v r, w o r k$ REAL for stgevc	
	DOUBLE PRECISION for dtgevc
	COMPLEX for ctgevc
	DOUBLE COMPLEX for ztgevc.
	Arrays:

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
$s(I d s, *)$ contains the matrix S from a generalized Schur factorization as computed by ?hgeqz. This matrix is upper quasi-triangular for real flavors, and upper triangular for complex flavors. The second dimension of s must be at least $\max (1, n)$. $p(I d p, *)$ contains the upper triangular matrix P from a generalized Schur factorization as computed by
?hgeqz.
For real flavors, 2-by-2 diagonal blocks of P corresponding to 2 -by- 2 blocks of S must be in positive diagonal form.
For complex flavors, P must have real diagonal elements.
The second dimension of p must be at least $\max (1, n)$.
If side $=$ 'L' or 'B' and howmny $=$ 'B', vl (ldvl,*) must contain an n-by- n matrix Q (usually the orthogonal/unitary matrix Q of left Schur vectors returned by ?hgeqz). The second dimension of $v 1$ must be at least $\max (1, m m)$. If side $=$ 'R', vl is not referenced.

If side ='R' or 'B' and howmny ='B', vr (ldvr,*) must contain an n-by- n matrix Z (usually the orthogonal/unitary matrix Z of right Schur vectors returned by ?hgeqz). The second dimension of vr must be at least $\max (1, m m)$. If side $=$ 'L', $v r$ is not referenced.
work (*) is a workspace array.
DIMENSION at least max $\left(1,6^{*} n\right)$ for real flavors and at least $\max \left(1,2 \star_{n}\right)$ for complex flavors.
lda
$1 d b$
ldvl

INTEGER. The first dimension of a; at least $\max (1, n)$.
INTEGER. The first dimension of b; at least $\max (1, n)$.
INTEGER. The first dimension of $v l$;
If side $=$ 'L'or ' B ', then $I d v I \geq \max (1, n)$.
If side $={ }^{\prime} \mathrm{R}^{\prime}$, then $\operatorname{ldvI} \geq 1$.

$l d v r$	INTEGER. The first dimension of $v r ;$
	If $s i d e=' R$ ' or ' B ', then $l d v r \geq \max (1, n)$.
	If $s i d e=' L '$, then $l d v r \geq 1$.

$\mathrm{mm} \quad$ Integer. The number of columns in the arrays $v 1$ and/or $v r(m m \geq m)$.
rwork REAL for ctgevc
DOUBLE PRECISION for ztgevc.
Workspace array, DIMENSION at least max $\left(1,2 \star_{n}\right)$.
Used in complex flavors only.

Output Parameters

vl	On exit, if side='L'or 'B', vl contains: if howmny ='A', the matrix Y of left eigenvectors of (S,P); if howmny = ' B', the matrix $Q Y$; if howmny = 'S', the left eigenvectors of (S, P) specified by select, stored consecutively in the columns of $v 1$, in the same order as their eigenvalues. For real flavors: A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part.
vr	On exit, if side ='R'or 'B', vr contains: if howmny = 'A', the matrix X of right eigenvectors of (S, P); if howmny $=$ ' B ', the matrix $Z X$; if howmny = 'S', the right eigenvectors of (S, P) specified by select, stored consecutively in the columns of vr, in the same order as their eigenvalues. For real flavors: A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part.

INTEGER. The number of columns in the arrays $v i$ and/or vr actually used to store the eigenvectors. If howmny $=$ ' A ' or ' B ', m is set to n. For real flavors:
Each selected real eigenvector occupies one column and each selected complex eigenvector occupies two columns.
For complex flavors:
Each selected eigenvector occupies one column.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
For real flavors:
If info $=i>0$, the 2 -by-2 block $(i: i+1)$ does not have a complex eigenvalue.

?tgexc

Reorders the generalized Schur
 decomposition of a pair of matrices (A, B) so that one diagonal block of (A, B) moves to another row index.

```
call stgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
    ifst, ilst, work, lwork, info )
call dtgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
    ifst, ilst, work, lwork, info )
call ctgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
    ifst, ilst, info )
call ztgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
    ifst, ilst, info )
```


Discussion

This routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix pair (A, B) using an orthogonal/unitary equivalence transformation

$$
(A, B)=Q(A, B) Z^{H},
$$

so that the diagonal block of (A, B) with row index ifst is moved to row ilst.
Matrix pair (A, B) must be in generalized real-Schur/Schur canonical form (as returned by ?gges), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks and B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are updated.

$$
\begin{aligned}
& Q(\mathrm{in}) * A(\mathrm{in}) * Z(\mathrm{in})^{\prime}=Q(\mathrm{out}) * A(\mathrm{out}) * Z(\mathrm{out})^{\prime} \\
& Q(\mathrm{in}) * B(\mathrm{in}) * Z(\mathrm{in})^{\prime}=Q(\mathrm{out}) * B(\mathrm{out}) * Z(\mathrm{out})^{\prime}
\end{aligned}
$$

Input Parameters

```
wantq, wantz LOGICAL.
If wantq=.TRUE., update the left transformation
matrix Q;
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

If want $q=$. FALSE., do not update Q;
If want $z=$.TRUE., update the right transformation matrix Z;
If wantz $=$. FALSE., do not update Z.
INTEGER. The order of the matrices A and $B(n \geq 0)$.
REAL for stgexc
DOUBLE PRECISION for dtgexc
COMPLEX for ctgexc
double complex for ztgexc.
Arrays:
a(Ida,*) contains the matrix A.
The second dimension of a must be at least $\max (1, n)$.
$b(I d b, *)$ contains the matrix B.
The second dimension of b must be at least $\max (1, n)$.
$q(I d q, *)$
If want $q=$. FALSE., then q is not referenced.
If want $q=$. TRUE., then q must contain the orthogonal/unitary matrix Q.
The second dimension of q must be at least $\max (1, n)$.
$z(1 d z, *)$
If want $z=$. FALSE., then z is not referenced.
If wantz $=$. TRUE., then z must contain the orthogonal/unitary matrix Z.
The second dimension of z must be at least $\max (1, n)$.
INTEGER. The first dimension of a; at least $\max (1, n)$.
Integer. The first dimension of b; at least $\max (1, n)$.
integer. The first dimension of q;
If want $q=$. FALSE., then $I d q \geq 1$.
If want $q=$. TRUE., then $l d q \geq \max (1, n)$.
$1 d z$
integer. The first dimension of z;
If want $z=$. FALSE., then $1 d z \geq 1$.
If want $z=$. TRUE., then $l d z \geq \max (1, n)$.
ifst, ilst INTEGER. Specify the reordering of the diagonal blocks of (A, B). The block with row index ifst is moved to row ilst, by a sequence of swapping between adjacent blocks. Constraint: $1 \leq i f s t$, ilst $\leq n$.
work REAL for stgexc; DOUBLE PRECISION for dtgexc. Workspace array, DIMENSION (lwork). Used in real flavors only.
Iwork INTEGER. The dimension of work; must be at least $4 n+16$.

Output Parameters

a, b	
ifst, ilst	
	Overwritten by the updated matrices A and B.
	Overwritten for real flavors only.
	If ifst pointed to the second row of a 2 by 2 block on
entry, it is changed to point to the first row; ilst always	
points to the first row of the block in its final position	
(which may differ from its input value by $\pm 1)$.	

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

?tgsen

```
Reorders the generalized Schur
decomposition of a pair of matrices (A,B)
so that a selected cluster of eigenvalues
appears in the leading diagonal blocks
of (A,B).
call stgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
    alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,
    lwork, iwork, liwork, info )
call dtgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
    alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,
        lwork, iwork, liwork, info )
call ctgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
    beta, q, ldq, z, ldz, m, pl, pr, dif, work,
        lwork, iwork, liwork, info )
call ztgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
    beta, q, ldq, z, ldz, m, pl, pr, dif, work,
        lwork, iwork, liwork, info )
```


Discussion

This routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix pair (A, B) (in terms of an orthogonal/unitary equivalence transformation $\left.Q^{\prime} \star(A, B) \star Z\right)$, so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the pair (A, B). The leading columns of Q and Z form orthonormal/unitary bases of the corresponding left and right eigenspaces (deflating subspaces). (A, B) must be in generalized real-Schur/Schur canonical form (as returned by ?gges), that is, A and B are both upper triangular.
?tgsen also computes the generalized eigenvalues
$\omega_{\mathrm{G}}=(\operatorname{alphar}(\mathrm{j})+\operatorname{alphai}(\mathrm{j}) * \mathbf{i}) /$ bet $a(\mathrm{j}) \quad$ (for real flavors)
ω = alpha $(\mathrm{j}) /$ bet $a(\mathrm{j}) \quad$ (for complex flavors)
of the reordered matrix pair (A, B).
Optionally, the routine computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces. These are $\operatorname{Difu}\left[\left(A_{11}, B_{11}\right),\left(A_{22}, B_{22}\right)\right]$ and $\operatorname{Difl}\left[\left(A_{11}, B_{11}\right),\left(A_{22}, B_{22}\right)\right]$, that is, the separation(s) between the matrix pairs $\left(A_{11}, B_{11}\right)$ and $\left(A_{22}, B_{22}\right)$ that
correspond to the selected cluster and the eigenvalues outside the cluster, respectively, and norms of "projections" onto left and right eigenspaces with respect to the selected cluster in the $(1,1)$-block.

Input Parameters

ijob	INTEGER. Specifies whether condition numbers are required for the cluster of eigenvalues ($p 1$ and $p r$) or the deflating subspaces Difu and Difl. If i job $=0$, only reorder with respect to select; If i job $=1$, reciprocal of norms of "projections" onto left and right eigenspaces with respect to the selected cluster ($p I$ and $p r$); If i job $=2$, compute upper bounds on Difu and Difl, using F-norm-based estimate (dif (1:2)); If i job $=3$, compute estimate of Difu and Difl, using 1-norm-based estimate (dif (1:2)). This option is about 5 times as expensive as i job $=2$; If i job $=4$, compute $p l$, pr and dif (i.e., options 0,1 and 2 above). This is an economic version to get it all; If i job $=5$, compute $p l$, pr and dif(i.e., options 0,1 and 3 above).
wantq, wantz	LOGICAL. If want $q=$. TRUE., update the left transformation matrix Q; If want $q=$.FALSE., do not update Q; If want $z=$. TRUE., update the right transformation matrix Z; If wantz=.FALSE., do not update Z.
	LOGI

GICAL.
Array, DIMENSION at least max $(1, n)$.
Specifies the eigenvalues in the selected cluster.
To select an eigenvalue ω_{j}, select (j) must be .TRUE. For real flavors: to select a complex conjugate pair of eigenvalues $\omega_{\text {and }} \omega_{+1}$ (corresponding 2 by 2 diagonal

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
block), select (j) and/or select($j+1$) must be set to . TRUE .; the complex conjugate ω and ω_{+1} must be either both included in the cluster or both excluded.

n

a, b, q, z, work

INTEGER. The order of the matrices A and $B(n \geq 0)$.
REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for $z t g s e n$.
Arrays:
a (Ida,*) contains the matrix A.
For real flavors: A is upper quasi-triangular, with (A, B) in generalized real Schur canonical form.
For complex flavors: A is upper triangular, in generalized Schur canonical form.
The second dimension of a must be at least $\max (1, n)$.
$b(I d b, *)$ contains the matrix B.
For real flavors: B is upper triangular, with (A, B) in generalized real Schur canonical form.
For complex flavors: B is upper triangular, in generalized Schur canonical form.
The second dimension of b must be at least $\max (1, n)$.
$q(1 d q, *)$
If want $q=$. TRUE., then q is an n-by- n matrix;
If want $q=$. FALSE., then q is not referenced.
The second dimension of q must be at least $\max (1, n)$.
$z(\operatorname{ldz}, *)$
If want $z=$. TRUE., then z is an n-by- n matrix;
If want $z=$.FALSE., then z is not referenced.
The second dimension of z must be at least $\max (1, n)$.
work (Iwork) is a workspace array. If $i j o b=0$, work is not referenced.

Ida INTEGER. The first dimension of a; at least max $(1, n)$.
$I d b \quad$ INTEGER. The first dimension of b; at least $\max (1, n)$.

Idq	INTEGER. The first dimension of $q ; I d q \geq 1$. If $\operatorname{wantq}=. \operatorname{TRUE} .$, then $l d q \geq \max (1, n)$.
$1 d z$	INTEGER. The first dimension of $z ; I d z \geq 1$. If want $z=. \operatorname{TRUE} .$, then $I d z \geq \max (1, n)$.
Iwork	INTEGER. The dimension of the array work. For real flavors: If i job $=1,2$, or 4 , lwork $\geq \max (4 n+16,2 m(n-n))$. If i job $=3$ or 5 , Iwork $\geq \max (4 n+16,4 m(n-n))$. For complex flavors: If i job $=1,2$, or 4 , 1 work $\geq \max (1,2 m(n+n))$. If i job $=3$ or 5 , 1 work $\geq \max (1,4 m(n \rightarrow n))$.
iwork	INTEGER. Workspace array, DIMENSION (liwork). If i job $=0$, $i w o r k$ is not referenced.
liwork	INTEGER. The dimension of the array iwork. For real flavors: If i job $=1,2$, or 4 , liwork $\geq n+6$. If ijob $=3$ or 5 , liwork $\geq \max (n+6,2 m(n-n))$. For complex flavors: If i job $=1,2$, or 4 , liwork $\geq n+2$. If ijob $=3$ or 5 , liwork $\geq \max (n+2,2 m(n \rightarrow n)$).

Output Parameters

a, b	Overwritten by the reordered matrices A and B, respectively.
alphar, alphai	REAL for stgsen;
	DOUBLE PRECISION for dtgsen.
	Arrays, DIMENSION at least max $(1, n)$. Contain values
that form generalized eigenvalues in real flavors.	
alpha	See beta.
	COMPLEX for ctgsen;
	DOUBLE COMPLEX for ztgsen.
	Array, DIMENSION at least max $(1, n)$. Contain values
that form generalized eigenvalues in complex flavors.	
	See beta.

See beta.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
beta
q
z
m
pl, pr

REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Array, DIMENSION at least max $(1, n)$.
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), $\mathbf{j}=1, \ldots, n$, will be the generalized eigenvalues.
alphar $(\mathbf{j})+\operatorname{alphai}(\mathbf{j}) * \mathbf{i}$ and beta($\mathbf{j}), \mathrm{j}=1, \ldots, n$ are the diagonals of the complex Schur form (S, T) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of (A, B) were further reduced to triangular form using complex unitary transformations. If alphai(j$)$ is zero, then the j -th eigenvalue is real; if positive, then the j -th and $(\mathrm{j}+1)$-st eigenvalues are a complex conjugate pair, with alphai($j+1$) negative. For complex flavors:
The diagonal elements of A and B, respectively, when the pair (A, B) has been reduced to generalized Schur form. alpha(i)/beta(i), $\mathrm{i}=1, \ldots, n$ are the generalized eigenvalues.
If wantq=. TRUE., then, on exit, Q has been postmultiplied by the left orthogonal transformation matrix which reorder (A, B). The leading m columns of Q form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces).
If want $z=$. TRUE ., then, on exit, Z has been postmultiplied by the left orthogonal transformation matrix which reorder (A, B). The leading m columns of Z form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces).

INTEGER. The dimension of the specified pair of left and right eigen-spaces (deflating subspaces); $0 \leq m \leq n$.
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors. If i job $=1,4$, or $5, p l$ and $p r$ are lower bounds on the

dif	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. Array, DIMENSION (2). If i job ≥ 2, $\operatorname{dif}(1: 2)$ store the estimates of Difu and Difl. If i job $=2$ or 4 , dif(1:2) are F-norm-based upper bounds on Difu and Difl. If i job $=3$ or 5 , dif(1:2) are 1-norm-based estimates of Difu and Difl. If $m=0$ or n, $\operatorname{dif}(1: 2)=\mathrm{F}-\operatorname{norm}([A, B])$. If i job $=0$ or 1 , dif is not referenced.
work(1)	If ijob is not 0 and info $=0$, on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
iwork(1)	If i job is not 0 and info $=0$, on exit, iwork(1) contains the minimum value of liwork required for optimum performance. Use this liwork for subsequent runs.
info	INTEGER. If $\operatorname{info}=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value. If info $=1$, Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. If requested, 0 is returned in $\operatorname{dif}(*), p l$ and pr.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

?tgsyl

Solves the generalized Sylvester equation.

```
call stgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
    lde, f, ldf, scale, dif, work, lwork, iwork, info )
call dtgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
    lde, f, ldf, scale, dif, work, lwork, iwork, info )
call ctgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
    lde, f, ldf, scale, dif, work, lwork, iwork, info )
call ztgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
    lde, f, ldf, scale, dif, work, lwork, iwork, info )
```


Discussion

This routine solves the generalized Sylvester equation:

$$
\begin{aligned}
& A R-L B=\text { scale } * C \\
& D R-L E=\text { scale } * F
\end{aligned}
$$

where R and L are unknown m-by- n matrices, $(A, D),(B, E)$ and (C, F) are given matrix pairs of size m-by- $m, n-b y-n$ and m-by- n, respectively, with real/complex entries. (A, D) and (B, E) must be in generalized real-Schur/Schur canonical form, that is, A, B are upper quasi-triangular/triangular and D, E are upper triangular.

The solution (R, L) overwrites (C, F). The factor scale, $0 \leq_{\text {scale }} \leq 1$, is an output scaling factor chosen to avoid overflow.

In matrix notation the above equation is equivalent to the following: solve $Z x=$ scale* b, where Z is defined as
$Z=\binom{\operatorname{kron}\left(I_{n}, A\right)-\operatorname{kron}\left(B^{\prime}, I_{m}\right)}{\operatorname{kron}\left(I_{n}, D\right)-\operatorname{kron}\left(E^{\prime}, I_{m}\right)}$

Here I_{k} is the identity matrix of size k and X^{\prime} is the transpose/conjugate-transpose of $X . \operatorname{kron}(X, Y)$ is the Kronecker product between the matrices X and Y.
If trans = 'T'(for real flavors), or trans = ' C'(for complex flavors), the routine ? tgsyl solves the transposed/conjugate-transposed system $Z^{\prime} y=$ scale * b, which is equivalent to solve for R and L in

$$
\begin{aligned}
& A^{\prime} R+D^{\prime} L=\text { scale }^{*} C \\
& R B^{\prime}+L E^{\prime}=\text { scale }^{*}(-F)
\end{aligned}
$$

This case (trans = 'T' for stgsyl/dtgsyl or trans = 'C' for ctgsyl/ztgsyl) is used to compute an one-norm-based estimate of $\operatorname{Dif}[(A, D),(B, E)]$, the separation between the matrix pairs (A, D) and (B, E), using slacon/clacon.

If i job ≥ 1, ?tgsyl computes a Frobenius norm-based estimate of $\operatorname{Dif}[(A, D),(B, E)]$. That is, the reciprocal of a lower bound on the reciprocal of the smallest singular value of Z. This is a level 3 BLAS algorithm.

Input Parameters

```
trans
ijob
    CHARACTER*1. Must be 'N', 'T', or 'C'.
        If \(\operatorname{trans}=\) ' \(N\) ', solve the generalized Sylvester
        equation.
        If \(\operatorname{trans}=\) ' \(T\) ', solve the 'transposed' system (for real
        flavors only).
        If trans = ' C', solve the ' conjugate transposed' system
        (for complex flavors only).
    INTEGER. Specifies what kind of functionality to be
        performed:
    If \(i\) job \(=0\), solve the generalized Sylvester equation
    only ;
    If \(i\) job \(=1\), perform the functionality of \(i\) job \(=0\)
    and ijob \(=3\);
    If \(i\) job \(=2\), perform the functionality of \(i j \circ b=0\)
    and \(i\) job \(=4\);
    If \(i\) job \(=3\), only an estimate of \(\operatorname{Dif}[(A, D),(B, E)]\) is
    computed (look ahead strategy is used);
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

If i job $=4$, only an estimate of $\operatorname{Dif}[(A, D),(B, E)]$ is computed (?gecon on sub-systems is used).
If trans $=$ 'T'or 'C', ijob is not referenced.
INTEGER.
The order of the matrices A and D, and the row dimension of the matrices C, F, R and L.

INTEGER.

The order of the matrices B and E, and the column dimension of the matrices C, F, R and L.

```
a,b,c,d,e,f,work REAL for stgsyl
DOUBLE PRECISION for dtgsyl
COMPLEX for ctgsyl
DOUBLE COMPLEX for ztgsyl.
```

Arrays:
a (Ida, *) contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix A.
The second dimension of a must be at least $\max (1, m)$.
$b(I d b, *)$ contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix B.
The second dimension of b must be at least $\max (1, n)$.
$c(I d c, *)$ contains the right-hand-side of the first matrix equation in the generalized Sylvester equation (as defined by trans)
The second dimension of c must be at least $\max (1, n)$.
$d(I d d, *)$ contains the upper triangular matrix D. The second dimension of d must be at least $\max (1, m)$. $e(I d e, *)$ contains the upper triangular matrix E. The second dimension of e must be at least $\max (1, n)$.
$f(I d f, *)$ contains the right-hand-side of the second matrix equation in the generalized Sylvester equation (as defined by trans)
The second dimension of f must be at least $\max (1, n)$.
work (1 work) is a workspace array. If i job= 0 , work is not referenced.

INTEGER. The first dimension of a; at least $\max (1, m)$.
INTEGER. The first dimension of b; at least $\max (1, n)$.
INTEGER. The first dimension of c; at least $\max (1, m)$.
INTEGER. The first dimension of d; at least $\max (1, m)$.
INTEGER. The first dimension of e; at least $\max (1, n)$.
INTEGER. The first dimension of f; at least $\max (1, m)$.
INTEGER. The dimension of the array work. lwork ≥ 1. If i job $=1$ or 2 and trans $='^{\prime}$ ', 1 work $\geq 2 \mathrm{mn}$.
INTEGER. Workspace array, DIMENSION at least $(m+n+6)$ for real flavors, and at least $(m+n+2)$ for complex flavors.
If i job $=0$, $i w o r k$ is not referenced.

Output Parameters

If i job $=0,1$, or 2 , overwritten by the solution R. If i job= $=3$ or 4 and trans $=' N$ ', c holds R, the solution achieved during the computation of the Dif-estimate.

If i job $=0,1$, or 2 , overwritten by the solution L. If i job= $=3$ or 4 and trans $=' N$ ', f holds L, the solution achieved during the computation of the Dif-estimate.

REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors. On exit, dif is the reciprocal of a lower bound of the reciprocal of the Dif-function, i.e. dif is an upper bound of $\operatorname{Dif}[(A, D),(B, E)]=\operatorname{sigma} \min (Z)$, where Z as in (2).
If i job $=0$, or trans $=$ ' T '(for real flavors), or trans $=$ ' C'(for complex flavors), dif is not touched.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

?tgsna

```
Estimates reciprocal condition numbers
for specified eigenvalues and/or
eigenvectors of a pair of matrices in
generalized real Schur canonical form.
call stgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
    ldvr, s, dif, mm, m, work, lwork, iwork, info )
call dtgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
    ldvr, s, dif, mm, m, work, lwork, iwork, info )
call ctgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
    ldvr, s, dif, mm, m, work, lwork, iwork, info )
call ztgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
    ldvr, s, dif, mm, m, work, lwork, iwork, info )
```


Discussion

The real flavors stgsna/dtgsna of this routine estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair (A, B) in generalized real Schur canonical form (or of any matrix pair ($Q A Z^{T}, Q B Z^{T}$) with orthogonal matrices Q and Z.
(A, B) must be in generalized real Schur form (as returned by sgges/dgges), that is, A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.
The complex flavors ctgsna/ztgsna estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair (A, B). (A, B) must be in generalized Schur canonical form , that is, A and B are both upper triangular.

Input Parameters

job CHARACTER*1. Specifies whether condition numbers \quad are required for eigenvalues or eigenvectors .

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

If job $={ }^{\prime} V^{\prime}$, for eigenvectors only (compute dif). If job='B', for both eigenvalues and eigenvectors (compute both s and $d i f$).

howmny	CHARACTER*1. Must be 'A' or 'S'.
	If howmny $=$ ' A^{\prime} ', compute condition numbers for all
	eigenpairs.
	If howmny $=$ 'S', compute condition numbers for
selected eigenpairs specified by the logical array	
	select.
	LOGICAL.

Array, DIMENSION at least max $(1, n)$.
If howmny = 'S', select specifies the eigenpairs for which condition numbers are required.
If howmny= 'A', select is not referenced.
For real flavors:
To select condition numbers for the eigenpair corresponding to a real eigenvalue ω, select (j) must be set to .TRUE.; to select condition numbers corresponding to a complex conjugate pair of eigenvalues ω_{p} and ω_{+1}, either select (j) or select $(j+1)$ must be set to .TRUE.
For complex flavors:
To select condition numbers for the corresponding j-th eigenvalue and/or eigenvector, select (j) must be set to .TRUE..
INTEGER. The order of the square matrix pair (A, B) ($n \geq 0$).
$a, b, v l, v r$, work REAL for stgsna
DOUBLE PRECISION for dtgsna
COMPLEX for ctgsna
DOUBLE COMPLEX for ztgsna.
Arrays:
a (Ida, *) contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix A in the pair (A, B).
The second dimension of a must be at least $\max (1, n)$.
$\mathrm{b}(\mathrm{ldb}, *)$ contains the upper triangular matrix B in the pair (A, B).
The second dimension of b must be at least $\max (1, n)$.
If job $=$ 'E' or 'B', $v I(I d v I, *)$ must contain left eigenvectors of (A, B), corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of $v l$, as returned by ?tgevc. If $j o b=' V$ ', $v I$ is not referenced.
The second dimension of $v l$ must be at least $\max (1, m)$.
If job='E' or 'B', $v r(I d v r, *)$ must contain right eigenvectors of (A, B), corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of $v r$, as returned by ?tgevc. If job $=$ ' V ', vr is not referenced.
The second dimension of $v r$ must be at least $\max (1, m)$.
work (lwork) is a workspace array. If job='E', work is not referenced.

INTEGER. The first dimension of a; at least $\max (1, n)$.
INTEGER. The first dimension of b; at least $\max (1, n)$.
INTEGER. The first dimension of $v I ; I d v I \geq 1$.

INTEGER. The first dimension of $v r ; ~ I d v r \geq 1$.

INTEGER. The number of elements in the arrays s and $\operatorname{dif}(m m \geq m)$.
INTEGER. The dimension of the array work. For real flavors:
lwork $\geq \mathrm{n}$.
If job $=$ 'V' or 'B', lwork $\geq 2 n(n+2)+16$.
For complex flavors:
lwork ≥ 1.
If job $=$ 'V' or 'B', lwork $\geq 2 n^{2}$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

INTEGER. Workspace array, DIMENSION at least ($n+6$) for real flavors, and at least $(n+2)$ for complex flavors. If $i j o b={ }^{\prime} E$, $i w o r k$ is not referenced.

Output Parameters

REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors. Array, DIMENSION (mm).
If job $=$ ' E ' or ' B^{\prime} ', contains the reciprocal condition numbers of the selected eigenvalues, stored in consecutive elements of the array. If job $=$ 'V', s is not referenced.
For real flavors:
For a complex conjugate pair of eigenvalues two consecutive elements of s are set to the same value. Thus, $s(\mathbf{j}), d i f(\mathbf{j})$, and the j -th columns of $v I$ and $v r$ all correspond to the same eigenpair (but not in general the j-th eigenpair, unless all eigenpairs are selected).

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm).
If job $=$ ' V ' or ' B^{\prime}, contains the estimated reciprocal condition numbers of the selected eigenvectors, stored in consecutive elements of the array. If the eigenvalues cannot be reordered to compute $\operatorname{dif}(\mathrm{j}), \operatorname{dif}(\mathrm{j})$ is set to 0 ; this can only occur when the true value would be very small anyway.
If job $=$ 'E', dif is not referenced.
For real flavors:
For a complex eigenvector, two consecutive elements of dif are set to the same value.
For complex flavors:
For each eigenvalue/vector specified by select, dif stores a Frobenius norm-based estimate of Difl.
m
work(1)
info

Integer. The number of elements in the arrays s and dif used to store the specified condition numbers; for each selected eigenvalue one element is used. If howmny = 'A', m is set to n.
work(1) If job is not 'E' and info $=0$, on exit, work (1) contains the minimum value of lwork required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.

If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

Generalized Singular Value Decomposition

This section describes LAPACK computational routines used for finding the generalized singular value decomposition (GSVD) of two matrices A and B as

$$
\begin{aligned}
& U^{H} A Q=D_{1} *\left(\begin{array}{ll}
0 & R
\end{array}\right) \\
& V^{H} B Q=D_{2} *\left(\begin{array}{ll}
0 & R
\end{array}\right)
\end{aligned}
$$

where U, V, and Q are orthogonal/unitary matrices, R is a nonsingular upper triangular matrix, and D_{1}, D_{2} are "diagonal" matrices of the structure detailed in the routines description section.

Table 5-7 $\begin{aligned} & \text { Computational Routines for Generalized Singular Value } \\ & \text { Decomposition }\end{aligned}$

Routine name	Operation performed
?ggsvp	Computes the preprocessing decomposition for the generalized SVD
$\underline{\text { ?tgsja }}$	Computes the generalized SVD of two upper triangular or trapezoidal matrices

You can use routines listed in the above table as well as the driver routine ? ggsvd to find the GSVD of a pair of general rectangular matrices.

?ggsvp

Computes the preprocessing
decomposition for the generalized SVD.

```
call sggsvp ( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
            k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info )
call dggsvp ( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
            k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)
call cggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
    k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)
call zggsvp ( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
        k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)
```


Discussion

This routine computes orthogonal matrices U, V and Q such that

$$
\begin{aligned}
& U^{H} A Q=\begin{array}{r}
n-k-l \\
m-k-l \\
l \\
l
\end{array}\left(\begin{array}{ccc}
0 & k & l \\
0 & 0 & A_{12} \\
0 & 0 & A_{23} \\
0
\end{array}\right), \quad \text { if } m-k-1 \geq 0 \\
& \left.=\begin{array}{c}
k \\
m-k
\end{array} \begin{array}{ccc}
n-k-l & k & l \\
0 & A_{12} & A_{13} \\
0 & 0 & A_{23}
\end{array}\right), \quad \text { if } m-k-1<0 \\
& n-k-l \quad k \quad l \\
& V^{H} B Q=\quad \begin{array}{lll}
l \\
p-l
\end{array}\left(\begin{array}{lll}
0 & 0 & B_{13} \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
where the k-by- k matrix A_{12} and l-by-I matrix B_{13} are nonsingular upper triangular; A_{23} is l-by-1 upper triangular if $m-k-1 \geq 0$, otherwise A_{23} is ($m-k$)-by- I upper trapezoidal. The sum $k+l$ is equal to the effective numerical rank of the $(m+p)$-by- n matrix $\left(A^{H}, B^{H}\right)^{H}$.
This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine ? ggsvd.

Input Parameters

jobu	CHARACTER*1. Must be 'U' or 'N'.
	If jobu ='U', orthogonal/unitary matrix U is computed. If jobu='N', U is not computed.
jobv	CHARACTER*1. Must be 'V' or 'N'.
	If jobv=' V^{\prime}, orthogonal/unitary matrix V is computed.
	If jobv = 'N', V is not computed.
jobq	CHARACTER*1. Must be 'Q' or 'N'.
	If jobq = ' ${ }^{\text {' }}$, orthogonal/unitary matrix Q is computed.
	If jobq = 'N', Q is not computed.
m	INTEGER. The number of rows of the matrix $A(m \geq 0)$.
p	INTEGER. The number of rows of the matrix $B(p \geq 0)$.
n	INTEGER. The number of columns of the matrices A and $B(n \geq 0)$.
$a, b, t a u$, work	REAL for sggsvp
	DOUBLE PRECISION for dggsvp
	COMPLEX for cggsvp
	DOUBLE COMPLEX for zggsvp.
	Arrays:
	$a(l d a, *)$ contains the m-by-n matrix A.
	The second dimension of a must be at least $\max (1, n)$.
	$b(I d b, *)$ contains the p-by-n matrix B.
	The second dimension of b must be at least max $(1, n)$.
	$\operatorname{tau}(*)$ is a workspace array. The dimension of tau must be at least $\max (1, n)$.
	work (*) is a workspace array. The dimension of work must be at least $\max (1,3 n, m, p)$.

lda	INTEGER. The first dimension of a; at least $\max (1, m)$.
$1 d b$	Integer. The first dimension of b; at least max $(1, p)$.
tola, tolb	REAL for single-precision flavors
	DOUBLE PRECISION for double-precision flavors. tola and tolb are the thresholds to determine the effective numerical rank of matrix B and a subblock of A. Generally, they are set to tola $=\max (m, n) *\| \| A\| \| *$ MACHEPS, tolb $=\max (p, n) *\| \| B\| \| *$ MACHEPS. The size of tola and tolb may affect the size of backward errors of the decomposition.
$1 d u$	INTEGER. The first dimension of the output array u. $I d u \geq \max (1, m)$ if jobu='U'; Idu ≥ 1 otherwise.
$l d v$	Integer. The first dimension of the output array v . $I d v \geq \max (1, p)$ if jobv $='^{\prime}$ '; $I d v \geq 1$ otherwise.
$1 d q$	INTEGER. The first dimension of the output array q. $l d q \geq \max (1, n)$ if $j o b q=Q^{\prime} ; ~ l d q \geq 1$ otherwise.
iwork	integer. Workspace array, DIMENSION at least $\max (1, n)$.
rwork	REAL for cggsvp
	DOUBLE PRECISION for zggsvp. Workspace array, DIMENSION at least max $(1,2 n)$. Used in complex flavors only.

Output Parameters

a | Overwritten by the triangular (or trapezoidal) matrix |
| :--- |
| described in the Discussion section. |
| Overwritten by the triangular matrix described in the |
| Discussion section. |
| INTEGER. |
| On exit, k and 1 specify the dimension of subblocks. |
| The sum $k+1$ is equal to effective numerical rank of |
| $\left(A^{H}, B^{H}\right)^{H}$. |

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

u, v, q	REAL for sggsvp
	DOUBLE PRECISION for dggsvp
	COMPLEX for cggsvp
	DOUBLE COMPLEX for zggsvp.
	Arrays:
	If jobu='U', u(Idu,*) contains the orthogonal/unitary matrix U.
	The second dimension of u must be at least $\max (1, m)$. If jobu ='N', u is not referenced.
	If jobv='V', v(Idv,*) contains the orthogonal/unitary matrix V. The second dimension of v must be at least $\max (1, m)$. If jobv='N', vis not referenced.
	If jobq='Q', q(Idq,*) contains the orthogonal/unitary matrix Q.
	The second dimension of q must be at least $\max (1, n)$. If $j o b q={ }^{\prime} N^{\prime}$, q is not referenced.
info	INTEGER.
	If info $=0$, the execution is successful.
	'If info $=-i$, the i th parameter had an illegal value.

?tgsja

Computes the generalized SVD of two upper triangular or trapezoidal matrices.

```
call stgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
    tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )
call dtgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
    tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )
call ctgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
    tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )
call ztgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
    tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
```


Discussion

This routine computes the generalized singular value decomposition (GSVD) of two real/complex upper triangular (or trapezoidal) matrices A and B. On entry, it is assumed that matrices A and B have the following forms, which may be obtained by the preprocessing subroutine?ggsvp from a general m-by- n matrix A and $p-$ by- n matrix B :

$$
\begin{aligned}
& A=\begin{array}{r}
n-k-l \\
k \\
l \\
m-k-l
\end{array}\left(\begin{array}{ccc}
0 & k & l \\
0 & 0 & A_{12} \\
0 & 0 & 0
\end{array}\right), \text { if } m-k-1 \geq 0 \\
&=\begin{array}{r}
k \\
m-k
\end{array} \\
&\left.k \begin{array}{lll}
n-k-l & k & l \\
0 & A_{12} & A_{13} \\
0 & 0 & A_{23}
\end{array}\right), \quad \text { if } m-k-1<0
\end{aligned}
$$

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

$$
B=\begin{array}{ccc}
n-k-l & k & l \\
l \\
l
\end{array}\left(\begin{array}{lll}
0 & 0 & B_{13} \\
0 & 0 & 0
\end{array}\right)
$$

where the k-by- k matrix A_{12} and l-by-I matrix B_{13} are nonsingular upper triangular; A_{23} is 1 -by- 1 upper triangular if $m-k-1 \geq 0$, otherwise A_{23} is ($m-k$)-by-I upper trapezoidal.
On exit,
$U^{H} A Q=D_{1}^{*}\left(\begin{array}{ll}0 & R\end{array}\right), V^{H} B Q=D_{2}{ }^{*}\left(\begin{array}{ll}0 & R\end{array}\right)$,
where U, V and Q are orthogonal/unitary matrices, R is a nonsingular upper triangular matrix, and D_{1} and D_{2} are "diagonal" matrices, which are of the following structures:

$$
\text { If } m-k-1 \geq 0,
$$

$$
D_{1}=\underset{m-k-l}{k} \begin{array}{r}
k \\
l
\end{array}\left(\begin{array}{ll}
k & l \\
I \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

$$
D_{2}={ }_{p-l}^{l}\left(\begin{array}{cc}
k & l \\
0 & S \\
0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
0 & R
\end{array}\right)=\begin{gathered}
n-k-l \\
k \\
l
\end{gathered}\left(\begin{array}{lll}
0 & R_{11} & R_{12} \\
0 & 0 & R_{22}
\end{array}\right)
$$

where

$$
\begin{aligned}
& C=\operatorname{diag}(\operatorname{alpha}(k+1), \ldots, \operatorname{alph}(k+1)) \\
& S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots, \operatorname{beta}(k+1)) \\
& C^{2}+S^{2}=I \\
& R \text { is stored in } a(1: k+1, n-k-l+1: n) \text { on exit. }
\end{aligned}
$$

If $m-k-1<0$,

$$
\begin{aligned}
& k \quad m-k \quad k+l-m \\
& D_{1}=\quad \begin{array}{r}
k \\
m-k
\end{array}\left(\begin{array}{lll}
I & 0 & 0 \\
0 & C & 0
\end{array}\right) \\
& D_{2}=\begin{array}{c}
k \\
m-k+k \\
k-m \\
p-l-l
\end{array} \begin{array}{c}
k+l-m \\
0
\end{array}\left(\begin{array}{lll}
S & 0 \\
0 & 0 & I \\
0 & 0 & 0
\end{array}\right) \\
& \left.\left(\begin{array}{rl}
0 & R
\end{array}\right)=\begin{array}{r}
n-k-l \\
m-k \\
k+l-m
\end{array} \begin{array}{cccc}
k & k-k & k+l-m \\
0 & R_{11} & R_{12} & R_{13} \\
0 & 0 & R_{22} & R_{23} \\
0 & 0 & 0 & R_{33}
\end{array}\right)
\end{aligned}
$$

where
$C=\operatorname{diag}(\operatorname{alpha}(k+1), \ldots, a \perp p h a(m))$,
$S=\operatorname{diag}(\operatorname{bet} a(k+1), \ldots$, bet $a(m))$,
$C^{2}+S^{2}=\mathrm{I}$
On exit, $\left(\begin{array}{c}R_{11} R_{12} R_{13} \\ 0 \\ R_{22} R_{23}\end{array}\right)$ is stored in a(1:m,n-k-l+1:n) and R_{33} is stored
in $b(m-k+1: 1, n+m-k-1+1: n)$.
The computation of the orthogonal/unitary transformation matrices U, V or Q is optional. These matrices may either be formed explicitly, or they may be postmultiplied into input matrices U_{1}, V_{1}, or Q_{1}.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Input Parameters

jobu	CHARACTER*1. Must be 'U', 'I', or 'N'.
	If jobu ='U', u must contain an orthogonal/unitary matrix U_{l} on entry.
	If jobu= 'I', u is initialized to the unit matrix.
	If jobu = 'N', u is not computed.
jobv	CHARACTER*1. Must be 'V', 'I', or 'N'.
	If jobv $={ }^{\prime} V^{\prime}, ~ v$ must contain an orthogonal/unitary matrix V_{l} on entry.
	If jobv='I', V is initialized to the unit matrix.
	If jobv='N', v is not computed.
jobq	CHARACTER*1. Must be 'Q', 'I', or 'N'.
	If jobq='Q', q must contain an orthogonal/unitary matrix Q_{1} on entry.
	If jobq='I', q is initialized to the unit matrix.
	If $j 0 . b q=N^{\prime}{ }^{\prime}, q$ is not computed.
m	INTEGER. The number of rows of the matrix $A(m \geq 0)$
p	INTEGER. The number of rows of the matrix $B(p \geq 0)$
n	INTEGER. The number of columns of the matrices A and $B(n \geq 0)$.
$k, 1$	INTEGER. Specify the subblocks in the input matrices
	A and B, whose GSVD is going to be computed by
	?tgsja.
$a, b, u, v, q, w o r k$ REAL for stgsja	
DOUBLE PRECISION for dtgsja	
	COMPLEX for ctgsja
	DOUBLE COMPLEX for ztgsja.
	Arrays:
	a (lda,*) contains the m-by-n matrix A.
	The second dimension of a must be at least max $(1, n)$.
	$b(l d b, *)$ contains the p-by-n matrix B.
	The second dimension of b must be at least $\max (1, n)$.

If jobu='U', $u(I d u, *)$ must contain a matrix U_{l} (usually the orthogonal/unitary matrix returned by ? ggsvp).
The second dimension of u must be at least $\max (1, m)$.
If jobv $={ }^{\prime} V^{\prime}, v(I d v, *)$ must contain a matrix V_{l} (usually the orthogonal/unitary matrix returned by ? ggsvp).
The second dimension of v must be at least $\max (1, p)$.
If jobq='Q', $q(I d q, *)$ must contain a matrix Q_{1} (usually the orthogonal/unitary matrix returned by ? $9 g \mathrm{svp}$).
The second dimension of q must be at least $\max (1, n)$. work (*) is a workspace array. The dimension of work must be at least $\max (1,2 n)$.

INTEGER. The first dimension of a; at least $\max (1, m)$.
INTEGER. The first dimension of b; at least $\max (1, p)$.
INTEGER. The first dimension of the array u. $I d u \geq \max (1, m)$ if jobu $={ }^{\prime} U^{\prime}$; $I d u \geq 1$ otherwise. INTEGER. The first dimension of the array v. $I d v \geq \max (1, p)$ if jobv='V'; $I d v \geq 1$ otherwise.

INTEGER. The first dimension of the array q. $I d q \geq \max (1, n)$ if $j o b q=$ ' Q '; $I d q \geq 1$ otherwise. REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors. tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz iteration procedure. Generally, they are the same as used in ?ggsvp: tola $=\max (m, n) \star| | A| | *$ MACHEPS, tolb $=\max (p, n) \star| | B| | *$ MACHEPS.

Output Parameters

On exit, $a(n-k+1: n, 1: \min (k+1, m))$ contains the triangular matrix R or part of R.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
b
alpha, beta
ncycle

On exit, if necessary, $b(m-k+1: 1, n+m-k-l+1: n))$ contains a part of R.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least $\max (1, n)$.
Contain the generalized singular value pairs of A and B :
$\operatorname{alpha}(1: k)=1$,
$\operatorname{beta}(1: k)=0$,
and if $m-k-1 \geq 0$,
$\operatorname{alpha}(k+1: k+1)=\operatorname{diag}(C)$,
beta $(k+1: k+1)=\operatorname{diag}(S)$,
or if $m-k-1<0$,
alpha $(k+1: m)=C$, alpha $(m+1: k+1)=0$
beta $(k+1: m)=S$, beta $(m+1: k+1)=1$.
Furthermore, if $k+1<n$, alpha $(k+1+1: n)=0$ and beta $(k+1+1: n)=0$.
If jobu =' I', u contains the orthogonal/unitary matrix U.
If jobu $=$ ' $U^{\prime}, ~ u ~ c o n t a i n s ~ t h e ~ p r o d u c t ~(~ U ~ U ~ U ~ . ~$
If jobu = 'N', u is not referenced.
If jobv='I', v contains the orthogonal/unitary matrix U.
If jobv $=$ ' $V^{\prime}, ~ V$ contains the product $V_{1} V$. If jobv='N', vis not referenced.
If jobq='I', q contains the orthogonal/unitary matrix U.
If jobq = 'Q', q contains the product $Q_{1} Q$. If $j o b q={ }^{\prime} N^{\prime}, q$ is not referenced.
INTEGER. The number of cycles required for convergence.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=1$, the procedure does not converge after
MAXIT cycles.

Driver Routines

Each of the LAPACK driver routines solves a complete problem. To arrive at the solution, driver routines typically call a sequence of appropriate computational routines.
Driver routines are described in the following sections:
Linear Least Squares (LLS) Problems
Generalized LLS Problems
Symmetric Eigenproblems
Nonsymmetric Eigenproblems
Singular Value Decomposition
Generalized Symmetric Definite Eigenproblems
Generalized Nonsymmetric Eigenproblems

Linear Least Squares (LLS) Problems

This section describes LAPACK driver routines used for solving linear least-squares problems. Table 5-8 lists routines described in more detail below.

Table 5-8 Driver Routines for Solving LLS Problems
Routine Name Operation performed
?gels Uses QR or LQ factorization to solve a overdetermined or underdetermined linear system with full rank matrix.
?gelsy Computes the minimum-norm solution to a linear least squares problem using a complete orthogonal factorization of A .
?gelss Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of A .
?gelsd Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of A and a divide and conquer method.

?gels

```
Uses QR or LQ factorization to solve a overdetermined or underdetermined linear system with full rank matrix.
```

```
call sgels ( trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info )
```

call sgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call dgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call dgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call cgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call cgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call zgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

```
call zgels ( trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info )
```


Discussion

This routine solves overdetermined or underdetermined real/ complex linear systems involving an m-by- n matrix A, or its transpose/ conjugate-transpose, using a $Q R$ or $L Q$ factorization of A. It is assumed that A has full rank.
The following options are provided:

1. If trans $=$ ' N ' and $m \geq n$: find the least squares solution of an overdetermined system, that is, solve the least squares problem minimize $\|b-A x\|_{2}$
2. If trans $=$ ' N ' and $m<n$: find the minimum norm solution of an underdetermined system $A X=B$.
3. If trans = ' T ' or ' C ' and $m \geq n$: find the minimum norm solution of an undetermined system $A^{H} X=B$.
4. If trans = 'T' or 'C' and $m<n$: find the least squares solution of an overdetermined system, that is, solve the least squares problem minimize $\left\|b-A^{H} x\right\|_{2}$

Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the m-by-nrhs right hand side matrix B and the n-by- $n r h$ solution matrix X.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Input Parameters

trans	CHARACTER*1. Must be 'N', 'T', or 'C'. If trans $=' N^{\prime}$, the linear system involves matrix A; If trans $=$ ' T ', the linear system involves the transposed matrix A^{T} (for real flavors only); If trans $=$ ' C ', the linear system involves the conjugate-transposed matrix A^{H} (for complex flavors only).
m	INTEGER. The number of rows of the matrix $A(m \geq 0)$.
n	INTEGER. The number of columns of the matrix A ($n \geq 0$).
nrhs	INTEGER. The number of right-hand sides; the number of columns in B (nrhs ≥ 0).
a, b, work	REAL for sgels
	DOUBLE PRECISION for dgels
	COMPLEX for cgels
	DOUBLE COMPLEX for zgels.

Arrays:

a (lda, *) contains the m-by- n matrix A.
The second dimension of a must be at least $\max (1, n)$.
$b(I d b, *)$ contains the matrix B of right hand side vectors, stored columnwise; B is m-by-nrhs if trans $=$ 'N', or n-by-nrhs if trans = 'T'or 'C'.
The second dimension of b must be at least $\max (1, n r h s)$.
work (lwork) is a workspace array.
INTEGER. The first dimension of a; at least $\max (1, m)$.
INTEGER. The first dimension of b; must be at least $\max (1, m, n)$.

INTEGER. The size of the work array; must be at least $\min (m, n)+\max (1, m, n, n r h s)$.
See Application notes for the suggested value of lwork.

Output Parameters

On exit, overwritten by the factorization data as follows:
if $m \geq n$, array a contains the details of the $Q R$ factorization of the matrix A as returned by ? geqrf; if $m<n$, array a contains the details of the $L Q$ factorization of the matrix A as returned by ?gelqf.

Overwritten by the solution vectors, stored columnwise: If trans $=$ ' N ' and $m \geq n$, rows 1 to n of b contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements $n+1$ to m in that column; If $\operatorname{trans}=' N$ ' and $m<n$, rows 1 to n of b contain the minimum norm solution vectors; if trans $=$ ' T 'or ' C ' and $m \geq n$, rows 1 to m of b contain the minimum norm solution vectors; if trans $=$ ' T 'or ' C ' and $m<n$, rows 1 to m of b contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements $m+1$ to n in that column.
work(1) If info = 0, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

Application Notes

For better performance, try using
Iwork $=\min (m, n)+\max (1, m, n$, nrhs $) *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

?gelsy

Computes the minimum-norm solution to a linear least squares problem using a complete orthogonal factorization of A.

```
call sgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
    lwork, info)
call dgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
    lwork, info )
call cgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
    lwork, rwork, info )
call zgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
    lwork, rwork, info )
```


Discussion

This routine computes the minimum-norm solution to a real/complex linear least squares problem:

$$
\operatorname{minimize}\|b-A x\|_{2}
$$

using a complete orthogonal factorization of A. A is an $m-$ by $-n$ matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the m-by- $n r h s$ right hand side matrix B and the n-by- $n r h s$ solution matrix X.
The routine first computes a $Q R$ factorization with column pivoting:

$$
A P=Q\left(\begin{array}{l}
R_{11} R_{12} \\
0
\end{array} R_{22}\right)
$$

with R_{11} defined as the largest leading submatrix whose estimated condition number is less than $1 /$ rcond. The order of R_{11}, rank, is the effective rank of A.

Then, R_{22} is considered to be negligible, and R_{12} is annihilated by orthogonal/unitary transformations from the right, arriving at the complete orthogonal factorization:

$$
A P=Q\binom{T_{11} 0}{0} Z
$$

The minimum-norm solution is then

$$
x=P Z^{H}\binom{T_{11}^{-1} Q_{1}^{H} b}{0}
$$

where Q_{1} consists of the first rank columns of Q. This routine is basically identical to the original ?gelsx except three differences:

- The call to the subroutine ? geqp $£$ has been substituted by the call to the subroutine ?geqp3. This subroutine is a BLAS-3 version of the $Q R$ factorization with column pivoting.
- Matrix B (the right hand side) is updated with BLAS-3.
- The permutation of matrix B (the right hand side) is faster and more simple.

Input Parameters

```
m INTEGER. The number of rows of the matrix A(m\geq0).
n INTEGER. The number of columns of the matrix }
        ( }n\geq0)\mathrm{ .
        INTEGER. The number of right-hand sides; the number
        of columns in B (nrhs }\geq0)
a, b, work REAL for sgelsy
        DOUBLE PRECISION for dgelsy
        COMPLEX for cgelsy
        DOUBLE COMPLEX for zgelsy.
        Arrays:
        a(lda,*) contains the m-by-n matrix A.
        The second dimension of a must be at least max(1,n).
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
$b(I d b, *)$ contains the m-by-nrhs right hand side matrix B.
The second dimension of b must be at least $\max (1, n r h s)$.
work (Iwork) is a workspace array.

Ida
$1 d b$
jpvt
rcond
lwork
rwork

INTEGER. The first dimension of a; at least $\max (1, m)$.
Integer. The first dimension of b; must be at least $\max (1, m, n)$.
integer. Array, dimension at least max $(1, n)$.
On entry, if jpvt (i) $\neq 0$, the i th column of A is permuted to the front of $A P$, otherwise the i th column of A is a free column.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
rcond is used to determine the effective rank of A, which is defined as the order of the largest leading triangular submatrix R_{11} in the $Q R$ factorization with pivoting of A, whose estimated condition number < 1/rcond.

INTEGER. The size of the work array. See Application notes for the suggested value of 1 work.

REAL for cgelsy
DOUBLE PRECISION for zgelsy.
Workspace array, DIMENSION at least max $(1,2 n)$. Used in complex flavors only.

Output Parameters

a On exit, overwritten by the details of the complete orthogonal factorization of A.
b
jpvt
Overwritten by the n-by-nrhs solution matrix X.
On exit, if jpvt (i) $=k$, then the i th column of $A P$ was the k th column of A.
rank INTEGER.
The effective rank of A, that is, the order of the submatrix R_{11}. This is the same as the order of the submatrix T_{11} in the complete orthogonal factorization of A.
info
INTEGER.
If info $=0$, the execution is successful.
If $i n f O=-i$, the i th parameter had an illegal value .

Application Notes

For real flavors:
The unblocked strategy requires that:
lwork $\geq \max (m n+3 n+1,2 * m n+n r h s)$,
where $m n=\min (m, n)$.
The block algorithm requires that:
lwork $\geq \max \left(m n+2 n+n b^{*}(n+1), 2 * m n+n b^{\star} n r h s\right)$,
where $n b$ is an upper bound on the blocksize returned by ilaenv for the routines sgeqp3/dgeqp3, stzrzf/dtzrzf, stzrqf/dtzrqf, sormqr/dormqr, and sormrz/dormrz.
For complex flavors:
The unblocked strategy requires that:

```
    lwork \(\geq m n+\max (2 * m n, n+1, m n+n r h s)\),
```

where $m n=\min (m, n)$.

The block algorithm requires that:
lwork $\geq m n+\max \left(2 * m n, n b^{\star}(n+1), m n+m n \star n b, m n+n b^{\star} n r h s\right)$, where $n b$ is an upper bound on the blocksize returned by ilaenv for the routines cgeqp3/zgeqp3, ctzrzf/ztzrzf, ctzrqf/ztzrqf, cunmqr/zunmqr, and cunmrz/zunmrz.

?gelss

Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of A.

```
call sgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
    lwork, info )
call dgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
    lwork, info )
call cgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
    lwork, rwork, info )
call zgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
    lwork, rwork, info )
```


Discussion

This routine computes the minimum norm solution to a real linear least squares problem:

```
minimize |b-Ax|
```

using the singular value decomposition (SVD) of $A . A$ is an m-by- n matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution matrix X.
The effective rank of A is determined by treating as zero those singular values which are less than rcond times the largest singular value.

Input Parameters

m
n
nrhs
integer. The number of rows of the matrix $A(m \geq 0)$.
INTEGER. The number of columns of the matrix A ($n \geq 0$).

INTEGER. The number of right-hand sides; the number of columns in B (nrhs ≥ 0).

```
a, b, work REAL for sgelss
DOUBLE PRECISION for dgelss
COMPLEX for cgelss
DOUBLE COMPLEX for zgelss.
Arrays:
a (Ida,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1,n).
b(Idb,*) contains the m-by-nrhs right hand side
matrix B.
The second dimension of b must be at least
max(1, nrhs).
work(Iwork) is a workspace array.
Ida INTEGER. The first dimension of }a\mathrm{ ; at least max (1,m).
ldb INTEGER. The first dimension of b; must be at least
max(1,m,n).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
rcond is used to determine the effective rank of A.
Singular values s(i)\leqrcond *s(1) are treated as zero.
If rcond < 0, machine precision is used instead.
lwork INTEGER. The size of the work array; lwork \geq1. See
Application notes for the suggested value of lwork.
rwork REAL for cgelss
DOUBLE PRECISION for zgelss.
Workspace array used in complex flavors only.
DIMENSION at least max(1,5*min}(m,n))
```


Output Parameters

On exit, the first $\min (m, n)$ rows of A are overwritten with its right singular vectors, stored row-wise.
b
Overwritten by the n-by-nrhs solution matrix X.
If $m \geq n$ and rank $=n$, the residual sum-of-squares for the solution in the i-th column is given by the sum of squares of elements $n+1: m$ in that column.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Application Notes

For real flavors:
lwork $\geq 3 * \min (m, n)+\max (2 * \min (m, n), \max (m, n)$, nrhs $)$
For complex flavors:
lwork $\geq 2 \star \min (m, n)+\max (m, n, n r h s)$
For good performance, 1 work should generally be larger. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

?gelsd

Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of A and a divide and conquer method.

```
call sgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
    lwork, iwork, info )
call dgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
    lwork, iwork, info )
call cgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
    lwork, rwork, iwork, info )
call zgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
    lwork, rwork, iwork, info )
```


Discussion

This routine computes the minimum-norm solution to a real linear least squares problem:

```
minimize |b-Ax|}\mp@subsup{|}{2}{
```

using the singular value decomposition (SVD) of $A . A$ is an m-by- n matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the m-by- $n r h s$ right hand side matrix B and the n-by- $n r h s$ solution matrix X.
The problem is solved in three steps:

1. Reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the original problem into a "bidiagonal least squares problem" (BLS).
2. Solve the BLS using a divide and conquer approach.
3. Apply back all the Householder transformations to solve the original least squares problem.
The effective rank of A is determined by treating as zero those singular values which are less than rcond times the largest singular value.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Input Parameters

m
n
nrhs
a, b, work
lda
1 db
rcond
lwork
iwork
rwork

INTEGER. The number of rows of the matrix $A(m \geq 0)$.
integer. The number of columns of the matrix A ($n \geq 0$).

INTEGER. The number of right-hand sides; the number of columns in B ($n r h s \geq 0$).
REAL for sgelsd
DOUBLE PRECISION for dgelsd
COMPLEX for cgelsd
DOUBLE COMPLEX for zgel sd.
Arrays:
a (Ida,*) contains the $m-$ by- n matrix A.
The second dimension of a must be at least max $(1, n)$.
$b(l d b, *)$ contains the m-by-nrhs right hand side matrix B.
The second dimension of b must be at least $\max (1, n r h s)$.
work (lwork) is a workspace array.
INTEGER. The first dimension of a; at least $\max (1, m)$.
Integer. The first dimension of b; must be at least $\max (1, m, n)$.
REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors.
rcond is used to determine the effective rank of A. Singular values $s(i) \leq r c o n d * s(1)$ are treated as zero. If rcond < 0 , machine precision is used instead.
integer. The size of the work array; lwork ≥ 1. See Application notes for the suggested value of 1 work.
integer. Workspace array. See Application notes for the suggested dimension of iwork.
REAL for cgelsd
DOUBLE PRECISION for zgelsd.
Workspace array, used in complex flavors only. See

Application notes for the suggested dimension of rwork.

Output Parameters

a
b

S
rank
info
work(1)

On exit, A has been overwritten.
Overwritten by the n-by- $n r h s$ solution matrix X.
If $m \geq n$ and $r a n k=n$, the residual sum-of-squares for the solution in the i-th column is given by the sum of squares of elements $n+1$: m in that column.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least $\max (1, \min (m, n))$. The singular values of A in decreasing order. The condition number of A in the 2 -norm is

$$
k_{2}(A)=s(1) / s(\min (m, n))
$$

INTEGER.
The effective rank of A, that is, the number of singular values which are greater than rcond $* s(1)$.

If info $=0$, on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value. If info $=i$, then the algorithm for computing the SVD failed to converge; i indicates the number of off-diagonal elements of an intermediate bidiagonal form which did not converge to zero.

Application Notes

The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

The exact minimum amount of workspace needed depends on m, n and nrhs. The size lwork of the workspace array work must be as given below.

For real flavors:
If $m \geq n$,
lwork $\geq 12 n+2 n \star$ smlsiz $+8 n \star n l v l+n \star n r h s+(s m l s i z+1)^{2}$;
If $m<n$,
$l_{\text {work }} \geq 12 m+2 m^{\star}$ smlsiz $+8 m^{\star} n l v l+m^{\star} n r h s+(s m l s i z+1)^{2}$;
For complex flavors:
If $m \geq n$,
lwork $\geq 2 n+n^{\star}$ nrhs;
If $m<n$,
lwork $\geq 2 m+m^{\star}$ nrhs;
where smlsiz is returned by ilaenv and is equal to the maximum size of the subproblems at the bottom of the computation tree (usually about 25), and $n l v l=\operatorname{INT}\left(\log _{2}(\min (m, n) /(s m l s i z+1))\right)+1$.

For good performance, lwork should generally be larger. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The dimension of the workspace array iwork must be at least $3 * \min (m, n) * n l v l+11 * \min (m, n)$.
The dimension lrwork of the workspace array rwork (for complex flavors) must be at least:
If $m \geq n$,
lrwork $\geq 10 n+2 n *$ smlsiz $+8 n \star n l v l+3 *$ smlsiz*nrhs $+(\text { smlsiz }+1)^{2}$;
If $m<n$,
lrwork $\geq 10 m+2 m \star \operatorname{smlsiz}+8 m \star n l v l+3 \star$ smlsiz*nrhs $+(\text { smlsiz }+1)^{2}$.

Generalized LLS Problems

This section describes LAPACK driver routines used for solving generalized linear least-squares problems. Table 5-9 lists routines described in more detail below.

Table 5-9 Driver Routines for Solving Generalized LLS Problems

Routine Name Operation performed

?gglse Solves the linear equality-constrained least squares problem using a generalized RQ factorization.
? g gglm \quad Solves a general Gauss-Markov linear model problem using a generalized QR factorization.

?gglse

Solves the linear equality-constrained
least squares problem using a generalized RQ factorization.

```
call sgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )
call dgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )
call cgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )
call zgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )
```


Discussion

This routine solves the linear equality-constrained least squares (LSE) problem:

$$
\operatorname{minimize}\|c-A x\|_{2} \text { subject to } B x=d
$$

where A is an m-by- n matrix, B is a p-by- n matrix, c is a given m-vector, and d is a given p-vector.
It is assumed that $p \leq_{n} \leq_{m+p}$, and

$$
\operatorname{rank}(B)=p \quad \text { and } \quad \operatorname{rank}\binom{A}{B}=n .
$$

These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized $R Q$ factorization of the matrices B and A.

Input Parameters

m
n
p
a, b, c, d, work
REAL for sgglse
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.
Arrays:
a (lda, *) contains the m-by- n matrix A.
The second dimension of a must be at least $\max (1, n)$.
$b(I d b, *)$ contains the p-by- n matrix B.
The second dimension of b must be at least $\max (1, n)$.
$c(*)$, dimension at least $\max (1, m)$, contains the right hand side vector for the least squares part of the LSE problem.
$d(*)$, dimension at least $\max (1, p)$, contains the right hand side vector for the constrained equation.
work (lwork) is a workspace array.
INTEGER. The first dimension of a; at least $\max (1, m)$.
INTEGER. The first dimension of b; at least $\max (1, p)$.
INTEGER. The size of the work array;
lwork $\geq \max (1, m+n+p)$. See Application notes for the suggested value of 1 work.

Output Parameters

```
X
REAL for sgglse
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.
Array, DIMENSION at least max(1,n).
On exit, contains the solution of the LSE problem.
a,b,d On exit, these arrays are overwritten.
c On exit, the residual sum-of-squares for the solution is
given by the sum of squares of elements n-p+1 to m of
vector c.
work(1)
info
If info = 0, on exit, work(1) contains the minimum
value of lwork required for optimum performance. Use
this lwork for subsequent runs.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
```


Application Notes

For optimum performance use
lwork $\geq p+\min (m, n)+\max (m, n) * n b$,
where $n b$ is an upper bound for the optimal blocksizes for ? geqrf, ?gerqf, ?ormqr/?unmqr and ?ormrq/?unmrq.

?ggglm

Solves a general Gauss-Markov linear model problem using a generalized QR factorization.

```
call sggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )
call dggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )
call cggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )
call zggglm ( }n,m,p,a, lda, b, ldb, d, x, y, work, lwork, info 
```


Discussion

This routine solves a general Gauss-Markov linear model (GLM) problem:
minimize $_{x}\|y\|_{2}$ subject to $d=A x+B y$
where A is an n-by- m matrix, B is an n-by- p matrix, and d is a given n-vector.
It is assumed that $m \leq n \leq m+p$, and
$\operatorname{rank}(A)=m$ and $\operatorname{rank}(A B)=n$.
Under these assumptions, the constrained equation is always consistent, and there is a unique solution x and a minimal 2 -norm solution y, which is obtained using a generalized $Q R$ factorization of A and B.
In particular, if matrix B is square nonsingular, then the problem GLM is equivalent to the following weighted linear least squares problem
$\operatorname{minimize}_{x}\left\|B^{-1}(d-A x)\right\|_{2}$.

Input Parameters

n	INTEGER. The number of rows of the matrices A and B $(n \geq 0)$.
m	INTEGER. The number of columns in $A(m \geq 0)$.
p	INTEGER. The number of columns in $B(p \geq n-m)$.
	REAL for sggglm DOUBLE PRECISION for dggglm COMPLEX for $\operatorname{cggg} 1 \mathrm{~m}$
	DOUBLE COMPLEX for $z g g g l m$.

Arrays:

a (Ida,*) contains the n-by- m matrix A.
The second dimension of a must be at least $\max (1, m)$.
$b(I d b, *)$ contains the n-by- p matrix B. The second dimension of b must be at least $\max (1, p)$. $d(*)$, dimension at least $\max (1, n)$, contains the left hand side of the GLM equation. work (Iwork) is a workspace array.

INTEGER. The first dimension of a; at least $\max (1, n)$.
INTEGER. The first dimension of b; at least $\max (1, n)$.
Integer. The size of the work array;
lwork $\geq \max (1, n+m+p)$. See Application notes for the suggested value of 1 work.

Output Parameters

```
x, y REAL for sggglm
    DOUBLE PRECISION for dggglm
    COMPLEX for cggglm
    DOUBLE COMPLEX for zggglm.
    Arrays }x(*),y(*). DIMENSION at least max (1,m) for x
    and at least max (1, p) for y.
    On exit, x and y are the solutions of the GLM problem.
a,b,d On exit, these arrays are overwritten.
work(1) If info = 0, on exit, work(1) contains the minimum
    value of lwork required for optimum performance.
info INTEGER.
    If info = 0, the execution is successful.
    If info=-i, the ith parameter had an illegal value.
```


Application Notes

For optimum performance use

$$
1 \text { work } \geq m+\min (n, p)+\max (n, p) * n b \text {, }
$$

where $n b$ is an upper bound for the optimal blocksizes for ? geqre, ?gerqf, ?ormqr/?unmqr and ?ormrq/?unmrq.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Symmetric Eigenproblems

This section describes LAPACK driver routines used for solving symmetric eigenvalue problems. See also computational routines that can be called to solve these problems.
Table 5-10 lists routines described in more detail below.

Table 5-10 Driver Routines for Solving Symmetric Eigenproblems

Routine Name Operation performed
?syev/?heev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix.
?syevd/ ?heevd Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian matrix using divide and conquer algorithm.
?syevx/?heevx Computes selected eigenvalues and, optionally, eigenvectors of a symmetric / Hermitian matrix.
?syevr/?heevr Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix using the Relatively Robust Representations.
?spev/?hpev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix in packed storage.
?spevd/?hpevd Uses divide and conquer algorithm to compute all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian matrix held in packed storage.
?spevx/?hpevx Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix in packed storage.
?sbev /?hbev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian band matrix.
?s.bevd/ ?hbevd Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian band matrix using divide and conquer algorithm.
?sbevx/?hbevx Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian band matrix.
?stev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix.
?stevd Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric tridiagonal matrix using divide and conquer algorithm.
?stevx \quad Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.
?stevr Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix using the Relatively Robust Representations.

?syev

```
Computes all eigenvalues and,
optionally, eigenvectors of a real
symmetric matrix.
```

```
call ssyev ( jobz, uplo, n, a, lda, w, work, lwork, info )
```

call ssyev (jobz, uplo, n, a, lda, w, work, lwork, info)
call dsyev (jobz, uplo, n, a, lda, w, work, lwork, info)

```
call dsyev ( jobz, uplo, n, a, lda, w, work, lwork, info )
```


Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.

Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'. If $j \circ b z=' N^{\prime}$, then only eigenvalues are computed. If jobz='V', then eigenvalues and eigenvectors are computed.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo $=$ 'U', a stores the upper triangular part of A. If uplo='L', a stores the lower triangular part of A.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
a, work	REAL for ssyev
	DOUBLE PRECISION for dsyev Arrays:
	$a(I d a, *)$ is an array containing either upper or lower triangular part of the symmetric matrix A, as specified by uplo.
	The second dimension of a must be at least $\max (1, n)$. work (lwork) is a workspace array.
Ida	INTEGER. The first dimension of the array a. Must be at least $\max (1, n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
lwork Integer. The dimension of the array work. Constraint: Iwork $\geq \max (1,3 n-1)$. See Application notes for the suggested value of 1 work.

Output Parameters

a

W
work (1)
info

On exit, if jobz $=$ 'V', then if info $=0$, array a contains the orthonormal eigenvectors of the matrix A. If jobz='N', then on exit the lower triangle (if uplo='L') or the upper triangle (if uplo='U') of A, including the diagonal, is overwritten.
REAL for ssyev
DOUBLE PRECISION for dsyev
Array, DIMENSION at least $\max (1, n)$.
If info $=0$, contains the eigenvalues of the matrix A in ascending order.
On exit, if 1 work >0, then work (1) returns the required minimal size of 1 work.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

Application Notes

For optimum performance use
lwork $\geq(n b+2)^{*} n$,
where $n b$ is the blocksize for ?sytrd returned by ilaenv. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

?heev

```
Computes all eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix.
```

```
call cheev ( jobz, uplo, n, a, lda, w, work, lwork, rwork, info )
call zheev ( jobz, uplo, n, a, lda, w, work, lwork, rwork, info )
```


Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.

Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'. If jobz $=$ ' N^{\prime}, then only eigenvalues are computed. If jobz='V', then eigenvalues and eigenvectors are computed.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo $=$ 'U', a stores the upper triangular part of A. If uplo = 'L', a stores the lower triangular part of A.
n	Integer. The order of the matrix $A(n \geq 0)$.
a, work	COMPLEX for cheev
	DOUBLE COMPLEX for zheev
	Arrays:
	$a(I d a, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix A, as specified by uplo.
	The second dimension of a must be at least $\max (1, n)$. work (lwork) is a workspace array.
Ida	INTEGER. The first dimension of the array a.
	Must be at least $\max (1, n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

lwork	Integer. The dimension of the array work. Constraint: 1 work $\geq \max (1,2 n-1)$. See Application notes for the suggested value of 1 work.
rwork	REAL for cheev
	DOUBLE PRECISION for zheev.
	Workspace array, DIMENSION at least max $(1,3 n-2)$

Output Parameters

a

W
work(1)
info

On exit, if jobz $=$ ' V ', then if info $=0$, array a contains the orthonormal eigenvectors of the matrix A. If jobz='N', then on exit the lower triangle (if uplo='L') or the upper triangle (if uplo='U') of A, including the diagonal, is overwritten.
REAL for cheev
DOUBLE PRECISION for zheev
Array, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues of the matrix A in ascending order.
On exit, if 1 work >0, then work (1) returns the required minimal size of 1 work.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, then the algorithm failed to converge; i
indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

Application Notes

For optimum performance use
lwork $\geq(n b+1)^{\star} n$,
where $n b$ is the blocksize for ?hetrd returned by ilaenv. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

?syevd

Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric matrix using divide and conquer algorithm.

```
call ssyevd (job,uplo,n,a,lda,w,work,lwork,iwork,liwork,info)
call dsyevd (job,uplo,n,a,lda,w,work,lwork,iwork,liwork,info)
```


Discussion

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix A. In other words, it can compute the spectral factorization of A as: $A=Z \Lambda Z^{T}$.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ_{i}, and Z is the orthogonal matrix whose columns are the eigenvectors z_{i}. Thus,

$$
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n
$$

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.

Input Parameters

job	CHARACTER*1. Must be 'n' or 'V'.
	If $j o b=' N$ ', then only eigenvalues are computed. If job='v', then eigenvalues and eigenvectors are computed.
uplo	CHARACTER*1. Must be 'U' or 'L'. If uplo= 'U', a stores the upper triangular part of A. If uplo= 'L', a stores the lower triangular part of A.
n	Integer. The order of the matrix $A(n \geq 0)$.
a	REAL for ssyevd
	DOUBLE PRECISION for dsyevd
	Array, DIMENSION (lda, *) .

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
$a(I d a, *)$ is an array containing either upper or lower triangular part of the symmetric matrix A, as specified by uplo.
The second dimension of a must be at least $\max (1, n)$.
lda
INTEGER. The first dimension of the array a.
Must be at least $\max (1, n)$.
work

I work
iwork
liwork

REAL for ssyevd
DOUBLE PRECISION for dsyevd.
Workspace array, DIMENSION at least lwork.
INTEGER. The dimension of the array work. Constraints:
if $n \leq 1$, then 1 work ≥ 1;
if job $={ }^{\prime} N^{\prime}$ and $n>1$, then lwork $\geq 2 n+1$;
if job $=' V$ ' and $n>1$, then
lwork $\geq 3 n^{2}+(5+2 k) * n+1$, where k is the smallest integer which satisfies $2^{k} \geq n$.

INTEGER.
Workspace array, DIMENSION at least liwork.
INTEGER. The dimension of the array iwork. Constraints:
if $n \leq 1$, then liwork ≥ 1;
if job $=$ 'N' and $n>1$, then liwork ≥ 1;
if job $='^{\prime} \mathrm{V}^{\prime}$ and $n>1$, then liwork $\geq 5 n+2$.

Output Parameters

REAL for ssyevd
DOUBLE PRECISION for dsyevd
Array, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues of the matrix A in ascending order.
See also info.
If job $=$ ' V^{\prime}, then on exit this array is overwritten by the orthogonal matrix Z which contains the eigenvectors of A.
work(1)
iwork(1)
info

On exit, if 1 work >0, then work (1) returns the required minimal size of 1 work.
On exit, if liwork >0, then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $T+E$ such that $\left||E|_{2}=O(\varepsilon) \| T\right|_{2}$, where ε is the machine precision.

The complex analogue of this routine is ?heevd.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

?heevd

Computes all eigenvalues and (optionally) all eigenvectors of a complex Hermitian matrix using divide and conquer algorithm.

```
call cheevd (job, uplo, n, a, lda, w, work, lwork, rwork, lrwork,
    iwork, liwork, info)
call zheevd (job, uplo, n, a, lda, w, work, lwork, rwork, lrwork,
    iwork, liwork, info)
```


Discussion

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix A. In other words, it can compute the spectral factorization of A as: $A=Z \Lambda Z^{H}$.
Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λ_{i}, and Z is the (complex) unitary matrix whose columns are the eigenvectors z_{i}. Thus,

$$
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
$$

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.

Input Parameters

job	CHARACTER*1. Must be ' N^{\prime} or ${ }^{\prime} \mathrm{V}^{\prime}$.
	If job $=$ ' N^{\prime}, then only eigenvalues are computed.
	If job ${ }^{\prime} V^{\prime} \mathrm{V}^{\prime}$, then eigenvalues and eigenvectors are
	computed.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo $=$ 'U', a stores the upper triangular part of A.
	If uplo = 'L', a stores the lower triangular part of A.
n	INTEGER. The order of the matrix $A(n \geq 0)$.

a

COMPLEX for cheevd
DOUBLE COMPLEX for zheevd
Array, DIMENSION (Ida, *) .
$a(I d a, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max $(1, n)$.
INTEGER. The first dimension of the array a. Must be at least $\max (1, n)$.
COMP LEX for cheevd DOUBLE COMPLEX for zheevd.
Workspace array, DIMENSION at least lwork.
INTEGER. The dimension of the array work. Constraints:
if $n \leq 1$, then lwork ≥ 1;
if job $={ }^{\prime} N^{\prime}$ and $n>1$, then 1 work $\geq n+1$; if job $=$ 'V' and $n>1$, then lwork $\geq n^{2}+2 n$
REAL for cheevd
DOUBLE PRECISION for zheevd
Workspace array, DIMENSION at least Irwork.
INTEGER. The dimension of the array rwork. Constraints:
if $n \leq 1$, then Irwork ≥ 1;
if job $=' N$ ' and $n>1$, then lrwork $\geq n$; if job $={ }^{\prime} V^{\prime}$ and $n>1$, then Irwork $\geq 3 n^{2}+(4+2 k){ }^{*} n+1$, where k is the smallest integer which satisfies $2^{k} \geq n$.
INTEGER.
Workspace array, DIMENSION at least liwork.
INTEGER. The dimension of the array iwork. Constraints:
if $n \leq 1$, then 1 iwork ≥ 1;
if job $='^{\prime} \mathrm{N}^{\prime}$ and $n>1$, then liwork ≥ 1;
if job $=' V$ ' and $n>1$, then liwork $\geq 5 n+2$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Output Parameters

W
a
iwork(1)
info

REAL for cheevd
DOUBLE PRECISION for zheevd
Array, DIMENSION at least $\max (1, n)$.
If info $=0$, contains the eigenvalues of the matrix A in ascending order.
See also info.
If job $=$ ' V^{\prime}, then on exit this array is overwritten by the unitary matrix Z which contains the eigenvectors of A.

On exit, if lwork >0, then the real part of work (1) returns the required minimal size of 1 work.

On exit, if Irwork >0, then rwork (1) returns the required minimal size of 1 rwork.

On exit, if liwork >0, then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If $i n f O=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $A+E$ such that $||E||_{2}=O(\varepsilon)| | A| |_{2}$, where ε is the machine precision.
The real analogue of this routine is ?syevd.
See also ?hpevd for matrices held in packed storage, and ?hbevd for banded matrices.

?syevx

Computes selected eigenvalues and, optionally, eigenvectors of a symmetric matrix.

```
call ssyevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
    m, w, z, ldz, work, lwork, iwork, ifail, info)
call dsyevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
    m, w, z, ldz, work, lwork, iwork, ifail, info)
```


Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

a, work	REAL for ssyevx
	DOUBLE PRECISION for dsyevx.
	Arrays:
	$a(I d a, *)$ is an array containing either upper or lower triangular part of the symmetric matrix A, as specified by uplo.
	The second dimension of a must be at least $\max (1, n)$. work (lwork) is a workspace array.
Ida	INTEGER. The first dimension of the array a.
	Must be at least $\max (1, n)$.
vl, vu	REAL for ssyevx
	DOUBLE PRECISION for dsyevx.
	If range $=' V$ ', the lower and upper bounds of the interval to be searched for eigenvalues; vl $\leq_{v u}$. Not referenced if range = 'A'or 'I'.
il, iu	INTEGER. If range $=$ ' I ' , the indices of the smallest and largest eigenvalues to be returned.
	Constraints: $1 \leq_{i l} \leq i u \leq n$, if $n>0$; il $=1$ and iu $=0$, if $n=0$.
	Not referenced if range $=$ 'A'or 'V'.
abstol	REAL for ssyevx
	DOUBLE PRECISION for dsyevx.
	The absolute error tolerance for the eigenvalues .
	See Application notes for more information.
$1 d z$	INTEGER. The first dimension of the output array z; $l d z \geq 1$. If $j o b z=' V$ ', then $l d z \geq \max (1, n)$.
lwork	INTEGER. The dimension of the array work.
	Constraint: 1 work $\geq \max (1,8 n)$. See Application notes for the suggested value of 1 work.
iwork	INTEGER. Workspace array, DIMENSION at least $\max (1,5 n)$.

Output Parameters

work (1) On exit, if 1 work >0, then work (1) returns the required minimal size of lwork.
On exit, the lower triangle (if uplo= 'L') or the upper triangle (if uplo = 'U') of A, including the diagonal, is overwritten.

INTEGER. The total number of eigenvalues found;
$0 \leq_{m} \leq_{n}$. If range $=$ 'A', $m=n$, and if range='I', m =iu-il+1.

REAL for ssyevx
DOUBLE PRECISION for dsyevx
Array, DIMENSION at least max $(1, n)$.
The first m elements contain the selected eigenvalues of the matrix A in ascending order.

REAL for ssyevx
DOUBLE PRECISION for dsyevx.
Array $z(I d z, *)$ contains eigenvectors.
The second dimension of z must be at least $\max (1, m)$.
If jobz $=$ ' V^{\prime}, then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with $w(i)$. If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. If jobz $=$ ' N ', then z is not referenced.
Note: you must ensure that at least max $(1, m)$ columns are supplied in the array z; if range $=' V$ ', the exact value of m is not known in advance and an upper bound must be used.
ifail INTEGER. Array, DIMENSION at least max $(1, n)$. If jobz $=^{\prime} V^{\prime}$, then if info $=0$, the first m elements of ifail are zero; if info >0, then ifail contains the indices of the eigenvectors that failed to converge. If jobz='V', then ifail is not referenced.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
info INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, then i eigenvectors failed to converge; their indices are stored in the array ifail.

Application Notes

For optimum performance use 1 work $\geq(n b+3)^{\star} n$, where $n b$ is the maximum of the blocksize for ?sytrd and ?ormtr returned by ilaenv. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[\mathrm{a}, \mathrm{b}]$ of width less than or equal to abstol $+\boldsymbol{\varepsilon} * \max (|\mathrm{a}|,|\mathrm{b}|)$, where $\boldsymbol{\varepsilon}$ is the machine precision. If abstol is less than or equal to zero, then $\varepsilon \star|T|$ will be used in its place, where $|T|$ is the 1 -norm of the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2{ }^{*}$ slamch('S'), not zero. If this routine returns with info >0, indicating that some eigenvectors did not converge, try setting abstol to $2 *$ slamch('S').

?heevx

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

```
call cheevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
    m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
call zheevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
    m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
```


Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

a, work	COMPLEX for cheevx
	DOUBLE COMPLEX for zheevx.
	Arrays:
	$a(I d a, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix A, as specified by uplo.
	The second dimension of a must be at least $\max (1, n)$. work (lwork) is a workspace array.
Ida	integer. The first dimension of the array a. Must be at least $\max (1, n)$.
vl, vu	REAL for cheevx
	DOUBLE PRECISION for zheevx.
	If range $=' \mathrm{~V}$ ', the lower and upper bounds of the interval to be searched for eigenvalues; $v I \leq v u$. Not referenced if range = 'A'or 'I'.
il, iu	INTEGER. If range $=$ ' I' , the indices of the smallest and largest eigenvalues to be returned.
	Constraints: $1 \leq_{i \perp} \leq i u \leq_{n}$, if $n>0$; il $=1$ and $i u=0$, if $n=0$.
	Not referenced if range $=$ ' A ' or ' V '.
abstol	REAL for cheevx
	DOUBLE PRECISION for zheevx.
	The absolute error tolerance for the eigenvalues .
	See Application notes for more information.
$1 d z$	INTEGER. The first dimension of the output array z; $l d z \geq 1$. If $j o b z=$ ' V ', then $l d z \geq \max (1, n)$.
lwork	Integer. The dimension of the array work.
	Constraint: $l_{\text {work }} \geq \max (1,2 n-1)$. See Application notes for the suggested value of 1 work.
rwork	REAL for cheevx
	DOUBLE PRECISION for zheevx.
	Workspace array, DIMENSION at least max (1, $7 n$) .
iwork	INTEGER. Workspace array, DIMENSION at least $\max (1,5 n)$.

Output Parameters

work (1) On exit, if 1 work >0, then work (1) returns the required minimal size of lwork.
On exit, the lower triangle (if uplo= 'L') or the upper triangle (if uplo = 'U') of A, including the diagonal, is overwritten.

INTEGER. The total number of eigenvalues found;
$0 \leq m \leq_{n}$. If range $=$ 'A', $m=n$, and if range='I', m =iu-il+1.

REAL for cheevx
DOUBLE PRECISION for zheevx
Array, DIMENSION at least max $(1, n)$.
The first m elements contain the selected eigenvalues of the matrix A in ascending order.

COMPLEX for cheevx
DOUBLE COMPLEX for zheevx.
Array $z(I d z, *)$ contains eigenvectors.
The second dimension of z must be at least $\max (1, m)$.
If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with $w(i)$. If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. If jobz $=$ ' N ', then z is not referenced.
Note: you must ensure that at least max $(1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.
ifail INTEGER. Array, DIMENSION at least max $(1, n)$. If jobz $=^{\prime} V^{\prime}$, then if info $=0$, the first m elements of ifail are zero; if info >0, then ifail contains the indices of the eigenvectors that failed to converge. If jobz='V', then ifail is not referenced.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
info INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, then i eigenvectors failed to converge; their indices are stored in the array ifail.

Application Notes

For optimum performance use 1 work $\geq(n b+1)^{\star} n$, where $n b$ is the maximum of the blocksize for ?hetrd and ?unmtr returned by ilaenv. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[\mathrm{a}, \mathrm{b}]$ of width less than or equal to abstol $+\boldsymbol{\varepsilon} * \max (|\mathrm{a}|,|\mathrm{b}|)$, where $\boldsymbol{\varepsilon}$ is the machine precision. If abstol is less than or equal to zero, then $\varepsilon \star|T|$ will be used in its place, where $|T|$ is the 1 -norm of the tridiagonal matrix obtained by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2{ }^{*}$ slamch('S'), not zero. If this routine returns with info >0, indicating that some eigenvectors did not converge, try setting abstol to $2 *$ slamch('S').

?syevr

Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix using the Relatively Robust Representations.

```
call ssyevr (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
    m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
call dsyevr (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
    m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
```


Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Whenever possible, ?syevr calls sstegr/dstegr to compute the eigenspectrum using Relatively Robust Representations. ?stegr computes eigenvalues by the $d q d s$ algorithm, while orthogonal eigenvectors are computed from various "good" $L D L^{T}$ representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of T,
(a) Compute $T-\sigma_{\mathrm{i}}=L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}$, such that $L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}$ is a relatively robust representation;
(b) Compute the eigenvalues, λ_{j}, of $L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}$ to high relative accuracy by the $d q d s$ algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σ_{1} close to the cluster, and go to step (a);
(d) Given the approximate eigenvalue λ_{j} of $L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}{ }^{T}$, compute the corresponding eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?syevr calls sstegr/dstegr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard. ?syevr calls sstebz/dstebz and sstein/dstein on non-IEEE machines and when partial spectrum requests are made.

Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If jobz $=$ ' N ', then only eigenvalues are computed. If jobz = 'V', then eigenvalues and eigenvectors are computed.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'.
	If range $=$ ' A^{\prime}, the routine computes all eigenvalues.
	If range $=$ ' V ', the routine computes eigenvalues λ_{i} in the half-open interval: $v l<\lambda_{i} \leq v u$.
	If range $=$ 'I', the routine computes eigenvalues with indices il to iu.
	For range $=$ 'V'or 'I' and iu-il $<n-1$, sstebz/dstebz andsstein/dstein are called.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
a, work	REAL for ssyevr
	DOUBLE PRECISION for dsyevr.
	Arrays:
	a (Ida, *) is an array containing either upper or lower triangular part of the symmetric matrix A, as specified by uplo.
	The second dimension of a must be at least $\max (1, n)$.
	work (1 work) is a workspace array.
Ida	INTEGER. The first dimension of the array a.
	Must be at least $\max (1, n)$.

vl, vu	REAL for ssyevr	
	DOUBLE PRECISION for dsyevr. If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. Constraint: vl<vu.	
	If range $=$ ' A ' or 'I', vl and $v u$ are not referenced.	
il, iu	INTEGER.	
	If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: $1 \leq i \perp \leq i u \leq n$, if $n>0$; il=1 and $i u=0$ if $n=0$.	
	If range $=$ ' A ' or 'V', il and iu are not referenced.	
abstol	REAL for ssyevr	
	DOUBLE PRECISION for dsyevr.	
	The absolute error tolerance to which each eigenvalue/eigenvector is required.	
	If jobz $=$ ' V ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by	
	abstol.If abstol<n $\|\|T\|\|_{1}$, then $n \varepsilon\|\|T\|\|_{1}$ willbeused in its place, where ε is the machine precision. The eigenvalues are computed to an accuracy of $\varepsilon \\|\left.\|T\|\right\|_{1}$ irrespective of abstol. If high relative accuracy is important, set abstol to ? lamch('S').	
$1 d z$	INTEGER. The leading dimension of the output array z. Constraints:	
	$l d z \geq 1$ if jobz = 'N';	
	$l d z \geq \max (1, n)$ if jobz = 'V'.	
lwork	INTEGER. The dimension of the array work.	
	Constraint: 1 work $\geq \max (1,26 n)$. See Application notes for the suggested value of 1 work.	
iwork	INTEGER.	
	Workspace array, DIMENSION (liwork).	
liwork	INTEGER. The dimension of the array iwork,	
	lwork $\geq \max (1,10 n)$.	

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Output Parameters

On exit, the lower triangle (if uplo= 'L') or the upper triangle (if uplo= ' U ') of A, including the diagonal, is overwritten.
integer. The total number of eigenvalues found, $0 \leq m \leq n$. If range $=$ ' $A^{\prime}, m=n$, and if range $=' I$ ', $m=i u-i l+1$.

REAL for ssyevr
DOUBLE PRECISION for dsyevr.
Arrays:
$w(*)$, DIMENSION at least max $(1, n)$, contains the selected eigenvalues in ascending order, stored in $w(1)$ to $w(m)$;
$z(I d z, *)$, the second dimension of z must be at least $\max (1, m)$.
If jobz $=$ ' V ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix T corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with $w(i)$.
If jobz $=$ ' N^{\prime}, then z is not referenced.
Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=$ ' V ', the exact value of m is not known in advance and an upper bound must be used.

INTEGER.
Array, dimension at least $2 * \max (1, m)$.
The support of the eigenvectors in z, i.e., the indices indicating the nonzero elements in z. The i-th eigenvector is nonzero only in elements isuppz(2i-1) through isuppz (2i).
Implemented only for range ='A' or 'I' and iu-il= $n-1$.
On exit, if info $=0$, then work (1) returns the required minimal size of 1 work.
iwork(1) On exit, if info = 0, then iwork (1) returns the required minimal size of liwork.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If $i n f 0=i$, an internal error has occurred.

Application Notes

For optimum performance use 1 work $\geq(n b+6)^{\star} n$, where $n b$ is the maximum of the blocksize for ?sytrd and ?ormtr returned by ilaenv. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

?heevr

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix using the Relatively Robust
Representations.

```
call cheevr ( jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
    m, w, z, ldz, isuppz, work, lwork, rwork, lrwork,
        iwork, liwork, info)
call zheevr ( jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
    m, w, z, ldz, isuppz, work, lwork, rwork, lrwork,
    iwork, liwork, info)
```


Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Whenever possible, ?heevr calls cstegr/zstegr to compute the eigenspectrum using Relatively Robust Representations. ?stegr computes eigenvalues by the $d q d s$ algorithm, while orthogonal eigenvectors are computed from various "good" $L D L^{T}$ representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of T,
(a) Compute $T-\sigma_{\mathrm{i}}=L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}$, such that $L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}$ is a relatively robust representation;
(b) Compute the eigenvalues, λ_{j}, of $L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}$ to high relative accuracy by the $d q d s$ algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σ_{1} close to the cluster, and go to step (a);
(d) Given the approximate eigenvalue λ_{j} of $L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}$, compute the corresponding eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?heevr calls cstegr/zstegr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard. ?heevr calls sstebz/dstebz and cstein/zstein on non-IEEE machines and when partial spectrum requests are made.

Input Parameters

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

vl, vu	REAL for cheevr	
	DOUBLE PRECISION for zheevr.	
	If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.	
	Constraint: $\mathrm{vl}<^{\text {vus. }}$	
	If range = 'A' or 'I', vI and vu are not referenced.	
il, iu	INTEGER.	
	If range $=$ ' I ', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; $i l=1$ and $i u=0$ if $n=0$.	
	If range = 'A' or 'V', il and iu are not referenced.	
abstol	REAL for cheevr	
	DOUBLE PRECISION for zheevr.	
	The absolute error tolerance to which each eigenvalue/eigenvector is required.	
	If jobz = ' V ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by	
	abstol.If abstol $<n \varepsilon \\| T\| \|_{1}$, then $n \varepsilon\|\|T\|\|_{1}$ willbeused in its place, where ε is the machine precision. The	
	eigenvalues are computed to an accuracy of $\varepsilon\|\|T\|\|_{1}$ irrespective of abstol. If high relative accuracy is important, set abstol to ? lamch('S').	
$l d z$	INTEGER. The leading dimension of the output array z. Constraints:	
	$l d z \geq 1$ if jobz = 'N';	
	$l d z \geq \max (1, n)$ if $j o b z={ }^{\prime} V^{\prime}$.	
lwork	integer. The dimension of the array work.	
	Constraint: 1 work $\geq \max (1,2 n)$. See Application notes for the suggested value of 1 work.	
rwork	REAL for cheevr	
	DOUBLE PRECISION for zheevr.	
	Workspace array, dimension (lrwork).	

Irwork	INTEGER. The dimension of the array rwork;
Iwork	lwork $\geq \max (1,24 n)$.
Inwork	INTEGER.
	Workspace array, DIMENSION (Iiwork).
	INTEGER. The dimension of the array iwork,
	lwork $\geq \max (1,10 n)$.

Output Parameters

On exit, the lower triangle (if uplo = ' L) or the upper triangle (if uplo= ' U ') of A, including the diagonal, is overwritten.
integer. The total number of eigenvalues found, $0 \leq m \leq n$. If range $=$ ' A ', $m=n$, and if range $=$ ' I', $m=i u-i l+1$.

REAL for cheevr
DOUBLE PRECISION for zheevr.
Array, DIMENSION at least $\max (1, n)$, contains the selected eigenvalues in ascending order, stored in $w(1)$ to $w(m)$.

COMPLEX for cheevr
DOUBLE COMPLEX for zheevr.
Array $z(I d z, *)$; the second dimension of z must be at least $\max (1, m)$.
If jobz $=' \mathrm{~V}$ ', then if info $=0$, the first m columns of z contain the orthonormal eigenvectors of the matrix T corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with $w(i)$.
If jobz $=$ ' N^{\prime}, then z is not referenced.
Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array z; if range $=' \mathrm{~V}$ ', the exact value of m is not known in advance and an upper bound must be used.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

The support of the eigenvectors in z, i.e., the indices indicating the nonzero elements in z. The i-th eigenvector is nonzero only in elements isuppz($2 i-1$) through $i \operatorname{suppz}(2 i)$.
work(1)
rwork(1)
iwork(1) info

On exit, if info $=0$, then work (1) returns the required minimal size of 1 work.

On exit, if info $=0$, then rwork (1) returns the required minimal size of 1 rwork.

On exit, if info $=0$, then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value. If info $=i$, an internal error has occurred.

Application Notes

For optimum performance use 1 work $\geq(n b+1)^{\star} n$, where $n b$ is the maximum of the blocksize for ?hetrd and ?unmtr returned by ilaenv. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

?spev

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage.

```
call sspev (jobz, uplo, n, ap, w, z, ldz, work, info)
call dspev (jobz, uplo, n, ap, w, z, ldz, work, info)
```


Discussion

This routine computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage.

Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If job $=$ 'N', then only eigenvalues are computed.
	If job $=$ ' V ', then eigenvalues and eigenvectors are computed.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', ap stores the packed upper triangular part of A.
	If uplo = 'L', ap stores the packed lower triangular part of A.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
ap,work	REAL for sspev
	DOUBLE PRECISION for dspev
	Arrays:
	ap (*) contains the packed upper or lower triangle of symmetric matrix A, as specified by uplo. The dimension of ap must be at least $\max \left(1, n^{\star}(n+1) / 2\right)$.
	work (*) is a workspace array, DIMENSION at least $\max (1,3 n)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
integer. The leading dimension of the output array z. Constraints:
if jobz='N', then $l d z \geq 1$;
if $j o b z=' V$ ', then $l d z \geq \max (1, n)$.

Output Parameters

w, z	REAL for sspev
	DOUBLE PRECISION for dspev
	Arrays:
	$w(*)$, DIMENSION at least max $(1, n)$.
	If info $=0, w$ contains the eigenvalues of the matrix A in ascending order.
	$z(I d z, *)$. The second dimension of z must be at least $\max (1, n)$.
	If jobz $=^{\prime} V^{\prime}$, then if info $=0, z$ contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with $w(i)$.
	If jobz $=$ ' N^{\prime}, then z is not referenced.
$a p$	On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of A .
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.
	If info $=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

?hpev

```
Computes all eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix in packed storage.
```

```
call chpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
```

call chpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
call zhpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

```
call zhpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
```


Discussion

This routine computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed storage.

Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If job $=$ 'N', then only eigenvalues are computed.
	If job $=$ ' V ', then eigenvalues and eigenvectors are computed.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', ap stores the packed upper triangular part of A.
	If uplo = 'L', ap stores the packed lower triangular part of A.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
ap,work	COMPLEX for chpev
	DOUBLE COMPLEX for zhpev.
	Arrays:
	ap (*) contains the packed upper or lower triangle of Hermitian matrix A, as specified by uplo. The dimension of ap must be at least $\max \left(1, n^{\star}(n+1) / 2\right)$.
	work (*) is a workspace array, DIMENSION at least $\max (1,2 n-1)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
integer. The leading dimension of the output array z. Constraints:
if jobz $=$ 'N', then $I d z \geq 1$;
if jobz $=$ 'V', then $I d z \geq \max (1, n)$.
rwork REAL for chpev
DOUBLE PRECISION for zhpev.
Workspace array, DIMENSION at least max ($1,3 n-2$).

Output Parameters

REAL for chpev
DOUBLE PRECISION for zhpev.
Array, DIMENSION at least $\max (1, n)$.
If info $=0, w$ contains the eigenvalues of the matrix A in ascending order.
z
COMP LEX for chpev
DOUBLE COMPLEX for zhpev.
Array $z(I d z, *)$. The second dimension of z must be at least $\max (1, n)$.
If jobz $=^{\prime} V$ ', then if info $=0, z$ contains the orthonormal eigenvectors of the matrix A, with the i-th column of z holding the eigenvector associated with $w(i)$.
If jobz $={ }^{\prime} N^{\prime}$, then z is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of A .

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If $\operatorname{info}=i$, then the algorithm failed to converge; i indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

?spevd

Uses divide and conquer algorithm to compute all eigenvalues and (optionally) all eigenvectors of a real symmetric matrix held in packed storage.

```
call sspevd (job,uplo,n, ap,w,z,ldz,work,lwork,iwork,liwork,info)
call dspevd (job,uplo,n,ap,w,z,ldz,work,lwork,iwork,liwork,info)
```


Discussion

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix A (held in packed storage). In other words, it can compute the spectral factorization of A as: $A=Z \Lambda Z^{T}$.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ_{i}, and Z is the orthogonal matrix whose columns are the eigenvectors z_{i}. Thus,

$$
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n
$$

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.

Input Parameters
n

CHARACTER*1. Must be 'N' or 'V'.
If $j 0 b={ }^{\prime} \mathrm{N}$ ', then only eigenvalues are computed.
If job $=1 \mathrm{~V}$ ', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'U' or 'L'.
If uplo='U', ap stores the packed upper triangular part of A.
If uplo='L', ap stores the packed lower triangular part of A.
INTEGER. The order of the matrix $A(n \geq 0)$.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Output Parameters

REAL for sspevd
DOUBLE PRECISION for dspevd
Arrays:
w(*), DIMENSION at least max (1,n).
If info = 0, contains the eigenvalues of the matrix A in
ascending order. See also info.
z (Idz,*). The second dimension of z must be:
at least 1 if job='N';
at least max (1,n) if job = 'V'.
If job='v', then this array is overwritten by the
orthogonal matrix Z which contains the eigenvectors of
A. If job ='N', then z is not referenced.
ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

```

On exit, if info \(=0\), then work (1) returns the optimal I work.

On exit, if info \(=0\), then iwork (1) returns the optimal liwork.

INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\left.\left||E|_{2}=O(\varepsilon)\right||T|\right|_{2}\), where \(\varepsilon\) is the machine precision.
The complex analogue of this routine is ?hpevd.
See also ?syevd for matrices held in full storage, and ?sbevd for banded matrices.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?hpevd}
```

Uses divide and conquer algorithm to
compute all eigenvalues and (optionally)
all eigenvectors of a complex Hermitian
matrix held in packed storage.

```
```

call chpevd (job, uplo, n, ap, w, z, ldz, work, lwork, rwork,

```
call chpevd (job, uplo, n, ap, w, z, ldz, work, lwork, rwork,
    lrwork, iwork, liwork, info)
    lrwork, iwork, liwork, info)
call zhpevd (job, uplo, n, ap, w, z, ldz, work, lwork, rwork,
call zhpevd (job, uplo, n, ap, w, z, ldz, work, lwork, rwork,
    lrwork, iwork, liwork, info)
```

 lrwork, iwork, liwork, info)
    ```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix \(A\) (held in packed storage). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z \Lambda Z^{H}\). Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
\begin{tabular}{ll} 
job & CHARACTER*1. Must be 'N' or 'V'. \\
& If job \(=^{\prime} N^{\prime}\) ', then only eigenvalues are computed. \\
& \begin{tabular}{l} 
If job \({ }^{\prime} V^{\prime}\) ', then eigenvalues and eigenvectors are \\
computed.
\end{tabular} \\
uplo & CHARACTER*1. Must be 'U' or 'L'.
\end{tabular}
```

n
ap,work
Idz INTEGER. The leading dimension of the output array z.
Constraints:
if job='N', then ldz\geq1;
if job='V', then ldz\geq max(1,n).
I work INTEGER. The dimension of the array work.
Constraints:
if n }\leq1\mathrm{ , then lwork }\geq1\mathrm{ ;
if job='N' and n>1, then lwork \geqn;
if job='V' and n>1, then lwork \geq2n
rwork REAL for chpevd
DOUBLE PRECISION for zhpevd
Workspace array, DIMENSION at least lrwork.
INTEGER. The dimension of the array rwork.
Constraints:
if n\leq1, then lrwork }\geq1\mathrm{ ;
if job='N' and n>1, then lrwork \geq n;
if job='V' and n>1, then
lrwork }\geq3\mp@subsup{n}{}{2}+(4+2k)*n+1, where k is the smalles
integer which satisfies 2}\mp@subsup{2}{}{k}\geqn\mathrm{ .
iwork INTEGER.
Workspace array, DIMENSION at least liwork.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
```

liwork INTEGER. The dimension of the array iwork. Constraints:
if $n \leq 1$, then Iiwork ≥ 1;
if job $={ }^{\prime} N^{\prime}$ and $n>1$, then liwork ≥ 1;
if job $=$ 'V' and $n>1$, then liwork $\geq 5 n+2$.

```

\section*{Output Parameters}

REAL for chpevd
DOUBLE PRECISION for zhpevd
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.
COMPLEX for chpevd
DOUBLE COMPLEX for zhpevd
Array, DIMENSION (Idz, *). The second dimension of \(z\) must be:
at least 1 if job='N'; at least \(\max (1, n)\) if \(j o b=' V '\). If job \(=\) ' \(V\) ', then this array is overwritten by the unitary matrix \(Z\) which contains the eigenvectors of \(A\). If job \(=\) 'N', then \(z\) is not referenced.

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of A .
iwork (1) On exit, if liwork \(>0\), then iwork (1) returns the required minimal size of liwork.
info
rwork(1) returns the required minimal size of lwork.

INTEGER.

On exit, if 1 work \(>0\), then the real part of work (1)

If info \(=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\)
indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If \(\operatorname{info}=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon)\|T\|_{2}\), where \(\varepsilon\) is the machine precision.
The real analogue of this routine is ?spevd.
See also ?heevd for matrices held in full storage, and ?hbevd for banded matrices.

\section*{?spevx}
```

Computes selected eigenvalues and,
optionally, eigenvectors of a real
symmetric matrix in packed storage.

```
```

call sspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,

```
call sspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
    m, w, z, ldz, work, iwork, ifail, info)
    m, w, z, ldz, work, iwork, ifail, info)
call dspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
call dspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
        m, w, z, ldz, work, iwork, ifail, info)
```

 m, w, z, ldz, work, iwork, ifail, info)
    ```

\section*{Discussion}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
jobz CHARACTER*1. Must be 'N' or 'V'.
If job \(=\) ' \(N\) ', then only eigenvalues are computed.
If job \(=\) ' \(V\) ', then eigenvalues and eigenvectors are computed.
range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range \(=\) 'A', the routine computes all eigenvalues. If range \(=\) ' \(V\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v l<\lambda_{i} \leq v u\).
If range \(=\) 'I', the routine computes eigenvalues with indices il to \(i u\).
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of \(A\).
If uplo = 'L', ap stores the packed lower triangular part of \(A\).

INTEGER. The order of the matrix \(A(n \geq 0)\).
```

ap, work REAL for sspevx
DOUBLE PRECISION for dspevx

```

\section*{Arrays:}
```

$a p(*)$ contains the packed upper or lower triangle of the symmetric matrix A, as specified by uplo. The dimension of ap must be at least $\max (1, n *(n+1) / 2)$.
work (*) is a workspace array, DIMENSION at least $\max (1,8 n)$.
vl, vu REAL for sspevx
DOUBLE PRECISION for dspevx
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.
If range='A' or 'I',vl and vu are not referenced.
il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned
Constraint: 1\leqil \leqiu \leqn, if n>0; il=1 and iu=0
if }n=0\mathrm{ .
If range ='A' or 'V', il and iu are not referenced.
abstol REAL for sspevx
DOUBLE PRECISION for dspevx
The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error
tolerance.
INTEGER. The leading dimension of the output array z. Constraints:
if jobz ='N', then ldz\geq1;
if jobz='V', then ldz\geq max(1,n).
iwork INTEGER.
Workspace array, DIMENSION at least $\max (1,5 n)$.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline ap & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of \(A\). \\
\hline m & integer. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) ' I', \(m=i u-i l+1\). \\
\hline \multirow[t]{9}{*}{w, z} & REAL for sspevx \\
\hline & DOUBLE PRECISION for dspevx \\
\hline & Arrays: \\
\hline & \(w(*)\), DIMENSION at least max \((1, n)\) \\
\hline & If info \(=0\), contains the selected eigenvalues of the matrix \(A\) in ascending order. \\
\hline & \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\). \\
\hline & If jobz \(=\) ' \(V^{\prime}\), then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. \\
\hline & If jobz = N', then \(z\) is not referenced. \\
\hline & Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' V ', the exact value of \(m\) is not known in advance and an upper bound must be used. \\
\hline \multirow[t]{2}{*}{ifail} & INTEGER. Array, DIMENSION at least max \((1, n)\). \\
\hline & \begin{tabular}{l}
If jobz \(=^{\prime} V^{\prime}\), then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices the eigenvectors that failed to converge. \\
If jobz \(={ }^{\prime} \mathrm{N}^{\prime}\), then ifail is not referenced.
\end{tabular} \\
\hline
\end{tabular}
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([\mathrm{a}, \mathrm{b}]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon \star\left||T|_{1}\right.\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2 * ? 1 amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*? \({ }^{2}\) amch('S').

\section*{?hpevx}

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix in packed storage.
```

call chpevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)
call zhpevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

```

\section*{Discussion}

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V' \\
\hline & \begin{tabular}{l}
If job \(={ }^{\prime} N^{\prime}\), then only eigenvalues are computed. \\
If job \(=\) ' \(V\) ', then eigenvalues and eigenvectors are computed.
\end{tabular} \\
\hline \multirow[t]{3}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & \begin{tabular}{l}
If range \(=\) ' A ', the routine computes all eigenvalues. \\
If range \(=\) ' \(\mathrm{V}^{\prime}\), the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v l<\lambda_{i} \leq v u\).
\end{tabular} \\
\hline & If range \(=\) ' I', the routine computes eigenvalues with indices il to iu. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo \(=\) 'U', ap stores the packed upper triangular part of \(A\). \\
\hline & If uplo = 'L', ap stores the packed lower triangular part of \(A\). \\
\hline
\end{tabular}
\(n \quad\) INTEGER. The order of the matrix \(A(n \geq 0)\).
```

ap, work COMPLEX for chpevx
DOUBLE COMPLEX for zhpevx

```

\section*{Arrays:}
```

$a p(*)$ contains the packed upper or lower triangle of the Hermitian matrix A, as specified by uplo. The dimension of ap must be at least max $\left(1, n^{*}(n+1) / 2\right)$.
work (*) is a workspace array, DIMENSION at least $\max (1,2 n)$.
vI, vu REAL for chpevx
DOUBLE PRECISION for zhpevx
If range = 'V', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl<vu.
If range ='A' or 'I', vl and vu are not referenced.
il, iu INTEGER.
If range $=$ ' I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$ if $n=0$. If range $=$ 'A' or 'V', il and $i u$ are not referenced.

```
ldz INTEGER. The leading dimension of the output array \(z\). Constraints:
if jobz \(=\) 'N', then \(l d z \geq 1\); if \(j o b z=' V\) ', then \(l d z \geq \max (1, n)\).
rwork REAL for chpevx
DOUBLE PRECISION for zhpevx
Workspace array, DIMENSION at least max \((1,7 n)\).
iwork INTEGER.
Workspace array, DIMENSION at least max \((1,5 n)\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of \(A\).
INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), and if range \(=\) ' I', \(m=i u-i l+1\).

REAL for chpevx
DOUBLE PRECISION for zhpevx
Array, DIMENSION at least \(\max (1, n)\). If info \(=0\), contains the selected eigenvalues of the matrix \(A\) in ascending order.

COMPLEX for chpevx
DOUBLE COMPLEX for zhpevx
Array \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\).
If jobz \(=\) ' \(\mathrm{V}^{\prime}\), then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz \(=\) ' \(N^{\prime}\), then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(\mathrm{V}^{\prime}\), the exact value of \(m\) is not known in advance and an upper bound must be used.
integer. Array, dimension at least max \((1, n)\). If jobz \(=\) ' \(V^{\prime}\), then if info \(=0\), the first \(m\) elements of ifail are zero; if info >0, the ifail contains the indices the eigenvectors that failed to converge. If jobz='N', then ifail is not referenced.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([\mathrm{a}, \mathrm{b}]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon \star\left||T|_{1}\right.\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2 * ? 1 amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*? \({ }^{2}\) amch('S').

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?sbev}
```

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix.

```
```

call ssbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

```
call ssbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
call dsbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
```

call dsbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

```

\section*{Discussion}

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix \(A\).

\section*{Input Parameters}
jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz \(=\) ' \(N\) ', then only eigenvalues are computed.
If jobz \(=\) ' \(V\) ', then eigenvalues and eigenvectors are computed.
uplo CHARACTER*1. Must be 'U' or 'L'. If uplo= 'L', ab stores the lower triangular part of \(A\).
INTEGER. The order of the matrix \(A(n \geq 0)\).
INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k d \geq 0\) ).
a.b, work REAL for ssbev

DOUBLE PRECISION for dsbev.
Arrays:
\(a b(\) ldab, *) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format.
The second dimension of \(a b\) must be at least \(\max (1, n)\).
work (*) is a workspace array.
The dimension of work must be at least \(\max (1,3 n-2)\).
```

Idab INTEGER. The leading dimension of ab; must be at least $k d+1$.
ldz INTEGER. The leading dimension of the output array z.
Constraints:
if jobz='N', then Idz\geq1;
if jobz='V', then Idz\geq max(1,n).

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline W, z & \begin{tabular}{l}
REAL for ssbev \\
DOUBLE PRECISION for dsbev \\
Arrays: \\
w (*), DIMENSION at least max \((1, n)\). \\
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. \\
\(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). \\
If jobz='V', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). \\
If jobz \(={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
\end{tabular} \\
\hline \(a b\) & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. If uplo \(=\) ' U , the first superdiagonal and the diagonal of the tridiagonal matrix \(T\) are returned in rows \(k d\) and \(k d+1\) of \(a b\), and if uplo \(=\) 'L', the diagonal and first subdiagonal of \(T\) are returned in the first two rows of \(a b\). \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th parameter had an illegal value. \\
If info \(=i\), then the algorithm failed to converge; \\
\(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?hbev}

\section*{Computes all eigenvalues and, optionally, eigenvectors of a Hermitian band matrix.}
```

call chbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork,info)
call zhbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork,info)

```

\section*{Discussion}

This routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobz & CHARACTER*1. Must be \\
\hline & If jobz='N', then only eigenvalues are computed. If jobz \(=\) ' V ', then eigenvalues and eigenvectors are computed. \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo= 'U', ab stores the upper triangular part of \(A\). \\
If uplo= 'L', ab stores the lower triangular part of \(A\).
\end{tabular} \\
\hline kd & \begin{tabular}{l}
integer. The order of the matrix \(A(n \geq 0)\). \\
integer. The number of super- or sub-diagonals in \(A\) ( \(k d \geq 0\) ).
\end{tabular} \\
\hline ab, work & \begin{tabular}{l}
COMPLEX for chbev \\
DOUBLE COMPLEX for zhbev. \\
Arrays: \\
\(a b(l d a b, *)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format. \\
The second dimension of \(a b\) must be at least \(\max (1, n)\). \\
work (*) is a workspace array. \\
The dimension of work must be at least max \((1, n)\).
\end{tabular} \\
\hline
\end{tabular}
```

Idab INTEGER. The leading dimension of ab; must be at least $k d+1$.
Idz INTEGER. The leading dimension of the output array z.
Constraints:
if jobz='N', then Idz\geq1;
if jobz='V', then ldz\geq max(1,n).
rwork REAL for chbev
DOUBLE PRECISION for zhbev
Workspace array, DIMENSION at least max(1,3n-2).

```

\section*{Output Parameters}

REAL for chbev
DOUBLE PRECISION for zhbev
Array, DIMENSION at least \(\max (1, n)\). If info \(=0\), contains the eigenvalues in ascending order.

COMP LEX for chbev
DOUBLE COMPLEX for zhbev.
Array \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). If jobz \(=^{\prime} V^{\prime}\), then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If jobz \(=' N\) ', then \(z\) is not referenced.

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. If uplo = U', the first superdiagonal and the diagonal of the tridiagonal matrix \(T\) are returned in rows \(k d\) and \(k d+1\) of \(a b\), and if uplo = 'L', the diagonal and first subdiagonal of \(T\) are returned in the first two rows of \(a b\).

\section*{?sbevd}

> Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric band matrix using divide and conquer algorithm.
```

call ssbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
iwork, liwork, info)
call dsbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
iwork, liwork, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric band matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as:
\[
A=Z \Lambda Z^{T}
\]

Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline job & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If job \(=\) ' \(N^{\prime}\), then only eigenvalues are computed. If job='v', then eigenvalues and eigenvectors are computed. \\
\hline uplo & ChARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = ' \({ }^{\prime}\) ', ab stores the upper triangular part of \(A\). \\
\hline & If \(u p 10=\) 'L', ab stores the lower triangular part of \(A\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(n\) & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline \(k d\) & Integer. The number of super- or sub-diagonals in \(A\) ( \(k d \geq 0\) ). \\
\hline \multirow[t]{6}{*}{ab, work} & REAL for ssbevd \\
\hline & DOUBLE PRECISION for dsbevd. \\
\hline & Arrays: \\
\hline & \(a b\) ( \(I d a b, *\) ) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of \(a b\) must be at least \(\max (1, n)\). work (*) is a workspace array. \\
\hline & The dimension of work must be at least lwork. \\
\hline Idab & INTEGER. The leading dimension of \(a b\); must be at least \(k d+1\). \\
\hline \(1 d z\) & \begin{tabular}{l}
INTEGER. The leading dimension of the output array \(z\). Constraints: \\
if job='N', then \(l d z \geq 1\); \\
if job='V', then \(l d z \geq \max (1, n)\).
\end{tabular} \\
\hline \multirow[t]{6}{*}{Iwork} & INTEGER. The dimension of the array work. \\
\hline & Constraints: \\
\hline & if \(n \leq 1\), then 1 work \(\geq 1\); \\
\hline & if job \(=\) 'N' and \(n>1\), then 1 work \(\geq 2 n\); \\
\hline & if job \(=^{\prime} \mathrm{V}\) ' and \(n>1\), then \\
\hline & lwork \(\geq 3 n^{2}+(4+2 k) *_{n+1}\), where \(k\) is the smallest integer which satisfies \(2^{k} \geq n\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least liwork. \\
\hline \multirow[t]{2}{*}{liwork} & INTEGER. The dimension of the array iwork. \\
\hline & \begin{tabular}{l}
Constraints: \\
if \(n \leq 1\), then liwork \(\geq 1\); \\
if job \(=\) 'N' and \(n>1\), then liwork \(\geq 1\); \\
if job='V' and \(n>1\), then liwork \(\geq 5 n+2\).
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline w, z & \begin{tabular}{l}
REAL for ssbevd \\
DOUBLE PRECISION for dsbevd \\
Arrays: \\
\(w(*)\), DIMENSION at least \(\max (1, n)\). \\
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info. \\
\(z(I d z, *)\). The second dimension of \(z\) must be: \\
at least 1 if job='N'; \\
at least \(\max (1, n)\) if job \(=V^{\prime}\). \\
If job \(=\) ' \(V\) ', then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \\
\(A\). The \(i\) th column of \(Z\) contains the eigenvector which corresponds to the eigenvalue \(w(i)\). \\
If job \(=\) ' \(N\) ', then \(z\) is not referenced.
\end{tabular} \\
\hline \(a . b\) & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. \\
\hline work(1) & On exit, if 1 work \(>0\), then work (1) returns the required minimal size of 1 work. \\
\hline iwork(1) & On exit, if \(\operatorname{liwork}>0\), then \(i w o r k\) (1) returns the required minimal size of liwork. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If \(i n f o=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. \\
If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon)| | T| |_{2}\), where \(\varepsilon\) is the machine precision.
The complex analogue of this routine is ?hbevd.
See also ?syevd for matrices held in full storage, and ?spevd for matrices held in packed storage.

\section*{?hbevd}

Computes all eigenvalues and (optionally) all eigenvectors of a complex Hermitian band matrix using divide and conquer algorithm.
```

call chbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)
call zhbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian band matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z \Lambda Z^{H}\). Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{job} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If job \(={ }^{\prime} N^{\prime}\), then only eigenvalues are computed. \\
\hline & If job \(=\) ' V ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline kd & INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k d \geq 0\) ). \\
\hline \multirow[t]{7}{*}{ab, work} & COMPLEX for chbevd \\
\hline & DOUble Complex for zhbevd. \\
\hline & Arrays: \\
\hline & ab (Idab,*) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of \(a b\) must be at least \(\max (1, n)\). \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least lwork. \\
\hline 1 dab & integer. The leading dimension of \(a b\); must be at least \(k d+1\). \\
\hline \(1 d z\) & \begin{tabular}{l}
integer. The leading dimension of the output array \(z\). \\
Constraints: \\
if job \(=\) ' N ', then \(l d z \geq 1\); \\
if \(j o b=' V\) ', then \(I d z \geq \max (1, n)\).
\end{tabular} \\
\hline Iwork & \begin{tabular}{l}
INTEGER. The dimension of the array work. \\
Constraints: \\
if \(n \leq 1\), then 1 work \(\geq 1\); \\
if job \(=\) 'N' and \(n>1\), then 1 work \(\geq n\); \\
if job \(=\) 'V' and \(n>1\), then 1 work \(\geq 2 n^{2}\)
\end{tabular} \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chbevd \\
\hline & DOUBLE PRECISION for zhbevd \\
\hline & Workspace array, DIMENSION at least 1 rwork \\
\hline lrwork & \begin{tabular}{l}
integer. The dimension of the array rwork. \\
Constraints: \\
if \(n \leq 1\), then 1 rwork \(\geq 1\); \\
if job \(=\) 'N' and \(n>1\), then lrwork \(\geq n\); \\
if job \(=\) ' \(V\) ' and \(n>1\), then \\
\(l_{\text {rwork }} \geq 3 n^{2}+(4+2 k) *_{n}+1\), where \(k\) is the smallest \\
integer which satisfies \(2^{k} \geq n\).
\end{tabular} \\
\hline iwork & INTEGER. \\
\hline & Workspace array, DIMENSION at least liwork. \\
\hline
\end{tabular}
```

liwork INTEGER. The dimension of the array iwork.
Constraints:
if job='N' or n <l, then liwork \geq 1;
if job='V' and n>1, then liwork \geq5n+2.

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{w} & REAL for chbevd \\
\hline & DOUBLE PRECISION for zhbevd \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info. \\
\hline \multirow[t]{8}{*}{z} & COMPLEX for chbevd \\
\hline & DOUBLE COMPLEX for zhbevd \\
\hline & Array, DIMENSION ( \(I d z, *\) ). The second dimension of \(z\) must be: \\
\hline & at least 1 if job = ' \({ }^{\prime}\) '; \\
\hline & at least max \((1, n)\) if job \(=\) 'V'. \\
\hline & If job \(=\) ' \(V^{\prime}\), then this array is overwritten by the unitary matrix \(Z\) which contains the eigenvectors of \(A\). \\
\hline & The \(i\) th column of \(Z\) contains the eigenvector which corresponds to the eigenvalue \(w(i)\). \\
\hline & If job \(=\) 'N', then \(z\) is not referenced. \\
\hline \(a b\) & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. \\
\hline work(1) & On exit, if \(I\) work \(>0\), then the real part of work (1) returns the required minimal size of 1 work. \\
\hline rwork(1) & On exit, if Irwork \(>0\), then rwork (1) returns the required minimal size of Irwork. \\
\hline iwork(1) & On exit, if liwork \(>0\), then iwork (1) returns the required minimal size of liwork. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=i\), then the algorithm failed to converge; \(i\) \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon)| | T| |_{2}\), where \(\varepsilon\) is the machine precision.
The real analogue of this routine is ?sbevd.
See also ?heevd for matrices held in full storage, and ?hpevd for matrices held in packed storage.

\section*{?sbevx}

Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix.
```

call ssbevx (jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, iwork, ifail, info)
call dsbevx (jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

```

\section*{Discussion}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobz & Character*1. Must be 'n' or 'V' \\
\hline & If \(j o b=\) ' \(N\) ', then only eigenvalues are computed. If job \(=\) ' V ', then eigenvalues and eigenvectors are computed. \\
\hline range & \begin{tabular}{l}
CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
If range \(=\) ' A ', the routine computes all eigenvalues. \\
If range \(=\) ' V ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v l<\lambda_{i} \leq v u\). \\
If range \(=\) ' \(I\) ', the routine computes eigenvalues with indices il to \(i u\).
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo='U', ab stores the upper triangular part of \(A\). \\
If uplo='L', ab stores the lower triangular part of \(A\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline kd & INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k d \geq 0\) ). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{ab, work} & REAL for ssbevx \\
\hline & DOUBLE PRECISION for dsbevx. \\
\hline & Arrays: \\
\hline & \(a b\) ( 1 dab, *) is an array containing either upper or \\
\hline & lower triangular part of the symmetric matrix \(A\) (as specified by up10) in band storage format. \\
\hline & The second dimension of \(a b\) must be at least \(\max (1, n)\). \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least max ( \(1,7 \mathrm{n}\) ). \\
\hline Idab & INTEGER. The leading dimension of \(a b ;\) must be at least \(k d+1\). \\
\hline \multirow[t]{5}{*}{vl, vu} & REAL for ssbevx \\
\hline & DOUBLE PRECISION for dsbevx. \\
\hline & If range \(=\) ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range = 'A' or ' \(I\) ', vI and vu are not referenced. \\
\hline \multirow[t]{4}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) ' \(I\) ', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\). \\
\hline & If range = 'A' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{3}{*}{abstol} & REAL for chpevx \\
\hline & DOUBLE PRECISION for zhpevx \\
\hline & The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance. \\
\hline \multirow[t]{3}{*}{\(1 d q, 1 d z\)} & INTEGER. The leading dimensions of the output arrays \(q\) and \(z\), respectively. Constraints: \\
\hline & \(1 d q \geq 1, I d z \geq 1 ;\) \\
\hline & If jobz \(=' V '\), then \(l d q \geq \max (1, n)\) and \(l d z \geq \max (1\), n). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max \((1,5 n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

Integer. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) ' I', \(m=i u-i l+1\).

REAL for ssbevx DOUBLE PRECISION for dsbevx
Arrays:
w(*), DIMENSION at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues of the matrix \(A\) in ascending order.
\(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\).
If jobz \(=\) ' V ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz \(={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(\mathrm{V}^{\prime}\), the exact value of \(m\) is not known in advance and an upper bound must be used.

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. If \(u p l o=' U '\), the first superdiagonal and the diagonal of the tridiagonal matrix \(T\) are returned in rows \(k d\) and \(k d+1\) of \(a b\), and if uplo = ' L ', the diagonal and first subdiagonal of \(T\) are returned in the first two rows of \(a b\).

INTEGER.
Array, DIMENSION at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if \(\operatorname{info}=0\), the first \(m\) elements of
ifail are zero; if info > 0 , the ifail contains the indices the eigenvectors that failed to converge. If jobz='N', then ifail is not referenced.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge;
their indices are stored in the array ifail.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([\mathrm{a}, \mathrm{b}]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon \star\left||T|_{1}\right.\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? 1 amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

\section*{?hbevx}
```

Computes selected eigenvalues and,
optionally, eigenvectors of a Hermitian
band matrix.

```
```

call chbevx (jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,

```
call chbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
    iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
    iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
call zhbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
call zhbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
    iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
```

 iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
    ```

\section*{Discussion}

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If job \(=\) ' \(N\) ', then only eigenvalues are computed. \\
If job \(=\) ' \(V\) ', then eigenvalues and eigenvectors are computed.
\end{tabular} \\
\hline range & \begin{tabular}{l}
CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
If range \(=\) 'A', the routine computes all eigenvalues. \\
If range \(=\) ' \(V\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v l<\lambda_{i} \leq v u\). \\
If range \(=\) 'I', the routine computes eigenvalues with indices il to iu.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo \(=\) 'U', ab stores the upper triangular part of \(A\). \\
If uplo = 'L', ab stores the lower triangular part of \(A\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \(k d\) & Integer. The number of super- or sub-diagonals in \(A\) ( \(k d \geq 0\) ). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{ab, work} & COMPLEX for chbevx \\
\hline & DOUBLE COMPLEX for zhbevx. \\
\hline & Arrays: \\
\hline & \(a b\) ( Idab,*) is an array containing either upper or \\
\hline & lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of \(a b\) must be at least \(\max (1, n)\). work (*) is a workspace array. \\
\hline & The dimension of work must be at least max \((1, n)\). \\
\hline Idab & INTEGER. The leading dimension of \(a b\); must be at least \(k d+1\). \\
\hline \multirow[t]{5}{*}{vl, vu} & REAL for chbevx \\
\hline & DOUBLE PRECISION for zhbevx. \\
\hline & If range \(=\) ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range ='A' or 'I', vi and vu are not referenced. \\
\hline \multirow[t]{3}{*}{il, iu} & Integer. \\
\hline & \begin{tabular}{l}
If range \(=\) ' I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); \(i l=1\) and \(i u=0\) if \(n=0\).
\end{tabular} \\
\hline & If range ='A' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{3}{*}{abstol} & REAL for chbevx \\
\hline & DOUBLE PRECISION for zhbevx. \\
\hline & The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance. \\
\hline \multirow[t]{3}{*}{\(1 d q, \quad 1 d z\)} & INTEGER. The leading dimensions of the output arrays \(q\) and \(z\), respectively. Constraints: \\
\hline & \(1 d q \geq 1, I d z \geq 1 ;\) \\
\hline & If jobz \(={ }^{\prime} V^{\prime}\), then \(l d q \geq \max (1, n)\) and \(l d z \geq \max (1\), n). \\
\hline
\end{tabular}
```

rwork REAL for chbevx

```
DOUBLE PRECISION for zhbevx
Workspace array, DIMENSION at least max \((1,7 n)\).
iwork INTEGER.

Workspace array, DIMENSION at least max \((1,5 n)\).

\section*{Output Parameters}
integer. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) ' I', \(m=i u-i l+1\).

REAL for chbevx
DOUBLE PRECISION for zhbevx
Array, dimension at least max \((1, n)\).
The first \(m\) elements contain the selected eigenvalues of the matrix \(A\) in ascending order.

COMPLEX for chbevx
DOUBLE COMPLEX for zhbevx.
Array \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\).
If jobz \(=' \mathrm{~V}\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. If jobz='N', then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=' \mathrm{~V}\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. If \(u p l o=' U '\), the first superdiagonal and the diagonal of the
tridiagonal matrix \(T\) are returned in rows \(k d\) and \(k d+1\) of \(a b\), and if \(u p l o=\) ' L ', the diagonal and first subdiagonal of \(T\) are returned in the first two rows of \(a b\).
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{ifail} & INTEGER. \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & If jobz \(=\) ' \(V^{\prime}\), then if info \(=0\), the first \(m\) elements of \\
\hline & ifail are zero; if info>0, the ifail contains the indices of the eigenvectors that failed to converge. \\
\hline & If jobz = 'N', then ifail is not referenced. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline & If info \(=i\), then \(i\) eigenvectors failed to converge; \\
\hline
\end{tabular}

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([\mathrm{a}, \mathrm{b}]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon \star\|T\|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*? 1 amch('S').

\section*{?stev}

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix.
```

call sstev (jobz, n, d, e, z, ldz, work, info)
call dstev (jobz, n, d, e, z, ldz, work, info)

```

\section*{Discussion}

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(A\).

Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If \(j 0 b z=N^{\prime}\), then only eigenvalues are computed. \\
\hline & If \(j o b z=' V\) ', then eigenvalues and eigenvectors are computed. \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{9}{*}{d, e, work} & REAL for sstev \\
\hline & DOUBLE PRECISION for dstev. \\
\hline & Arrays: \\
\hline & \(d\) (*) contains the \(n\) diagonal elements of the tridiagonal matrix \(A\). \\
\hline & The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & \(e\left(^{*}\right)\) contains the \(n-1\) subdiagonal elements of the tridiagonal matrix \(A\). \\
\hline & The dimension of \(e\) must be at least \(\max (1, n)\). The \(n\)th element of this array is used as workspace. \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least \(\max (1,2 n-2)\). If jobz='N', work is not referenced \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

INTEGER. The leading dimension of the output array \(z\); \(I d z \geq 1\). If jobz \(=\) 'V' then \(I d z \geq \max (1, n)\).

\section*{Output Parameters}
e

On exit, if info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.

REAL for sstev
DOUBLE PRECISION for dstev
Array, DIMENSION ( \(1 d z, *\) ).
The second dimension of \(z\) must be at least \(\max (1, n)\). If jobz='V', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with the eigenvalue returned in \(d(i)\).
If job \(=\) 'N', then \(z\) is not referenced.
On exit, this array is overwritten with intermediate results.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge;
\(i\) elements of \(e\) did not converge to zero.

\section*{?stevd}
```

Computes all eigenvalues and
(optionally) all eigenvectors of a real
symmetric tridiagonal matrix using
divide and conquer algorithm.
call sstevd (job, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
call dstevd (job, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization of \(T\) as: \(T=Z \Lambda Z^{T}\). Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
T z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.
There is no complex analogue of this routine.

\section*{Input Parameters}
```

job CHARACTER*1. Must be 'N' or 'V'.
If job='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.
INTEGER. The order of the matrix T (}n\geq0)\mathrm{ .
REAL for sstevd
DOUBLE PRECISION for dstevd.
Arrays:

```
\(d(*)\) contains the \(n\) diagonal elements of the tridiagonal matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the \(n-1\) off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n)\). The \(n\)th element of this array is used as workspace.
work (*) is a workspace array.
The dimension of work must be at least Iwork.
integer. The leading dimension of the output array \(z\). Constraints:
\(I d z \geq 1\) if job='N';
\(l d z \geq \max (1, n)\) if job='V'.

I work
iwork
liwork

INTEGER. The dimension of the array work. Constraints:
if job \(=\) 'N' or \(n \leq 1\), then 1 work \(\geq 1\); if job \(=\) 'V' and \(n>1\), then lwork \(\geq 2 n^{2}+(3+2 k) * n+1\), where \(k\) is the smallest integer which satisfies \(2^{k} \geq n\).

INTEGER.
Workspace array, DIMENSION at least liwork.
INTEGER. The dimension of the array iwork. Constraints:
if job \(={ }^{\prime} N^{\prime}\) or \(n \leq 1\), then liwork \(\geq 1\);
if job \(=^{\prime} V\) ' and \(n>1\), then liwork \(\geq 5 n+2\).

\section*{Output Parameters}

On exit, if info \(=0\), contains the eigenvalues of the matrix \(T\) in ascending order.
See also info.
REAL for sstevd
DOUBLE PRECISION for dstevd
Array, DIMENSION ( \(I d z, *\) ).
The second dimension of \(z\) must be:
at least 1 if job \(={ }^{\prime} \mathrm{N}^{\prime}\);
at least \(\max (1, n)\) if job \(={ }^{\prime} V^{\prime}\).

If \(j 0 b=\) ' V , then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(T\). If \(j 0 b={ }^{\prime} \mathrm{N}\) ', then \(z\) is not referenced.
On exit, this array is overwritten with intermediate results.
work (1) On exit, if 1 work \(>0\), then work (1) returns the required minimal size of 1 work.
iwork (1) On exit, if liwork \(>0\), then iwork (1) returns the required minimal size of liwork.
info
INTEGER.
If info \(=0\), the execution is successful.
If \(\operatorname{info}=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon)| | T| |_{2}\), where \(\varepsilon\) is the machine precision.
If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\[
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \varepsilon \|\left. T\right|_{2}
\]
where \(c(n)\) is a modestly increasing function of \(n\).
If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\[
\theta\left(z_{i}, w_{i}\right) \leq c(n) \varepsilon| | T| |_{2} / \min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right| .
\]

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues.

\section*{?stevx}

Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.
```

call sstevx (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)
call dstevx (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)

```

\section*{Discussion}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
```

jobz CHARACTER*1.Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are
computed.
range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range = 'A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues }\mp@subsup{\lambda}{i}{}\mathrm{ in
the half-open interval: vl< }\mp@subsup{\lambda}{i}{}\leqvvu
If range ='I', the routine computes eigenvalues with
indices il to iu.
INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
REAL for sstevx
DOUBLE PRECISION for dstevx.
Arrays:

```
```

vl, vu REAL for sstevx
DOUBLE PRECISION for dstevx.
If range='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.
If range='A' or 'I',vl and vu are not referenced.
INTEGER.
If range = 'I ', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1\leqil <iu <n, if n>0; il=1 and iu=0
if n=0.
If range='A' or 'V', il and iu are not referenced.
REAL for sstevx
DOUBLE PRECISION for dstevx.
The absolute error tolerance to which each eigenvalue is
required. See Application notes for details on error
tolerance.
integer. The leading dimensions of the output array z;
ldz\geq1. If jobz='V', then Idz\geqmax (1,n).
INTEGER.
Workspace array, DIMENSION at least max(1,5n).

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) ' I', \(m=i u-i l+1\). \\
\hline \multirow[t]{10}{*}{w, z} & REAL for sstevx \\
\hline & DOUBLE PRECISION for dstevx. \\
\hline & Arrays: \\
\hline & w(*), DIMENSION at least max (1, \\
\hline & The first \(m\) elements of \(w\) contain the selected eigenvalues of the matrix \(A\) in ascending order. \\
\hline & \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\). \\
\hline & If jobz \(=\) ' \(V^{\prime}\), then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \\
\hline & \(w(i)\). If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. \\
\hline & If jobz ='N', then \(z\) is not referenced. \\
\hline & Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' V ', the exact value of \(m\) is not known in advance and an upper bound must be used. \\
\hline d, e & On exit, these arrays may be multiplied by a constant factor chosen to avoid overflow or underflow in computing the eigenvalues. \\
\hline \multirow[t]{3}{*}{ifail} & INTEGER. \\
\hline & Array, DIMEnSion at least max \((1, n)\). \\
\hline & If jobz \(={ }^{\prime} V^{\prime}\), then if \(\operatorname{info}=0\), the first \(m\) elements of ifail are zero; if info \(>0\), the ifail contains the indices of the eigenvectors that failed to converge. If jobz='N', then ifail is not referenced. \\
\hline
\end{tabular}
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([\mathrm{a}, \mathrm{b}]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon \star\|A\|_{1}\) will be used in its place.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2 *? 1 amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*?lamch('S').

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?stevr}
```

Computes selected eigenvalues and,
optionally, eigenvectors of a real
symmetric tridiagonal matrix using the
Relatively Robust Representations.
call sstevr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)
call dstevr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

```

\section*{Discussion}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Whenever possible, ?stevr calls sstegr/dstegr to compute the eigenspectrum using Relatively Robust Representations. ?stegr computes eigenvalues by the \(d q d s\) algorithm, while orthogonal eigenvectors are computed from various "good" \(L D L^{T}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of \(T\),
(a) Compute \(T-\sigma_{\mathrm{i}}=L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\), such that \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) is a relatively robust representation;
(b) Compute the eigenvalues, \(\lambda_{\mathrm{j}}\), of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) to high relative accuracy by the \(d q d s\) algorithm;
(c) If there is a cluster of close eigenvalues, "choose" \(\sigma_{1}\) close to the cluster, and go to step (a);
(d) Given the approximate eigenvalue \(\lambda_{\mathrm{j}}\) of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}{ }^{T}\), compute the corresponding eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?stevr calls sstegr/dstegr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard. ?stevr calls sstebz/dstebz and sstein/dstein on non-IEEE machines and when partial spectrum requests are made.

\section*{Input Parameters}
```

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz='N', then only eigenvalues are computed.
If jobz ='v', then eigenvalues and eigenvectors are
computed.
range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range='A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues }\mp@subsup{\lambda}{i}{}\mathrm{ in
the half-open interval: vl< }\mp@subsup{\lambda}{i}{}\leqvv
If range ='I', the routine computes eigenvalues with
indices il to iu.
For range='V'or'I' and iu-il< n-1,
sstebz/dstebz and sstein/dstein are called.
INTEGER. The order of the matrix T(}n\geq0)\mathrm{ .
REAL for sstevr
DOUBLE PRECISION for dstevr.
Arrays:
d(*) contains the n diagonal elements of the
tridiagonal matrix T.
The dimension of d must be at least max(1,n).
e (*) contains the n-1 subdiagonal elements of }A\mathrm{ .
The dimension of e must be at least max (1,n). The nth
element of this array is used as workspace.
work (Iwork) is a workspace array.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{vl, vu} & REAL for sstevr \\
\hline & DOUBLE PRECISION for dstevr. \\
\hline & If range \(=' V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{4}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) ' I ', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i \perp \leq i u \leq n\), if \(n>0\); \(i l=1\) and \(i u=0\) if \(n=0\). \\
\hline & If range \(=\) 'A' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{6}{*}{abstol} & REAL for ssyevr \\
\hline & DOUBLE PRECISION for dsyevr. \\
\hline & The absolute error tolerance to which each eigenvalue/eigenvector is required. \\
\hline & If jobz = ' \(V\) ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by \\
\hline & abstol.If abstol<n \(\varepsilon||T||_{1}\), then \(n \varepsilon||T||_{1}\) willbeused in its place, where \(\varepsilon\) is the machine precision. The \\
\hline & eigenvalues are computed to an accuracy of \(\varepsilon \|\left.|T|\right|_{1}\) irrespective of abstol. If high relative accuracy is important, set abstol to ?lamch('S'). \\
\hline \multirow[t]{3}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \(z\). Constraints: \\
\hline & \(I d z \geq 1\) if jobz = 'N'; \\
\hline & \(l d z \geq \max (1, n)\) if jobz \(={ }^{\prime} V^{\prime}\) '. \\
\hline \multirow[t]{2}{*}{lwork} & INTEGER. The dimension of the array work. \\
\hline & Constraint: 1 work \(\geq \max (1,20 n)\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION (liwork). \\
\hline \multirow[t]{2}{*}{liwork} & INTEGER. The dimension of the array iwork, \\
\hline & IWork \(\geq \max (1,10 n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

m
W, z
d, e
isuppz
work(1) On exit, if info=0, then work(1) returns the required
minimal size of lwork.

```
iwork(1) On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.
info
INTEGER.
If info \(=0\), the execution is successful.
If \(i n f O=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), an internal error has occurred.

\section*{Application Notes}

Normal execution of the routine ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

\section*{Nonsymmetric Eigenproblems}

This section describes LAPACK driver routines used for solving nonsymmetric eigenproblems. See also computational routines that can be called to solve these problems.
Table 5-12 lists routines described in more detail below.
Table 5-11 Driver Routines for Solving Nonsymmetric Eigenproblems

\section*{Routine Name Operation performed}
? gees Computes the eigenvalues and Schur factorization of a general matrix, and orders the factorization so that selected eigenvalues are at the top left of the Schur form.
?geesx Computes the eigenvalues and Schur factorization of a general matrix, orders the factorization and computes reciprocal condition numbers.
?geev Computes the eigenvalues and left and right eigenvectors of a general matrix.
?geevx Computes the eigenvalues and left and right eigenvectors of a general matrix, with preliminary matrix balancing, and computes reciprocal condition numbers for the eigenvalues and right eigenvectors.

\section*{?gees}

Computes the eigenvalues and Schur
factorization of a general matrix, and orders the factorization so that selected eigenvalues are at the top left of the Schur form.
```

call sgees (jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs,
work, lwork, bwork, info)
call dgees (jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs,
work, lwork, bwork, info)
call cgees (jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs,
work, lwork, rwork, bwork, info)
call zgees (jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs,
work, lwork, rwork, bwork, info)

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Discussion}

This routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues, the real Schur form \(T\), and, optionally, the matrix of Schur vectors \(Z\). This gives the Schur factorization \(A=Z T Z^{H}\).

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that selected eigenvalues are at the top left. The leading columns of \(Z\) then form an orthonormal basis for the invariant subspace corresponding to the selected eigenvalues.

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form
\[
\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)
\]
where \(b^{\star} c<0\). The eigenvalues of such a block are \(a \pm \sqrt{b c}\).
A complex matrix is in Schur form if it is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{jobvs} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & \begin{tabular}{l}
If jobvs \(=\) ' N , then Schur vectors are not computed. \\
If jobvs \(=\) ' \(V\) ', then Schur vectors are computed.
\end{tabular} \\
\hline \multirow[t]{2}{*}{sort} & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'S'. \\
Specifies whether or not to order the eigenvalues on the diagonal of the Schur form.
\end{tabular} \\
\hline & \begin{tabular}{l}
If sort \(=\) ' \(N\) ', then eigenvalues are not ordered. \\
If sort \(=\) 'S', eigenvalues are ordered (see select).
\end{tabular} \\
\hline \multirow[t]{5}{*}{select} & LOGICAL FUNCTION of two REAL arguments for real flavors. \\
\hline & LOGICAL FUNCTION of one COMPLEX argument for complex flavors. \\
\hline & select must be declared EXTERNAL in the calling subroutine. \\
\hline & If sort = 'S', select is used to select eigenvalues to sort to the top left of the Schur form. \\
\hline & If sort ='N', select is not referenced. \\
\hline
\end{tabular}

Idvs INTEGER. The leading dimension of the output array vs. Constraints:
Idvs \(\geq 1\);
\(l d v s \geq \max (1, n)\) if jobvs='V'.
lwork INTEGER. The dimension of the array work. Constraint:
1 work \(\geq \max (1,3 n)\) for real flavors; lwork \(\geq \max (1,2 n)\) for complex flavors.
rwork REAL for cgees
DOUBLE PRECISION for zgees
Workspace array, DIMENSION at least max \((1, n)\). Used in complex flavors only.

\section*{bwork LOGICAL.}

Workspace array, DIMENSION at least max \((1, n)\). Not referenced if sort \(={ }^{\prime} \mathrm{N}^{\prime}\).

\section*{Output Parameters}

On exit, this array is overwritten by the real-Schur/Schur form \(T\).

INTEGER.
If sort \(=\) 'N', sdim= 0 .
If sort ='S', sdim is equal to the number of eigenvalues (after sorting) for which select is true. Note that for real flavors complex conjugate pairs for which select is true for either eigenvalue count as 2 .
REAL for sgees DOUBLE PRECISION for dgees Arrays, DIMENSION at least max \((1, n)\) each. Contain the real and imaginary parts, respectively, of the computed eigenvalues, in the same order that they appear on the diagonal of the output real-Schur form \(T\). Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array, DIMENSION at least \(\max (1, n)\).
Contains the computed eigenvalues. The eigenvalues are stored in the same order as they appear on the diagonal of the output Schur form \(T\).

REAL for sgees
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array vs (ldvs,*); the second dimension of vs must be at least \(\max (1, n)\).
```

If jobvs='v', vs contains the orthogonal/unitary matrix Z of Schur vectors. If jobvs='N', vs is not referenced.
work (I) On exit, if info $=0$, then work (I) returns the required minimal size of 1 work.
INTEGER.
If info $=0$, the execution is successful.

```
info

If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), and
\(i \leq n\) :
the \(Q R\) algorithm failed to compute all the eigenvalues; elements 1:ilo-1 and \(i+1: n\) of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged; if jobvs='v', vs contains the matrix which reduces \(A\) to its partially converged Schur form;
\[
i=n+1:
\]
the eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned); \(i=n+2\) :
after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Schur form no longer satisfy select = .TRUE.. This could also be caused by underflow due to scaling.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?geesx}
```

Computes the eigenvalues and Schur factorization of a general matrix, orders the factorization and computes reciprocal condition numbers.

```
```

call sgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs,

```
call sgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs,
    ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
    ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
call dgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs,
call dgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs,
    ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
    ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
call cgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs,
call cgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs,
    ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)
    ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)
call zgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs,
call zgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs,
        ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)
```

 ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)
    ```

\section*{Discussion}

This routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues, the real-Schur/Schur form \(T\), and, optionally, the matrix of Schur vectors \(Z\). This gives the Schur factorization \(A=Z T Z^{H}\).

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that selected eigenvalues are at the top left; computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right invariant subspace corresponding to the selected eigenvalues (rcondv). The leading columns of \(Z\) form an orthonormal basis for this invariant subspace.
For further explanation of the reciprocal condition numbers rconde and rcondv, see \([\underline{L U G}]\), Section 4.10 (where these quantities are called \(s\) and sep respectively).
A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form
\[
\left(\begin{array}{ll}
a & b \\
c & \\
a
\end{array}\right)
\]
where \(b^{\star} c<0\). The eigenvalues of such a block are \(a \pm \sqrt{b c}\).
A complex matrix is in Schur form if it is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobvs} & CHARACTER*1. Must be 'N' or \\
\hline & If jobvs \(=\) ' \({ }^{\text {' }}\), then Schur vectors are not computed. \\
\hline & If jobvs \(=\) ' \(\mathrm{V}^{\prime}\), then Schur vectors are computed. \\
\hline \multirow[t]{4}{*}{sort} & CHARACTER*1. Must be 'N' or 'S'. \\
\hline & Specifies whether or not to order the eigenvalues on the diagonal of the Schur form. \\
\hline & If sort \(=\) ' N ', then eigenvalues are not ordered. \\
\hline & If sort \(=\) 'S', eigenvalues are ordered (see select). \\
\hline \multirow[t]{12}{*}{select} & LOGICAL FUNCTION of two REAL arguments for real flavors. \\
\hline & LOGICAL FUNCTION of one COMPLEX argument for complex flavors. \\
\hline & select must be declared EXTERNAL in the calling subroutine. \\
\hline & If sort ='s', select is used to select eigenvalues to sort to the top left of the Schur form. \\
\hline & If sort ='N', select is not referenced. \\
\hline & For real flavors: \\
\hline & An eigenvalue \(w r(j)+\sqrt{-1} \star_{w i}(\mathbf{j})\) is selected if \\
\hline & select( \(w r(\mathrm{j}), w i(\mathrm{j}))\) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then \\
\hline & both complex eigenvalues are selected. Note that a selected complex eigenvalue may no longer satisfy \\
\hline & \(\operatorname{select}(\operatorname{wr}(\mathrm{j}), w i(\mathrm{j}))=\). TRUE . after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info may be set to \(n+2\) (see info below). \\
\hline & For complex flavors: \\
\hline & An eigenvalue \(w(\mathrm{j})\) is selected if \(\operatorname{select}(w(\mathrm{j})\) ) is true. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline sense & CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed. \\
\hline & \begin{tabular}{l}
If sense \(={ }^{\prime} N\) ', none are computed; \\
If sense \(={ }^{\prime} \mathrm{E}^{\prime}\), computed for average of selected eigenvalues only; \\
If sense \(=\) ' \(\mathrm{V}^{\prime}\), computed for selected right invariant subspace only; \\
If sense='B', computed for both.
\end{tabular} \\
\hline & If sense is 'E', 'V', or 'B', then sort must equal 'S'. \\
\hline \(n\) & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{7}{*}{a, work} & REAL for sgeesx \\
\hline & DOUBLE PRECISION for dgeesx \\
\hline & COMPLEX for cgeesx \\
\hline & DOUBLE COMPLEX for zgeesx. \\
\hline & Arrays: \\
\hline & \(a(I d a, *)\) is an array containing the \(n\)-by- \(n\) matrix \(A\). The second dimension of a must be at least \(\max (1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline Ida & integer. The first dimension of the array \(a\). Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{3}{*}{Idvs} & INTEGER. The leading dimension of the output array vs. Constraints: \\
\hline & Idvs \(\geq 1\); \\
\hline & \(\operatorname{ldvs} \geq \max (1, n)\) if jobvs \(=\) 'V'. \\
\hline \multirow[t]{7}{*}{lwork} & INTEGER. The dimension of the array work. \\
\hline & Constraint: \\
\hline & 1 work \(\geq \max (1,3 n)\) for real flavors; \\
\hline & lwork \(\geq \max (1,2 n)\) for complex flavors. \\
\hline & Also, if sense \(=\) 'E', 'V', or 'B', then \\
\hline & 1 work \(\geq n+2{ }^{*} \operatorname{sdim}^{*}(n-s d i m)\) for real flavors; \\
\hline & 1 work \(\geq 2{ }^{*} \operatorname{sdim}^{*}(n-s d i m)\) for complex flavors; \\
\hline
\end{tabular}
where sdim is the number of selected eigenvalues computed by this routine. Note that \(2 * \operatorname{sdim}^{\star}(n-\operatorname{sdim}) \leq_{n}{ }_{n} / 2\).
For good performance, lwork must generally be larger.
\begin{tabular}{|c|c|}
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION (liwork). Used in real flavors only. Not referenced if sense \(=\) ' \(N\) ' or 'E'.
\end{tabular} \\
\hline liwork & integer. The dimension of the array iwork. Used in real flavors only. Constraint:
```

liwork\geq1;
if sense = 'V' or 'B', liwork \geqsdim*(n-sdim).

``` \\
\hline rwork & \begin{tabular}{l}
REAL for cgees \(x\) \\
DOUBLE PRECISION for zgeesx \\
Workspace array, DIMENSION at least \(\max (1, n)\). Used in complex flavors only.
\end{tabular} \\
\hline bwork & \begin{tabular}{l}
LOGICAL. \\
Workspace array, DIMENSION at least max \((1, n)\). Not referenced if sort \(=\) ' N '
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, this array is overwritten by the real-Schur/Schur form \(T\).

INTEGER.
If sort \(=\) 'N', sdim= 0 .
If sort ='S', sdim is equal to the number of eigenvalues (after sorting) for which select is true. Note that for real flavors complex conjugate pairs for which select is true for either eigenvalue count as 2 .
REAL for sgeesx
DOUBLE PRECISION for dgeesx
Arrays, DIMENSION at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the computed eigenvalues, in the same order that they appear on the diagonal of the output real-Schur form \(T\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.
w
COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Array, DIMENSION at least max \((1, n)\).
Contains the computed eigenvalues. The eigenvalues are stored in the same order as they appear on the diagonal of the output Schur form \(T\).
REAL for sgeesx
DOUBLE PRECISION for dgeesx
COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Array vs(ldvs,*); the second dimension of vs must be at least \(\max (1, n)\).
If jobvs = 'v', vs contains the orthogonal/unitary matrix \(Z\) of Schur vectors.
If jobvs='N', vs is not referenced.
rconde, rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If sense = 'E' or 'B', rconde contains the reciprocal condition number for the average of the selected eigenvalues. If sense \(=\) ' \(N\) ' or ' \(V\) ', rconde is not referenced.
If sense \(=\) ' \(V\) ' or ' B ', rcondv contains the reciprocal condition number for the selected right invariant subspace. If sense \(=\) ' \(N\) ' or ' E ', rcondv is not referenced.
work (1) On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

If info \(=i\), and
\(i \leq n\) :
the \(Q R\) algorithm failed to compute all the eigenvalues; elements 1 :ilo-1 and \(i+1\) : \(n\) of \(w r\) and wi (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged; if jobvs \(=\) 'V', vs contains the transformation which reduces \(A\) to its partially converged Schur form;
\(i=n+1\) :
the eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned);
\[
i=n+2:
\]
after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Schur form no longer satisfy select = . TRUE . . This could also be caused by underflow due to scaling.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?geev}

Computes the eigenvalues and left and right eigenvectors of a general matrix.
```

call sgeev (jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
work, lwork, info)
call dgeev (jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
work, lwork, info)
call cgeev (jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)
call zgeev (jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)

```

\section*{Discussion}

This routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector \(v(\mathrm{j})\) of \(A\) satisfies
\[
A^{\star} v(\mathrm{j})=\lambda(\mathrm{j}) \star v(\mathrm{j})
\]
where \(\lambda(\mathrm{j})\) is its eigenvalue.
The left eigenvector \(u(\mathrm{j})\) of \(A\) satisfies
\[
u(\mathrm{j})^{H_{\star}} A=\lambda(\mathrm{j})^{\star} u(\mathrm{j})^{H}
\]
where \(u(\mathrm{j})^{H}\) denotes the conjugate transpose of \(u(\mathrm{j})\).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

\section*{Input Parameters}

\author{
jobvl
}

CHARACTER*1. Must be 'N' or 'V'.
If jobvI='N', then left eigenvectors of \(A\) are not computed.
If jobvl \(=\) ' \(V\) ', then left eigenvectors of \(A\) are computed.
\begin{tabular}{|c|c|}
\hline jobvr & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If jobvr ='N', then right eigenvectors of \(A\) are not computed. \\
If jobvr =' V ', then right eigenvectors of \(A\) are computed.
\end{tabular} \\
\hline \(n\) & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline a, work & \begin{tabular}{l}
REAL for sgeev \\
DOUBLE PRECISION for dgeev \\
COMPLEX for cgeev \\
DOUBLE COMPLEX for zgeev. \\
Arrays: \\
\(a(l d a, *)\) is an array containing the \(n-b y-n\) matrix \(A\). \\
The second dimension of a must be at least \(\max (1, n)\). \\
work (lwork) is a workspace array.
\end{tabular} \\
\hline lda & integer. The first dimension of the array a. Must be at least \(\max (1, n)\). \\
\hline \(1 d v 1,1 d v r\) & \begin{tabular}{l}
INTEGER. The leading dimensions of the output arrays \(v I\) and \(v r\), respectively. Constraints: \\
\(\operatorname{ldv} 1 \geq 1 ; \quad \operatorname{dvr} \geq 1\). \\
If jobvl='V', \(\quad \operatorname{dvl} \geq \max (1, n)\); \\
If jobvr='v', \(1 d v r \geq \max (1, n)\).
\end{tabular} \\
\hline lwork & \begin{tabular}{l}
integer. The dimension of the array work. \\
Constraint: \\
1 work \(\geq \max (1,3 n)\), and if jobvl='V' or jobvr = 'V', 1 work \(\geq \max (1,4 n)\) (for real flavors); \\
1 work \(\geq \max (1,2 n) \quad\) (for complex flavors). \\
For good performance, 1 work must generally be larger.
\end{tabular} \\
\hline rwork & \begin{tabular}{l}
REAL for cgeev \\
DOUBLE PRECISION for zgeev \\
Workspace array, DIMENSION at least max \((1,2 n)\). Used in complex flavors only.
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}
a
wr, wi
w
vl, vr

On exit, this array is overwritten by intermediate results.
REAL for sgeev
DOUBLE PRECISION for dgeev
Arrays, DIMENSION at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.

COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Array, DIMENSION at least \(\max (1, n)\).
Contains the computed eigenvalues.
REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Arrays:
vl (ldvl,*) ; the second dimension of vl must be at least \(\max (1, n)\).

If jobvl \(=\) ' \(V\) ', the left eigenvectors \(u(\mathrm{j})\) are stored one after another in the columns of \(v l\), in the same order as their eigenvalues. If \(j o b v I=N^{\prime}, v I\) is not referenced. For real flavors:
If the j -th eigenvalue is real, then \(u(\mathrm{j})=v l(:, \mathrm{j})\), the j -th column of \(v l\). If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then \(u(\mathrm{j})=v I(:, \mathrm{j})+i^{\star} v l(:, \mathrm{j}+1)\) and \(u(\mathrm{j}+1)=v l(:, \mathrm{j})-i^{\star} v l(:, \mathrm{j}+1)\), where \(i=\sqrt{-1}\).
For complex flavors:
\(u(\mathrm{j})=v l(:, \mathrm{j})\), the j -th column of \(v l\).
vr (ldvr,*) ; the second dimension of vr must be at least \(\max (1, n)\).

If jobvr \(=\) ' \(V\) ', the right eigenvectors \(v(\mathrm{j})\) are stored one after another in the columns of \(v r\), in the same order as their eigenvalues. If jobvr \(=\) ' N ', \(v r\) is not referenced.

For real flavors:
If the j -th eigenvalue is real, then \(v(\mathrm{j})=v v(:, \mathrm{j})\), the j -th column of \(v r\). If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then \(v(\mathrm{j})=v r(:, \mathrm{j})+i^{\star} v r(:, \mathrm{j}+1)\) and \(v(\mathrm{j}+1)=\operatorname{vr}(:, \mathrm{j})-i^{\star} \operatorname{vr}(:, \mathrm{j}+1)\), where \(i=\sqrt{-1}\).
For complex flavors:
\(v(\mathrm{j})=v r(:, \mathrm{j})\), the j -th column of \(v r\).
work (1) On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If \(\operatorname{infO}=i\), the \(Q R\) algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements \(i+1: n\) of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?geevx}

Computes the eigenvalues and left and right eigenvectors of a general matrix, with preliminary matrix balancing, and computes reciprocal condition numbers for the eigenvalues and right eigenvectors.
```

call sgeevx (balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl,
ldvl, vr, ldvr, ilo, ihi, scale, abnrm, rconde,
rcondv, work, lwork, iwork, info)
call dgeevx (balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl,
ldvl, vr, ldvr, ilo, ihi, scale, abnrm, rconde,
rcondv, work, lwork, iwork, info)
call cgeevx (balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl,
vr, ldvr, ilo, ihi, scale, abnrm, rconde, rcondv,
work, lwork, rwork, info)
call zgeevx (balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl,
vr, ldvr, ilo, ihi, scale, abnrm, rconde, rcondv,
work, lwork, rwork, info)

```

\section*{Discussion}

This routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues and, optionally, the left and/or right eigenvectors.
Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, scale, and abn \(r m\) ), reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).
The right eigenvector \(v(\mathrm{j})\) of \(A\) satisfies
\[
A^{\star} v(\mathrm{j})=\lambda(\mathrm{j})^{\star} v(\mathrm{j})
\]
where \(\lambda(\mathrm{j})\) is its eigenvalue.
The left eigenvector \(u(\mathrm{j})\) of \(A\) satisfies
\[
u(\mathrm{j})^{H_{\star}} A=\lambda(\mathrm{j}){ }^{\star} u(\mathrm{j})^{H}
\]
where \(u(\mathrm{j})^{H}\) denotes the conjugate transpose of \(u(\mathrm{j})\).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and applying a diagonal similarity transformation \(D A D^{-1}\), where \(D\) is a diagonal matrix, to make its rows and columns closer in norm and the condition numbers of its eigenvalues and eigenvectors smaller. The computed reciprocal condition numbers correspond to the balanced matrix.
Permuting rows and columns will not change the condition numbers in exact arithmetic) but diagonal scaling will. For further explanation of balancing, see [LUG], Section 4.10.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{balanc} & CHARACTER*1. Must be 'N', 'P', 'S', or 'B'. \\
\hline & Indicates how the input matrix should be diagonally scaled and/or permuted to improve the conditioning of its eigenvalues. \\
\hline & If balanc \(={ }^{\prime} N\) ', do not diagonally scale or permute; If balanc =' \({ }^{\prime}\) ', perform permutations to make the matrix more nearly upper triangular. Do not diagonally scale; \\
\hline & If balanc = 'S', Diagonally scale the matrix, i.e. replace \(A\) by \(D A D^{-1}\), where \(D\) is a diagonal matrix chosen to make the rows and columns of \(A\) more equal in norm. Do not permute; \\
\hline & If balanc = ' \({ }^{\text {' }}\), both diagonally scale and permute \(A\). \\
\hline & Computed reciprocal condition numbers will be for the matrix after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does. \\
\hline \multirow[t]{4}{*}{jobvl} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobvl = ' \({ }^{\text {' }}\), left eigenvectors of \(A\) are not computed; \\
\hline & If jobvI='V', left eigenvectors of \(A\) are computed. \\
\hline & If sense \(=^{\prime} \mathrm{E}^{\prime}\) or ' \(\mathrm{B}^{\prime}\), then Jobvl must be 'V'. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{jobvr} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobvr \(=\) ' \(N\) ', right eigenvectors of \(A\) are not computed; \\
\hline & If jobvr \(=1 \mathrm{~V}\) ', right eigenvectors of \(A\) are computed. \\
\hline & If sense \(=\) ' E 'or ' \(\mathrm{B}^{\prime}\) ', then jobvr must be ' V '. \\
\hline \multirow[t]{3}{*}{sense} & CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed. \\
\hline & \begin{tabular}{l}
If sense \(={ }^{\prime} \mathrm{N}\) ', none are computed; \\
If sense \(={ }^{\prime} E^{\prime}\), computed for eigenvalues only; \\
If sense \(={ }^{\prime} \mathrm{V}\) ', computed for right eigenvectors only; \\
If sense \(=\) ' \({ }^{\prime}\) ', computed for eigenvalues and right eigenvectors.
\end{tabular} \\
\hline & If sense is ' E ' or ' B ', both left and right eigenvectors must also be computed ( \(j 0 b v \mathrm{l}=\mathrm{V}\) 'and jobvr='V'). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{7}{*}{a, work} & REAL for sgeevx \\
\hline & DOUBLE PRECISION for dgeevx \\
\hline & COMPLEX for cgeevx \\
\hline & DOUBLE COMPLEX for zgeevx. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is an array containing the \(n-b y-n\) matrix \(A\). The second dimension of a must be at least \(\max (1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline Ida & integer. The first dimension of the array a. Must be at least \(\max (1, n)\). \\
\hline \(1 d v 1, ~ l d v r\) & \begin{tabular}{l}
Integer. The leading dimensions of the output arrays \(v I\) and \(v r\), respectively. Constraints: \\
\(\operatorname{ldv} 1 \geq 1 ; \quad \operatorname{dvr} \geq 1\). \\
If jobvl='v', \(\quad \operatorname{ldv} 1 \geq \max (1, n)\); \\
If jobvr='v', \(\quad \operatorname{dvr} \geq \max (1, n)\).
\end{tabular} \\
\hline \multirow[t]{2}{*}{lwork} & integer. The dimension of the array work. For real flavors: \\
\hline & If sense \(=\) 'N'or 'E', 1 work \(\geq \max (1,2 n)\), and \\
\hline
\end{tabular}
if jobvl='V' or jobvr='V', lwork \(\geq 3 n\);
If sense \(=\) 'V'or 'B', 1 work \(\geq n(n+6)\).
For good performance, lwork must generally be larger.
For complex flavors:
If sense \(=\) 'N'or 'E', 1 work \(\geq \max (1,2 n)\);
If sense \(=\) 'V'or 'B', lwork \(\geq n^{2}+2 n\).
For good performance, lwork must generally be larger.
rwork REAL for cgeevx
DOUBLE PRECISION for zgeevx
Workspace array, DIMENSION at least max \((1,2 n)\). Used in complex flavors only.
iwork INTEGER.
Workspace array, DIMENSION at least \(\max (1,2 n-2)\).
Used in real flavors only. Not referenced if sense \(=\) 'N' or 'E'.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, this array is overwritten. If jobvl='V' or jobvr = 'V', it contains the real-Schur/Schur form of the balanced version of the input matrix \(A\). \\
\hline \multirow[t]{4}{*}{wr, wi} & REAL for sgeevx \\
\hline & DOUBLE PRECISION for dgeevx \\
\hline & Arrays, DIMENSION at least max \((1, n)\) each. \\
\hline & Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first. \\
\hline \multirow[t]{4}{*}{w} & COMPLEX for cgeevx \\
\hline & DOUBLE COMPLEX for zgeevx. \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & Contains the computed eigenvalues. \\
\hline \multirow[t]{4}{*}{vl, vr} & REAL for sgeevx \\
\hline & DOUBLE PRECISION for dgeevx \\
\hline & COMPLEX for cgeevx \\
\hline & DOUBLE COMPLEX for zgeevx. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Arrays:
vl(ldvı,*); the second dimension of vl must be at least \(\max (1, n)\).
If jobvl \(=\) ' \(\mathrm{V}^{\prime}\), the left eigenvectors \(u(\mathrm{j})\) are stored one after another in the columns of \(v l\), in the same order as their eigenvalues. If \(j \circ b v \mathcal{I}=N^{\prime}, v \mathcal{l}\) is not referenced. For real flavors:
If the j -th eigenvalue is real, then \(u(\mathrm{j})=v \_(: \mathrm{j})\), the j -th column of \(v 1\). If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then \(u(\mathrm{j})=v l(:, \mathrm{j})+i^{\star} v l(:, \mathrm{j}+1)\) and \(u(\mathrm{j}+1)=v \_(:, \mathrm{j})-i^{\star} v \perp(:, \mathrm{j}+1)\), where \(i=\sqrt{-1}\).
For complex flavors:
\(u(\mathrm{j})=v l(:, \mathrm{j})\), the j -th column of \(v 1\).
\(v r(I d v r, *)\); the second dimension of \(v r\) must be at least \(\max (1, n)\).
If jobvr=' V ', the right eigenvectors \(v(\mathrm{j})\) are stored one after another in the columns of \(v r\), in the same order as their eigenvalues. If \(j o b v r={ }^{\prime} \mathrm{N}^{\prime}, v r\) is not referenced. For real flavors:
If the j -th eigenvalue is real, then \(v(\mathrm{j})=v v(:, \mathrm{j})\), the j -th column of \(v r\). If the j -th and \((\mathrm{j}+1)\)-st eigenvalues form a complex conjugate pair, then \(v(\mathrm{j})=v r(:, \mathrm{j})+i^{\star} v r(:, \mathrm{j}+1)\) and \(v(\mathrm{j}+1)=v r(:, \mathrm{j})-i^{\star} v r(:, \mathrm{j}+1)\), where \(i=\sqrt{-1}\).
For complex flavors:
\(v(\mathrm{j})=v r(:, \mathrm{j})\), the j -th column of \(v r\).
INTEGER.
\(i l o\) and ihi are integer values determined when \(A\) was balanced.
The balanced \(A(\mathrm{i}, \mathrm{j})=0\) if \(\mathrm{i}>\mathrm{j}\) and \(\mathrm{j}=1, \ldots\), ilo- 1 or \(\mathrm{i}=\mathrm{i} h i+1, \ldots, n\).
If balanc='N'or'S',ilo=1 and \(i\) hi \(=n\).
REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max \((1, n)\).
Details of the permutations and scaling factors applied
when balancing \(A\). If \(P(\mathrm{j})\) is the index of the row and column interchanged with row and column j , and \(D(\mathrm{j})\) is the scaling factor applied to row and column j , then
\[
\begin{aligned}
& \text { scale }(\mathrm{j})=P(\mathrm{j}), \quad \text { for } \mathrm{j}=1, \ldots, i l o-1 \\
&=D(\mathrm{j}), \quad \text { for } \mathrm{j}=i l o, \ldots, i h i \\
&=P(\mathrm{j}) \quad \text { for } \mathrm{j}=i h i+1, \ldots, n .
\end{aligned}
\]

The order in which the interchanges are made is \(n\) to ihitl, then 1 to ilo-1.

REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors.

The one-norm of the balanced matrix (the maximum of the sum of absolute values of elements of any column).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max \((1, n)\) each. rconde(j) is the reciprocal condition number of the j -th eigenvalue.
rcondv(j) is the reciprocal condition number of the j -th right eigenvector.
work (1) On exit, if info=0, then work (1) returns the required minimal size of 1 work.
info INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If \(\operatorname{info}=-i\), the \(i\) th parameter had an illegal value. If \(\operatorname{info}=i\), the \(Q R\) algorithm failed to compute all the eigenvalues, and no eigenvectors or condition numbers have been computed; elements \(1: i 10-1\) and \(i+1: n\) of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain eigenvalues which have converged.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Singular Value Decomposition}

This section describes LAPACK driver routines used for solving singular value problems. See also computational routines that can be called to solve these problems.
Table 5-12 lists routines described in more detail below.
Table 5-12 Driver Routines for Singular Value Decomposition
\begin{tabular}{ll}
\(\underline{\text { Routine Name }}\) & Operation performed \\
\(\underline{? g e s v d}\) & \begin{tabular}{l} 
Computes the singular value decomposition of a general rectangular matrix. \\
\(\underline{? g e s d d}\) \\
\(\underline{? g g s v d}\)
\end{tabular} \\
\begin{tabular}{l} 
Computes the singular value decomposition of a general rectangular matrix \\
using a divide and conquer method.
\end{tabular} \\
\begin{tabular}{l} 
Computes the generalized singular value decomposition of a pair of general \\
rectangular matrices.
\end{tabular}
\end{tabular}

\section*{?gesvd}

Computes the singular value decomposition of a general rectangular matrix.
```

call sgesvd (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, info)
call dgesvd (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, info)
call cgesvd (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, info)
call zgesvd (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, info)

```

\section*{Discussion}

This routine computes the singular value decomposition (SVD) of a real/complex \(m\)-by- \(n\) matrix \(A\), optionally computing the left and/or right singular vectors. The SVD is written
\[
A=U \Sigma V^{H}
\]
where \(\Sigma\) is an \(m\)-by- \(n\) matrix which is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by- \(m\) orthogonal/unitary matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal/unitary matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); they are real and non-negative, and are returned in descending order. The first \(\min (m, n)\) columns of \(U\) and \(V\) are the left and right singular vectors of \(A\).
Note that the routine returns \(V^{H}\), not \(V\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobu & CHARACTER*1. Must be 'A', 'S', ' \({ }^{\prime}\) ', or 'N'. Specifies options for computing all or part of the matrix \(U\). \\
\hline & \begin{tabular}{l}
If jobu='A', all m columns of \(U\) are returned in the array \(u\); \\
if jobu \(=\) 'S', the first \(\min (m, n)\) columns of \(U\) (the left singular vectors) are returned in the array \(u\); if jobu \(=\) ' \(O^{\prime}\), the first \(\min (m, n)\) columns of \(U\) (the left singular vectors) are overwritten on the array \(a\); if jobu ='N', no columns of \(U\) (no left singular vectors) are computed.
\end{tabular} \\
\hline jobvt & CHARACTER*1. Must be 'A', 'S', 'O', or 'N'. Specifies options for computing all or part of the matrix \(V^{H}\). \\
\hline & \begin{tabular}{l}
If jobvt = ' \(A\) ', all \(n\) rows of \(V^{H}\) are returned in the array \(v t\); \\
if jobvt \(=\) ' S ', the first \(\min (m, n)\) rows of \(V^{H}\) (the right singular vectors) are returned in the array \(v t\); if jobvt \(=\) ' \(O^{\prime}\), the first \(\min (m, n)\) rows of \(V^{H}\) (the right singular vectors) are overwritten on the array \(a\); if jobvt \(=\) ' N ', no rows of \(V^{H}\) (no right singular vectors) are computed.
\end{tabular} \\
\hline & jobvt and jobu cannot both be ' O '. \\
\hline m & INTEGER. The number of rows of the matrix \(A(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns in \(A(n \geq 0)\). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{a, work} & REAL for sgesvd \\
\hline & DOUBLE PRECISION for dgesvd \\
\hline & COMPLEX for cgesvd \\
\hline & DOUBLE COMPLEX for zgesvd. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is an array containing the \(m\)-by- \(n\) matrix \(A\). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & work (Iwork) is a workspace array. \\
\hline \multirow[t]{2}{*}{Ida} & INTEGER. The first dimension of the array a. \\
\hline & Must be at least \(\max (1, m)\). \\
\hline \multirow[t]{5}{*}{Idu, Idvt} & INTEGER. The leading dimensions of the output arrays \(u\) and \(v t\), respectively. Constraints: \\
\hline & \(I d u \geq 1 ; ~ I d v t ~ \geq 1 . ~\) \\
\hline & If jobu ='S' or 'A', \(1 d u \geq m\); \\
\hline & If jobvt ='A', ldvt \(\geq \mathrm{n}\); \\
\hline & If jobvt ='S', ldvt \(\geq \min (m, n)\). \\
\hline \multirow[t]{5}{*}{lwork} & INTEGER. The dimension of the array work; lwork \(\geq 1\). \\
\hline & Constraints: \\
\hline & lwork \(\geq \max (3 * \min (m, n)+\max (m, n), 5 * \min (m, n)\) ) (for real flavors); \\
\hline & lwork \(\geq 2 \star \min (m, n)+\max (m, n)\) (for complex flavors). \\
\hline & For good performance, lwork must generally be larger. \\
\hline \multirow[t]{4}{*}{rwork} & REAL for cgesvd \\
\hline & DOUBLE PRECISION for zgesvd \\
\hline & Workspace array, DIMENSION at least \\
\hline & \(\max (1,5 * \min (m, n))\). Used in complex flavors only. \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit,
If jobu \(={ }^{\prime} O^{\prime}\), a is overwritten with the first \(\min (m, n)\)
columns of \(U\) (the left singular vectors, stored columnwise);
If jobvt \(={ }^{\prime} \mathrm{O}^{\prime}, \mathrm{a}\) is overwritten with the first \(\min (m, n)\)
work
rows of \(V^{H}\) (the right singular vectors, stored rowwise); If jobu \(\neq \prime^{\prime} O^{\prime}\) and jobvt \(\neq \prime^{\prime} O^{\prime}\), the contents of a are destroyed.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least \(\max (1, \min (m, n))\).
Contains the singular values of \(A\) sorted so that
\(s(i) \geq s(i+1)\).
REAL for sgesvd
DOUBLE PRECISION for dgesvd
COMPLEX for cgesvd
DOUBLE COMPLEX for zgesvd.

\section*{Arrays:}
\(u(I d u, *)\); the second dimension of \(u\) must be at least \(\max (1, m)\) if jobu='A', and at least \(\max (1, \min (m, n))\) if jobu='S'.
If jobu = 'A', u contains the \(m\)-by- \(m\) orthogonal/unitary matrix \(U\).
If jobu = 'S ', \(u\) contains the first \(\min (m, n)\) columns of \(U\) (the left singular vectors, stored columnwise).
If jobu ='N'or 'O', \(u\) is not referenced.
\(v t\) (ldvt, *) ; the second dimension of \(v t\) must be at least \(\max (1, n)\).
If jobvt ='A', vt contains the \(n\)-by- \(n\) orthogonal/unitary matrix \(V^{H}\).
If jobvt = 'S', vt contains the first \(\min (m, n)\) rows of \(V^{H}\) (the right singular vectors, stored rowwise). If jobvt \(=\) 'N'or 'O', vt is not referenced.
On exit, if info \(=0\), then work (I) returns the required minimal size of 1 work. For real flavors: If info>0, \(\operatorname{work}(2: \min (m, n))\) contains the unconverged superdiagonal elements of an upper bidiagonal matrix \(B\) whose diagonal is in \(s\) (not
necessarily sorted). \(B\) satisfies \(A=u * B * v t\), so it has the same singular values as \(A\), and singular vectors related by \(u\) and \(v t\).
rwork \(\quad\) On exit (for complex flavors), if info \(>0\), rwork \((1: \min (m, n)-1)\) contains the unconverged superdiagonal elements of an upper bidiagonal matrix \(B\) whose diagonal is in \(s\) (not necessarily sorted). \(B\) satisfies \(A=u * B * v t\), so it has the same singular values as \(A\), and singular vectors related by \(u\) and \(v t\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then if ?bdsqr did not converge, \(i\) specifies how many superdiagonals of the intermediate bidiagonal form \(B\) did not converge to zero.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?gesdd}

\section*{Computes the singular value \\ decomposition of a general rectangular matrix using a divide and conquer method.}
```

call sgesdd (jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)
call dgesdd (jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)
call cgesdd (jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)
call zgesdd (jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)

```

\section*{Discussion}

This routine computes the singular value decomposition (SVD) of a real/complex \(m\)-by- \(n\) matrix \(A\), optionally computing the left and/or right singular vectors. If singular vectors are desired, it uses a divide and conquer algorithm.
The SVD is written
\[
A=U \Sigma V^{H}
\]
where \(\Sigma\) is an \(m\)-by- \(n\) matrix which is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by- \(m\) orthogonal/unitary matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal/unitary matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); they are real and non-negative, and are returned in descending order. The first \(\min (m, n)\) columns of \(U\) and \(V\) are the left and right singular vectors of \(A\).
Note that the routine returns \(V^{H}\), not \(V\).
Input Parameters

\footnotetext{
jobz
CHARACTER*1. Must be 'A', 'S', 'O', or 'n'. Specifies options for computing all or part of the matrix \(U\).
}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
If jobz = 'A', all \(m\) columns of \(U\) and all \(n\) rows of \(V^{T}\) are returned in the arrays \(u\) and \(v t\);
if jobz \(=\) ' \(\mathrm{S}^{\prime}\), the first \(\min (m, n)\) columns of \(U\) and the first \(\min (m, n)\) rows of \(V^{T}\) are returned in the arrays \(u\) and vt;
if jobz=' \({ }^{\prime}\), then
if \(m \geq n\), the first \(n\) columns of \(U\) are overwritten on the array a and all rows of \(V^{T}\) are returned in the array vt;
if \(m<n\), all columns of \(U\) are returned in the array \(u\) and the first \(m\) rows of \(V^{T}\) are overwritten in the array vt;
if jobz \(=\) ' \(\mathrm{N}^{\prime}\), no columns of \(U\) or rows of \(V^{T}\) are computed.
\(m\)
\(n\)
a, work
lda
ldu, ldvt

INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.
Arrays:
\(a(I d a, *)\) is an array containing the \(m\)-by- \(n\) matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
work (Iwork) is a workspace array.
integer. The first dimension of the array \(a\). Must be at least \(\max (1, m)\).
integer. The leading dimensions of the output arrays \(u\) and \(v t\), respectively. Constraints:
1 du \(\geq 1\); ldvt \(\geq 1\).
If jobz='S' or 'A', or jobz='O' and \(m<n\),
then \(l d u \geq m\);
If jobz='A' or jobz='O' and \(m \geq n\),
then ldvt \(\geq \mathrm{n}\);
If jobz='S', ldvt \(\geq \min (m, n)\).
```

lwork INTEGER. The dimension of the array work; lwork \geq1.
See Application Notes for the suggested value of lwork.
rwork REAL for cgesdd
DOUBLE PRECISION for zgesdd
Workspace array, DIMENSION at least
max(1, 5* min}(m,n)) if jobz = 'N'. Otherwise, the
dimension of rwork must be at least 5* (min (m,n))}\mp@subsup{)}{}{2}
7*\operatorname{min}(m,n). This array is used in complex flavors only.
iwork INTEGER. Workspace array,DIMENSION at least
max(1,8*\operatorname{min}(m,n)).

```

\section*{Output Parameters}
```

a
On exit:
If jobz='O', then if m\geqn, a is overwritten with the
first n}\mathrm{ columns of U (the left singular vectors, stored
columnwise). If m<n,a is overwritten with the first m
rows of V}\mp@subsup{V}{}{T}\mathrm{ (the right singular vectors, stored rowwise);
If jobz\not='O', the contents of a are destroyed.
S
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min}(m,n))\mathrm{).
Contains the singular values of }A\mathrm{ sorted so that
s(i)\geqs(i+1).
REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.
Arrays:
u(ldu,*); the second dimension of u must be at least
max(1,m) if jobz='A'or jobz='O' and m<n.
If jobz='S', the second dimension of u must be at
least max(1, min(m,n)).
If jobz='A'Or jobz='O' and m<n,u contains the
m-by-m orthogonal/unitary matrix }U\mathrm{ .
If jobz='S',u contains the first min(m,n) columns of

```
\(U\) (the left singular vectors, stored columnwise). If jobz='O' and \(m \geq n\), or jobz \(={ }^{\prime} \mathrm{N}^{\prime}, u\) is not referenced.
\(v t\) ( \(I d v t, *\) ) ; the second dimension of \(v t\) must be at least \(\max (1, n)\).
If jobz='A'or jobz='O' and \(m \geq n\), vt contains the \(n\)-by- \(n\) orthogonal/unitary matrix \(V^{T}\).
If jobz='S', vt contains the first \(\min (m, n)\) rows of \(V^{T}\) (the right singular vectors, stored rowwise).
If jobz='O' and \(m<n\), or jobz='N', vt is not referenced.
On exit, if \(\operatorname{info}=0\), then work (1) returns the required minimal size of 1 work.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then ?bdsdc did not converge, updating process failed.

\section*{Application Notes}

For real flavors:
```

If jobz='N', lwork \geq 3* min (m,n) + max (max(m,n), 6* min(m,n));
If jobz='0', lwork \geq 3* (min(m,n))}\mp@subsup{)}{}{2}
max (max(m,n), 5* (min(m,n))}\mp@subsup{)}{}{2}+4*\operatorname{min}(m,n))
If jobz='S' or 'A', lwork\geq 3* (min(m,n))}\mp@subsup{)}{}{2}
max (max (m,n), 4* (min(m,n))}\mp@subsup{)}{}{2}+4*\operatorname{min}(m,n))

```

For complex flavors:
If jobz \(=\) 'N', \(\quad\) lwork \(\geq 2 * \min (m, n)+\max (m, n)\);
If jobz \(=\) ' \(O^{\prime}\), lwork \(\geq 2 *(\min (m, n))^{2}+\max (m, n)+2 * \min (m, n)\);
If jobz ='S' or 'A', 1 work \(\geq(\min (m, n))^{2}+\max (m, n)+2 \star \min (m, n)\);
For good performance, Iwork should generally be larger.
If you are in doubt how much workspace to supply for the array work, use a generous value of \(I\) work for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?ggsvd}

Computes the generalized singular value decomposition of a pair of general rectangular matrices.
```

call sggsvd (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, iwork, info)
call dggsvd (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, iwork, info)
call cggsvd (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)
call zggsvd (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)

```

\section*{Discussion}

This routine computes the generalized singular value decomposition (GSVD) of an \(m\)-by- \(n\) real/complex matrix \(A\) and \(p\)-by- \(n\) real/complex matrix \(B\) :
\[
U^{H} A Q=D_{1}^{*}\left(\begin{array}{ll}
0 & R
\end{array}\right), \quad \mathrm{V}^{H} B Q=D_{2}^{*}\left(\begin{array}{ll}
0 & R
\end{array}\right),
\]
where \(U, V\) and \(Q\) are orthogonal/unitary matrices.
Let \(k+1=\) the effective numerical rank of the matrix \(\left(A^{H}, B^{H}\right)^{H}\), then \(R\) is a \((k+1)\)-by- \((k+1)\) nonsingular upper triangular matrix, \(D_{1}\) and \(D_{2}\) are \(m\)-by- \((k+1)\) and \(p\)-by- \((k+1)\) "diagonal" matrices and of the following structures, respectively:
If \(m-k-1 \geq 0\),
\(D_{1}=\underset{m-k-l}{ } \begin{array}{r}k \\ l \\ l\end{array}\left(\begin{array}{l}k \\ I \\ 0 \\ 0\end{array} \quad \begin{array}{l}l \\ C \\ 0\end{array}\right)\)
\(D_{2}={ }_{p-l}^{l}\left(\begin{array}{cc}k & l \\ 0 & S \\ 0 & 0\end{array}\right)\)
\[
\left.\left(\begin{array}{ll}
0 & R
\end{array}\right)=\begin{array}{c}
n-k-l
\end{array}\right) k \begin{aligned}
& k \\
& k \\
& l
\end{aligned}\left(\begin{array}{lll}
0 & R_{11} & R_{12} \\
0 & 0 & R_{22}
\end{array}\right)
\]
where
\[
\begin{aligned}
& C=\operatorname{diag}(\operatorname{alpha}(k+1), \ldots, \operatorname{alpha}(k+1)) \\
& S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots, \operatorname{beta}(k+1)) \\
& C^{2}+S^{2}=\mathrm{I}
\end{aligned}
\]
\(R\) is stored in \(a(1: k+1, n-k-1+1: n)\) on exit.
\[
\begin{aligned}
& \text { If } m-k-1<0 \text {, } \\
& k \quad m-k \quad k+l-m \\
& D_{1}=\begin{array}{rll}
k \\
m-k
\end{array}\left(\begin{array}{lll}
I & 0 & 0 \\
0 & C & 0
\end{array}\right) \\
& D_{2}=\begin{array}{c}
k \\
m-k+l-m \\
p-l
\end{array}\left(\begin{array}{llr}
0 & m+l-m \\
0 & 0 & I \\
0 & 0 & 0
\end{array}\right) \\
& n-k-l \quad k \quad m-k \quad k+l-m \\
& \left(\begin{array}{ll}
0 & R
\end{array}\right)=\begin{array}{r}
k \\
m-k \\
k+l-m
\end{array}\left(\begin{array}{cccc}
0 & R_{11} & R_{12} & R_{13} \\
0 & 0 & R_{22} & R_{23} \\
0 & 0 & 0 & R_{33}
\end{array}\right)
\end{aligned}
\]
where
\[
\begin{aligned}
& C=\operatorname{diag}(\operatorname{alpha}(k+1), \ldots, \operatorname{alpha}(m)), \\
& S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots, \operatorname{beta}(m)), \\
& C^{2}+S^{2}=\mathrm{I}
\end{aligned}
\]

On exit, \(\left(\begin{array}{c}R_{11} R_{12} R_{13} \\ 0 \\ R_{22} R_{23}\end{array}\right)\) is stored in a(1:m, \(\left.n-k-1+1: n\right)\) and \(R_{33}\) is stored in \(b(m-k+1: 1, n+m-k-1+1: n)\).

The routine computes \(C, S, R\), and optionally the orthogonal/unitary transformation matrices \(U, V\) and \(Q\).
In particular, if \(B\) is an \(n-\) by- \(n\) nonsingular matrix, then the GSVD of \(A\) and \(B\) implicitly gives the SVD of \(A B^{-1}\) :
\[
A B^{-1}=U\left(D_{1} D_{2}^{-1}\right) V^{H} .
\]

If \(\left(A^{H}, B^{H}\right)^{H}\) has orthonormal columns, then the GSVD of \(A\) and \(B\) is also equal to the CS decomposition of \(A\) and \(B\). Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:
\[
A^{H} A x=\lambda B^{H} B x .
\]

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobu & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'N'. \\
If jobu='U', orthogonal/unitary matrix \(U\) is computed \\
If jobu='N', \(U\) is not computed.
\end{tabular} \\
\hline jobv & \begin{tabular}{l}
CHARACTER*1. Must be 'V' or 'N'. \\
If jobv='v', orthogonal/unitary matrix \(V\) is computed \\
If jobv='N', \(V\) is not computed.
\end{tabular} \\
\hline jobq & \begin{tabular}{l}
CHARACTER*1. Must be ' \(Q\) ' or 'N'. \\
If jobq \(=\) ' \(Q\) ', orthogonal/unitary matrix \(Q\) is computed \\
If jobq='N', \(Q\) is not computed.
\end{tabular} \\
\hline m & INTEGER. The number of rows of the matrix \(A\) ( \(m \geq 0\) ). \\
\hline \(n\) & INTEGER. The number of columns of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(p\) & Integer. The number of rows of the matrix \(B\) ( \(p \geq 0\) ). \\
\hline a, b, work & \begin{tabular}{l}
REAL for sggsvd \\
DOUBLE PRECISION for dggsvd \\
COMPLEX for cggsvd \\
DOUBLE COMPLEX for \(\mathrm{zg} g s v d\).
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Arrays:
a (Ida,*) contains the \(m\)-by- \(n\) matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
\(b(I d b, *)\) contains the \(p-\) by- \(n\) matrix \(B\).
The second dimension of \(b\) must be at least max \((1, n)\).
work (*) is a workspace array. The dimension of work must be at least \(\max (3 n, m, p)+n\).
Ida INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).
\(I d b \quad\) integer. The first dimension of \(b\); at least \(\max (1, p)\).
Idu INTEGER. The first dimension of the array \(u\).
\(I d u \geq \max (1, m)\) if jobu \(=\) ' U '; \(I d u \geq 1\) otherwise.
Idv Integer. The first dimension of the array v . \(I d v \geq \max (1, p)\) if \(j o b v={ }^{\prime} V^{\prime} ; ~ I d v \geq 1\) otherwise.
integer. The first dimension of the array \(q\). \(l d q \geq \max (1, n)\) if \(j o b q=Q^{\prime} ; I d q \geq 1\) otherwise. INTEGER.
Workspace array, DIMENSION at least \(\max (1, n)\).
ReAL for cggsvd
DOUBLE PRECISION for zggsvd.
Workspace array, dimension at least max \((1,2 n)\). Used in complex flavors only.

\section*{Output Parameters}
a
b
alpha, beta

Integer. On exit, \(k\) and \(I\) specify the dimension of the subblocks. The sum \(k+I\) is equal to the effective numerical rank of \(\left(A^{H}, B^{H}\right)^{H}\).
On exit, a contains the triangular matrix \(R\) or part of \(R\).
On exit, b contains part of the triangular matrix \(R\) if \(m-k-1<0\).

REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max \((1, n)\) each.
Contain the generalized singular value pairs of \(A\) and \(B\) :
```

alpha($1: k$) $=1$,
beta(1:k) $=0$,
and if $m-k-1 \geq 0$,
alpha $(k+1: k+1)=C$,
beta $(k+1: k+1)=S$,
or if $m-k-1<0$,
alpha $(k+1: m)=C$, alpha $(m+1: k+1)=0$
$\operatorname{beta}(k+1: m)=S$, beta $(m+1: k+1)=1$
and
alpha $(k+1+1: n)=0$
beta $(k+1+1: n)=0$.

```

REAL for sggsvd
DOUBLE PRECISION for dggsvd
COMPLEX for cggsvd
DOUBLE COMPLEX for zggsvd.
Arrays:
\(u(I d u, *)\); the second dimension of \(u\) must be at least \(\max (1, m)\).
If jobu ='U', u contains the \(m\)-by- \(m\) orthogonal/unitary matrix \(U\).
If jobu ='N', \(u\) is not referenced.
\(v(l d v, *)\); the second dimension of \(v\) must be at least \(\max (1, p)\).
If jobv='v', v contains the \(p\)-by- \(p\) orthogonal/unitary matrix \(V\).
If jobv='N', vis not referenced.
\(q(I d q, *)\); the second dimension of \(q\) must be at least
\(\max (1, n)\).
If jobq='Q', q contains the \(n-b y-n\) orthogonal/unitary matrix \(Q\).
If jobq='N', qis not referenced.
On exit, iwork stores the sorting information.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If \(\operatorname{info}=1\), the Jacobi-type procedure failed to
converge. For further details, see subroutine ?tgs ja.

\section*{Generalized Symmetric Definite Eigenproblems}

This section describes LAPACK driver routines used for solving generalized symmetric definite eigenproblems. See also computational routines that can be called to solve these problems. Table 5-13 lists routines described in more detail below.

Table 5-13 Driver Routines for Solving Generalized Symmetric Definite Eigenproblems
\begin{tabular}{|c|c|}
\hline Routine Name & Operation performed \\
\hline ?sygv /?hegv & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem. \\
\hline ?sygvd/?hegvd & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem. If eigenvectors are desired, it uses a divide and conquer method. \\
\hline ?sygvx/?hegvx & Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem. \\
\hline ?spgv/?hpgv & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric/Hermitian definite eigenproblem with matrices in packed storage. \\
\hline ?spgvd/?hpgvd & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric/Hermitian definite eigenproblem with matrices in packed storage. If eigenvectors are desired, it uses a divide and conquer method. \\
\hline ?spgvx/?hpgvx & Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric/Hermitian definite eigenproblem with matrices in packed storage. \\
\hline ?s.bgv /?h.bgv & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric/Hermitian definite eigenproblem with banded matrices. \\
\hline ?s.bgvd/?hbgvd & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method. \\
\hline ?s.bgvx/?hbgvx & Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with banded matrices. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?sygv}
```

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem.

```
```

call ssygv (itype, jobz, uplo, n, a, lda, b, ldb, w, work,

```
call ssygv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
    lwork, info )
    lwork, info )
call dsygv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
call dsygv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
    lwork, info )
```

 lwork, info)
    ```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
\(A x=\lambda B x, \quad A B x=\lambda x\), or \(B A x=\lambda x\).
Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite.
Input Parameters
itype
jobz
uplo
\(n\)
integer. Must be 1 or 2 or 3 .
Specifies the problem type to be solved: if itype \(=1\), the problem type is \(A x=\lambda B x\); if itype \(=2\), the problem type is \(A B x=\lambda x\); if itype \(=3\), the problem type is \(B A x=\lambda x\).

CHARACTER*1. Must be 'N' or 'V'. If \(j o b z=' N\) ', then compute eigenvalues only. If \(j o b z=' V\) ', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'U' or 'L'. If uplo \(=^{\prime} U^{\prime}\), arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\);
If uplo = 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
integer. The order of the matrices \(A\) and \(B(n \geq 0)\).
```

a, b, work REAL for ssygv
DOUBLE PRECISION for dsygv.

```

\section*{Arrays:}
a (lda, *) contains the upper or lower triangle of the symmetric matrix \(A\), as specified by uplo.
The second dimension of a must be at least \(\max (1, n)\).
\(b(I d b, *)\) contains the upper or lower triangle of the symmetric positive definite matrix \(B\), as specified by uplo.
The second dimension of \(b\) must be at least \(\max (1, n)\). work ( 1 work) is a workspace array.
Ida INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(b\); at least \(\max (1, n)\).
INTEGER. The dimension of the array work;
lwork \(\geq \max (1,3 n-1)\).
See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}

On exit, if \(j \circ b z=' V\) ', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, \quad Z^{\mathrm{T}} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{\mathrm{T}} B^{-1} Z=\mathrm{I}\);
If jobz \(={ }^{\prime} N^{\prime}\), then on exit the upper triangle (if uplo= 'U') or the lower triangle (if uplo= 'L') of \(A\), including the diagonal, is destroyed.
On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{\mathrm{T}} U\) or \(B=L L^{\mathrm{T}}\).
REAL for ssygv
DOUBLE PRECISION for dsygv.
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
work(1)
info

On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info >0, spotrf/dpotrf and ssyev/dsyev returned an error code:
If info \(=i \leq n\), ssyev/dsyev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+2)^{\star} n\), where \(n b\) is the blocksize for ssytrd/dsytrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?hegv}
```

Computes all eigenvalues and,
optionally, eigenvectors of a complex
generalized Hermitian definite
eigenproblem.

```
```

call chegv (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, info)
call zhegv (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(A x=\lambda B x, A B x=\lambda x\), or \(B A x=\lambda x\).

Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
integer. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'v'. \\
If jobz \(=\) ' \(N^{\prime}\) ', then compute eigenvalues only. If jobz ='V', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
ChARACTER*1. Must be 'U' or 'L'. \\
If up \(\mathcal{I}={ }^{\prime} \mathrm{U}\) ', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
If uplo = ' L , arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline
\end{tabular}
integer. The order of the matrices \(A\) and \(B(n \geq 0)\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual


\section*{Output Parameters}

On exit, if jobz \(=\) ' \(V\) ', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{H} B^{-1} Z=\mathrm{I}\);
If jobz \(={ }^{\prime} \mathrm{N}\) ', then on exit the upper triangle (if uplo= 'U') or the lower triangle (if uplo= 'L') of \(A\), including the diagonal, is destroyed.
On exit, if info \(\leq_{n}\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} U\) or \(B=L L^{H}\).

\section*{w}
work(1)
info

REAL for chegv
DOUBLE PRECISION for zhegv.
Array, DIMENSION at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), cpotrf/zpotrf and cheev/zheev returned an error code:

If info \(=i \leq n\), cheev/zheev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+1) \star_{n}\), where \(n b\) is the blocksize for chetrd/zhetrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?sygvd}

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem. If eigenvectors are desired, it uses a divide and conquer method.
```

call ssygvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, iwork, liwork, info)
call dsygvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, iwork, liwork, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(A x=\lambda B x, A B x=\lambda x\), or \(B A x=\lambda x\).

Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & integer. Must be 1 or 2 or 3 . \\
\hline & \begin{tabular}{l}
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobz \(=\) ' \(\mathrm{N}^{\prime}\), then compute eigenvalues only. \\
\hline & If \(j o b z=' V\) ', then compute eigenvalues and eigenvectors. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo \(=\) ' \(U\) ', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo = 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{7}{*}{a, b, work} & REAL for ssygvd \\
\hline & DOUBLE PRECISION for dsygvd. \\
\hline & Arrays: \\
\hline & a(Ida,*) contains the upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(b(l d b, *)\) contains the upper or lower triangle of the symmetric positive definite matrix \(B\), as specified by uplo. \\
\hline & The second dimension of \(b\) must be at least \(\max (1, n)\). work (lwork) is a workspace array. \\
\hline Ida & INTEGER. The first dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & INTEGER. The first dimension of \(b\); at least \(\max (1, n)\). \\
\hline \multirow[t]{5}{*}{lwork} & INTEGER. The dimension of the array work. \\
\hline & Constraints: \\
\hline & If \(n \leq 1\), lwork \(\geq 1\); \\
\hline & If jobz = 'N' and \(n>1\), 1 work \(\geq 2 n+1\); \\
\hline & If jobz = 'V'and \(n>1\), Iwork \(\geq 2 n^{2}+6 n+1\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION (liwork). \\
\hline \multirow[t]{5}{*}{liwork} & Integer. The dimension of the array iwork. \\
\hline & Constraints: \\
\hline & If \(n \leq 1\), liwork \(\geq 1\); \\
\hline & If jobz = 'N' and \(n>1\), liwork \(\geq 1\); \\
\hline & If jobz = 'V'and \(n>1\), liwork \(\geq 5 n+3\) \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}
a
b
w
work(1)
iwork(1)
info

On exit, if \(j 0 b z=' v\) ', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, \quad Z^{\mathrm{T}} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{\mathrm{T}} B^{-1} Z=\mathrm{I}\);
If jobz \(=\) ' N ', then on exit the upper triangle (if uplo= 'U') or the lower triangle (if uplo= 'L') of \(A\), including the diagonal, is destroyed.
On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{\mathrm{T}} U\) or \(B=L L^{\mathrm{T}}\).
REAL for ssygvd
DOUBLE PRECISION for dsygvd.
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work.

On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), spotrf/dpotrf and ssyev/dsyev returned an error code:
If info \(=i \leq n\), ssyev/dsyev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?hegvd}

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem. If eigenvectors are desired, it uses a divide and conquer method.
```

call chegvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, lrwork, iwork, liwork, info)
call zhegvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, lrwork, iwork, liwork, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(A x=\lambda B x, A B x=\lambda x\), or \(B A x=\lambda x\).

Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
itype Integer. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A x=\lambda B x\);
if itype \(=2\), the problem type is \(A B x=\lambda x\);
if itype \(=3\), the problem type is \(B A x=\lambda x\).
jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz \(=\) ' \(N\) ', then compute eigenvalues only.
If jobz \(=\) ' \(V\) ', then compute eigenvalues and
eigenvectors.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo \(=^{\prime} U^{\prime}\), arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{8}{*}{a, b, work} & COMPLEX for chegvd \\
\hline & DOUBLE COMPLEX for zhegvd. \\
\hline & Arrays: \\
\hline & a (Ida, *) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(b(I d b, *)\) contains the upper or lower triangle of the \\
\hline & Hermitian positive definite matrix \(B\), as specified by uplo. \\
\hline & The second dimension of \(b\) must be at least \(\max (1, n)\). work (lwork) is a workspace array. \\
\hline Ida & INTEGER. The first dimension of \(a\); at least \(\max (1, n)\). \\
\hline 1 db & INTEGER. The first dimension of \(b\); at least max \((1, n)\). \\
\hline \multirow[t]{5}{*}{lwork} & INTEGER. The dimension of the array work. \\
\hline & Constraints: \\
\hline & If \(n \leq 1\), Iwork \(\geq 1\); \\
\hline & If jobz \(=\) 'N'and \(n>1\), lwork \(\geq n+1\); \\
\hline & If jobz = 'V'and \(n>1\), I work \(\geq n^{2}+2 n\). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chegvd \\
\hline & DOUBLE PRECISION for zhegvd. \\
\hline & Workspace array, DIMENSION (Irwork). \\
\hline \multirow[t]{5}{*}{Irwork} & Integer. The dimension of the array rwork. \\
\hline & Constraints: \\
\hline & If \(n \leq 1\), Irwork \(\geq 1\); \\
\hline & If jobz = 'N' and \(n>1\), lrwork \(\geq n\); \\
\hline & If jobz \(=\) 'V' and \(n>1\), lrwork \(\geq 2 n^{2}+5 n+1\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION (liwork). . \\
\hline
\end{tabular}
```

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n < , liwork }\geq1\mathrm{ ;
If jobz ='N'and n>1, liwork \geq1;
If jobz='V'and n>1, liwork }\geq5n+3\mathrm{ .

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & \begin{tabular}{l}
On exit, if \(j o b z=' V\) ', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows: \\
if itype \(=1\) or \(2, Z^{H} B Z=\mathrm{I}\); \\
if itype \(=3, \quad Z^{H} B^{-1} Z=I\); \\
If jobz \(=\) ' \(\mathrm{N}^{\prime}\), then on exit the upper triangle (if uplo \(=\) 'U') or the lower triangle (if uplo= 'L') of \(A\), including the diagonal, is destroyed.
\end{tabular} \\
\hline b & On exit, if info \(\leq_{n}\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} U\) or \(B=L L^{H}\). \\
\hline w & \begin{tabular}{l}
REAL for chegvd \\
DOUBLE PRECISION for zhegvd. \\
Array, DIMENSION at least max \((1, n)\). \\
If info \(=0\), contains the eigenvalues in ascending order.
\end{tabular} \\
\hline work (1) & On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work. \\
\hline rwork(1) & On exit, if info \(=0\), then rwork (1) returns the required minimal size of lrwork. \\
\hline iwork(1) & On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th argument had an illegal value. \\
If info >0, cpotrf/zpotrf and cheev/zheev returned an error code:
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

If \(\operatorname{info}=i \leq n\), cheev/zheev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?sygvx}
```

Computes selected eigenvalues and,
optionally, eigenvectors of a real
generalized symmetric definite
eigenproblem.

```
```

call ssygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il,

```
call ssygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il,
    iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
    iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
call dsygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il,
call dsygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il,
    iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
```

 iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
    ```

\section*{Discussion}

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form \(A x=\lambda B x, A B x=\lambda x\), or \(B A x=\lambda x\).

Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
Integer. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be ' \(N\) ' or 'V'. \\
If jobz='N', then compute eigenvalues only. \\
If \(j o b z=' V\) ', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline range & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If range \(=\) ' A ', the routine computes all eigenvalues. \\
If range \(=^{\prime} V^{\prime}\), the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v l<\lambda_{i} \leq v u\). \\
If range \(=\) 'I', the routine computes eigenvalues with indices \(i l\) to \(i u\).
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo \(=\) 'U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
If uplo = 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline \(n\) & Integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline a, b, work & \begin{tabular}{l}
REAL for ssygvx \\
DOUBLE PRECISION for dsygvx. \\
Arrays: \\
a (lda, *) contains the upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. \\
The second dimension of a must be at least \(\max (1, n)\). \(b(l d b, *)\) contains the upper or lower triangle of the symmetric positive definite matrix \(B\), as specified by uplo. \\
The second dimension of \(b\) must be at least \(\max (1, n)\). work (lwork) is a workspace array.
\end{tabular} \\
\hline Ida & INTEGER. The first dimension of \(a\); at least max ( \(1, n\) ) \\
\hline 1 db & INTEGER. The first dimension of \(b\); at least max \((1, n)\). \\
\hline vi, vu & REAL for ssygvx \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dsygvx. \\
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
Constraint: vl<vu.
\end{tabular} \\
\hline & If range \(=\) 'A' or 'I', vI and vu are not referenced. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{il, iu} & INTEGER. \\
\hline & \begin{tabular}{l}
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\).
\end{tabular} \\
\hline & If range \(=\) ' A ' or 'V', il and \(i u\) are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for ssygvx \\
\hline & DOUBLE PRECISION for dsygvx. \\
\hline & The absolute error tolerance for the eigenvalues. \\
\hline & See Application Notes for more information. \\
\hline \multirow[t]{2}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \(z\). Constraints: \\
\hline & \(l d z \geq 1\); if jobz = 'V', \(1 d z \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{lwork} & Integer. The dimension of the array work; \\
\hline & Iwork \(\geq \max (1,8 n)\). \\
\hline & See Application Notes for the suggested value of Iwork. \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max ( \(1,5 n\) ) . \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & On exit, the upper triangle (if uplo='U') or the lower triangle (if uplo= 'L') of \(A\), including the diagonal, is overwritten. \\
\hline b & On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{\mathrm{T}} U\) or \(B=L L^{\mathrm{T}}\). \\
\hline m & INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) ' I', \(m=i u-i l+1\). \\
\hline \multirow[t]{3}{*}{w, z} & REAL for ssygvx \\
\hline & DOUBLE PRECISION for dsygvx. \\
\hline & Arrays: \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\(w(*)\), DIMENSION at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues in ascending order.
\(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\).
If jobz \(=\) ' \(V^{\prime}\), then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
\[
\text { if itype }=1 \text { or } 2, \quad Z^{T} B Z=\mathrm{I}
\]
\[
\text { if itype }=3, \quad Z^{T} B^{-1} Z=\mathrm{I}
\]

If \(j o b z={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' V ', the exact value of \(m\) is not known in advance and an upper bound must be used.
work(1)
ifail
info

On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.

\section*{INTEGER.}

Array, DIMENSION at least \(\max (1, n)\).
If jobz \(=\) 'V', then if info \(=0\), the first \(m\) elements of ifail are zero; if info \(>0\), the ifail contains the indices of the eigenvectors that failed to converge. If jobz='N', then ifail is not referenced.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info> 0 , spotrf/dpotrf and ssyevx/dsyevx returned an error code:

If info \(=i \leq n\), ssyevx/dsyevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail;
If info \(=n+i\), for \(1 \leq_{i} \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon \star\|T\|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? lamch('S'), not zero. If this routine returns with info>0, indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

For optimum performance use 1 work \(\geq(n b+3) \star_{n}\), where \(n b\) is the blocksize for ssytrd/dsytrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?hegvx}

Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem.
```

call chegvx (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu,
il, iu, abstol, m, w, z, ldz, work, lwork, rwork,
iwork, ifail, info)
call zhegvx (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu,
il, iu, abstol, m, w, z, ldz, work, lwork, rwork,
iwork, ifail, info)

```

\section*{Discussion}

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x \text {, or } B A x=\lambda x \text {. }
\]

Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & integer. Must be 1 or 2 or 3 . \\
\hline & \begin{tabular}{l}
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & CHARACTER*1. Must be ' N ' or ' V '. \\
\hline & If \(j o b z=' N^{\prime}\), then compute eigenvalues only If jobz \(={ }^{\prime} V^{\prime}\), then compute eigenvalues and eigenvectors. \\
\hline range & CHARACTER*1. Must be 'A' or 'V' or 'I \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If range \(=\) ' A ', the routine computes all eigenvalues. \\
If range \(=^{\prime} V\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v l<\lambda_{i} \leq v u\). \\
If range \(=\) ' I', the routine computes eigenvalues with indices il to iu.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo \(=\) ' U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
If uplo = 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline a, b, work & \begin{tabular}{l}
COMPLEX for chegvx \\
DOUBLE COMPLEX for zhegvx. \\
Arrays: \\
\(a(l d a, *)\) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. \\
The second dimension of a must be at least \(\max (1, n)\). \\
\(b(I d b, *)\) contains the upper or lower triangle of the Hermitian positive definite matrix \(B\), as specified by uplo. \\
The second dimension of \(b\) must be at least \(\max (1, n)\). work (lwork) is a workspace array.
\end{tabular} \\
\hline Ida & INTEGER. The first dimension of \(a\); at least max ( \(1, n\) ) \\
\hline 1 db & INTEGER. The first dimension of \(b\); at least \(\max (1, n)\). \\
\hline vl, vu & REAL for chegvx \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for zhegvx. \\
If range \(=' V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
Constraint: vl<vu.
\end{tabular} \\
\hline & If range \(=\) 'A' or 'I', vI and vu are not referenced. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{il, iu} & INTEGER. \\
\hline & \begin{tabular}{l}
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\).
\end{tabular} \\
\hline & If range \(=\) ' A ' or 'V', il and \(i u\) are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for chegvx \\
\hline & DOUBLE PRECISION for zhegvx. \\
\hline & The absolute error tolerance for the eigenvalues. \\
\hline & See Application Notes for more information. \\
\hline \multirow[t]{3}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \\
\hline & Constraints: \\
\hline & \(I d z \geq 1\); if jobz \({ }^{\prime} \mathrm{V}^{\prime}, ~ I d z \geq m a x(1, n)\). \\
\hline \multirow[t]{3}{*}{lwork} & INTEGER. The dimension of the array work; \\
\hline & Iwork \(\geq \max (1,2 n-1)\). \\
\hline & See Application Notes for the suggested value of 1 work. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chegvx \\
\hline & DOUBLE PRECISION for zhegvx. \\
\hline & Workspace array, DIMENSION at least max \((1,7 n)\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max ( \(1,5 n\) ) \\
\hline
\end{tabular}

\section*{Output Parameters}
m

On exit, the upper triangle (if uplo='U') or the lower triangle (if uplo \(=\) 'L') of \(A\), including the diagonal, is overwritten.

On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} U\) or \(B=L L^{H}\).
INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), and if range \(=\) 'I', \(m=i u-i l+1\).

REAL for chegvx
DOUBLE PRECISION for zhegvx.
Array, DIMENSION at least max \((1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues in ascending order.
COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx.
Array \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, \quad Z^{H} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{H} B^{-1} Z=I\);
If \(j o b z={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=' V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used. minimal size of 1 work.

INTEGER.

Array, DIMENSION at least max \((1, n)\).
If jobz='V', then if info \(=0\), the first \(m\) elements of ifail are zero; if info \(>0\), the ifail contains the indices of the eigenvectors that failed to converge. If jobz='N', then ifail is not referenced.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{info INTEGER.}

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info > 0 , cpotrf/zpotrf and cheevx/zheevx returned an error code:
If info \(=i \leq n\), cheevx/zheevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail;
If \(\operatorname{info}=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon \star\|T\|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? \(\operatorname{amch}(' S ')\), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

For optimum performance use 1 work \(\geq(n b+1)^{\star} n\), where \(n b\) is the blocksize for chetrd/zhetrd returned by ilaenv. If you are in doubt how much workspace to supply for the array work, use a generous value of \(l_{\text {work }}\) for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?spgv}

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with matrices in packed storage.
```

call sspgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)
call dspgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
\[
A x=\lambda B x, \quad A B x=\lambda x, \text { or } B A x=\lambda x .
\]

Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
Integer. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If \(j o b z=\) ' \(N\) ', then compute eigenvalues only. \\
If \(j o b z=' V\) ', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo \(=^{\prime} U^{\prime}\), arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
If uplo = 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline \(n\) & integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{ap, bp, work} & REAL for sspgv \\
\hline & DOUBLE PRECISION for dspgv. \\
\hline & Arrays: \\
\hline & \(a p(*)\) contains the packed upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. The dimension of \(a p\) must be at least \(\max \left(1, n^{\star}(n+1) / 2\right)\). \\
\hline & bp (*) contains the packed upper or lower triangle of the symmetric matrix \(B\), as specified by uplo. The dimension of \(b p\) must be at least \(\max \left(1, n^{\star}(n+1) / 2\right)\). \\
\hline & work (*) is a workspace array, DIMENSION at least \(\max (1,3 n)\). \\
\hline \(1 d z\) & INTEGER. The leading dimension of the output array \(z\); \(I d z \geq 1\). If jobz='V', \(I d z \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline ap & On exit, the contents of ap are overwritten. \\
\hline bp & On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{\mathrm{T}} U\) or \(B=L L^{\mathrm{T}}\), in the same storage format as \(B\). \\
\hline \multirow[t]{9}{*}{W, z} & REAL for sspgv \\
\hline & DOUBLE PRECISION for dspgv. \\
\hline & Arrays: \\
\hline & \(w(*)\), DIMENSION at least max \((1, n)\) \\
\hline & If info \(=0\), contains the eigenvalues in ascending order. \\
\hline & \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). \\
\hline & If jobz \(=\) 'V', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows: \\
\hline & \begin{tabular}{l}
if itype \(=1\) or \(2, \quad Z^{T} B Z=\mathrm{I}\); \\
if itype \(=3, \quad Z^{T} B^{-1} Z=I\);
\end{tabular} \\
\hline & If jobz \(=^{\prime} N^{\prime}\), then \(z\) is not referenced. \\
\hline
\end{tabular}

\section*{INTEGER.}

If \(\operatorname{info}=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), spptrf/dpptrf and sspev/dspev
returned an error code:
If info \(=i \leq n\), sspev/dspev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; If info \(=n+i\), for \(1 \leq_{i} \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?hpgv}

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with matrices in packed storage.
```

call chpgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork,
info)
call zhpgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork,
info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(A x=\lambda B x, A B x=\lambda x\), or \(B A x=\lambda x\).

Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite.

Input Parameters
\begin{tabular}{|c|c|}
\hline itype & integer. Must be 1 or 2 or 3 . \\
\hline & \begin{tabular}{l}
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If jobz \(=\) ' \(N\) ', then compute eigenvalues only. If \(j o b z=' V\) ', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo = 'U', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
If uplo= 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline
\end{tabular}
```

n
INTEGER. The order of the matrices A and $B(n \geq 0)$.
ap, bp, work COMPLEX for chpgv
DOUBLE COMPLEX for zhpgv.
Arrays:
$a p(*)$ contains the packed upper or lower triangle of the Hermitian matrix A, as specified by uplo. The dimension of $a p$ must be at least $\max \left(1, n^{\star}(n+1) / 2\right)$. $b p$ (*) contains the packed upper or lower triangle of the Hermitian matrix B, as specified by uplo. The dimension of bp must be at least $\max \left(1, n^{\star}(n+1) / 2\right)$. work (*) is a workspace array, DIMENSION at least $\max (1,2 n-1)$.
$I d z \quad$ Integer. The leading dimension of the output array z; $l d z \geq 1$. If $j o b z=' V ', l d z \geq \max (1, n)$.
rwork REAL for chpgv
DOUBLE PRECISION for zhpgv.
Workspace array, DIMENSION at least max $(1,3 n-2)$.

```

\section*{Output Parameters}
bp \(\quad\) On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} U\) or \(B=L L^{H}\), in the same storage format as \(B\).
w REAL for chpgv DOUBLE PRECISION for zhpgv. Array, DIMENSION at least \(\max (1, n)\). If info \(=0\), contains the eigenvalues in ascending order.
COMPLEx for chpgv
DOUBLE COMPLEX for zhpgv.
Array \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' V ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as
follows:
if itype \(=1\) or \(2, \quad Z^{H} B Z=I ;\)
if itype \(=3, \quad Z^{H} B^{-1} Z=I ;\)
If \(j o b z={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), cpptrf/zpptrf and chpev/zhpev returned an error code:

If info \(i \leq n\), chpev/zhpev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?spgvd}

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with matrices in packed storage. If eigenvectors are desired, it uses a divide and conquer method.
```

call sspgvd (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
iwork, liwork, info)
call dspgvd (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
iwork, liwork, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
\[
A x=\lambda B x, \quad A B x=\lambda x \text {, or } B A x=\lambda x \text {. }
\]

Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
integer. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If jobz \(={ }^{\prime} N^{\prime}\), then compute eigenvalues only If \(j 0 b z=' V\) ', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo \(=\) ' U', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
If uplo = 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline \(n\) & Integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ap, bp, work & \begin{tabular}{l}
REAL for sspgvd \\
DOUBLE PRECISION for dspgvd. \\
Arrays: \\
ap (*) contains the packed upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. The dimension of ap must be at least \(\max (1, n \star(n+1) / 2)\). \(b p(*)\) contains the packed upper or lower triangle of the symmetric matrix \(B\), as specified by uplo. The dimension of \(b p\) must be at least \(\max (1, n *(n+1) / 2)\). work (lwork) is a workspace array.
\end{tabular} \\
\hline \(1 d z\) & Integer. The leading dimension of the output array \(z\); \(I d z \geq 1\). If \(j o b z=' V ', I d z \geq \max (1, n)\). \\
\hline Iwork & INTEGER. The dimension of the array work. \\
\hline & \begin{tabular}{l}
Constraints: \\
If \(n \leq 1\), Iwork \(\geq 1\); \\
If jobz ='N' and \(n>1\), lwork \(\geq 2 n\); \\
If jobz ='V'and \(n>1\), lwork \(\geq 2 n^{2}+6 n+1\).
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION (liwork). .
\end{tabular} \\
\hline liwork & \begin{tabular}{l}
INTEGER. The dimension of the array iwork. Constraints: \\
If \(n \leq 1\), liwork \(\geq 1\); \\
If jobz ='N'and \(n>1\), liwork \(\geq 1\); \\
If jobz ='V'and \(n>1\), liwork \(\geq 5 n+3\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the contents of \(a p\) are overwritten.
\begin{tabular}{|c|c|}
\hline bp & On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} U\) or \(B=L L^{T}\), in the same storage format as \(B\). \\
\hline W, z & \begin{tabular}{l}
REAL for sspgv \\
DOUBLE PRECISION for dspgv. \\
Arrays: \\
w(*), DIMENSION at least max \((1, n)\). \\
If info \(=0\), contains the eigenvalues in ascending order. \\
\(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). \\
If jobz \(=\) ' \(V^{\prime}\), then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows: \\
if itype \(=1\) or \(2, \quad Z^{T} B Z=\mathrm{I}\); \\
if itype \(=3, \quad Z^{T} B^{-1} Z=\mathrm{I}\); \\
If jobz='N', then \(z\) is not referenced.
\end{tabular} \\
\hline work (1) & On exit, if info \(=0\), then work (1) returns the required minimal size of lwork. \\
\hline iwork(1) & On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th argument had an illegal value. \\
If info > 0, spptrf/dpptrf and sspevd/dspevd returned an error code:
\end{tabular} \\
\hline & If info \(=i \leq n\), sspevd/dspevd failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; If info \(=n+i\), for \(1 \leq_{i} \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?hpgvd}

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with matrices in packed storage. If eigenvectors are desired, it uses a divide and conquer method.
```

call chpgvd (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)
call zhpgvd (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(A x=\lambda B x, A B x=\lambda x\), or \(B A x=\lambda x\).

Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{ll} 
itype & INTEGER. Must be 1 or 2 or 3. \\
& Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x ;\) \\
if itype \(=2\), the problem type is \(A B x=\lambda x ;\) \\
if itype \(=3\), the problem type is \(B A x=\lambda x\). \\
jobz & CHARACTER*1. Must be 'N' or ' \(V^{\prime}\).
\end{tabular}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo \(=\) 'U', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
If uplo = 'L', arrays ap and bp store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline \(n\) & Integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ap, bp, work & \begin{tabular}{l}
COMPLEX for chpgvd \\
DOUBLE COMPLEX for zhpgvd. \\
Arrays: \\
\(a p(*)\) contains the packed upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. The dimension of ap must be at least \(\max \left(1, n^{\star}(n+1) / 2\right)\). \(b p(*)\) contains the packed upper or lower triangle of the Hermitian matrix \(B\), as specified by uplo. The dimension of \(b p\) must be at least \(\max \left(1, n^{\star}(n+1) / 2\right)\). work (lwork) is a workspace array.
\end{tabular} \\
\hline \(1 d z\) & Integer. The leading dimension of the output array \(z\); \(l d z \geq 1\). If \(j o b z=' V ', l d z \geq \max (1, n)\). \\
\hline lwork & \begin{tabular}{l}
INTEGER. The dimension of the array work. \\
Constraints: \\
If \(n \leq 1\), Iwork \(\geq 1\); \\
If jobz ='N' and \(n>1\), lwork \(\geq n\); \\
If jobz \(=\) 'V' and \(n>1\), lwork \(\geq 2 n\).
\end{tabular} \\
\hline rwork & \begin{tabular}{l}
REAL for chpgvd \\
DOUBLE PRECISION for zhpgvd. \\
Workspace array, DIMENSION (Irwork).
\end{tabular} \\
\hline Irwork & \begin{tabular}{l}
integer. The dimension of the array rwork. \\
Constraints: \\
If \(n \leq 1\), lrwork \(\geq 1\); \\
If jobz ='N'and \(n>1\), lrwork \(\geq n\); \\
If jobz \(=\) 'V'and \(n>1\), lrwork \(\geq 2 n^{2}+5 n+1\).
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION (liwork). .
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{liwork}

INTEGER. The dimension of the array iwork. Constraints:
If \(n \leq 1\), liwork \(\geq 1\);
If jobz ='N'and \(n>1\), liwork \(\geq 1\);
If jobz ='V'and \(n>1\), liwork \(\geq 5 n+3\).

\section*{Output Parameters}
iwork(1)

On exit, the contents of \(a p\) are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} U\) or \(B=L L^{H}\), in the same storage format as \(B\).

REAL for chpgvd
DOUBLE PRECISION for zhpgvd.
Array, DIMENSION at least \(\max (1, n)\). If info \(=0\), contains the eigenvalues in ascending order.

COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Array \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=^{\prime} V^{\prime}\), then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
\[
\begin{aligned}
& \text { if itype }=1 \text { or } 2, \quad Z^{H} B Z=\mathrm{I} \\
& \text { if itype }=3, \quad Z^{H} B^{-1} Z=\mathrm{I}
\end{aligned}
\]

If jobz \(={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.

On exit, if info \(=0\), then work ( 1 ) returns the required minimal size of lwork.

On exit, if info \(=0\), then rwork (1) returns the required minimal size of lrwork.

On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevd/ zhpevd
returned an error code:
If info \(=i \leq n\), chpevd/zhpevd failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; If info \(=n+i\), for \(1 \leq_{i} \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?spgvx}

Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with matrices in packed storage.
```

call sspgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, iwork, ifail, info)
call dspgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, iwork, ifail, info)

```

\section*{Discussion}

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
\(A x=\lambda B x, A B x=\lambda x\), or \(B A x=\lambda x\).
Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
Integer. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be ' \(N\) ' or ' \(V\) '. \\
If \(j o b z=' N\) ', then compute eigenvalues only. \\
If \(j o b z=' V\) ', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline range & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline
\end{tabular}
```

 If range = 'A', the routine computes all eigenvalues.
 If range ='V', the routine computes eigenvalues }\mp@subsup{\lambda}{i}{}\mathrm{ in
 the half-open interval: vl< }\mp@subsup{\lambda}{i}{}\leqvu\mathrm{ .
 If range ='I', the routine computes eigenvalues with
 indices il to iu.
 uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo= 'U', arrays ap and bp store the upper
triangles of }A\mathrm{ and }B\mathrm{ ;
If uplo= 'L', arrays ap and bp store the lower
triangles of A and B.
INTEGER. The order of the matrices A and B (n\geq0).
REAL for sspgvx
DOUBLE PRECISION for dspgvx.
Arrays:
ap (*) contains the packed upper or lower triangle of
the symmetric matrix }A\mathrm{ , as specified by uplo. The
dimension of ap must be at least max(1, n* (n+1)/2).
bp (*) contains the packed upper or lower triangle of
the symmetric matrix B, as specified by uplo. The
dimension of bp must be at least max(1, n* (n+1)/2).
work(*) is a workspace array, DIMENSION at least
max(1,8n).
vI, vu REAL for sspgvx
DOUBLE PRECISION for dspgvv.
If range ='V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.
il, iu INTEGER.
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1\leqil \leqiu \leqn, if n>0; il=1 and iu=0
if }n=0\mathrm{ .
If range ='A' or 'V', il and iu are not referenced.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{abstol} & REAL for sspgvx \\
\hline & DOUBLE PRECISION for dspgvx. \\
\hline & The absolute error tolerance for the eigenvalues. \\
\hline & See Application Notes for more information. \\
\hline \multirow[t]{2}{*}{\(l d z\)} & INTEGER. The leading dimension of the output array \(z\). Constraints: \\
\hline & \(I d z \geq 1\); if \(j 0 b z={ }^{\prime} V^{\prime}, ~ I d z \geq m a x(1, n)\). \\
\hline \multirow[t]{2}{*}{iwork} & Integer. \\
\hline & Workspace array, DIMENSION at least max (1,5n). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a p \quad\) On exit, the contents of \(a p\) are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} U\) or \(B=L L^{T}\), in the same storage format as \(B\).
integer. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) ' \(A^{\prime}, m=n\), and if range \(=\) ' I', \(m=i u-i l+1\).

REAL for sspgvx
DOUBLE PRECISION for dspgvx.
Arrays:
w(*), DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
\(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(\mathrm{V}^{\prime}\), then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows: if itype \(=1\) or \(2, \quad Z^{T} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{T} B^{-1} Z=\mathrm{I}\);
If jobz \(=\) ' \(N^{\prime}\), then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned in ifail. Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' V ', the exact value of \(m\) is not known in advance and an upper bound must be used.

INTEGER.
Array, DIMENSION at least \(\max (1, n)\).
If jobz \(=\) ' \(V^{\prime}\), then if \(\operatorname{info}=0\), the first \(m\) elements of ifail are zero; if info \(>0\), the ifail contains the indices of the eigenvectors that failed to converge. If jobz='N', then ifail is not referenced.

INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If \(\operatorname{info}=-i\), the \(i\) th argument had an illegal value.
If info >0, spptrf/dpptrf and sspevx/dspevx
returned an error code:

> If info \(i \leq n\), sspevx/dspevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array \(i f a i l ;\)
> If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([\mathrm{a}, \mathrm{b}]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon \star \|\left. T\right|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2 *? 1 amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

\section*{?hpgvx}

Computes selected eigenvalues and, optionally, eigenvectors of a generalized Hermitian definite eigenproblem with matrices in packed storage.
```

call chpgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
call zhpgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

```

\section*{Discussion}

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form \(A x=\lambda B x, A B x=\lambda x\), or \(B A x=\lambda x\).
Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & integer. Must be 1 or 2 or 3 . \\
\hline & \begin{tabular}{l}
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be ' N ' or ' V '. \\
If jobz \(=\) ' N ', then compute eigenvalues only. \\
If \(j 0 b z=' \mathrm{~V}\) ', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline range & \begin{tabular}{l}
CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
If range \(=\) ' A ', the routine computes all eigenvalues. \\
If range \(=\) ' \(V\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v l<\lambda_{i} \leq v u\).
\end{tabular} \\
\hline
\end{tabular}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo= 'U', arrays ap and bp store the upper
triangles of }A\mathrm{ and }B\mathrm{ ;
If uplo = 'L', arrays ap and bp store the lower
triangles of A and B.
INTEGER. The order of the matrices A and B (}n\geq0)\mathrm{ .
ap, bp, work COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx.
Arrays:
ap (*) contains the packed upper or lower triangle of
the Hermitian matrix }A\mathrm{ , as specified by uplo. The
dimension of ap must be at least max(1, n* (n+1)/2).
bp (*) contains the packed upper or lower triangle of
the Hermitian matrix B, as specified by uplo. The
dimension of bp must be at least max(1, n* (n+1)/2).
work (*) is a workspace array, DIMENSION at least
max(1,2n).
vl, vu REAL for chpgvx
DOUBLE PRECISION for zhpgvv.
If range = 'V', the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint: vl<vu.
If range ='A' or 'I', vI and vu are not referenced.
il, iu INTEGER.
If range ='I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1\leqil \leqiu Sn, if n>0; il=1 and iu=0
if }n=0\mathrm{ .
If range ='A' or 'V', il and iu are not referenced.
abstol REAL for chpgvx
DOUBLE PRECISION for zhpgvv.
The absolute error tolerance for the eigenvalues.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

See Application Notes for more information.
\(I d z \quad\) INTEGER. The leading dimension of the output array \(z\); \(I d z \geq 1\). If \(j o b z=' V ', ~ I d z \geq \max (1, n)\).
rwork REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
Workspace array, DIMENSION at least max \((1,7 n)\).
iwork
INTEGER.
Workspace array, DIMENSION at least max \((1,5 n)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a p\) & On exit, the contents of ap are overwritten. \\
\hline bp & On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} U\) or \(B=L L^{H}\), in the same storage format as \(B\). \\
\hline m & INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) ' I', \\
\hline
\end{tabular}
m iu ilt.
REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx.
Array \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
\[
\text { if itype }=1 \text { or } 2, \quad Z_{U}^{H} B Z=I
\]
\[
\text { if itype }=3, \quad Z^{H} B^{-1} Z=\mathrm{I}
\]

If \(j o b z={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
ifail
info

If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=' \mathrm{~V}\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

INTEGER.
Array, DIMENSION at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info \(>0\), the ifail contains the indices of the eigenvectors that failed to converge. If jobz='N', then ifail is not referenced.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevx/zhpevx returned an error code:

If info \(=i S_{n}\), chpevx/zhpevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon \star\|T\|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? lamch('S'), not zero. If this routine returns with info>0, indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

\section*{?sbgv}

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices.
```

call ssbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, info)
call dsbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form \(A x=\lambda B x\). Here \(A\) and \(B\) are assumed to be symmetric and banded, and \(B\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobz & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobz \(=\) ' N ', then compute eigenvalues only. If jobz \(={ }^{\prime} \mathrm{V}\) ', then compute eigenvalues and eigenvectors. \\
\hline uplo & ChARACTER*1. Must be 'U' or 'L'. \\
\hline & \begin{tabular}{l}
If uplo = ' \(U\) ', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\); \\
If uplo= ' \(L\) ', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline n & Integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k a \geq 0\) ). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B\) ( \(k b \geq 0\) ). \\
\hline
\end{tabular}
```

ab,bb,work REAL for ssbgv
DOUBLE PRECISION for dsbgv

```

\section*{Arrays:}
```

$a b$ ($1 d a b, *$) is an array containing either upper or lower triangular part of the symmetric matrix A (as specified by uplo) in band storage format. The second dimension of the array $a . b$ must be at least $\max (1, n)$.
$b . b(1 \mathrm{dbb}, *)$ is an array containing either upper or lower triangular part of the symmetric matrix B (as specified by uplo) in band storage format. The second dimension of the array $b . b$ must be at least $\max (1, n)$.
work (*) is a workspace array, DIMENSION at least $\max (1,3 n)$
Idab INTEGER. The first dimension of the array ab; must be at least $k a+1$.
Idbb INTEGER. The first dimension of the array $b b ;$ must be at least $k b+1$.
$I d z \quad$ INTEGER. The leading dimension of the output array z; $I d z \geq 1$. If $j o b z=V^{\prime}, ~ I d z \geq \max (1, n)$.

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline ab & On exit, the contents of \(a b\) are overwritten. \\
\hline bb & On exit, contains the factor \(S\) from the split Cholesky factorization \(B=S^{T} S\), as returned by spbst \(f /\) dpbst \(f\). \\
\hline \multirow[t]{7}{*}{w, z} & REAL for ssbgv \\
\hline & double precision for dsbgv \\
\hline & Arrays: \\
\hline & \(w(*)\), DIMENSION at least max \((1, n)\). \\
\hline & If info \(=0\), contains the eigenvalues in ascending order. \\
\hline & \(z(l d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). \\
\hline & If jobz \(=\) ' \(V^{\prime}\), then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the \\
\hline
\end{tabular}
eigenvector associated with w(i). The eigenvectors are normalized so that \(Z^{T} B Z=\mathrm{I}\).
If \(j o b z=' N\) ', then \(z\) is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq_{i} \leq n\), then spbstf/dpbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?hbgv}

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with banded matrices.
```

call chbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, rwork, info)
call zhbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, rwork, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form \(A x=\lambda B x\). Here \(A\) and \(B\) are assumed to be Hermitian and banded, and \(B\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If \(j 0 b z=N^{\prime}\), then compute eigenvalues only. \\
\hline & If jobz \(=^{\prime} V\) ', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo \(=\) ' U', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo \(=\) 'L', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & Integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k a \geq 0\) ). \\
\hline \(k b\) & INTEGER. The number of super- or sub-diagonals in \(B\) ( \(k b \geq 0\) ). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline ab, bb, work & COMPLEX for chbgv \\
\hline & DOUBLE COMPLEX for zhbgv \\
\hline & Arrays: \\
\hline & \(a b\) ( 1 dab, *) is an array containing either upper or \\
\hline & lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(a b\) must be at least \(\max (1, n)\). \\
\hline & bb ( \(1 \mathrm{dbb}, *\) ) is an array containing either upper or lower triangular part of the Hermitian matrix \(B\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(b . b\) must be at least \(\max (1, n)\). \\
\hline & work (*) is a workspace array, DIMENSION at least \(\max (1, n)\). \\
\hline Idab & integer. The first dimension of the array ab; must be at least \(k a+1\). \\
\hline 1 dbb & INTEGER. The first dimension of the array bb; must be at least \(k b+1\). \\
\hline \(1 d z\) & Integer. The leading dimension of the output array \(z\); \(I d z \geq 1\). If \(j o b z=' V ', ~ I d z \geq \max (1, n)\). \\
\hline rwork & REAL for chbogv \\
\hline & DOUBLE PRECISION for zhbgv. \\
\hline & Workspace array, DIMENSION at least max (1,3n). \\
\hline Output Para & ers \\
\hline
\end{tabular}
\(a b \quad\) On exit, the contents of \(a b\) are overwritten.
bbb On exit, contains the factor \(S\) from the split Cholesky
factorization \(B=S^{H} S\), as returned by cpbstf/zpbstf.
REAL for chbgv
DOUBLE PRECISION for zhbgv.
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{\(z\)} & COMPLEX for chbgv \\
\hline & double Complex for zhbgv \\
\hline & Array \(z(1 d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). \\
\hline & If jobz \(=' \mathrm{~V}\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{H} B Z=I\). \\
\hline & If jobz \(={ }^{\prime} \mathrm{N}^{\prime}\), then \(z\) is not referenced. \\
\hline \multirow[t]{8}{*}{info} & Integer. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th argument had an illegal value. \\
\hline & If info \(>0\), and \\
\hline & if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; \\
\hline & if info \(=n+i\), for \(1 \leq i \leq n\), then cpbstf/zpbstf returned info \(=i\) and \(B\) is not positive-definite. The \\
\hline & factorization of \(B\) could not be completed and no \\
\hline & eigenvalues or eigenvectors were computed. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?sbgvd}

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method.
```

call ssbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, iwork, liwork, info)
call dsbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, iwork, liwork, info)

```

Discussion
This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form \(A x=\lambda B x\). Here \(A\) and \(B\) are assumed to be symmetric and banded, and \(B\) is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobz \(=\) ' \(N^{\prime}\), then compute eigenvalues only. \\
\hline & If \(j o b z=' V\) ', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo \(=\) ' \(U\) ', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo = 'L', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & Integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k a \geq 0\) ). \\
\hline
\end{tabular}
\begin{tabular}{ll} 
kb & INTEGER. The number of super- or sub-diagonals in \(B\) \\
(kb \(\geq 0)\).
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}


\section*{?hbgvd}

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method.
```

call chbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, rwork, lrwork, iwork, liwork, info)
call zhbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, rwork, lrwork, iwork, liwork, info)

```

\section*{Discussion}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form \(A x=\lambda B x\). Here \(A\) and \(B\) are assumed to be Hermitian and banded, and \(B\) is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{ll} 
jobz & CHARACTER*I. Must be 'N' or 'V'. \\
& If jobz \(=\) 'N', then compute eigenvalues only. \\
& If jobz \(=^{\prime} V\) ', then compute eigenvalues and \\
eigenvectors.
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline k.b & INTEGER. The number of super- or sub-diagonals in \(B\) ( \(k b \geq 0\) ). \\
\hline \multirow[t]{8}{*}{ab, bb, work} & COMPLEX for chbgvd \\
\hline & double Complex for zhbgvd \\
\hline & Arrays: \\
\hline & ab (Idab,*) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(a b\) must be at least \(\max (1, n)\). \\
\hline & bb ( \(1 \mathrm{dbb}, *\) ) is an array containing either upper or lower triangular part of the Hermitian matrix \(B\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(b b\) must be at least \(\max (1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline ldab & INTEGER. The first dimension of the array \(a b\); must be at least \(k a+1\). \\
\hline 1 dbb & INTEGER. The first dimension of the array \(b\) b; must be at least \(k b+1\). \\
\hline \(1 d z\) & INTEGER. The leading dimension of the output array \(z\); \(l d z \geq 1\). If \(j o b z=' V^{\prime}, l d z \geq \max (1, n)\). \\
\hline \multirow[t]{5}{*}{lwork} & Integer. The dimension of the array work. \\
\hline & Constraints: \\
\hline & If \(n \leq 1\), work \(\geq 1\); \\
\hline & If jobz = 'N'and \(n>1\), Iwork \(\geq n\); \\
\hline & If jobz \(=\) 'V' and \(n>1\), 1 work \(\geq 2 n^{2}\). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chbgvd \\
\hline & DOUBLE PRECISION for zhbgva. \\
\hline & Workspace array, DIMENSION (lrwork). \\
\hline lrwork & integer. The dimension of the array rwork. \\
\hline
\end{tabular}

Constraints:
If \(n \leq 1\), lrwork \(\geq 1\);
If jobz ='N'and \(n>1\), lrwork \(\geq n\);
If jobz \(=\) 'V' and \(n>1\), lrwork \(\geq 2 n^{2}+5 n+1\).
iwork INTEGER.
Workspace array, DIMENSION (liwork).
liwork INTEGER. The dimension of the array iwork.
Constraints:
If \(n \leq 1\), liwork \(\geq 1\);
If jobz ='N' and \(n>1\), liwork \(\geq 1\);
If jobz \(=\) 'V'and \(n>1\), liwork \(\geq 5 n+3\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a b\) & On exit, the contents of \(a b\) are overwritten. \\
\hline bb & On exit, contains the factor \(S\) from the split Cholesky factorization \(B=S^{H} S\), as returned by cpbstf/zpbstf. \\
\hline w & \begin{tabular}{l}
REAL for chbgvd \\
DOUBLE PRECISION for zhbgvd. \\
Array, DIMENSION at least max \((1, n)\). \\
If info \(=0\), contains the eigenvalues in ascending order.
\end{tabular} \\
\hline \(z\) & \begin{tabular}{l}
COMPLEX for chbgvd \\
DOUBLE COMPLEX for zhbgvd \\
Array \(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). \\
If jobz \(=^{\prime} V^{\prime}\), then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{H} B Z=\mathrm{I}\). \\
If \(j o b z=' N\) ', then \(z\) is not referenced.
\end{tabular} \\
\hline work (1) & On exit, if \(\operatorname{info}=0\), then work (1) returns the required minimal size of 1 work. \\
\hline rwork(1) & On exit, if info \(=0\), then rwork (1) returns the required minimal size of lrwork. \\
\hline
\end{tabular}
iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then cpbstf/zpbstf returned \(\operatorname{info}=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?sbgvx}

Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices.
```

call ssbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)
call dsbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)

```

\section*{Discussion}

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form \(A x=\lambda B x\). Here \(A\) and \(B\) are assumed to be symmetric and banded, and \(B\) is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
```

jobz
range
uplo
CHARACTER*1. Must be 'N' or 'V'.
If jobz='N', then compute eigenvalues only.
If jobz='v', then compute eigenvalues and
eigenvectors.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues }\mp@subsup{\lambda}{i}{}\mathrm{ in
the half-open interval: vl< }\mp@subsup{\lambda}{i}{}\leqvv
If range =' I', the routine computes eigenvalues with
indices il to iu.
CHARACTER*1. Must be 'U' or 'L'.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If uplo \(=\) ' \(U^{\prime}\), arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\); \\
If uplo = 'L', arrays \(a b\) and bb store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k a \geq 0\) ). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B\) ( \(k b \geq 0\) ). \\
\hline \multirow[t]{8}{*}{ab, bb, work} & REAL for ssbgvx \\
\hline & DOUBLE PRECISION for dsbgvx \\
\hline & Arrays: \\
\hline & \(a b\) ( \(I d a b, *\) ) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(a . b\) must be at least \(\max (1, n)\). \\
\hline & bb (Idbb, *) is an array containing either upper or lower triangular part of the symmetric matrix \(B\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(b b\) must be at least \(\max (1, n)\). \\
\hline & work (*) is a workspace array, DIMENSION at least \(\max (1,7 n)\). \\
\hline Idab & INTEGER. The first dimension of the array \(a b\); must be at least \(k a+1\). \\
\hline 1 dbb & INTEGER. The first dimension of the array bb; must be at least \(k b+1\). \\
\hline \multirow[t]{4}{*}{vl, vu} & REAL for ssbgvx \\
\hline & DOUBLE PRECISION for dsbgvx. \\
\hline & \begin{tabular}{l}
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
Constraint: vl<vu.
\end{tabular} \\
\hline & If range \(=\) 'A' or 'I', vl and vu are not referenced. \\
\hline
\end{tabular}
```

il, iu INTEGER.
If range = 'I', the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1\leqil \leqiu \leqn, if n>0; il=1 and iu=0
if }n=0\mathrm{ .
If range ='A' or 'V', il and iu are not referenced.
abstol REAL for ssbgvx
DOUBLE PRECISION for dsbgvv.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.
Idz INTEGER. The leading dimension of the output array z;
Idz\geq1. If jobz='V', Idz\geq max(1,n).
INTEGER. The leading dimension of the output array q;
Idq\geq1. If jobz ='V', Idq\geq max(1,n).
iwork
INTEGER.
Workspace array, DIMENSION at least max(1,5n).

```

\section*{Output Parameters}
```

ab On exit, the contents of ab are overwritten.
bb}\quad\mathrm{ On exit, contains the factor }S\mathrm{ from the split Cholesky
factorization B= S}\mp@subsup{S}{}{T}S\mathrm{ , as returned by spbstf/dpbstf.
INTEGER. The total number of eigenvalues found,
0\leqm\leqn. If range ='A', m=n, and if range ='I',
m = iu-il+1.
W, z, q REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
w(*), DIMENSION at least max(1,n).
If info = 0, contains the eigenvalues in ascending order.
z (Idz,*). The second dimension of z must be at least
max(1,n).
If jobz='V', then if info = 0, z contains the matrix Z
of eigenvectors, with the i-th column of z holding the
eigenvector associated with w(i). The eigenvectors are

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
normalized so that \(Z^{T} B Z=\mathrm{I}\).
If jobz \(={ }^{\prime} \mathrm{N}^{\prime}\), then \(z\) is not referenced.
\(q(I d q, *)\). The second dimension of \(q\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(\mathrm{V}^{\prime}\), then \(q\) contains the \(n\)-by- \(n\) matrix used in the reduction of \(A x=\lambda B x\) to standard form, that is, \(C x=\lambda x\) and consequently \(C\) to tridiagonal form. If jobz \(=\) ' \(\mathrm{N}^{\prime}\), then \(q\) is not referenced.
ifail INTEGER.
Array, DIMENSION at least \(\max (1, n)\).
If jobz \(=^{\prime} V^{\prime}\), then if info \(=0\), the first \(m\) elements of ifail are zero; if info>0, the ifail contains the indices of the eigenvectors that failed to converge. If jobz='N', then ifail is not referenced.
info INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info>0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq_{i} \leq n\), then spbstf/dpbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([\mathrm{a}, \mathrm{b}]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon^{\star}\|T\|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? 1 amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*? 1 amch('S').

\section*{?hbgvx}

Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with banded matrices.
```

call chbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,
iwork, ifail, info)
call zhbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,
iwork, ifail, info)

```

\section*{Discussion}

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form \(A x=\lambda B x\). Here \(A\) and \(B\) are assumed to be Hermitian and banded, and \(B\) is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
```

jobz
range
uplo
CHARACTER*1. Must be 'N' or 'V'.
If jobz='N', then compute eigenvalues only.
If jobz='v', then compute eigenvalues and
eigenvectors.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues }\mp@subsup{\lambda}{i}{}\mathrm{ in
the half-open interval: vl< }\mp@subsup{\lambda}{i}{}\leqvv
If range =' I', the routine computes eigenvalues with
indices il to iu.
CHARACTER*1. Must be 'U' or 'L'.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If uplo \(=\) ' \(U^{\prime}\), arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\); \\
If uplo = 'L', arrays \(a b\) and bb store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & INTEGER. The number of super- or sub-diagonals in \(A\) ( \(k a \geq 0\) ). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B\) ( \(k b \geq 0\) ). \\
\hline \multirow[t]{8}{*}{ab, bb, work} & COMPLEX for chbgvx \\
\hline & DOUBLE COMPLEX for zhbgvx \\
\hline & Arrays: \\
\hline & \(a b\) ( \(I d a b, *\) ) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(a . b\) must be at least \(\max (1, n)\). \\
\hline & bb ( \(1 \mathrm{dbb}, *\) ) is an array containing either upper or lower triangular part of the Hermitian matrix \(B\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(b b\) must be at least \(\max (1, n)\). \\
\hline & work (*) is a workspace array, DIMENSION at least \(\max (1, n)\). \\
\hline Idab & INTEGER. The first dimension of the array \(a b\); must be at least \(k a+1\). \\
\hline 1 dbb & INTEGER. The first dimension of the array bb; must be at least \(k b+1\). \\
\hline \multirow[t]{4}{*}{vl, vu} & REAL for chbgvx \\
\hline & DOUBLE PRECISION for zhbgvx. \\
\hline & \begin{tabular}{l}
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
Constraint: vl<vu.
\end{tabular} \\
\hline & If range \(=\) 'A' or 'I', vl and vu are not referenced. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{il, iu} & INTEGER. \\
\hline & \begin{tabular}{l}
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
Constraint: \(1 \leq i 1 \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\).
\end{tabular} \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for chbgvx \\
\hline & DOUBLE PRECISION for zhbgvx. \\
\hline & The absolute error tolerance for the eigenvalues. \\
\hline & See Application Notes for more information. \\
\hline \(1 d z\) & Integer. The leading dimension of the output array \(z\); \(I d z \geq 1\). If \(j o b z=' V ', I d z \geq \max (1, n)\). \\
\hline \(1 d q\) & INTEGER. The leading dimension of the output array \(q\); \(I d q \geq 1\). If jobz='V', \(I d q \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chbgvx \\
\hline & DOUBLE PRECISION for zhbgvx. \\
\hline & Workspace array, DIMENSION at least max (1, \(7 n\) ) . \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max ( \(1,5 n\) ) \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \(a b\) & On exit, the contents of \(a b\) are overwritten. \\
\hline b.b & On exit, contains the factor \(S\) from the split Cholesky factorization \(B=S^{H} S\), as returned by cpbstf/zpbstf. \\
\hline m & integer. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) ' I', \(m=i u-i l+1\). \\
\hline \multirow[t]{4}{*}{w} & REAL for chbgvx \\
\hline & DOUBLE PRECISION for zhbgvx. \\
\hline & Array \(w(*)\), DIMENSION at least max \((1, n)\). \\
\hline & If info \(=0\), contains the eigenvalues in ascending order. \\
\hline \multirow[t]{3}{*}{z, \(q\)} & COMPLEX for chbgvx \\
\hline & DOUBLE COMPLEX for zhbgvx \\
\hline & Arrays: \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' V ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{H} B Z=\mathrm{I}\).
If jobz \(=\) ' \(\mathrm{N}^{\prime}\), then \(z\) is not referenced.
\(q(I d q, *)\). The second dimension of \(q\) must be at least \(\max (1, n)\).
If \(j o b z=\) ' V ', then \(q\) contains the \(n\)-by- \(n\) matrix used in the reduction of \(A x=\lambda B x\) to standard form, that is, \(C x=\lambda x\) and consequently \(C\) to tridiagonal form. If jobz \(=\) ' \(N^{\prime}\), then \(q\) is not referenced.

INTEGER.
Array, DIMENSION at least \(\max (1, n)\).
If jobz \(=\) ' \(V^{\prime}\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge. If jobz='N', then ifail is not referenced.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value. If info \(>0\), and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then cpbstf/zpbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([\mathrm{a}, \mathrm{b}]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon \star\|T\|_{1}\) will be used in its place, where \(T\)
is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2 *? 1 amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

\section*{Generalized Nonsymmetric Eigenproblems}

This section describes LAPACK driver routines used for solving generalized nonsymmetric eigenproblems. See also computational routines that can be called to solve these problems.
Table 5-14 lists routines described in more detail below.
Table 5-14 Driver Routines for Solving Generalized Nonsymmetric Eigenproblems
\begin{tabular}{ll} 
Routine Name & Operation performed \\
\(\underline{? g g e s}\) & \begin{tabular}{l} 
Computes the generalized eigenvalues, Schur form, and the left and/or right \\
Schur vectors for a pair of nonsymmetric matrices.
\end{tabular} \\
\(\underline{? g g e s x}\) & \begin{tabular}{l} 
Computes the generalized eigenvalues, Schur form, and, optionally, the left \\
and/or right matrices of Schur vectors .
\end{tabular} \\
\(\underline{? g g e v}\) & \begin{tabular}{l} 
Computes the generalized eigenvalues, and the left and/or right \\
generalized eigenvectors for a pair of nonsymmetric matrices. \\
Computes the generalized eigenvalues, and, optionally, the left and/or right \\
generalized eigenvectors.
\end{tabular} \\
\hline
\end{tabular}

\section*{?gges}

Computes the generalized eigenvalues, Schur form, and the left and/or right Schur vectors for a pair of nonsymmetric matrices.
```

call sgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work,
lwork, bwork, info)
call dgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work,
lwork, bwork, info)
call cgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork,
bwork, info)

```
```

call zgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork,
bwork, info)

```

\section*{Discussion}

This routine computes for a pair of \(n\)-by- \(n\) real/complex nonsymmetric matrices \((A, B)\), the generalized eigenvalues, the generalized real/complex Schur form ( \(S, T\) ), optionally, the left and/or right matrices of Schur vectors ( \(v s I\) and \(v s r\) ). This gives the generalized Schur factorization
\[
(A, B)=\left(v s l * S * v s r^{H}, v s l * T^{\star}{ }_{v s r^{H}}{ }^{H}\right)
\]

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix \(S\) and the upper triangular matrix \(T\). The leading columns of VSI and vSr then form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).
(If only the generalized eigenvalues are needed, use the driver ? ggev instead, which is faster.)
A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(w\) or a ratio alpha / beta \(=w\), such that \(A-w^{\star} B\) is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta \(=0\) or for both being zero.
A pair of matrices \((S, T)\) is in generalized real Schur form if \(T\) is upper triangular with non-negative diagonal and \(S\) is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by- 2 blocks of \(S\) will be "standardized" by making the corresponding elements of \(T\) have the form:
\[
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
\]
and the pair of corresponding 2-by-2 blocks in \(S\) and \(T\) will have a complex conjugate pair of generalized eigenvalues. A pair of matrices \((S, T)\) is in generalized complex Schur form if \(S\) and \(T\) are upper triangular and, in addition, the diagonal of \(T\) are non-negative real numbers.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobvsl} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobvsl='N', then the left Schur vectors are not computed. \\
\hline & If jobvsl='V', then the left Schur vectors are computed. \\
\hline \multirow[t]{3}{*}{jobvsr} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobvsr \(=\) ' N ', then the right Schur vectors are not computed. \\
\hline & If jobvsr \(=\) ' V ', then the right Schur vectors are computed. \\
\hline \multirow[t]{4}{*}{sort} & CHARACTER*1. Must be 'N' or 'S'. \\
\hline & Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form. \\
\hline & If sort \(=\) ' N ', then eigenvalues are not ordered. \\
\hline & If sort = 'S', eigenvalues are ordered (see selctg). \\
\hline \multirow[t]{3}{*}{selctg} & LOGICAL FUNCTION of three REAL arguments for real flavors. \\
\hline & LOGICAL FUNCTION of two Complex arguments \\
\hline & for complex flavors. \\
\hline
\end{tabular}
selctg must be declared EXTERNAL in the calling subroutine.
If sort ='S', selctg is used to select eigenvalues to sort to the top left of the Schur form.
If sort ='N', selctg is not referenced.
For real flavors:
An eigenvalue (alphar(j) + alphai( j\()\) )/beta( j ) is selected if selctg(alphar(j), alphai( j\()\), beta( j\()\) ) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy
\(\operatorname{selctg}(a l p h a r(\mathrm{j})\), alphai( \(\mathbf{j})\), beta \((\mathrm{j}))=. \operatorname{TRUE}\). after ordering. In this case \(i n f o\) is set to \(n+2\).

\section*{For complex flavors:}

An eigenvalue alpha(j)/beta(j) is selected if selctg(alpha(j), beta(j)) is true.
Note that a selected complex eigenvalue may no longer satisfy selctg(alpha(j), beta(j)) = .TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to \(n+2\) (see info below).
integer. The order of the matrices \(A, B, v s l\), and vsr \((n \geq 0)\).

REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.

\section*{Arrays:}
\(a(l d a, *)\) is an array containing the \(n\)-by- \(n\) matrix \(A\) (first of the pair of matrices).
The second dimension of a must be at least max \((1, n)\).
\(b(I d b, *)\) is an array containing the \(n\)-by- \(n\) matrix \(B\) (second of the pair of matrices).
The second dimension of \(b\) must be at least \(\max (1, n)\).
work ( 1 work) is a workspace array.
Integer. The first dimension of the array a. Must be at least \(\max (1, n)\).
integer. The first dimension of the array \(b\). Must be at least \(\max (1, n)\).

Integer. The first dimensions of the output matrices vSI and vSr, respectively. Constraints:
\(\operatorname{ldvs} I \geq 1\). If jobvsl='V', 1 dvs \(I \geq \max (1, n)\). \(\operatorname{ldvsr} \geq 1\). If jobvsr \(='^{\prime} V^{\prime}, \operatorname{ldvsr} \geq \max (1, n)\).
integer. The dimension of the array work.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\(l_{\text {work }} \geq \max (1,8 n+16)\) for real flavors;
lwork \(\geq \max (1,2 n)\) for complex flavors.
For good performance, 1 work must generally be larger.
rwork REAL for cgges
DOUBLE PRECISION for zgges
Workspace array, DIMENSION at least max \((1,8 n)\).
This array is used in complex flavors only.
bwork LOGICAL.
Workspace array, DIMENSION at least max \((1, n)\).
Not referenced if sort =' N '.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, this array has been overwritten by its generalized Schur form \(S\). \\
\hline \(b\) & On exit, this array has been overwritten by its generalized Schur form \(T\). \\
\hline sdim & \begin{tabular}{l}
INTEGER. \\
If sort \(={ }^{\prime} \mathrm{N}^{\prime}\), sdim= 0 . \\
If sort ='S', sdim is equal to the number of eigenvalues (after sorting) for which selctg is true. Note that for real flavors complex conjugate pairs for which selctg is true for either eigenvalue count as 2 .
\end{tabular} \\
\hline alphar, alphai & \begin{tabular}{l}
REAL for sgges; \\
DOUBLE PRECISION for dgges. \\
Arrays, DIMENSION at least max \((1, n)\) each. Contain values that form generalized eigenvalues in real flavors. See beta.
\end{tabular} \\
\hline alpha & \begin{tabular}{l}
COMPLEX for cgges; \\
DOUBLE COMPLEX for zgges. \\
Array, DIMENSION at least max \((1, n)\). Contain values that form generalized eigenvalues in complex flavors. See beta.
\end{tabular} \\
\hline beta & \begin{tabular}{l}
REAL for sgges \\
DOUBLE PRECISION for dgges \\
COMPLEX for cgges
\end{tabular} \\
\hline
\end{tabular}

DOUBLE COMPLEX for zgges.
Array, DIMENSION at least \(\max (1, n)\).
For real flavors:
On exit, (alphar \((\mathrm{j})+\operatorname{alphai}(\mathrm{j}) * \mathrm{i}) /\) beta( j\(), \mathrm{j}=1, \ldots, n\), will be the generalized eigenvalues.
alphar \((\mathbf{j})+\operatorname{alphai}(\mathbf{j}) \star \mathrm{i}\) and beta \((\mathrm{j}), \mathrm{j}=1, \ldots, n\) are the diagonals of the complex Schur form \((S, T)\) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of \((A, B)\) were further reduced to triangular form using complex unitary transformations. If alphai( j ) is zero, then the j -th eigenvalue is real; if positive, then the j -th and \((\mathrm{j}+1)\)-st eigenvalues are a complex conjugate pair, with alphai \((\mathrm{j}+1)\) negative. For complex flavors:
On exit, alpha( j\() /\) bet \(a(\mathrm{j}), \mathrm{j}=1, \ldots, n\), will be the generalized eigenvalues. alpha(j), \(\mathrm{j}=1, \ldots, n\), and beta( \(\mathbf{j}), \mathrm{j}=1, \ldots, n\), are the diagonals of the complex
Schur form ( \(S, T\) ) output by cgges / zgges. The beta(j) will be non-negative real.
See also Application Notes below.
REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.

\section*{Arrays:}
\(\operatorname{vsl}(1 d v s l, *)\), the second dimension of vsl must be at least \(\max (1, n)\).
If jobvsl \(=\) ' \(V\) ', this array will contain the left Schur vectors.
If jobvsl='N', vsl is not referenced.
vsr(Idvsr,*), the second dimension of vsr must be at least \(\max (1, n)\).
If jobvsr \(=\) ' \(V\) ', this array will contain the right Schur vectors.
If jobvsr='N', vsr is not referenced.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
work(1)
info

On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work.

INTEGER.
If info \(=0\), the execution is successful.
If \(i n f O=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), and
\(i \leq n\) :
the \(Q Z\) iteration failed. \((A, B)\) is not in Schur form, but alphar(j), alphai(j) (for real flavors), or alpha(j) (for complex flavors), and beta(j), \(\mathrm{j}=\) info \(+1, \ldots, n\) should be correct.
\(i>_{n}\) : errors that usually indicate LAPACK problems:
\(i=n+1\) : other than \(Q Z\) iteration failed in ?hgeqz;
\(i=n+2\) : after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy
selctg = .TRUE.. This could also be caused due to scaling;
\(i=n+3\) : reordering failed in ?tgsen.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of \(I\) work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The quotients alphar( \(\mathbf{j}) /\) beta \(a(\mathrm{j})\) and alphai \((\mathrm{j}) /\) bet \(a(\mathrm{j})\) may easily overor underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai will be always less than and usually comparable with \(\operatorname{norm}(A)\) in magnitude, and beta always less than and usually comparable with norm \((B)\).

\section*{?ggesx}

Computes the generalized eigenvalues, Schur form, and, optionally, the left and/or right matrices of Schur vectors.
```

call sggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
call dggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
call cggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv,
work, lwork, rwork, iwork, liwork, bwork, info)
call zggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv,
work, lwork, rwork, iwork, liwork, bwork, info)

```

\section*{Discussion}

This routine computes for a pair of \(n\)-by- \(n\) real/complex nonsymmetric matrices \((A, B)\), the generalized eigenvalues, the generalized real/complex Schur form ( \(S, T\) ), optionally, the left and/or right matrices of Schur vectors ( vSI I and vSr ). This gives the generalized Schur factorization
\[
(A, B)=\left(v s l * S * v s r^{H}, v s l * T^{\star}{ }_{v s r^{H}}{ }^{H}\right)
\]

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix \(S\) and the upper triangular matrix \(T\); computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right and left deflating subspaces corresponding to the selected eigenvalues (rcondv). The leading columns of vsl and vsr then form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).

A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(w\) or a ratio alpha / beta \(=w\), such that \(A-w^{\star} B\) is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta \(=0\) or for both being zero.
A pair of matrices \((S, T)\) is in generalized real Schur form if \(T\) is upper triangular with non-negative diagonal and \(S\) is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of \(S\) will be "standardized" by making the corresponding elements of \(T\) have the form:
\[
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
\]
and the pair of corresponding 2-by-2 blocks in \(S\) and \(T\) will have a complex conjugate pair of generalized eigenvalues.
A pair of matrices \((S, T)\) is in generalized complex Schur form if \(S\) and \(T\) are upper triangular and, in addition, the diagonal of \(T\) are non-negative real numbers.

Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobvsl} & CHARACTER*1. Must be 'n' or 'v'. \\
\hline & If jobvsl='N', then the left Schur vectors are not computed. \\
\hline & If jobvsl='V', then the left Schur vectors are computed. \\
\hline \multirow[t]{3}{*}{jobvsr} & CHARACTER*1. Must be 'N' or 'v'. \\
\hline & If jobvsr='N', then the right Schur vectors are not computed. \\
\hline & If jobvsr \(=\) ' V ', then the right Schur vectors are computed. \\
\hline \multirow[t]{3}{*}{sort} & CHARACTER*1. Must be 'N' or 'S'. \\
\hline & Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form. \\
\hline & \begin{tabular}{l}
If sort \(=\) ' N ', then eigenvalues are not ordered. \\
If sort \(=\) 'S', eigenvalues are ordered (see selctg).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline selctg & LOGICAL FUNCTION of three REAL arguments for real flavors. \\
\hline & LOGICAL FUNCTION of two COMPLEX arguments for complex flavors. \\
\hline & \begin{tabular}{l}
selctg must be declared EXTERNAL in the calling subroutine. \\
If sort = 'S', selctg is used to select eigenvalues to sort to the top left of the Schur form. \\
If sort ='N', selctg is not referenced.
\end{tabular} \\
\hline & \begin{tabular}{l}
For real flavors: \\
An eigenvalue (alphar(j) + alphai(j))/beta(j) is selected if selctg(alphar( \(\mathbf{j})\), alphai( \(\mathbf{j})\), beta( \(\mathbf{j})\) ) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
\end{tabular} \\
\hline & Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy \(\operatorname{selctg}(\operatorname{alphar}(\mathrm{j}), \operatorname{alphai}(\mathrm{j})\), beta \((\mathrm{j}))=. \operatorname{TRUE}\). after ordering. In this case info is set to \(n+2\). \\
\hline & For complex flavors: \\
\hline & An eigenvalue alpha(j) / beta(j) is selected if selctg(alpha(j), beta(j)) is true. \\
\hline & Note that a selected complex eigenvalue may no longer satisfy selctg(alpha(j), beta(j)) = .TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to \(n+2\) (see info below). \\
\hline sense & CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed. \\
\hline & \begin{tabular}{l}
If sense \(=\) ' N ', none are computed; \\
If sense \(=\) 'E', computed for average of selected eigenvalues only;
\end{tabular} \\
\hline & If sense \(=\) 'V', computed for selected deflating subspaces only; \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If sense='B', computed for both. \\
If sense is 'E', 'V', or 'B', then sort must equal 'S'.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrices \(A, B\), vsl, and vsr ( \(n \geq 0\) ). \\
\hline \multirow[t]{9}{*}{a, b, work} & REAL for sggesx \\
\hline & DOUBLE PRECISION for dggesx \\
\hline & COMPLEX for cggesx \\
\hline & DOUBLE COMPLEX for zggesx. \\
\hline & Arrays: \\
\hline & \(a(I d a, *)\) is an array containing the \(n\)-by- \(n\) matrix \(A\) (first of the pair of matrices). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(b(I d b, *)\) is an array containing the \(n-b y-n\) matrix \(B\) (second of the pair of matrices). \\
\hline & The second dimension of \(b\) must be at least \(\max (1, n)\). work (lwork) is a workspace array. \\
\hline Ida & Integer. The first dimension of the array \(a\). Must be at least \(\max (1, n)\). \\
\hline 1 db & INTEGER. The first dimension of the array \(b\). Must be at least \(\max (1, n)\). \\
\hline Idvsl, Idvsr & \begin{tabular}{l}
INTEGER. The first dimensions of the output matrices vsl and vsr, respectively. Constraints: \\
\(\operatorname{ldvsl} \geq 1\). If jobvsl='V', \(\operatorname{ldvs} I \geq \max (1, n)\). \\
\(I d v s r \geq 1\). If jobvsr \(={ }^{\prime} V^{\prime}\), \(I d v s r \geq \max (1, n)\).
\end{tabular} \\
\hline \multirow[t]{7}{*}{lwork} & INTEGER. The dimension of the array work. For real flavors: \\
\hline & \[
\begin{aligned}
& \text { lwork } \geq \max (1,8(n+1)+16) \text {; } \\
& \text { if sense }=E^{\prime}, V^{\prime} V^{\prime}, \text { or } B^{\prime} \text { ', then }
\end{aligned}
\] \\
\hline & lwork \(\geq \max (8(n+1)+16)\), \(2 *\) sdim* \((n-s d i m))\). \\
\hline & For complex flavors: \\
\hline & lwork \(\geq \max (1,2 n)\); \\
\hline & if sense \(=\) 'E', 'V', or 'B', then \\
\hline & 1 work \(\geq \max (2 n, 2 * \operatorname{sdim}\) ( \(n-\operatorname{sdim}\) ) \()\). \\
\hline
\end{tabular}

For good performance, lwork must generally be larger.
rwork REAL for cggesx
DOUBLE PRECISION for zggesx
Workspace array, DIMENSION at least max \((1,8 n)\). This array is used in complex flavors only.
iwork
bwork
liwork INTEGER. The dimension of the array iwork.
liwork \(\geq n+6\) for real flavors;
liwork \(\geq n+2\) for complex flavors.
INTEGER.
Workspace array, DIMENSION (Iiwork). Not referenced if sense = 'N'.

LOGICAL.
Workspace array, DIMENSION at least max \((1, n)\). Not referenced if sort ='N'.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, this array has been overwritten by its generalized Schur form \(S\). \\
\hline b & On exit, this array has been overwritten by its generalized Schur form \(T\). \\
\hline sdim & \begin{tabular}{l}
INTEGER. \\
If sort \(=\) 'N', sdim= 0 . \\
If sort ='S', sdim is equal to the number of eigenvalues (after sorting) for which selctg is true. Note that for real flavors complex conjugate pairs for which selctg is true for either eigenvalue count as 2 .
\end{tabular} \\
\hline alphar,alphai & \begin{tabular}{l}
REAL for sggesx; \\
DOUBLE PRECISION for dggesx. \\
Arrays, DIMENSION at least max \((1, n)\) each. Contain values that form generalized eigenvalues in real flavors.
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual


Arrays:
vsl(Idvsl,*), the second dimension of vsl must be at least \(\max (1, n)\).

If jobvsl \(=\) 'V', this array will contain the left Schur vectors.
If jobvsl='N', vsl is not referenced.
vsr(Idvsr,*), the second dimension of vsr must be at least \(\max (1, n)\).
If jobvsr \(=\) ' V ', this array will contain the right Schur vectors.
If jobvsr='N', vsr is not referenced.
rconde, rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION (2) each
If sense \(=\) 'E' or 'B', rconde(1) and rconde(2) contain the reciprocal condition numbers for the average of the selected eigenvalues.
Not referenced if sense \(=\) ' N ' or ' V '.
If sense \(=\) ' \(V\) ' or ' \(B\) ', rcondv(1) and rcondv(2) contain the reciprocal condition numbers for the selected deflating subspaces.
Not referenced if sense \(=\) ' \(N\) ' or 'E'.
work (1) On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work.
info
INTEGER.
If \(i n f o=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), and
\(i \leq n\) :
the \(Q Z\) iteration failed. \((A, B)\) is not in Schur form, but alphar(j), alphai(j) (for real flavors), or alpha(j) (for complex flavors), and beta(j), \(\mathrm{j}=\) info \(+1, \ldots, n\) should be correct.
\(i>_{n}\) : errors that usually indicate LAPACK problems:
\(i=n+1\) : other than \(Q Z\) iteration failed in ?hgeqz;
\(i=n+2\) : after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy selctg = .TRUE.. This could also be caused due to scaling;
\(i=n+3\) : reordering failed in ?tgsen.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The quotients alphar( j\() /\) beta \(a(\mathrm{j})\) and alphai \((\mathrm{j}) /\) beta( j\()\) may easily overor underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai will be always less than and usually comparable with \(\operatorname{norm}(A)\) in magnitude, and beta always less than and usually comparable with \(\operatorname{norm}(B)\).

\section*{?ggev}

Computes the generalized eigenvalues, and the left and/or right generalized eigenvectors for a pair of nonsymmetric matrices.
```

call sggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta,
vl, ldvl, vr, ldvr, work, lwork, info)
call dggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta,
vl, ldvl, vr, ldvr, work, lwork, info)
call cggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta,
vl, ldvl, vr, ldvr, work, lwork, rwork, info)
call zggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta,
vl, ldvl, vr, ldvr, work, lwork, rwork, info)

```

\section*{Discussion}

This routine computes for a pair of \(n\)-by- \(n\) real/complex nonsymmetric matrices \((A, B)\), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(\lambda\) or a ratio alpha / beta \(=\lambda\), such that \(A-\lambda \star B\) is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta \(=0\) and even for both being zero.
The right generalized eigenvector \(v(\mathrm{j})\) corresponding to the generalized eigenvalue \(\lambda(\mathrm{j})\) of \((A, B)\) satisfies
\[
A * v(\mathrm{j})=\lambda(\mathrm{j}) \star B^{\star} v(\mathrm{j}) .
\]

The left generalized eigenvector \(u(\mathrm{j})\) corresponding to the generalized eigenvalue \(\lambda(\mathrm{j})\) of \((A, B)\) satisfies
\[
u(\mathrm{j})^{H_{\star}} A=\lambda(\mathrm{j}){ }^{\star} u(\mathrm{j})^{H_{\star}} B
\]
where \(u(\mathrm{j})^{H}\) denotes the conjugate transpose of \(u(\mathrm{j})\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{jobvl} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & \begin{tabular}{l}
If jobvI='N', the left generalized eigenvectors are not computed; \\
If jobvl='V', the left generalized eigenvectors are computed.
\end{tabular} \\
\hline \multirow[t]{3}{*}{jobvr} & CHARACTER*1. Must be ' N ' or 'V'. \\
\hline & If jobvr \(=\) ' \(N\) ', the right generalized eigenvectors are not computed; \\
\hline & If jobvr ='V', the right generalized eigenvectors are computed. \\
\hline \(n\) & Integer. The order of the matrices \(A, B, v l\), and \(v r\) ( \(n \geq 0\) ). \\
\hline \multirow[t]{9}{*}{a, b, work} & REAL for sggev \\
\hline & DOUBLE PRECISION for dggev \\
\hline & COMPLEX for cggev \\
\hline & DOUBLE COMPLEX for zggev. \\
\hline & Arrays: \\
\hline & a(lda,*) is an array containing the \(n\)-by- \(n\) matrix \(A\) (first of the pair of matrices). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(b(I d b, *)\) is an array containing the \(n\)-by- \(n\) matrix \(B\) (second of the pair of matrices). \\
\hline & The second dimension of \(b\) must be at least \(\max (1, n)\). work (lwork) is a workspace array. \\
\hline \multirow[t]{2}{*}{Ida} & Integer. The first dimension of the array \(a\). \\
\hline & Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{2}{*}{1 db} & Integer. The first dimension of the array \(b\). \\
\hline & Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{3}{*}{ldvl, Idvr} & INTEGER. The first dimensions of the output matrices vI and vr, respectively. Constraints: \\
\hline &  \\
\hline & \(I d v r \geq 1\). If jobvr \(={ }^{\prime} V^{\prime}, ~ I d v r \geq \max (1, n)\). \\
\hline Iwork & INTEGER. The dimension of the array work. \\
\hline
\end{tabular}
lwork \(\geq \max (1,8 n+16)\) for real flavors;
lwork \(\geq \max (1,2 n)\) for complex flavors.
For good performance, lwork must generally be larger.
rwork REAL for cggev
DOUBLE PRECISION for zggev
Workspace array, DIMENSION at least max \((1,8 n)\).
This array is used in complex flavors only.

\section*{Output Parameters}
\(a, b \quad\) On exit, these arrays have been overwritten.
alphar, alphai REAL for sggev;
DOUBLE PRECISION for dggev.
Arrays, DIMENSION at least max \((1, n)\) each. Contain values that form generalized eigenvalues in real flavors. See beta.
alpha COMPLEX for cggev;
DOUBLE COMPLEX for \(\mathrm{zg} g \mathrm{gev}\).
Array, DIMENSION at least \(\max (1, n)\). Contain values that form generalized eigenvalues in complex flavors. See beta.
beta REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for \(z g g e v\).
Array, DIMENSION at least max \((1, n)\).
For real flavors:
On exit, (alphar( \(\mathbf{j})+\operatorname{alphai}(\mathrm{j}) * \mathrm{i}) /\) bet \(a(\mathrm{j}), \mathrm{j}=1, \ldots, n\), will be the generalized eigenvalues.
If alphai( j\()\) is zero, then the j -th eigenvalue is real; if positive, then the j -th and \((\mathrm{j}+1)\)-st eigenvalues are a complex conjugate pair, with alphai \((\mathrm{j}+1)\) negative.
For complex flavors:
On exit, alpha(j)/beta(j), \(\mathbf{j}=1, \ldots, n\), will be the generalized eigenvalues.

See also Application Notes below.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll}
\(v 1, v r \quad\) & REAL for sggev \\
& DOUBLE PRECISION for dggev \\
COMPLEX for cggev \\
& DOUBLE COMPLEX for zggev.
\end{tabular}

Arrays:
vl(ldvl,*); the second dimension of \(v l\) must be at least \(\max (1, n)\).
If jobvl=' V ', the left generalized eigenvectors \(u(\mathrm{j})\) are stored one after another in the columns of \(v 1\), in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have abs \((\mathrm{Re})+\) \(\operatorname{abs}(\mathrm{Im})=1\). If jobvl \(=\mathrm{I}^{\prime} \mathrm{N}^{\prime}, \mathrm{VI}\) is not referenced. For real flavors:
If the j -th eigenvalue is real, then \(u(\mathrm{j})=v l(:, \mathrm{j})\), the j -th column of \(v\). If the \(j\)-th and \((\mathrm{j}+1)\)-st eigenvalues form a complex conjugate pair, then \(u(\mathrm{j})=v l(:, \mathrm{j})+i^{\star} v l(: \mathrm{j}+1)\) and \(u(\mathrm{j}+1)=v \perp(:, \mathrm{j})-i^{\star} v \perp(:, \mathrm{j}+1)\), where \(i=\sqrt{-1}\).
For complex flavors:
\(u(\mathrm{j})=v l(: \mathrm{j})\), the j -th column of \(v \_\).
vr (Idvr,*); the second dimension of \(v r\) must be at least \(\max (1, n)\).
If jobvr \(=\) ' \(\mathrm{V}^{\prime}\), the right generalized eigenvectors \(v(\mathrm{j})\) are stored one after another in the columns of \(v r\), in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have abs \((\mathrm{Re})+\) \(\operatorname{abs}(\mathrm{Im})=1\). If jobvr \(={ }^{\prime} \mathrm{N}^{\prime}, \mathrm{vr}\) is not referenced. For real flavors:
If the j -th eigenvalue is real, then \(v(\mathrm{j})=v r(: \mathrm{j})\), the j -th column of \(v r\). If the j -th and \((\mathrm{j}+1)\)-st eigenvalues form a complex conjugate pair, then \(v(\mathrm{j})=v r(:, \mathrm{j})+i^{\star} v r(:, \mathrm{j}+1)\) and \(v(\mathrm{j}+1)=v r(:, \mathrm{j})-i^{\star} v r(:, \mathrm{j}+1)\).
For complex flavors:
\(v(\mathrm{j})=v v(:, \mathrm{j})\), the j -th column of \(v r\).
On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work.
```

info INTEGER.
If info = 0, the execution is successful.
If info =-i, the ith parameter had an illegal value.
If info = i, and
i\leqn:
the QZ iteration failed. No eigenvectors have been
calculated, but alphar(j), alphai(j) (for real flavors),
or alpha(j) (for complex flavors), and beta(j),
j=info+1,···,n should be correct.
i>n
i=n+1: other than QZ iteration failed in ?hgeqz;
i=n+2: error return from ?tgevc.

```

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily overor underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually comparable with \(\operatorname{norm}(A)\) in magnitude, and beta always less than and usually comparable with norm \((B)\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?ggevx}

Computes the generalized eigenvalues, and, optionally, the left and/or right generalized eigenvectors.
```

call sggevx (balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alphar, alphai, beta, vl, ldvl, vr, ldvr, ilo, ihi,
Iscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, iwork, bwork, info)
call dggevx (balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alphar, alphai, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, iwork, bwork, info)
call cggevx (balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alpha, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, rwork, iwork, bwork, info)
call zggevx (balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
alpha, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
lwork, rwork, iwork, bwork, info)

```

\section*{Discussion}

This routine computes for a pair of \(n\)-by- \(n\) real/complex nonsymmetric matrices \((A, B)\), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, Iscale, rscale, abnrm, and b.bnrm), reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).
A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(\lambda\) or a ratio alpha / beta \(=\lambda\), such that \(A-\lambda \star B\) is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta \(=0\) and
even for both being zero.
The right generalized eigenvector \(v(\mathrm{j})\) corresponding to the generalized eigenvalue \(\lambda(\mathrm{j})\) of \((A, B)\) satisfies
\[
A * v(\mathrm{j})=\lambda(\mathrm{j}) \star B^{\star} v(\mathrm{j}) .
\]

The left generalized eigenvector \(u(\mathrm{j})\) corresponding to the generalized eigenvalue \(\lambda(\mathrm{j})\) of \((A, B)\) satisfies
\[
u(\mathrm{j})^{H_{\star}} A=\lambda(\mathrm{j}){ }^{\star} u(\mathrm{j})^{H_{\star}} B
\]
where \(u(\mathrm{j})^{H}\) denotes the conjugate transpose of \(u(\mathrm{j})\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{balanc} & CHARACTER*1. Must be 'N', 'P', 'S', or 'B'. Specifies the balance option to be performed. \\
\hline & \begin{tabular}{l}
If balanc='N', do not diagonally scale or permute; \\
If balanc='P', permute only; \\
If balanc='S', scale only; \\
If balanc='B', both permute and scale.
\end{tabular} \\
\hline & Computed reciprocal condition numbers will be for the matrices after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does. \\
\hline \multirow[t]{3}{*}{jobv1} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobvl='N', the left generalized eigenvectors are not computed; \\
\hline & If jobvl='V', the left generalized eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{jobvr} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobvr \(=\) ' \(N\) ', the right generalized eigenvectors are not computed; \\
\hline & If jobvr \(=\) ' V ', the right generalized eigenvectors are computed. \\
\hline \multirow[t]{2}{*}{sense} & CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. \\
\hline & Determines which reciprocal condition number are computed. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If sense \(={ }^{\prime} \mathrm{N}\) ', none are computed; \\
If sense \(={ }^{\prime} \mathrm{E}^{\prime}\), computed for eigenvalues only; \\
If sense \(=\) ' \(V\) ', computed for eigenvectors only; \\
If sense \(=\) ' B', computed for eigenvalues and eigenvectors.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrices \(A, B, v l\), and \(v r\) \((n \geq 0)\). \\
\hline \multirow[t]{9}{*}{a, b, work} & REAL for sggevx \\
\hline & DOUBLE PRECISION for dggevx \\
\hline & COMPLEX for cggevx \\
\hline & DOUBLE COMPLEX for zggevx. \\
\hline & Arrays: \\
\hline & \(a(I d a, *)\) is an array containing the \(n-b y-n\) matrix \(A\) (first of the pair of matrices). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(b(I d b, *)\) is an array containing the \(n\)-by- \(n\) matrix \(B\) (second of the pair of matrices). \\
\hline & The second dimension of \(b\) must be at least \(\max (1, n)\). work (lwork) is a workspace array. \\
\hline lda & INTEGER. The first dimension of the array \(a\). Must be at least \(\max (1, n)\). \\
\hline 1 db & INTEGER. The first dimension of the array \(b\). Must be at least \(\max (1, n)\). \\
\hline ldvl, Idvr & \begin{tabular}{l}
INTEGER. The first dimensions of the output matrices \(v 1\) and \(v r\), respectively. Constraints: \\
\(l d v l \geq 1\). If jobvl='V', \(l d v l \geq \max (1, n)\). \\

\end{tabular} \\
\hline \multirow[t]{2}{*}{lwork} & INTEGER. The dimension of the array work. For real flavors: \\
\hline & \[
\begin{aligned}
& \text { lwork } \geq \max (1,6 n) \text {; } \\
& \text { if sense }=\text { 'E', Iwork } \geq 12 n ; \\
& \text { if sense }=\text { 'V', or 'B', Iwork } \geq 2 n^{2}+12 n+16 \text {. }
\end{aligned}
\]
For complex flavors: \\
\hline
\end{tabular}
```

 lwork}\geq max(1,2n)
 if sense ='N', or 'E', lwork\geq 2n;
if sense = 'V', or 'B', lwork \geq 2n'+2n.
rwork REAL for cggevx
DOUBLE PRECISION for zggevx
Workspace array, DIMENSION at least max (1,6n).
This array is used in complex flavors only.
iwork INTEGER.
Workspace array, DIMENSION at least (n+6) for real
flavors and at least (}n+2\mathrm{) for complex flavors.
Not referenced if sense = 'E'.
bwork LOGICAL.
Workspace array, DIMENSION at least max (1,n).
Not referenced if sense='N'.

```

\section*{Output Parameters}
```

a, b	On exit, these arrays have been overwritten.
	If jobvl='V' or jobvr='V' or both, then a contains the first part of the real Schur form of the "balanced" versions of the input A and B, and b contains its second part.
alphar, alphai	REAL for sggevx;
	Arrays, DIMENSION at least max $(1, n)$ each. Contain values that form generalized eigenvalues in real flavors. See beta.
alpha	COMP LEX for cggevx;
	DOUBLE COMPLEX for zggevx.
	Array, DIMENSION at least max $(1, n)$. Contain values that form generalized eigenvalues in complex flavors. See beta.
beta	REAL for sggevx
	DOUBLE PRECISION for dggevx
	COMPLEX for cggevx
	DOUBLE COMPLEX for zggevx.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Array, DIMENSION at least max \((1, n)\).
For real flavors:
On exit, (alphar(j) + alphai( \(\mathbf{j}) \star i) / b e t a(j), j=1, \ldots, n\), will be the generalized eigenvalues.
If alphai \((\mathrm{j})\) is zero, then the j -th eigenvalue is real; if positive, then the j -th and \((\mathrm{j}+1)\)-st eigenvalues are a complex conjugate pair, with alphai( \(\mathbf{j}+1\) ) negative. For complex flavors:
On exit, alpha(j)/beta( \(\mathbf{j}), \mathrm{j}=1, \ldots, n\), will be the generalized eigenvalues.
See also Application Notes below.
REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Arrays:
vl(ldv1,*); the second dimension of vl must be at least \(\max (1, n)\).
If jobvl \(=\) ' \(v\) ', the left generalized eigenvectors \(u(\mathrm{j})\) are stored one after another in the columns of \(v 1\), in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have abs \((\mathrm{Re})+\) \(\operatorname{abs}(\mathrm{Im})=1\). If jobvl \(=\mathrm{N}^{\prime}, \mathrm{vI}\) is not referenced. For real flavors:
If the j -th eigenvalue is real, then \(u(\mathrm{j})=v l(: \mathrm{j})\), the j -th column of \(v 1\). If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then \(u(\mathrm{j})=v l(:, \mathrm{j})+i^{\star} v l(:, \mathrm{j}+1)\) and \(u(\mathrm{j}+1)=v l(:, \mathrm{j})-i^{\star} v l(:, \mathrm{j}+1)\), where \(i=\sqrt{-1}\).
For complex flavors:
\(u(\mathrm{j})=v l(: \mathrm{j})\), the j -th column of \(v \_\).
\(v r(I d v r, *)\); the second dimension of \(v r\) must be at least \(\max (1, n)\).

If jobvr \(=\) ' V ', the right generalized eigenvectors \(v(\mathrm{j})\) are stored one after another in the columns of \(v r\), in the same order as their eigenvalues. Each eigenvector will
be scaled so the largest component have abs(Re) + \(\operatorname{abs}(\operatorname{Im})=1\). If jobvr \(={ }^{\prime} \mathrm{N}^{\prime}\), vr is not referenced. For real flavors:
If the j -th eigenvalue is real, then \(v(\mathrm{j})=\operatorname{vr}(:, \mathrm{j})\), the j -th column of \(v r\). If the j -th and \((\mathrm{j}+1)\)-st eigenvalues form a complex conjugate pair, then \(v(\mathrm{j})=v r(:, \mathrm{j})+i^{\star} v r(:, \mathrm{j}+1)\) and \(v(\mathrm{j}+1)=\operatorname{vr}(:, \mathrm{j})-i^{\star} \operatorname{vr}(:, \mathrm{j}+1)\).
For complex flavors:
\(v(\mathrm{j})=v r(:, \mathrm{j})\), the j -th column of \(v r\).
ilo, ihi INTEGER.
ilo and ihi are integer values such that on exit \(A(\mathrm{i}, \mathrm{j})=0\) and \(B(\mathrm{i}, \mathrm{j})=0\) if \(\mathrm{i}>\mathrm{j}\) and \(\mathrm{j}=1, \ldots\), ilo- 1 or \(\mathrm{i}=\mathrm{i} h \mathrm{i}+1, \ldots, n\).
If balanc='N'or'S', ilo=1 and ihi=n.
Iscale, rscale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max \((1, n)\) each.
Iscale contains details of the permutations and scaling factors applied to the left side of \(A\) and \(B\).
If \(P L(\mathrm{j})\) is the index of the row interchanged with row j , and \(D L(\mathrm{j})\) is the scaling factor applied to row j , then
\[
\begin{aligned}
\text { Iscale }(\mathrm{j}) & =P L(\mathrm{j}), \quad \text { for } \mathrm{j}=1, \ldots, i l o-1 \\
= & D L(\mathrm{j}), \quad \text { for } \mathrm{j}=i l o, \ldots, i h i \\
= & P L(\mathrm{j}) \quad \text { for } \mathrm{j}=i h i+1, \ldots, n .
\end{aligned}
\]

The order in which the interchanges are made is \(n\) to ihit1, then 1 to ilo-1.
rscale contains details of the permutations and scaling factors applied to the right side of \(A\) and \(B\). If \(P R(\mathrm{j})\) is the index of the column interchanged with column j , and \(D R(\mathrm{j})\) is the scaling factor applied to column j , then
\[
\begin{aligned}
\text { rscale }(\mathrm{j}) & =P R(\mathrm{j}), \quad \text { for } \mathrm{j}=1, \ldots, i l o-1 \\
= & D R(\mathrm{j}), \quad \text { for } \mathrm{j}=i l o, \ldots, \text { ihi } \\
= & P R(\mathrm{j}) \quad \text { for } \mathrm{j}=i h i+1, \ldots, n .
\end{aligned}
\]

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline & The order in which the interchanges are made is \(n\) to ihitl, then 1 to ilo-1. \\
\hline \multirow[t]{3}{*}{abnrm, bbnrm} & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & The one-norms of the balanced matrices \(A\) and \(B\), respectively. \\
\hline \multirow[t]{4}{*}{rconde, rcondv} & REAL for single precision flavors \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for double precision flavors. \\
Arrays, DTMENsion at least max \((1, n)\) each
\end{tabular} \\
\hline & \begin{tabular}{l}
If sense \(=\) 'E', or 'B', rconde contains the reciprocal condition numbers of the selected eigenvalues, stored in consecutive elements of the array. For a complex conjugate pair of eigenvalues two consecutive elements of rconde are set to the same value. Thus rconde(j), rcondv(j), and the j -th columns of \(v I\) and \(v r\) all correspond to the same eigenpair (but not in general the j-th eigenpair, unless all eigenpairs are selected). \\
If sense \(=\) ' \(V^{\prime}\), rconde is not referenced.
\end{tabular} \\
\hline & \begin{tabular}{l}
If sense \(=\) 'V', or 'B', rcondv contains the estimated reciprocal condition numbers of the selected eigenvectors, stored in consecutive elements of the array. For a complex eigenvector two consecutive elements of rcondv are set to the same value. If the \\
 rcondv(j) is set to 0 ; this can only occur when the true value would be very small anyway. \\
If sense ='E', rcondv is not referenced.
\end{tabular} \\
\hline work (1) & On exit, if info \(=0\), then work (1) returns the required minimal size of 1 work. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & \begin{tabular}{l}
If info \(=-i\), the \(i\) th parameter had an illegal value. \\
If \(\operatorname{infO}=i\), and
\end{tabular} \\
\hline & \\
\hline
\end{tabular}
the \(Q Z\) iteration failed. No eigenvectors have been calculated, but alphar(j), alphai(j) (for real flavors), or alpha(j) (for complex flavors), and beta(j), \(\mathrm{j}=\) info \(+1, \ldots, n\) should be correct.
\(i>n\) : errors that usually indicate LAPACK problems:
\(i=n+1\) : other than \(Q Z\) iteration failed in ?hgeqz;
\(i=n+2\) : error return from ?tgevc.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
The quotients \(a \operatorname{lphar}(\mathrm{j}) / b e t a(\mathrm{j})\) and \(a \operatorname{lphai}(\mathrm{j}) / b e t a(\mathrm{j})\) may easily overor underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually comparable with \(\operatorname{norm}(A)\) in magnitude, and beta always less than and usually comparable with norm \((B)\).

\section*{References}
\begin{tabular}{ll} 
[LUG] & \begin{tabular}{l} 
E. Anderson, Z. Bai et al. LAPACK User's Guide. Third \\
edition, SIAM, Philadelphia, 1999.
\end{tabular} \\
[Golub96] & \begin{tabular}{l} 
G.Golub, C. Van Loan. Matrix Computations. Johns \\
\\
\end{tabular} \\
& Hopkins University Press, Baltimore, third edition, \\
& 1996.
\end{tabular}

\title{
LAPACK Auxiliary Routines
}

This chapter describes the Intel \({ }^{\circledR}\) Math Kernel Library implementation of LAPACK auxiliary routines. The library includes auxiliary routines for both real and complex data.
Routine naming conventions, mathematical notation, and matrix storage schemes used for LAPACK auxiliary routines are the same as for the driver and computational routines described in previous chapters.
Routines are listed in alphabetical order of the routine or function group name (which always begins with -?).

\section*{?lacgv}

Conjugates a complex vector.
```

call clacgv (}n,x,\mp@code{incx}
call zlacgv (n, x, incx)

```

\section*{Discussion}

This routine conjugates a complex vector \(x\) of length \(n\) and increment incx (see Vector Arguments in BLAS in Appendix A).

\section*{Input Parameters}
\(n \quad\) INTEGER. The length of the vector \(x(n \geq 0)\).
x COMPLEX for clacgv COMPLEX*16 for zlacgv. Array, dimension ( \(1+(n-1) * \mid\) incx \(\mid)\). Contains the vector of length \(n\) to be conjugated.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
incx INTEGER. The spacing between successive elements of \(x\).

Output Parameters
On exit, overwritten with con \(j g(x)\).

\section*{?lacrm}

Multiplies a complex matrix by a square
real matrix.
```

call clacrm (m, n, a, lda, b, ldb, c, ldc, rwork)
call zlacrm (m, n, a, lda, b, ldb, c, ldc, rwork)

```

\section*{Discussion}

This routine performs a simple matrix-matrix multiplication of the form
\[
C=A * B,
\]
where \(A\) is \(m-\) by \(-n\) and complex, \(B\) is \(n-b y-n\) and real, \(C\) is \(m-b y-n\) and complex.

\section*{Input Parameters}
m
\(n\)
a
lda

INTEGER. The number of rows of the matrix \(A\) and of the matrix \(C(m \geq 0)\).
INTEGER. The number of columns and rows of the matrix \(B\) and the number of columns of the matrix \(C\) \((n \geq 0)\).

COMPLEX for clacrm
COMPLEX*16 for zlacrm
Array, DIMENSION (Ida, n). Contains the \(m-b y-n\) matrix \(A\).
integer. The leading dimension of the array \(a\), \(I d a \geq \max (1, m)\).
\begin{tabular}{ll} 
b & REAL for clacrm \\
& DOUBLE PRECISION for zlacrm \\
& Array, DIMENSION \((I d b, n)\). Contains the \(n\)-by- \(n\) \\
& matrix \(B\). \\
\(I d b \quad\) & INTEGER. The leading dimension of the array \(b\), \\
& \(I d b \geq \max (1, n)\). \\
rwork \(\quad\) & INTEGER. The leading dimension of the output array \(c\), \\
& \(I d c \geq \max (1, n)\). \\
& REAL for clacrm \\
& DOUBLE PRECISION for zlacrm
\end{tabular}

Workspace array, DIMENSION \(\left(2{ }^{\star} m^{\star} n\right)\).
Output Parameters
```

C COMPLEX for clacrm
COMPLEX*16 for zlacrm
Array, DIMENSION ($I d c, n$). Contains the $m-b y-n$ matrix C.

```

\section*{?lacrt}

Performs a linear transformation of a
pair of complex vectors.
```

call clacrt (n, cx, incx, cy, incy, c, s)
call zlacrt (n, cx, incx, cy, incy, c, s)

```

\section*{Discussion}

This routine performs the following transformation
\[
\left(\begin{array}{rr}
c & s \\
-s & c
\end{array}\right)\binom{x}{y} \Rightarrow\binom{x}{y}
\]
where \(c, s\) are complex scalars and \(x, y\) are complex vectors.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The number of elements in the vectors \(c x\) and \(c y(n \geq 0)\). \\
\hline \multirow[t]{4}{*}{cx, cy} & COMPLEX for clacrt \\
\hline & COMPLEX*16 for zlacrt \\
\hline & Arrays, dimension ( \(n\) ). \\
\hline & Contain input vectors \(x\) and \(y\), respectively. \\
\hline incx & INTEGER. The increment between successive elements of \(c x\). \\
\hline incy & INTEGER. The increment between successive elements of cy. \\
\hline \(c, s\) & COMPLEX for clacrt \\
\hline & COMPLEX*16 for zlacrt \\
\hline
\end{tabular}

Complex scalars that define the transform matrix
\(\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right]\)

\section*{Output Parameters}
\begin{tabular}{ll}
\(c x\) & On exit, overwritten with \(c^{\star} x+s^{\star} y\). \\
\(c y\) & On exit, overwritten with \(-s^{\star} x+c^{\star} y\).
\end{tabular}

\section*{?laesy}

Computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix, and checks that the norm of the matrix of eigenvectors is larger than a threshold value.
```

call claesy (a, b, c, rt1, rt2, evscal, cs1, sn1)
call zlaesy (a, b, c, rt1, rt2, evscal, cs1, sn1)

```

\section*{Discussion}

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix
\[
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right],
\]
provided the norm of the matrix of eigenvectors is larger than some threshold value.
\(r t 1\) is the eigenvalue of larger absolute value, and rt 2 of smaller absolute value. If the eigenvectors are computed, then on return \((c s 1, s n 1)\) is the unit eigenvector for \(r t 1\), hence
\[
\left[\begin{array}{cc}
\operatorname{csi} & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{csi} 1
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \cdot\left[\begin{array}{cc}
\operatorname{cs1} & -\operatorname{sn} 1 \\
\operatorname{sn1} & \operatorname{cs1}
\end{array}\right]=\left[\begin{array}{cc}
r t 1 & 0 \\
0 & \text { rt2 }
\end{array}\right]
\]

\section*{Input Parameters}
```

a, b, c
COMPLEX for claesy
COMPLEX*16 for zlaesy

```

Elements of the input matrix.

\section*{Output Parameters}
```

rt1, rt2 COMPLEX for claesy
COMPLEX*16 for zlaesy

```

Eigenvalues of larger and smaller modulus, respectively.
COMPLEX for claesy
COMPLEX*16 for zlaesy
The complex value by which the eigenvector matrix was scaled to make it orthonormal. If evscal is zero, the eigenvectors were not computed. This means one of two things: the 2-by-2 matrix could not be diagonalized, or the norm of the matrix of eigenvectors before scaling was larger than the threshold value thresh (set to 0.1E0).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
```

cs1, sn1 COMPLEX for claesy
COMPLEX*16 for zlaesy

```

If evscal is not zero, then (csi, sn1) is the unit right eigenvector for \(r t 1\).

\section*{?rot}

\section*{Applies a plane rotation with real cosine and complex sine to a pair of complex vectors.}
```

call crot (}n,cx, incx, cy, incy, c, s
call zrot (n, cx, incx, cy, incy, c, s)

```

\section*{Discussion}

This routine applies a plane rotation, where the cosine (c) is real and the sine ( \(s\) ) is complex, and the vectors \(c x\) and \(c y\) are complex. This routine has its real equivalents in BLAS (see ?rot in Chapter 2).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & integer. The number of elements in the vectors cx and \(c y\). \\
\hline \multirow[t]{3}{*}{\(c x, c y\)} & COMPLEX for crot \\
\hline & COMPLEX*16 for zrot \\
\hline & Arrays of dimension ( \(n\) ), contain input vectors \(x\) and \(y\), respectively. \\
\hline incx & INTEGER. The increment between successive elements of \(c x\). \\
\hline incy & INTEGER. The increment between successive elements of cy. \\
\hline c & REAL for crot \\
\hline & DOUBLE PRECISION for zrot \\
\hline
\end{tabular}
\(S\)
COMPLEX for crot
COMPLEX*16 for zrot
Values that define a rotation
\(\left[\begin{array}{cc}c & s \\ -\operatorname{conjg}(s) & c\end{array}\right]\)
where \(c^{*} c+s^{*} \operatorname{conjg}(s)=1.0\).

\section*{Output Parameters}
```

cx On exit, overwritten with c*x + s*y.
cy On exit, overwritten with -conjg(s)*x+c*y.

```

\section*{?spmv}

Computes a matrix-vector product for complex vectors using a complex
symmetric packed matrix.
```

call cspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

```
call zspmv ( uplo, \(n, ~ a l p h a, ~ a p, ~ x, ~ i n c x, ~ b e t a, ~ y, ~ i n c y ~) ~\)

\section*{Discussion}

These routines perform a matrix-vector operation defined as
```

y := alpha*a*x + beta*y,

```
where:
alpha and beta are complex scalars,
\(x\) and \(y\) are \(n\)-element complex vectors
\(a\) is an \(n\)-by- \(n\) complex symmetric matrix, supplied in packed form.
These routines have their real equivalents in BLAS (see ?spmv in Chapter 2).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix \(a\) is supplied in the packed array \(a p\), as follows: \\
\hline & \begin{tabular}{l}
If uplo = 'U' or 'u', the upper triangular part of the matrix \(a\) is supplied in the array \(a p\). \\
If uplo= 'L' or ' 1 ', the lower triangular part of the matrix \(a\) is supplied in the array \(a p\).
\end{tabular} \\
\hline n & Integer. Specifies the order of the matrix \(a\). The value of \(n\) must be at least zero. \\
\hline alpha, beta & COMPLEX for cspmv COMPLEX*16 for zspmv \\
\hline \(a p\) & \begin{tabular}{l}
Specify complex scalars alpha and beta. When beta is supplied as zero, then \(y\) need not be set on input. \\
COMPLEX for cspmv \\
COMPLEX*16 for zspmv
\end{tabular} \\
\hline & Array, DIMENSION at least \(\left(\left(n^{*}(n+1)\right) / 2\right)\). Before entry, with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on. Before entry, with uplo = ' L ' or ' 1 ', the array \(a p\) must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(2,1)\) and \(a(3,1)\) respectively, and so on. \\
\hline \(x\) & \begin{tabular}{l}
COMPLEX for cspmv \\
COMPLEX*16 for zspmv
\end{tabular} \\
\hline & Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array x must contain the \(n\)-element vector \(x\). \\
\hline incx & Integer. Specifies the increment for the elements of \(x\). The value of incx must not be zero. \\
\hline
\end{tabular}
y
COMPLEX for cspmv
COMPLEX*16 for zspmv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array y must contain the \(n\)-element vector \(y\).
incy INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero.

\section*{Output Parameters}

Overwritten by the updated vector \(y\).

\section*{?spr}

Performs the symmetrical rank-1 update of a complex symmetric packed matrix.
```

call cspr(uplo, n, alpha, x, incx, ap)
call zspr(uplo, n, alpha, x, incx, ap)

```

\section*{Discussion}

The ?spr routines perform a matrix-vector operation defined as
```

a:= alpha* **Conjg(x') + a,

```
where:
alpha is a complex scalar
\(x\) is an \(n\)-element complex vector
\(a\) is an \(n\)-by- \(n\) complex symmetric matrix, supplied in packed form.
These routines have their real equivalents in BLAS (see ?spr in Chapter 2).

\section*{Input Parameters}
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix \(a\) is supplied in the packed array \(a p\), as follows:

If uplo = 'U' or 'u', the upper triangular part of the matrix \(a\) is supplied in the array \(a p\).
If uplo= 'L' or ' 1 ', the lower triangular part of the matrix \(a\) is supplied in the array \(a p\).
INTEGER. Specifies the order of the matrix \(a\). The value of \(n\) must be at least zero.
alpha
\(x\)

COMPLEX for cspr
COMPLEX*16 for zspr
Specifies the scalar alpha.
COMPLEX for cspr
COMPLEX*16 for zspr
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).
integer. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

COMPLEX for cspr
COMPLEX* 16 for zspr
Array, DIMENSION at least \(\left(\left(n^{\star}(n+1)\right) / 2\right)\). Before entry, with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on.
Before entry, with uplo = ' L' or ' 1 ', the array \(a p\) must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that \(a p\) (1) contains \(a(1,1), a p(2)\) and \(a p\) (3) contain \(a(2,1)\) and \(a(3,1)\) respectively, and so on.
Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero.

Output Parameters
\begin{tabular}{ll} 
ap & With uplo \(=\) 'U' or 'u', overwritten by the upper \\
triangular part of the updated matrix.
\end{tabular} triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

\section*{?symv}

Computes a matrix-vector product for a complex symmetric matrix.
```

call csymv (uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call zsymv (uplo, n, alpha, a, lda, x, incx, beta, y, incy)

```

\section*{Discussion}

These routines perform the matrix-vector operation defined as
\(y:=a l p h a * a * x+b e t a * y\),
where:
alpha and beta are complex scalars
\(x\) and \(y\) are \(n\)-element complex vectors
\(a\) is an \(n-b y-n\) symmetric complex matrix.
These routines have their real equivalents in BLAS (see ?symv in Chapter 2).

\section*{Input Parameters}
\begin{tabular}{ll} 
uplo & CHARACTER*1. Specifies whether the upper or lower \\
triangular part of the array a is to be referenced, as \\
follows:
\end{tabular}
n

If uplo='U' or 'u', the upper triangular part of the array \(a\) is to be referenced .
If uplo = 'L' or 'l', the lower triangular part of the array \(a\) is to be referenced.
INTEGER. Specifies the order of the matrix \(a\). The value of \(n\) must be at least zero.

COMPLEX for csymv
COMPLEX* 16 for zsymv
Specify the scalars alpha and beta. When beta is supplied as zero, then \(y\) need not be set on input.

COMPLEX for csymv
COMPLEX* 16 for zsymv
Array, DIMENSION (Ida, \(n\) ). Before entry with uplo = 'U' or 'u', the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced. Before entry with uplo = 'L' or 'l', the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced.
integer. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least \(\max (1, n)\).

COMPLEX for csymv
COMPLEX* 16 for zsymv
Array, DIMENSION at least \((1+(n-1) * a b s\) (incx) ). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.
COMPLEX for csymv
COMPLEX*16 for zsymv

Array, DIMENSION at least \((1+(n-1) * a b s\) (incy)). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).
incy INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero.

\section*{Output Parameters}

\section*{?syr}

Performs the symmetric rank-1 update
of a complex symmetric matrix.
```

call csyr(uplo, n, alpha, x, incx, a, lda)
call zsyr(uplo, n, alpha, x, incx, a, lda)

```

\section*{Discussion}

These routines perform the symmetric rank 1 operation defined as
```

a := alpha*\mp@subsup{x}{}{*}\mp@subsup{X}{}{\prime} + a,

```
where:
alpha is a complex scalar
\(x\) is an \(n\)-element complex vector
\(a\) is an \(n\)-by- \(n\) complex symmetric matrix.
These routines have their real equivalents in BLAS (see ?syr in Chapter 2).

\section*{Input Parameters}

\footnotetext{
uplo
CHARACTER*1. Specifies whether the upper or lower triangular part of the array \(a\) is to be referenced, as follows:
}

If uplo= 'U' or 'u', the upper triangular part of the array \(a\) is to be referenced.
If uplo='L' or 'l', the lower triangular part of the array \(a\) is to be referenced.
INTEGER. Specifies the order of the matrix \(a\). The value of \(n\) must be at least zero.
alpha
\(x\)

COMPLEX for csyr
COMPLEX*16 for zsyr
Specifies the scalar alpha.
COMPLEX for csyr
COMPLEX*16 for zsyr
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector x .
integer. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

COMPLEX for csyr
COMPLEX*16 for zsyr
Array, DIMEnsion (Ida, n). Before entry with uplo='U' or ' \(u\) ', the leading \(n\)-by- \(n\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced.
Before entry with uplo = 'L' or ' 1 ', the leading \(n\)-by- \(n\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced.
integer. Specifies the first dimension of \(a\) as declared in the calling (sub)program. The value of \(I d a\) must be at least \(\max (1, n)\).

\section*{Output Parameters}

With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array \(a\) is overwritten by the lower triangular part of the updated matrix.

\section*{i?max1}

Finds the index of the vector element whose real part has maximum absolute value.
```

index = icmax1 (n, cx, incx)
index = izmax1 (n, cx, incx)

```

\section*{Discussion}

Given a complex vector \(c x\), the i?max1 functions return the index of the vector element whose real part has maximum absolute value. These functions are based on the BLAS functions icamax/izamax, but using the absolute value of the real part. They are designed for use with clacon/zlacon.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. Specifies the number of elements in the \\
& vector \(c x\). \\
\(c x\) & COMPLEX for icmax1 \\
& COMPLEX*16 for izmax1
\end{tabular}

Array, DIMENSION at least ( \(1+(n-1) * a b s(i n c x))\).
Contains the input vector.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
incx INTEGER. Specifies the spacing between successive elements of \(c x\).

\section*{Output Parameters}
index INTEGER. Contains the index of the vector element whose real part has maximum absolute value.

\section*{ilaenv}

> Environmental enquiry function which returns values for tuning algorithmic performance.
```

value = ilaenv (ispec, name, opts, n1, n2, n3, n4)

```

\section*{Discussion}

Enquiry function ilaenv is called from the LAPACK routines to choose problem-dependent parameters for the local environment. See ispec for a description of the parameters.

This version provides a set of parameters which should give good, but not optimal, performance on many of the currently available computers. Users are encouraged to modify this subroutine to set the tuning parameters for their particular machine using the option and problem size information in the arguments.

This routine will not function correctly if it is converted to all lower case. Converting it to all upper case is allowed.

Input Parameters
ispec
INTEGER. Specifies the parameter to be returned as the value of ilaenv:
\(=1\) : the optimal blocksize; if this value is 1 , an unblocked algorithm will give the best performance.
\(=2\) : the minimum block size for which the block routine should be used; if the usable block size is less than this value, an unblocked routine should be used.
\(=3\) : the crossover point (in a block routine, for \(N\) less than this value, an unblocked routine should be used)
\(=4\) : the number of shifts, used in the nonsymmetric eigenvalue routines
\(=5\) : the minimum column dimension for blocking to be used; rectangular blocks must have dimension at least \(k\) by \(m\), where \(k\) is given by ilaenv \((2, \ldots)\) and \(m\) by ilaenv(5,...)
\(=6\) : the crossover point for the SVD (when reducing an \(m\) by \(n\) matrix to bidiagonal form, if \(\max (m, n) / \min (m, n)\) exceeds this value, a \(Q R\) factorization is used first to reduce the matrix to a triangular form.)
\(=7\) : the number of processors
\(=8\) : the crossover point for the multishift \(Q R\) and \(Q Z\) methods for nonsymmetric eigenvalue problems.
=9: maximum size of the subproblems at the bottom of the computation tree in the divide-and-conquer algorithm (used by ?gelsd and ?gesdd)
=10: IEEE NaN arithmetic can be trusted not to trap \(=11\) : infinity arithmetic can be trusted not to trap CHARACTER* (*).The name of the calling subroutine, in either upper case or lower case.
opts ChARACTER* (*). The character options to the subroutine name, concatenated into a single character string. For example, uplo \(=\) 'U', trans \(=\) 'T', and diag \(=\) ' \(N\) ' for a triangular routine would be specified as opts = 'UTN'.
\(n 1, n 2, n 3, n 4\) INTEGER. Problem dimensions for the subroutine name; these may not all be required.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}

INTEGER.
If value \(\geq 0\) :the valueofthe parameterspecifiedby ispec; If value \(=-\mathrm{k}<0\) : the \(k\)-th argument had an illegal value.

\section*{Application Notes}

The following conventions have been used when calling ilaenv from the LAPACK routines:
1) opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2) The problem dimensions \(n 1, n 2, n 3, n 4\) are specified in the order that they appear in the argument list for name. n1 is used first, n2 second, and so on, and unused problem dimensions are passed a value of -1 .
3) The parameter value returned by ilaenv is checked for validity in the calling subroutine. For example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:
```

nb = ilaenv(1, 'strtri', uplo // diag, n, -1, -1, -1)
if(nb.le.1) nb = max(1, n)

```

\section*{Isame}

Tests two characters for equality regardless of case.
```

val = lsame (ca, cb)

```

\section*{Discussion}

This logical function returns. TRUE. if \(c a\) is the same letter as \(c b\) regardless of case.

Input Parameters
```

ca, cb CHARACTER*1. Specify the single characters to be compared.

```

Output Parameters
val LOGICAL. Result of the comparison.

\section*{Isamen}

Tests two character strings for equality
regardless of case.
```

val = lsamen (n, ca, cb)

```

\section*{Discussion}

This logical function tests if the first \(n\) letters of the string ca are the same as the first \(n\) letters of \(c b\), regardless of case. The function 1 samen returns .TRUE. if \(c a\) and \(c b\) are equivalent except for case and .FALSE. otherwise. Isamen also returns .FALSE. if len (ca) or len (cb) is less than \(n\).

\section*{Input Parameters}
\(\left.\begin{array}{ll}n & \text { INTEGER. The number of characters in } c a \text { and } c b \text { to be } \\
\text { compared. }\end{array}\right] \quad c b \quad\)\begin{tabular}{l} 
CHARACTER* ( \(*\) ). Specify two character strings of \\
length at least \(n\) to be compared. Only the first \(n\) \\
characters of each string will be accessed.
\end{tabular}

Output Parameters
val LOGICAL. Result of the comparison.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?sum1}

Forms the 1-norm of the complex vector using the true absolute value.
```

res = scsum1 (n, cx, incx)
res = dzsum1 (n, cx, incx)

```

Discussion
Given a complex vector \(c x\), scsum1/dzsum1 functions take the sum of the absolute values of vector elements and return a single/double precision result, respectively. These functions are based on scasum/dzasum from Level 1 BLAS, but use the true absolute value and were designed for use with clacon/zlacon.

\section*{Input Parameters}
n

CX COMP LEX for scsum1
COMPLEX* 16 for dzsum1
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\).
Contains the input vector whose elements will be summed.
incx INTEGER. Specifies the spacing between successive elements of \(c x\) (incx \(>0\) ).

\section*{Output Parameters}

REAL for scsum1
DOUBLE PRECISION for dzsum1
Contains the sum of absolute values.

\section*{?gbtf2}

Computes the \(L U\) factorization of \(a\) general band matrix using the unblocked version of the algorithm.
```

call sgbtf2 (m, n, kl, ku, ab, ldab, ipiv, info)
call dgbtf2 (m, n, kl, ku, ab, ldab, ipiv, info)
call cgbtf2 (m, n, kl, ku, ab, ldab, ipiv, info)
call zgbtf2 (m, n, kl, ku, ab, ldab, ipiv, info)

```

\section*{Discussion}

The routine forms the \(L U\) factorization of a general real/complex \(m\) by \(n\) band matrix \(A\) with \(k l\) sub-diagonals and \(k u\) super-diagonals. The routine uses partial pivoting with row interchanges and implements the unblocked version of the algorithm, calling Level 2 BLAS. See also ?gbtrf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows of the matrix \(A(m \geq 0)\). \\
\hline \(n\) & Integer. The number of columns in \(A(n \geq 0)\). \\
\hline kI & integer. The number of sub-diagonals within the band of \(A(k I \geq 0)\). \\
\hline ku & INTEGER. The number of super-diagonals within the band of \(A(k u \geq 0)\). \\
\hline \(a b\) & \begin{tabular}{l}
REAL for sgbtf2 \\
DOUBLE PRECISION for dgbtf2 \\
COMPLEX for cgbtf2 \\
COMPLEX*16 for zgbtf2. \\
Array, DIMENSION (Idab,*). \\
The array \(a b\) contains the matrix \(A\) in band storage (see Matrix Arguments). \\
The second dimension of \(a b\) must be at least \(\max (1, n)\).
\end{tabular} \\
\hline ldab & INTEGER. The first dimension of the array \(a b\).
\[
(I d a b \geq 2 k I+k u+1)
\] \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a b\) & Overwritten by details of the factorization. The diagonal and \(k l+k u\) super-diagonals of \(U\) are stored in the first \(1+k I+k u\) rows of \(a b\). The multipliers used during the factorization are stored in the next \(k l\) rows. \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION at least max \((1, \min (m, n))\). \\
The pivot indices: row \(i\) was interchanged with row ipiv(i).
\end{tabular} \\
\hline info & INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations. \\
\hline
\end{tabular}

\section*{?gebd2}

Reduces a general matrix to bidiagonal form using an unblocked algorithm.
```

call sgebd2 (m, n, a, lda, d, e, tauq, taup, work, info)
call dgebd2 (m, n, a, lda, d, e, tauq, taup, work, info)
call cgebd2 (m, n, a, lda, d, e, tauq, taup, work, info)
call zgebd2 (m, n, a, lda, d, e, tauq, taup, work, info)

```

\section*{Discussion}

The routine reduces a general \(m\)-by- \(n\) matrix \(A\) to upper or lower bidiagonal form \(B\) by an orthogonal (unitary) transformation: \(Q^{\prime} A P=B\)
If \(m \geq n, B\) is upper bidiagonal; if \(m<n, B\) is lower bidiagonal.
The routine does not form the matrices \(Q\) and \(P\) explicitly, but represents them as products of elementary reflectors. If \(m \geq n\),
\(Q=H(1) H(2) \ldots H(n)\) and \(\mathrm{P}=G(1) G(2) \ldots G(n-1)\)
If \(m<n\),
\(Q=H(1) H(2) \ldots H(m-1)\) and \(\mathrm{P}=G(1) G(2) \ldots G(m)\)
Each \(H(\mathrm{i})\) and \(G(\mathrm{i})\) has the form
\(H(\mathrm{i})=I-\operatorname{tau} q^{\star} \nu^{\star} v^{\prime} \quad\) and \(G(\mathrm{i})=I-\tan { }^{\star} u^{\star} u^{\prime}\)
where tauq and taup are scalars (real for sgebd2/dgebd2, complex for cgebd2/zgebd2), and \(v\) and \(u\) are vectors (real for sgebd2/dgebd2, complex for cgebd2/zgebd2).

Input Parameters
\begin{tabular}{ll}
\(m\) & INTEGER. The number of rows in the matrix \(A(m \geq 0)\). \\
\(n\) & INTEGER. The number of columns in \(A(n \geq 0)\). \\
\(a\), work & \begin{tabular}{l} 
REAL for sgebd2 \\
\\
\\
DOUBLE PRECISION for dgebd2 \\
\\
COMPLEX for cgebd2 \\
\\
COMPLEX*16 for \(z\) gebd2.
\end{tabular}
\end{tabular}

Arrays:
a(lda,*) contains the \(m\)-by-n general matrix \(A\) to be reduced. The second dimension of a must be at least \(\max (1, n)\).
work (*) is a workspace array, the dimension of work must be at least \(\max (1, m, n)\).

INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).

\section*{Output Parameters}
a
d
e

If \(m \geq n\), the diagonal and first super-diagonal of \(a\) are overwritten with the upper bidiagonal matrix \(B\). Elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and elements above the first superdiagonal, with the array taup, represent the orthogonal/unitary matrix \(P\) as a product of elementary reflectors.

If \(m<n\), the diagonal and first sub-diagonal of \(a\) are overwritten by the lower bidiagonal matrix \(B\). Elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and elements above the diagonal, with the array taup, represent the orthogonal/unitary matrix \(P\) as a product of elementary reflectors.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max \((1, \min (m, n)\) ). Contains the diagonal elements of the bidiagonal matrix \(B: a(\mathbf{i})=a(\mathbf{i}, \mathbf{i})\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least \(\max (1, \min (m, n)-1)\). Contains the off-diagonal elements of the bidiagonal matrix \(B\) :
```

 If m\geqn,e(i)=a(i,i+1) for i = 1,2,\ldots,n-1;
 If m<n,e(i)=a(i+1,i) for i = 1,2,\ldots,m-1.
 tauq,taup REAL for sgebd2
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2
COMPLEX*16 for zgebd2.
Arrays, DIMENSION at least max (1, min(m,n)).
Contain scalar factors of the elementary reflectors which
represent orthogonal/unitary matrices Q and P,
respectively.
info INTEGER.
If info = 0, the execution is successful.
If info =-i, the ith parameter had an illegal value.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?gehd2}

Reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
```

call sgehd2 (n, ilo, ihi, a, lda, tau, work, info)
call dgehd2 (n, ilo, ihi, a, lda, tau, work, info)
call cgehd2 (n, ilo, ihi, a, lda, tau, work, info)
call zgehd2 (n, ilo, ihi, a, lda, tau, work, info)

```

\section*{Discussion}

The routine reduces a real/complex general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal or unitary similarity transformation \(Q^{\prime} A Q=H\).

The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of elementary reflectors.

\section*{Input Parameters}
```

ilo, ihi

```
a, work

INTEGER. The order of the matrix \(A(n \geq 0)\).
INTEGER. It is assumed that \(A\) is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n. If \(A\) has been output by ? gebal, then ilo and ihi must contain the values returned by that routine. Otherwise they should be set to \(i l o=1\) and \(i h i=n\). Constraint: \(1 \leq i l o \leq i h i \leq \max (1, n)\).

REAL for sgehd2 DOUBLE PRECISION for dgehd2
COMP LEX for cgehd2
COMPLEX*16 for zgehd2.
Arrays:
a (lda, *) contains the \(n\)-by- \(n\) matrix \(A\) to be reduced. The second dimension of a must be at least \(\max (1, n)\). work ( \(n\) ) is a workspace array.
lda
INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).

\section*{Output Parameters}

On exit, the upper triangle and the first subdiagonal of \(A\) are overwritten with the upper Hessenberg matrix \(H\) and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors. See Application Notes below.
tau REAL for sgehd2
DOUBLE PRECISION for dgehd2
COMP LEX for cgehd2
COMPLEX* 16 for \(z g e h d 2\).
Array, DIMENSION at least max ( \(1, n-1\) ).
Contains the scalar factors of elementary reflectors. See Application Notes below.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The matrix \(Q\) is represented as a product of (ihi-ilo) elementary reflectors
\(Q=H(i l 0) H(i l 0+1) \ldots H(i h i-1)\)
Each \(H(\mathrm{i})\) has the form
\(H(\mathrm{i})=I-\tan * v * v^{\prime}\)
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: \mathrm{i})=0, v(\mathrm{i}+1)=1\) and \(v(i h i+1: n)=0\).
On exit, \(v(\mathrm{i}+2\) : ihi) is stored in \(a(\mathrm{i}+2: i h i, \mathrm{i})\) and tau in \(\operatorname{tau}(\mathrm{i})\).
The contents of a are illustrated by the following example, with \(n=7\), ilo \(=2\) and \(i h i=6\) :
\[
\begin{aligned}
& \text { on entry } \\
& \text { on exit } \\
& {\left[\begin{array}{ccccccc}
a & a & a & a & a & a & a \\
a & a & a & a & a & a \\
a & a & a & a & a & a \\
a & a & a & a & a & a \\
a & a & a & a & a & a \\
a & a & a & a & a & a \\
& & & & & a
\end{array}\right] \quad\left[\begin{array}{llllll}
a & a & h & h & h & h
\end{array}\right]}
\end{aligned}
\]
where \(a\) denotes an element of the original matrix \(A, \quad h\) denotes a modified element of the upper Hessenberg matrix \(H\), and \(v_{\mathrm{i}}\) denotes an element of the vector defining \(H(\mathrm{i})\).

\section*{?gelq2}

Computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
```

call sgelq2 (m, n, a, lda, tau, work, info)
call dgelq2 (m, n, a, lda, tau, work, info)
call cgelq2 (m, n, a, lda, tau, work, info)
call zgelq2 (m, n, a, lda, tau, work, info)

```

\section*{Discussion}

The routine computes an \(L Q\) factorization of a real/complex \(m\) by \(n\) matrix \(A\) as \(A=L Q\).
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors :
\(Q=H(\mathrm{k}) \ldots H(2) H(1)\left(\right.\) or \(Q=H(\mathrm{k})^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}\) for complex flavors), where \(\mathrm{k}=\min (m, n)\)

Each \(H(\mathrm{i})\) has the form
\(H(\mathrm{i})=I-t a u^{*} \nu^{*} v^{\prime}\)
where \(t a u\) is a real/complex scalar stored in \(\operatorname{tau}(\mathrm{i})\), and \(v\) is a real/complex vector with \(v(1: \mathrm{i}-1)=0\) and \(v(\mathrm{i})=1\).
On exit, \(v(\mathrm{i}+1: n)\) is stored in \(a(\mathrm{i}, \mathrm{i}+1: n)\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & INTEGER. The number of rows in the matrix \(A(m \geq 0)\). \\
\(n\) & INTEGER. The number of columns in \(A(n \geq 0)\). \\
& REAL for sgelq2 \\
& DOUBLE PRECISION for dgelq2 \\
& COMPLEX for cgelq2 \\
& COMPLEX*16 for zgelq2.
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Arrays:
a(lda,*) contains the \(m\)-by-n matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
work ( \(m\) ) is a workspace array.
lda
INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & Overwritten by the factorization data as follows: on exit, the elements on and below the diagonal of the array a contain the \(m\)-by- \(\min (n, m)\) lower trapezoidal matrix \(L\) ( \(L\) is lower triangular if \(n \geq m\) ); the elements above the diagonal, with the array \(t a u\), represent the orthogonal/unitary matrix \(Q\) as a product of \(\min (n, m)\) elementary reflectors. \\
\hline \multirow[t]{6}{*}{tau} & REAL for sgelq2 \\
\hline & DOUBLE PRECISION for dgelq2 \\
\hline & COMPLEX for cgelq2 \\
\hline & COMPLEX*16 for zgelq2. \\
\hline & Array, DIMENSION at least max ( \(1, \min (m, n)\) ). \\
\hline & Contains scalar factors of the elementary reflectors. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{?geql2}

Computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
```

call sgeql2 (m, n, a, lda, tau, work, info)
call dgeql2 (m, n, a, lda, tau, work, info)
call cgeql2 (m, n, a, lda, tau, work, info)
call zgeql2 (m, n, a, lda, tau, work, info)

```

\section*{Discussion}

The routine computes a \(Q L\) factorization of a real/complex \(m\) by \(n\) matrix \(A\) as \(A=Q L\).
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors :
\(Q=H(\mathrm{k}) \ldots H(2) H(1)\), where \(\mathrm{k}=\min (m, n)\)
Each \(H(\mathrm{i})\) has the form
\(H(\mathrm{i})=I-\operatorname{ta} u^{*} v^{\star} v^{\prime}\)
where \(t a u\) is a real/complex scalar stored in \(\operatorname{tau}(\mathrm{i})\), and \(v\) is a real/complex vector with \(v(m-\mathrm{k}+\mathrm{i}+1: m)=0\) and \(\nu(m-\mathrm{k}+\mathrm{i})=1\).

On exit, \(v(1: m-\mathrm{k}+\mathrm{i}-1)\) is stored in \(a(1: m-\mathrm{k}+\mathrm{i}-1, n-\mathrm{k}+\mathrm{i})\).

\section*{Input Parameters}
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n
a, work REAL for sgeql2
DOUBLE PRECISION for dgeql2
COMPLEX for cgeql2
COMPLEX*16 for zgeql2.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Arrays:
a(lda,*) contains the \(m\)-by-n matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
work ( \(m\) ) is a workspace array.
lda
INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & Overwritten by the factorization data as follows: on exit, if \(m \geq n\), the lower triangle of the subarray \(a(m-n+1: m, 1: n)\) contains the \(n-b y-n\) lower triangular matrix \(L\); if \(m<n\), the elements on and below the \((n-m)\) th superdiagonal contain the \(m\)-by- \(n\) lower trapezoidal matrix \(L\); the remaining elements, with the array \(\operatorname{tau}\), represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors. \\
\hline \multirow[t]{6}{*}{tau} & REAL for sgeql2 \\
\hline & DOUBLE PRECISION for dgeql2 \\
\hline & COMPLEX for cgeql2 \\
\hline & COMPLEX*16 for zgeql2. \\
\hline & Array, DIMENSION at least max \((1, \min (m, n))\). \\
\hline & Contains scalar factors of the elementary reflectors. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{?geqr2}

Computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
```

call sgeqr2 (m, n, a, lda, tau, work, info)
call dgeqr2 (m, n, a, lda, tau, work, info)
call cgeqr2 (m, n, a, lda, tau, work, info)
call zgeqr2 (m, n, a, lda, tau, work, info)

```

\section*{Discussion}

The routine computes a \(Q R\) factorization of a real/complex \(m\) by \(n\) matrix \(A\) as \(A=Q R\).
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors :
\(Q=H(1) H(2) \ldots H(\mathrm{k})\), where \(\mathrm{k}=\min (m, n)\)
Each \(H(\mathrm{i})\) has the form
\(H(\mathrm{i})=I-t a u^{*} v^{*} v^{\prime}\)
where \(t a u\) is a real/complex scalar stored in \(\operatorname{tau}(\mathrm{i})\), and \(v\) is a real/complex vector with \(v(1: \mathrm{i}-1)=0\) and \(v(\mathrm{i})=1\).

On exit, \(v(\mathrm{i}+1: m)\) is stored in \(a(\mathrm{i}+1: m, \mathrm{i})\).

\section*{Input Parameters}
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n
a, work REAL for sgeqr2
DOUBLE PRECISION for dgeqr2
COMPLEX for cgeqr2
COMPLEX*16 for zgeqr2.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Arrays:
a(lda,*) contains the \(m\)-by-n matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
work ( \(n\) ) is a workspace array.
lda
INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & Overwritten by the factorization data as follows: on exit, the elements on and above the diagonal of the array a contain the \(\min (n, m)\)-by- \(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementar reflectors. \\
\hline \multirow[t]{6}{*}{tau} & REAL for sgeqr2 \\
\hline & DOUBLE PRECISION for dgeqr2 \\
\hline & COMPLEX for cgeqr2 \\
\hline & COMPLEX*16 for zgeqr2. \\
\hline & Array, DIMENSION at least max \((1, \min (m, n))\). \\
\hline & Contains scalar factors of the elementary reflectors. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{?gerq2}

Computes the \(R Q\) factorization of a general rectangular matrix using an unblocked algorithm.
```

call sgerq2 (m, n, a, lda, tau, work, info)
call dgerq2 (m, n, a, lda, tau, work, info)
call cgerq2 (m, n, a, lda, tau, work, info)
call zgerq2 (m, n, a, lda, tau, work, info)

```

\section*{Discussion}

The routine computes a \(R Q\) factorization of a real/complex \(m\) by \(n\) matrix \(A\) as \(A=R Q\).
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors :
\(Q=H(1) H(2) \ldots H(\mathrm{k})\), where \(\mathrm{k}=\min (m, n)\)
Each \(H(\mathrm{i})\) has the form
\(H(\mathrm{i})=I-t a u^{*} v^{*} v^{\prime}\)
where \(t a u\) is a real/complex scalar stored in \(\operatorname{tau}(\mathrm{i})\), and \(v\) is a real/complex vector with \(v(n-k+i+1: n)=0\) and \(v(n-k+i)=1\).

On exit, \(v(1: n-\mathrm{k}+\mathrm{i}-1)\) is stored in \(a(m-\mathrm{k}+\mathrm{i}, 1: n-\mathrm{k}+\mathrm{i}-1)\).

\section*{Input Parameters}
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n
a, work REAL for sgerq2
DOUBLE PRECISION for dgerq2
COMPLEX for cgerq2
COMPLEX*16 for zgerq2.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Arrays:
a(lda,*) contains the \(m\)-by-n matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
work ( \(m\) ) is a workspace array.
lda
INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).

\section*{Output Parameters}
Overwritten by the factorization data as follows:
on exit, if \(m \leq n\), the upper triangle of the subarray
a( \(1: m, n-m+1: n)\) contains the \(m\)-by- \(m\) upper triangular
matrix \(R ;\)
if \(m>n\), the elements on and above the \((m-n)\) th
subdiagonal contain the \(m\)-by- \(n\) upper trapezoidal
matrix \(R\); the remaining elements, with the array \(t a u\),
represent the orthogonal/unitary matrix \(Q\) as a product
of elementary reflectors.
REAL for sgerq2
DOUBLE PRECISION for dgerq2

COMPLEX for cgerq2

COMPLEX*16 for zgerq2.
Array, DIMENSION at least max \((1, \min (m, n))\).
Contains scalar factors of the elementary reflectors.
info \(\quad\)

\section*{?gesc2}

Solves a system of linear equations using the LU factorization with complete pivoting computed by?getc 2 .
```

call sgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)
call dgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)
call cgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)
call zgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)

```

\section*{Discussion}

This routine solves a system of linear equations
\[
A X=\text { scale } * R H S
\]
with a general n-by-n matrix A using the \(L U\) factorization with complete pivoting computed by ?getc2.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & Integer. The order of the matrix \(A\). \\
\hline \multirow[t]{9}{*}{a, rhs} & REAL for sgesc2 \\
\hline & DOUBLE PRECISION for dgesc2 \\
\hline & COMPLEX for cgesc2 \\
\hline & COMPLEX*16 for zgesc2. \\
\hline & Arrays: \\
\hline & a (Ida, *) contains the \(L U\) part of the factorization of the \(n\)-by- \(n\) matrix \(A\) computed by ?getc2: \\
\hline & \(A=P L U Q\). \\
\hline & The second dimension of a must be at least max \((1, n)\); \\
\hline & rhs ( \(n\) ) contains on entry the right hand side vector for the system of equations. \\
\hline Ida & INTEGER. The first dimension of \(a\); at least \(\max (1, n)\). \\
\hline
\end{tabular}
ipiv INTEGER.
Array, DIMENSION at least \(\max (1, n)\).
The pivot indices: for \(1 \leq_{i} \leq_{n}\), row \(i\) of the matrix has been interchanged with row ipiv(i).

INTEGER.
Array, DIMENSION at least \(\max (1, n)\).
The pivot indices: for \(1 \leq_{j} \leq_{n}\), column \(j\) of the matrix has been interchanged with column jpiv(j).

\section*{Output Parameters}
rhs
scale

On exit, overwritten with the solution vector \(X\).
REAL for sgesc2/cgesc2 DOUBLE PRECISION for dgesc2/zgesc2
Contains the scale factor. scale is chosen in the range \(0 \leq_{\text {scale }} \leq 1\) to prevent overflow in the solution.

\section*{?getc2}

Computes the LU factorization with complete pivoting of the general n-by-n matrix.
```

call sgetc2 (n, a, lda, ipiv, jpiv, info)
call dgetc2 (n, a, lda, ipiv, jpiv, info)
call cgetc2 (n, a, lda, ipiv, jpiv, info)
call zgetc2 (n, a, lda, ipiv, jpiv, info)

```

\section*{Discussion}

This routine computes an \(L U\) factorization with complete pivoting of the \(n\)-by- \(n\) matrix \(A\). The factorization has the form \(A=P * L * U * Q\), where \(P\) and \(Q\) are permutation matrices, \(L\) is lower triangular with unit diagonal elements and \(U\) is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline a & REAL for sgetc2 \\
\hline & DOUBLE PRECISION for dgetc2 \\
\hline & COMPLEX for cgetc2 \\
\hline & COMPLEX*16 for zgetc2. \\
\hline & Array a(lda,*) contains the \(n\)-by- \(n\) matrix \(A\) to be factored. \\
\hline & The second dimension of a must be at least max \((1, n)\); \\
\hline Ida & INTEGER. The first dimension of \(a\); at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a \begin{tabular}{l} 
On exit, the factors \(L\) and \(U\) from the factorization \\
\(A=P * L^{*} U^{*} Q\); the unit diagonal elements of \(L\) are not \\
stored. If \(U(\mathrm{k}, \mathrm{k})\) appears to be less than smin, \(U(\mathrm{k}, \mathrm{k})\) is \\
given the value of smin, i.e., giving a nonsingular \\
perturbed system.
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & The pivot indices: for \(1 \leq_{i} \leq_{n}\), row \(i\) of the matrix has been interchanged with row ipiv(i). \\
\hline \multirow[t]{3}{*}{jpiv} & INTEGER. \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & The pivot indices: for \(1 \leq_{j} \leq_{n}\), column \(j\) of the matrix has been interchanged with column jpiv(j). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=k>0, U(k, k)\) is likely to produce overflow if we try to solve for \(x\) in \(A x=b\). So \(U\) is perturbed to avoid the overflow. \\
\hline
\end{tabular}

\section*{?getf2}

Computes the \(L U\) factorization of a general \(m\) by \(n\) matrix using partial pivoting with row interchanges (unblocked algorithm).
```

call sgetf2 (m, n, a, lda, ipiv, info)
call dgetf2 (m, n, a, lda, ipiv, info)
call cgetf2 (m, n, a, lda, ipiv, info)
call zgetf2 (m, n, a, lda, ipiv, info)

```

\section*{Discussion}

The routine computes the \(L U\) factorization of a general \(m-b y-n\) matrix \(A\) using partial pivoting with row interchanges. The factorization has the form
\[
A=P L U
\]
where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>n\) ) and \(U\) is upper triangular (upper trapezoidal if \(m<n\) ).

\section*{Input Parameters}
\(m \quad\) INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
\(n \quad\) INTEGER. The number of columns in \(A(n \geq 0)\).
a REAL for sget \(f 2\)
DOUBLE PRECISION for dgetf2
COMPLEX for cgetf2
COMPLEX*16 for zgetf2.
Array, DIMENSION ( \(1 \mathrm{da}, *\) ). Contains the matrix \(A\) to be factored. The second dimension of a must be at least \(\max (1, n)\).

Integer. The first dimension of \(a\); at least \(\max (1, m)\).

\section*{Output Parameters}

Overwritten by \(L\) and \(U\). The unit diagonal elements of \(L\) are not stored.

INTEGER.
Array, DIMENSION at least \(\max (1, \min (m, n))\).
The pivot indices: for \(1 \leq_{i} \leq_{n}\), row \(i\) was interchanged with row ipiv(i).
INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If \(i n f o=i>0, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?gtts2}

Solves a system of linear equations with a tridiagonal matrix using the \(L U\) factorization computed by ?gttrf.
```

call sgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
call dgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
call cgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
call zgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

```

\section*{Discussion}

This routine solves for \(X\) one of the following systems of linear equations with multiple right hand sides:
\(A X=B \quad A^{T} X=B \quad\) or \(\quad A^{H} X=B \quad\) (for complex matrices only), with a tridiagonal matrix A using the \(L U\) factorization computed by ?gttrf.

\section*{Input Parameters}
```

integer. Must be 0, 1, or 2.
Indicates the form of the equations being solved:
If itrans=0, then AX=B (no transpose).
If itrans=1, then A}\mp@subsup{A}{}{T}X=B\mathrm{ (transpose).
If itrans=2, then A}\mp@subsup{A}{}{H}X=B\mathrm{ (conjugate transpose).
n INTEGER. The order of the matrix A(n\geq0).
nrhs INTEGER. The number of right-hand sides, i.e., the
number of columns in B (nrhs }\geq0)\mathrm{ .
dl,d,du,du2,b REAL for sgtts2
DOUBLE PRECISION for dgtts2
COMPLEX for cgtts2
COMPLEX*16 for zgtts2.
Arrays: dl(n-1),d(n),du(n-1),du2(n-2),
b(ldb,nrhs).
The array dl contains the (n-1) multipliers that define

```
the matrix \(L\) from the \(L U\) factorization of \(A\).
The array \(d\) contains the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of A.

The array \(d u\) contains the \((n-1)\) elements of the first super-diagonal of \(U\).
The array du2 contains the ( \(n-2\) ) elements of the second super-diagonal of \(U\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
\(I d b \quad\) INTEGER. The leading dimension of \(b\); must be \(I d b \geq \max (1, n)\).
ipiv INTEGER.
Array, DIMENSION ( \(n\) ).
The pivot indices array, as returned by ?gttrf.

\section*{Output Parameters}

\section*{b}

Overwritten by the solution matrix \(X\).

\section*{?labad}

Returns the square root of the underflow
and overflow thresholds if the
exponent-range is very large.
```

call slabad (small, large)

```
call dlabad ( small, large )

\section*{Discussion}

This routine takes as input the values computed by slamch/dlamch for underflow and overflow, and returns the square root of each of these values if the log of large is sufficiently large. This subroutine is intended to identify machines with a large exponent range, such as the Crays, and

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
redefine the underflow and overflow limits to be the square roots of the values computed by ?lamch. This subroutine is needed because ?lamch does not compensate for poor arithmetic in the upper half of the exponent range, as is found on a Cray.

\section*{Input Parameters}
```

small REAL for slabad
DOUBLE PRECISION for dlabad.
The underflow threshold as computed by ?lamch.
large REAL for slabad
DOUBLE PRECISION for dlabad.
The overflow threshold as computed by ?lamch.

```
Output Parameters
large On exit, if \(\log 10\) (large) is sufficiently large, the square root of large, otherwise unchanged.

\section*{?labrd}

\section*{Reduces the first nb rows and columns of a general matrix to a bidiagonal form.}
```

call slabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
call dlabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
call clabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
call zlabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

```

\section*{Discussion}

The routine reduces the first \(n b\) rows and columns of a general \(m\)-by- \(n\) matrix \(A\) to upper or lower bidiagonal form by an orthogonal/unitary transformation \(Q^{\prime} \quad A P\), and returns the matrices \(X\) and \(Y\) which are needed to apply the transformation to the unreduced part of \(A\).
If \(m \geq n, A\) is reduced to upper bidiagonal form; if \(m<n\), to lower bidiagonal form.
The matrices \(Q\) and \(P\) are represented as products of elementary reflectors: \(Q=H(1) H(2) \ldots H(n b)\) and \(\mathrm{P}=G(1) G(2) \ldots G(n b)\)
Each \(H(\mathrm{i})\) and \(G(\mathrm{i})\) has the form
\(H(\mathrm{i})=I-\operatorname{tau} q^{\star} \nu^{*} v^{\prime} \quad\) and \(G(\mathrm{i})=I-\operatorname{taup}{ }^{\star} u^{\star} u^{\prime}\)
where tauq and taup are scalars, and \(v\) and \(u\) are vectors.
The elements of the vectors \(v\) and \(u\) together form the \(m\)-by-nb matrix \(V\) and the \(n b\)-by- \(n\) matrix \(U^{\prime}\) which are needed, with \(X\) and \(Y\), to apply the transformation to the unreduced part of the matrix, using a block update of the form: \(A:=A-V^{*} Y^{\prime}-X^{*} U^{\prime}\).
This is an auxiliary routine called by ? gebrd.

\section*{Input Parameters}
\(m \quad\) Integer. The number of rows in the matrix \(A(m \geq 0)\).
\(n \quad\) INTEGER. The number of columns in \(A(n \geq 0)\).
\begin{tabular}{|c|c|}
\hline \(n \mathrm{~b}\) & INTEGER. The number of leading rows and columns of \(A\) to be reduced. \\
\hline a & REAL for slabrd \\
\hline & DOUBLE PRECISION for dlabrd \\
\hline & COMPLEX for clabrd \\
\hline & COMPLEX*16 for zlabrd. \\
\hline & Array \(a(l d a, *)\) contains the matrix \(A\) to be reduced. The second dimension of a must be at least \(\max (1, n)\). \\
\hline Ida & INTEGER. The first dimension of \(a\); at least \(\max (1, m)\). \\
\hline \(1 d x\) & INTEGER. The first dimension of the output array \(x\); must beat least max \((1, m)\). \\
\hline \(1 d y\) & INTEGER. The first dimension of the output array \(y\); must beat least \(\max (1, n)\). \\
\hline
\end{tabular}
d, e

On exit, the first \(n b\) rows and columns of the matrix are overwritten; the rest of the array is unchanged.
If \(m \geq n\), elements on and below the diagonal in the first nb columns, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors; and elements above the diagonal in the first \(n b\) rows, with the array taup, represent the orthogonal/unitary matrix \(P\) as a product of elementary reflectors.
If \(m<n\), elements below the diagonal in the first \(n b\) columns, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and elements on and above the diagonal in the first \(n b\) rows, with the array taup, represent the orthogonal/unitary matrix \(P\) as a product of elementary reflectors.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION (nb) each.

The array \(d\) contains the diagonal elements of the first n.b rows and columns of the reduced matrix:
\(a(\mathbf{i})=a(\mathbf{i}, \mathbf{i})\).
The array e contains the off-diagonal elements of the first \(n b\) rows and columns of the reduced matrix.
tauq, taup REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.
Arrays, DIMENSION ( \(n b\) ) each.
Contain scalar factors of the elementary reflectors which represent the orthogonal/unitary matrices \(Q\) and \(P\), respectively.
REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.
Arrays, dimension \(x(I d x, n b), y(I d y, n b)\).
The array \(x\) contains the \(m\)-by- \(n b\) matrix \(X\) required to update the unreduced part of \(A\).
The array \(y\) contains the \(n\)-by- \(n b\) matrix \(Y\) required to update the unreduced part of \(A\).

\section*{Application Notes}

If \(m \geq n\), then for the elementary reflectors \(H(i)\) and \(G(i)\),
\(v(1: \mathrm{i}-1)=0, v(\mathrm{i})=1\), and \(v(\mathrm{i}: m)\) is stored on exit in \(a(\mathrm{i}: m, \mathrm{i})\);
\(u(1: i)=0, u(\mathrm{i}+1)=1\), and \(u(\mathrm{i}+1: n)\) is stored on exit in \(a(\mathrm{i}, \mathrm{i}+1: n)\);
tauq is stored in tauq(i) and taup in taup(i).
If \(m<n\),
\(v(1: \mathrm{i})=0, v(\mathrm{i}+1)=1\), and \(v(\mathrm{i}+1: m)\) is stored on exit in \(a(\mathrm{i}+2: m, \mathrm{i})\); \(u(1: \mathrm{i}-1)=0, u(\mathrm{i})=1\), and \(u(\mathrm{i}: n)\) is stored on exit in \(a(\mathrm{i}, \mathrm{i}+1: n)\); tauq is stored in tauq(i) and taup in taup(i).
The contents of \(a\) on exit are illustrated by the following examples with \(n b=2\) :
\[
\begin{array}{ll}
m=6, n=5(m>n) & m=5, n=6(m<n) \\
{\left[\begin{array}{ccccc}
1 & 1 & u_{1} & u_{1} & u_{1} \\
v_{1} & 1 & 1 & u_{2} & u_{2} \\
v_{1} & v_{2} & a & a & a \\
v_{1} & v_{2} & a & a & a \\
v_{1} & v_{2} & a & a & a \\
v_{1} & v_{2} & a & a & a
\end{array}\right]}
\end{array}
\]
where \(a\) denotes an element of the original matrix which is unchanged, \(v_{\mathrm{i}}\) denotes an element of the vector defining \(H(\mathrm{i})\), and \(u_{\mathrm{i}}\) an element of the vector defining \(G(i)\).

\section*{?lacon}

Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
```

call slacon (n, v, x, isgn, est, kase)
call dlacon (n, v, x, isgn, est, kase)
call clacon (n, v, x, est, kase)
call zlacon (n, v, x, est, kase)

```

\section*{Discussion}

This routine estimates the 1-norm of a square, real/complex matrix \(A\).
Reverse communication is used for evaluating matrix-vector products.

\section*{Input Parameters}

Integer. The order of the matrix \(A(n \geq 1)\).
```

v, x REAL for slacon
DOUBLE PRECISION for dlacon
COMPLEX for clacon
COMPLEX*16 for zlacon.
Arrays, DIMENSION (}n\mathrm{) each.
v}\mathrm{ is a workspace array.
x is used as input after an intermediate return.
INTEGER. Workspace array, DIMENSION (n), used with
real flavors only.
kase
INTEGER.
On the initial call to ?lacon, kase should be 0.

```

\section*{Output Parameters}

REAL for slacon/clacon
DOUBLE PRECISION for dlacon/zlacon
An estimate (a lower bound) for norm ( \(A\) ).
On an intermediate return, kase will be 1 or 2, indicating whether \(x\) should be overwritten by \(A *_{x}\) or \(A^{\prime}{ }^{*}\). On the final return from ? lacon, kase will again be 0 .

On the final return, \(v=A * \mathrm{w}\), where est \(=\) norm \((v) / \operatorname{norm}(w)\) ( \(w\) is not returned).

On an intermediate return, \(x\) should be overwritten by \(A{ }^{*}{ }_{x}, \quad\) if kase \(=1\), \(A^{\prime}{ }^{*}{ }_{x}, \quad\) if kase \(=2\), (where for complex flavors \(A^{\prime}\) is the conjugate transpose of \(A\) ), and ? lacon must be re-called with all the other parameters unchanged.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lacpy}

Copies all or part of one two-dimensional array to another.
```

call slacpy (uplo, m, n, a, lda, b, ldb)
call dlacpy (uplo, m, n, a, lda, b, ldb)
call clacpy (uplo, m, n, a, lda, b, ldb)
call zlacpy (uplo, m, n, a, lda, b, ldb)

```

\section*{Discussion}

This routine copies all or part of a two-dimensional matrix \(A\) to another matrix \(B\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. \\
\hline & \begin{tabular}{l}
Specifies the part of the matrix \(A\) to be copied to \(B\). \\
If uplo \(=\) 'U', the upper triangular part of \(A\) is copied. \\
If uplo = 'L', the lower triangular part of \(A\) is copied. \\
Otherwise, all of the matrix \(A\) is copied.
\end{tabular} \\
\hline \(m\) & INTEGER. The number of rows in the matrix \(A(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns in \(A(n \geq 0)\). \\
\hline a & REAL for slacpy \\
\hline & DOUBLE PRECISION for dlacpy \\
\hline & COMPLEX for clacpy \\
\hline & COMPLEX*16 for zlacpy. \\
\hline & Array \(a(I d a, *)\), contains the \(m-b y-n\) matrix \(A\). The second dimension of a must be at least \(\max (1, n)\). \\
\hline & If uplo = 'U', only the upper triangle or trapezoid is accessed; if uplo = 'L', only the lower triangle or trapezoid is accessed. \\
\hline Ida & INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, m)\). \\
\hline
\end{tabular}

INTEGER. The first dimension of the output array \(b ;\) \(I d b \geq \max (1, m)\).

\section*{Output Parameters}
```

b REAL for slacpy
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
COMPLEX*16 for zlacpy.
Array b (ldb,*), contains the m-by-n matrix B.
The second dimension of b must be at least max}(1,n)\mathrm{ .
On exit, B=A in the locations specified by uplo.

```

\section*{?ladiv}

Performs complex division in real arithmetic, avoiding unnecessary overflow.
```

call sladiv (a, b, c, d, p, q)
call dladiv (a, b, c, d, p, q)
res = cladiv (x, y)
res = zladiv (x, y)

```

\section*{Discussion}

The routines sladiv/dladiv perform complex division in real arithmetic as
\[
p+i q=\frac{a+i b}{c+i d}
\]

Complex functions cladiv/zladiv compute the result as
\[
\text { res }=x / y \text {, }
\]
where \(x\) and \(y\) are complex. The computation of \(x / y\) will not overflow on an intermediary step unless the results overflows.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
```

a, b, c, d REAL for sladiv
DOUBLE PRECISION for dladiv
The scalars a,b,c, and d in the above expression (for
real flavors only).
x, y COMPLEX for cladiv
COMPLEX*16 for zladiv
The complex scalars }x\mathrm{ and }y\mathrm{ (for complex flavors only).

```

\section*{Output Parameters}
```

p, $q \quad$	REAL for sladiv
	DOUBLE PRECISION for dladiv
	The scalars p and q in the above expression (for real
flavors only).	

```

\section*{?lae2}

Computes the eigenvalues of a 2-by-2 symmetric matrix.
```

call slae2 (a, b, c, rt1, rt2)
call dlae2 (a, b, c, rt1, rt2)

```

\section*{Discussion}

The routines sla2/dlae2 compute the eigenvalues of a 2-by-2 symmetric matrix
\[
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
\]

On return, \(r t 1\) is the eigenvalue of larger absolute value, and \(r t 1\) is the eigenvalue of smaller absolute value.

\section*{Input Parameters}
```

a, b, c REAL for slae2

```
    DOUBLE PRECISION for dlae2

The elements \(a, b\), and \(c\) of the 2-by- 2 matrix above.

\section*{Output Parameters}
```

rt1, rt2 REAL for slae2
DOUBLE PRECISION for dlae2
The computed eigenvalues of larger and smaller
absolute value, respectively.

```

\section*{Application Notes}
\(r t 1\) is accurate to a few ulps barring over/underflow. \(r t 2\) may be inaccurate if there is massive cancellation in the determinant \(a^{\star} c-b * b\); higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute \(r t 2\) accurately in all cases.

Overflow is possible only if \(r t 1\) is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / macheps.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?laebz}

Computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine? stebz.
```

call slaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol,
reltol, pivmin, d, e, e2, nval, ab, c, mout, nab,
work, iwork, info)
call dlaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol,
reltol, pivmin, d, e, e2, nval, ab, c, mout, nab,
work, iwork, info)

```

\section*{Discussion}

The routine ? laebz contains the iteration loops which compute and use the function \(N(w)\), which is the count of eigenvalues of a symmetric tridiagonal matrix \(T\) less than or equal to its argument \(w\). It performs a choice of two types of loops:
i job \(=1\), followed by
i job =2: It takes as input a list of intervals and returns a list of sufficiently small intervals whose union contains the same eigenvalues as the union of the original intervals. The input intervals are ( \(a b(\mathrm{j}, 1), a b(\mathrm{j}, 2) \mathrm{l}, \mathrm{j}=1, \ldots, \mathrm{mi} n \mathrm{p}\). The output interval ( \(a b(\mathrm{j}, 1), a b(\mathrm{j}, 2)]\) will contain eigenvalues \(n a b(\mathrm{j}, 1)+1, \ldots, \operatorname{nab}(\mathrm{j}, 2)\), where \(1 \leq \leq\) mout.
i job =3: It performs a binary search in each input interval ( \(a b(\mathrm{j}, 1), a b(\mathrm{j}, 2)]\) for a point \(w(\mathrm{j})\) such that \(N(w(\mathrm{j}))=n v a l(\mathrm{j})\), and uses \(c(\mathbf{j})\) as the starting point of the search. If such a \(w(\mathrm{j})\) is found, then on output \(a b(\mathrm{j}, 1)=a b(\mathrm{j}, 2)=w\). If no such \(w(\mathrm{j})\) is found, then on output \((a b(j, 1), a b(j, 2)]\) will be a small interval containing the point where \(N(w)\) jumps through nval(j), unless that point lies outside the initial interval.

Note that the intervals are in all cases half-open intervals, that is, of the form \((a, b]\), which includes \(b\) but not \(a\).

To avoid underflow, the matrix should be scaled so that its largest element is no greater than overflow** \((1 / 2) *\) underflow** \((1 / 4)\) in absolute value. To assure the most accurate computation of small eigenvalues, the matrix should be scaled to be not much smaller than that, either.

Note: the arguments are, in general, not checked for unreasonable values.

\section*{Input Parameters}
\(\left.\begin{array}{ll}\text { i job } & \text { INTEGER. Specifies what is to be done: } \\ & =1: \text { Compute nab for the initial intervals. } \\ & \text { 2: Perform bisection iteration to find eigenvalues of } T . \\ & \text { 3: Perform bisection iteration to invert } N(w) \text {, i.e., to } \\ \text { find a point which has a specified number of eigenvalues } \\ \text { of } T \text { to its left. } \\ & \text { Other values will cause ?laebz to return with info=-1. }\end{array}\right\}\)
\begin{tabular}{ll} 
nbmin & INTEGER. \\
The smallest number of intervals that should be \\
processed using a vector loop. If zero, then only the \\
scalar loop will be used. \\
REAL for slaebz \\
DOUBLE PRECISION for dlaebz. \\
The minimum (absolute) width of an interval. When an \\
interval is narrower than abstol, or than reltol times \\
the larger (in magnitude) endpoint, then it is considered \\
to be sufficiently small, i.e., converged. This must be at \\
least zero. \\
Reltol & REAL for slaebz \\
& DOUBLE PRECISION for dlaebz. \\
& The minimum relative width of an interval. When an \\
interval is narrower than abstol, or than reltol times \\
the larger (in magnitude) endpoint, then it is considered \\
to be sufficiently small, i.e., converged. Note: this \\
should always be at least radix*machine epsilon.
\end{tabular}
```

nval
ab
C
nab
work REAL for slaebz
DOUBLE PRECISION for dlaebz.
Workspace array, dimension (mmax).
iwork INTEGER.
Workspace array, dimension (mmax).

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline nval & The elements of \(n v a l\) will be reordered to correspond with the intervals in \(a b\). Thus, nval(j) on output will not, in general be the same as nval(j) on input, but it will correspond with the interval \((a b(j, 1), a b(j, 2)]\) on output. \\
\hline \(a b\) & The input intervals will, in general, be modified, split, and reordered by the calculation. \\
\hline mout & \begin{tabular}{l}
INTEGER. \\
If \(i\) job \(=1\), the number of eigenvalues in the intervals. \\
If \(i\) job=2 or 3 , the number of intervals output. \\
If \(i\) job \(=3\), mout will equal minp.
\end{tabular} \\
\hline nab & \begin{tabular}{l}
If \(i\) job \(=1\), then on output \(\operatorname{nab}(i, j)\) will be set to \(N(a b(i, j))\). \\
If \(i\) job \(=2\), then on output, nab( \(i, j\) ) will contain \(\max (n a(k), \min (n b(k), N(a b(i, j))))\), where \(k\) is the index of the input interval that the output interval \((a b(\mathrm{j}, 1), a b(\mathrm{j}, 2)]\) came from, and \(n a(k)\) and \(n b(k)\) are the the input values of \(\operatorname{nab}(k, 1)\) and \(\operatorname{nab}(k, 2)\).
\end{tabular} \\
\hline & If \(i\) job \(=3\), then on output, nab( \(\mathrm{i}, \mathrm{j})\) contains \(N(a b(\mathrm{i}, \mathrm{j}))\), unless \(N(w)>n v a l(i)\) for all search points w , in which case \(n a b(i, 1)\) will not be modified, i.e., the output value will be the same as the input value (modulo reorderings, see \(n v a l\) and \(a b\) ), or unless \(N(w)<n v a l(i)\) for all search points \(w\), in which case nab(i,2) will not be modified. \\
\hline info & INTEGER. \\
\hline & \(0: \quad\) All intervals converged.
1--mmax: The last info intervals did not converge.
\(\operatorname{mmax}+1:\) More than mmax intervals were generated. \\
\hline
\end{tabular}

\section*{Application Notes}

This routine is intended to be called only by other LAPACK routines, thus the interface is less user-friendly. It is intended for two purposes:
(a) finding eigenvalues. In this case, ? laebz should have one or more initial intervals set up in \(a b\), and ? laebz should be called with \(i\) job=1. This sets up nab, and also counts the eigenvalues. Intervals with no eigenvalues would usually be thrown out at this point. Also, if not all the eigenvalues in an interval i are desired, nab(i,1) can be increased or nab(i,2) decreased. For example, set nab( \(i, 1)=\) nab \((i, 2)-1\) to get the largest eigenvalue. ? laebz is then called with \(i\) job \(=2\) and max no smaller than the value of mout returned by the call with \(i\) job=1. After this ( \(i\) job=2) call, eigenvalues nab( \(\mathrm{i}, 1\) ) +1 through \(n a b(i, 2)\) are approximately \(a b(i, 1)\) (or \(a b(i, 2))\) to the tolerance specified by abstol and reltol.
(b) finding an interval ( \(a^{\prime}, b^{\prime}\) ] containing eigenvalues \(w(\mathrm{f}), \ldots, w(\mathrm{l})\). In this case, start with a Gershgorin interval \((a, b)\). Set up ab to contain 2 search intervals, both initially \((a, b)\). One nval element should contain f-1 and the other should contain l, while \(c\) should contain \(a\) and \(b\), respectively. nab( \(i, 1\) ) should be -1 and \(n a b(i, 2)\) should be \(n+1\), to flag an error if the desired interval does not lie in \((a, b)\). ? laebz is then called with \(i\) job=3. On exit, if \(w(\mathrm{f}-1)<w(\mathrm{f})\), then one of the intervals -- \(\mathrm{j}--\) will have \(a b(\mathbf{j}, 1)=a b(\mathbf{j}, 2)\) and \(\operatorname{nab}(\mathbf{j}, 1)=n a b(j, 2)=f-1\), while if, to the specified tolerance, \(w(\mathrm{f}-\mathrm{k})=\ldots=w(\mathrm{f}+\mathrm{r}), \mathrm{k}>0\) and \(\mathrm{r} \geq 0\), then the interval will have \(N(a b(\mathrm{j}, 1))=n a b(\mathrm{j}, 1)=\mathrm{f}-\mathrm{k}\) and \(N(a b(\mathrm{j}, 2))=n a b(\mathrm{j}, 2)=\mathrm{f}+\mathrm{r}\). The cases \(w(\mathrm{l})<\) \(w(1+1)\) and \(w(1-\mathrm{r})=\ldots=w(\mathrm{l}+\mathrm{k})\) are handled similarly.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?laed0}

Used by ?stedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
```

call slaedO(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs,
work, iwork, info)
call dlaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs,
work, iwork, info)
call claed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork,
iwork, info)
call zlaedO(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork,
iwork, info)

```

\section*{Discussion}

Real flavors of this routine compute all eigenvalues and (optionally) corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.

Complex flavors claedo / zlaedo compute all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix.

\section*{Input Parameters}
icompq INTEGER. Used with real flavors only.
If \(i c o m p q=0\), compute eigenvalues only.
If \(i_{\text {compq }}=1\), compute eigenvectors of original dense symmetric matrix also. On entry, the array \(q\) must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.
If icompq \(=2\), compute eigenvalues and eigenvectors of the tridiagonal matrix.
qSiz INTEGER.
```

n
d, e, rwork

```
```

INTEGER. The dimension of the symmetric tridiagonal matrix $(n \geq 0)$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
$d(*)$ contains the main diagonal of the tridiagonal matrix. The dimension of d must be at least $\max (1, n)$.
$e(*)$ contains the off-diagonal elements of the tridiagonal matrix. The dimension of e must be at least $\max (1, n-1)$.
rwork (*) is a workspace array used in complex flavors only. The dimension of rwork must be at least $\left(1+3 n+2 n \lg (n)+3 n^{2}\right)$, where $\lg (n)=$ smallest integer k such that $2^{k} \geq n$.
q, qstore REAL for slaed0
DOUBLE PRECISION for dlaed0
COMPLEX for claedo
COMPLEX*16 for zlaed0.
Arrays: $q(I d q, *)$, qstore (ldqs, *). The second dimension of these arrays must be at least $\max (1, n)$. For real flavors:
If $i c o m p q=0$, array q is not referenced.
If i compq $=1$, on entry, q is a subset of the columns of the orthogonal matrix used to reduce the full matrix to tridiagonal form corresponding to the subset of the full matrix which is being decomposed at this time. If $i c o m p q=2$, on entry, q will be the identity matrix. The array qstore is a workspace array referenced only when $i_{\text {compq }}=1$. Used to store parts of the eigenvector matrix when the updating matrix multiplies take place.

```

The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; \(q\) siz \(\geq n\) (for real flavors, qsiz \(\geq n\) if \(i c o m p q=1\) ).

For complex flavors:
On entry, \(q\) must contain an \(q s i z\)-by- \(n\) matrix whose columns are unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. The array qstore is a workspace array used to store parts of the eigenvector matrix when the updating matrix multiplies take place.
\begin{tabular}{|c|c|}
\hline \(1 d q\) & INTEGER. The first dimension of the array \(q\); \(I d q \geq \max (1, n)\). \\
\hline ldqs & INTEGER. The first dimension of the array qstore; \(I d q s \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{work} & REAL for slaed0 \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dlaedO. \\
Workspace array, used in real flavors only. \\
If \(i\) compq \(=0\) or 1 , the dimension of work must be at least \(\left(1+3 n+2 n \lg (n)+2 n^{2}\right)\), where \(\lg (n)=\) smallest integer \(k\) such that \(2^{k} \geq n\). \\
If \(i\) compq \(=2\), the dimension of work must be at least \(\left(4 n+n^{2}\right)\).
\end{tabular} \\
\hline \multirow[t]{4}{*}{iwork} & INTEGER. \\
\hline & Workspace array. \\
\hline & For real flavors, if \(i_{\text {compq }}=0\) or 1 , and for complex flavors, the dimension of iwork must be at least \((6+6 n+5 n \lg (n))\), \\
\hline & For real flavors, If \(i_{\text {compq }}=2\), the dimension of \(i w o r k\) must be at least \((3+5 n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, contains eigenvalues in ascending order.
On exit, the array has been destroyed.
If icompq \(=2\), on exit, \(q\) contains the eigenvectors of the tridiagonal matrix.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i>0\), the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns \(i /(n+1)\) through \(\bmod (i, n+1)\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?laed1}

Used by sstedc/dstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.
```

call slaedl(n, d, q, ldq, indxq, rho, cutpnt, work,
iwork, info)
call dlaedl(n, d, q, ldq, indxq, rho, cutpnt, work,
iwork, info)

```

\section*{Discussion}

The routine ?laed1 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and eigenvectors of a tridiagonal matrix. ?laed7 handles the case in which eigenvalues only or eigenvalues and eigenvectors of a full symmetric matrix (which was reduced to tridiagonal form) are desired.
\[
T=Q(\mathrm{in})\left(D(\mathrm{in})+r h o * \mathrm{Z}^{\star} \mathrm{z}^{\prime}\right) Q^{\prime}(\mathrm{in})=Q(\text { out }) * D(\text { out }) * Q^{\prime}(\text { out })
\]
where \(\mathrm{z}=Q^{\prime} u, u\) is a vector of length \(n\) with ones in the cutpnt and (cutpnt +1 ) -th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in \(Q\), and the eigenvalues are in \(D\). The algorithm consists of three stages:
The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the z vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?laed2.

The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine ?laed4 (as called by ?laed3). This routine also calculates the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The dimension of the symmetric tridiagonal matrix \((n \geq 0)\). \\
\hline \multirow[t]{6}{*}{d, q, work} & REAL for slaed1 \\
\hline & DOUBLE PRECISION for dlaedi. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the eigenvalues of the rank-1-perturbed matrix. The dimension of \(d\) must be at least \(\max (1, n)\). \\
\hline & \(q(I d q, *)\) contains the eigenvectors of the rank-1-perturbed matrix. The second dimension of \(q\) must be at least \(\max (1, n)\). \\
\hline & work (*) is a workspace array, dimension at least ( \(4 n+n^{2}\) ). \\
\hline \(1 d q\) & INTEGER. The first dimension of the array \(q\); \(I d q \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{indxq} & integer. Array, dimension ( \(n\) ). \\
\hline & On entry, the permutation which separately sorts the two subproblems in \(d\) into ascending order. \\
\hline \multirow[t]{3}{*}{rho} & REAL for slaed1 \\
\hline & DOUBLE PRECISION for dlaed. \\
\hline & The subdiagonal entry used to create the rank-1 modification. \\
\hline \multirow[t]{2}{*}{cutpnt} & INTEGER. \\
\hline & The location of the last eigenvalue in the leading sub-matrix. \(\min (1, n) \leq_{\text {cutpnt }} \leq n / 2\). \\
\hline iwork & INTEGER. Workspace array, dimension (4n). \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, contains the eigenvalues of the repaired matrix.
\begin{tabular}{|c|c|}
\hline q & On exit, \(q\) contains the eigenvectors of the repaired tridiagonal matrix. \\
\hline indxq & On exit, contains the permutation which will reintegrate the subproblems back into sorted order, that is, \(a(\) indxq( \(\mathrm{i}=1, n)\) ) will be in ascending order. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th parameter had an illegal value. \\
If info \(=1\), an eigenvalue did not converge.
\end{tabular} \\
\hline
\end{tabular}

\section*{?laed2}

Used by sstedc/dstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.
```

call slaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda,
w, q2, indx, indxc, indxp, coltyp, info)
call dlaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda,
w, q2, indx, indxc, indxp, coltyp, info)

```

\section*{Discussion}

The routine ? laed 2 merges the two sets of eigenvalues together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more eigenvalues are close together or if there is a tiny entry in the \(z\) vector. For each such occurrence the order of the related secular equation problem is reduced by one.

\section*{Input Parameters}
\(k \quad\) INTEGER. The number of non-deflated eigenvalues, and the order of the related secular equation \(\left(0 \leq_{k} \leq_{n}\right)\).
n
n1
d, q, z

INTEGER. The dimension of the symmetric tridiagonal matrix ( \(n \geq 0\) ).
integer. The location of the last eigenvalue in the leading sub-matrix; \(\min (1, n) \leq_{n 1} \leq_{n} / 2\).
REAL for slaed2
DOUBLE PRECISION for dlaed2.
Arrays:
\(d(*)\) contains the eigenvalues of the two submatrices to be combined. The dimension of \(d\) must be at least \(\max (1, n)\).
\(q(I d q, *)\) contains the eigenvectors of the two submatrices in the two square blocks with corners at \((1,1),(n 1, n 1)\) and \((n 1+1, n 1+1),(n, n)\). The second dimension of \(q\) must be at least \(\max (1, n)\). \(z(*)\) contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix).
integer. The first dimension of the array \(q\); \(I d q \geq \max (1, n)\).
integer. Array, dimension ( \(n\) ).
On entry, the permutation which separately sorts the two subproblems in \(d\) into ascending order. Note that elements in the second half of this permutation must first have \(n 1\) added to their values.

REAL for slaed2
DOUBLE PRECISION for dlaed2.
On entry, the off-diagonal element associated with the rank- 1 cut which originally split the two submatrices which are now being recombined.

INTEGER.
Workspace arrays, dimension ( \(n\) ) each.
Array indx contains the permutation used to sort the contents of dlamda into ascending order.

Array indxp contains the permutation used to place deflated values of \(d\) at the end of the array. indxp (1:k) points to the nondeflated \(\alpha\)-values and indxp \((k+1: n)\) points to the deflated eigenvalues.

INTEGER. Workspace array, dimension ( \(n\) ). During execution, a label which will indicate which of the following types a column in the \(q 2\) matrix is:
1 : non-zero in the upper half only;
2 : dense;
3 : non-zero in the lower half only;
4 : deflated.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline d & On exit, \(d\) contains the trailing ( \(n-k\) ) updated eigenvalues (those which were deflated) sorted into increasing order. \\
\hline q & On exit, \(q\) contains the trailing ( \(n-k\) ) updated eigenvectors (those which were deflated) in its last \(n-k\) columns. \\
\hline indxq & Destroyed on exit. \\
\hline rho & On exit, rho has been modified to the value required by ?laed3. \\
\hline \multirow[t]{4}{*}{dlamda, w, q2} & \begin{tabular}{l}
REAL for slaed2 \\
DOUBLE PRECISION for dlaed2. \\
Arrays: dlamda (n), w (n), q2 \(\left(n 1^{2}+(n-n 1)^{2}\right)\).
\end{tabular} \\
\hline & The array dlamda contains a copy of the first \(k\) eigenvalues which will be used by ? laed3 to form the secular equation. \\
\hline & The array \(w\) contains the first \(k\) values of the final deflation-altered \(z\)-vector which will be passed to ?laed3. \\
\hline & The array \(q 2\) contains a copy of the first \(k\) eigenvectors which will be used by ? laed3 in a matrix multiply (sgemm/dgemm) to solve for the new eigenvectors. \\
\hline \multirow[t]{2}{*}{indxc} & INTEGER. Array, dimension ( \(n\) ) . \\
\hline & The permutation used to arrange the columns of the deflated \(q\) matrix into three groups: the first group contains non-zero elements only at above \(n 1\), the second contains non-zero elements only below \(n 1\), and the third is dense. \\
\hline coltyp & On exit, coltyp(i) is the number of columns of type i, for \(i=1\) to 4 only (see the definition of types in the description of coltyp in Input Parameters). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?laed3}

Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal.
```

call slaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx,
ctot, w, s, info)
call dlaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx,
ctot, w, s, info)

```

\section*{Discussion}

The routine ? laed3 finds the roots of the secular equation, as defined by the values in \(d, w\), and rho, between 1 and \(k\). It makes the appropriate calls to ?laed 4 and then updates the eigenvectors by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the matrix of eigenvectors of the \(k-\) by- \(k\) system which is solved here.
This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but none are known.

\section*{Input Parameters}
\(k \quad\) integer. The number of terms in the rational function to be solved by ? laed4 ( \(k \geq 0\) ).
integer. The number of rows and columns in the \(q\) matrix. \(n \geq k\) (deflation may result in \(n>k\) ).
integer. The location of the last eigenvalue in the leading sub-matrix; \(\min (1, n) \leq n 1 \leq n / 2\).
REAL for slaed3
DOUBLE PRECISION for dlaed3.
Array \(q(I d q, *)\). The second dimension of \(q\) must be
at least \(\max (1, n)\).
Initially, the first \(k\) columns of this array are used as workspace.
```

Idq INTEGER. The first dimension of the array q;
Idq}\geq\operatorname{max}(1,n)
REAL for slaed3
DOUBLE PRECISION for dlaed3.

```
    The value of the parameter in the rank one update
    equation. \(r h o \geq 0\) required.
dlamda, q2, w REAL for slaed3
DOUBLE PRECISION for dlaed3.
Arrays: dlamda (k), q2(ldq2, *), w(k).

The first \(k\) elements of the array dlamda contain the old roots of the deflated updating problem. These are the poles of the secular equation.

The first \(k\) columns of the array \(q 2\) contain the non-deflated eigenvectors for the split problem. The second dimension of \(q 2\) must be at least \(\max (1, n)\).

The first \(k\) elements of the array \(w\) contain the components of the deflation-adjusted updating vector.
integer. Array, dimension ( \(n\) ).
The permutation used to arrange the columns of the deflated \(q\) matrix into three groups (see ?laed2). The rows of the eigenvectors found by ?laed4 must be likewise permuted before the matrix multiply can take place.
Integer. Array, dimension (4).
A count of the total number of the various types of columns in \(q\), as described in indx. The fourth column type is any column which has been deflated.

REAL for slaed3
DOUBLE PRECISION for dlaed3.
Workspace array, dimension \((n I+1) * k\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Will contain the eigenvectors of the repaired matrix which will be multiplied by the previously accumulated eigenvectors to update the system.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{d} & REAL for slaed3 \\
\hline & DOUBLE PRECISION for dlaed3. \\
\hline & \begin{tabular}{l}
Array, dimension at least \(\max (1, n)\). \\
\(d(\mathrm{i})\) contains the updated eigenvalues for \(1 \leq \mathrm{i} \leq k\).
\end{tabular} \\
\hline q & On exit, the columns 1 to \(k\) of \(q\) contain the updated eigenvectors. \\
\hline dlamda & May be changed on output by having lowest order bit set to zero on Cray X-MP, Cray Y-MP, Cray-2, or Cray C-90, as described above. \\
\hline w & Destroyed on exit. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & \begin{tabular}{l}
If info \(=-i\), the \(i\) th parameter had an illegal value. \\
If \(\operatorname{info}=1\), an eigenvalue did not converge.
\end{tabular} \\
\hline
\end{tabular}

\section*{?laed4}

Used by sstedc/dstedc. Finds a single root of the secular equation.
```

call slaed4 (n, i, d, z, delta, rho, dlam, info)
call dlaed4 (n, i, d, z, delta, rho, dlam, info)

```

\section*{Discussion}

This subroutine computes the \(i\)-th updated eigenvalue of a symmetric rank-one modification to a diagonal matrix whose elements are given in the array \(d\), and that \(D(\mathrm{i})<D(\mathrm{j})\) for \(\mathrm{i}<\mathrm{j}\)
and that \(r h o>0\). This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus
\(\operatorname{diag}(D)+r h o * Z * \operatorname{transpose}(Z)\).
where we assume the Euclidean norm of \(Z\) is 1 .
The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.

\section*{Input Parameters}
\(n \quad\) INTEGER. The length of all arrays.
i INTEGER. The index of the eigenvalue to be computed; \(1 \leq \mathrm{i} \leq n\).
d, \(z\) REAL for slaed4
DOUBLE PRECISION for dlaed4
Arrays, dimension ( \(n\) ) each.
The array \(d\) contains the original eigenvalues. It is assumed that they are in order, \(\alpha(\mathbf{i})<\alpha(\mathbf{j})\) for \(\mathrm{i}<\mathrm{j}\).
The array \(z\) contains the components of the updating vector \(Z\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
rho REAL for slaed4
DOUBLE PRECISION for dlaed4
The scalar in the symmetric updating formula.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{delta} & REAL for slaed4 \\
\hline & DOUBLE PRECISION for dlaed4 \\
\hline & Array, dimension ( \(n\) ). \\
\hline & If \(n \neq 1\), delta contains \((d(\mathbf{j})\) - lambda_i) in its \(j\)-th component. If \(n=1\), then \(\operatorname{delta}(1)=1\). The vector delta contains the information necessary to construct the eigenvectors. \\
\hline \multirow[t]{3}{*}{dlam} & REAL for slaed4 \\
\hline & DOUBLE PRECISION for dlaed4 \\
\hline & The computed lambda_i, the i-th updated eigenvalue. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=1\), the updating process failed. \\
\hline
\end{tabular}

\section*{?laed5}

Used by sstedc/dstedc.
Solves the 2-by-2 secular equation.
```

call slaed5 (i, d, z, delta, rho, dlam)

```
call dlaed5 ( i, d, z, delta, rho, dlam )

\section*{Discussion}

This subroutine computes the \(i\)-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix
```

diag(D) + rho * Z * transpose(Z).

```

The diagonal elements in the array \(D\) are assumed to satisfy
\[
D(\mathrm{i})<D(\mathrm{j}) \text { for } \mathrm{i}<\mathrm{j} .
\]

We also assume rho >0 and that the Euclidean norm of the vector \(Z\) is one.

\section*{Input Parameters}
```

i INTEGER. The index of the eigenvalue to be computed;
1\leqi\leq2.
d, z
rho REAL for slaed5
DOUBLE PRECISION for dlaed5
The scalar in the symmetric updating formula.

```
Output Parameters
\begin{tabular}{ll} 
delta & REAL for slaed5 \\
DOUBLE PRECISION for dlaed5 \\
Array, dimension (2). \\
The vector delta contains the information necessary to \\
dlam & \begin{tabular}{l} 
construct the eigenvectors.
\end{tabular} \\
& REAL for slaed5 \\
& DOUBLE PRECISION for dlaed5 \\
& The computed lambda_i, the \(i\)-th updated eigenvalue.
\end{tabular}

\section*{?laed6}

Used by sstedc/dstedc.
Computes one Newton step in solution
of the secular equation.
```

call slaed6(kniter, orgati, rho, d, z, finit, tau, info)

```
```

call dlaed6(kniter, orgati, rho, d, z, finit, tau, info)

```

\section*{Discussion}

This routine computes the positive or negative root (closest to the origin) of
\(f(x)=r h o+\frac{z(1)}{d(1)-x}+\frac{z(2)}{d(2)-x}+\frac{z(3)}{d(3)-x}\)
It is assumed that if orgati \(=\). TRUE. the root is between \(\alpha(2)\) and \(d(3)\); otherwise it is between \(d(1)\) and \(d(2)\)
This routine will be called by ? laed 4 when necessary. In most cases, the root sought is the smallest in magnitude, though it might not be in some extremely rare situations.

\section*{Input Parameters}
```

kniter INTEGER.
Refer to ?laed4 for its significance.

```
rho REAL for slaed6
DOUBLE PRECISION for dlaed6
Refer to the equation for \(f(x)\) above.
finit
REAL for slaed6
DOUBLE PRECISION for dlaed6
Arrays, dimension (3) each.
The array \(d\) satisfies \(d(1)<d(2)<d(3)\).
Each of the elements in the array \(z\) must be positive.
REAL for slaed6
```

DOUBLE PRECISION for dlaed6
The value of $f(x)$ at 0 . It is more accurate than the one evaluated inside this routine (if someone wants to do so).

```

Output Parameters
\begin{tabular}{ll} 
tau & REAL for slaed6 \\
& DOUBLE PRECISION for dlaed6 \\
& The root of the equation for \(f(x)\). \\
info & INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=1\), failure to converge.
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?laed7}

Used by ?stedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
```

call slaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq,
indxq, rho, cutpnt, qstore, qptr, prmptr, perm, givptr, givcol,
givnum, work, iwork, info)
call dlaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq,
indxq, rho, cutpnt, qstore, qptr, prmptr, perm, givptr, givcol,
givnum, work, iwork, info)
call claed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho,
indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum,
work, rwork, iwork, info)
call zlaed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho,
indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum,
work, rwork, iwork, info)

```

\section*{Discussion}

The routine ?laed7 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and optionally eigenvectors of a dense symmetric/Hermitian matrix that has been reduced to tridiagonal form. For real flavors, slaed1/dlaed1 handles the case in which all eigenvalues and eigenvectors of a symmetric tridiagonal matrix are desired.
\[
T=Q(\text { in })\left(D(\text { in })+r h o * \mathrm{Z}^{*} \mathrm{Z}^{\prime}\right) Q^{\prime}(\mathrm{in})=Q(\text { out }) * D(\text { out }) * Q^{\prime}(\text { out })
\]
where \(\mathrm{Z}=Q^{\prime} u, u\) is a vector of length \(n\) with ones in the cutpnt and (cutpnt +1 ) -th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in \(Q\), and the eigenvalues are in \(D\). The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the z vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine slaed8/dlaed8 (for real flavors) or by the routine slaed2/dlaed2 (for complex flavors).
The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine ?laed4 (as called by ?laed9 or ?laed3). This routine also calculates the eigenvectors of the current problem.
The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & \begin{tabular}{l}
INTEGER. Used with real flavors only. \\
If \(i c o m p q=0\), compute eigenvalues only. \\
If \(i c o m p q=1\), compute eigenvectors of original dense symmetric matrix also. On entry, the array \(q\) must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.
\end{tabular} \\
\hline \(n\) & INTEGER. The dimension of the symmetric tridiagonal matrix ( \(n \geq 0\) ). \\
\hline cutpnt & INTEGER. The location of the last eigenvalue in the leading sub-matrix. \(\min (1, n) \leq_{\text {cutpnt }} \leq_{n}\). \\
\hline qsiz & INTEGER. The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; qsiz \(\geq_{n}\) (for real flavors, qsiz \(\geq n\) if icompq=1). \\
\hline \(t 1 \mathrm{lls}\) & INTEGER. The total number of merging levels in the overall divide and conquer tree. \\
\hline curlvl & INTEGER. The current level in the overall merge routine, 0 ScurlvlStrls. \\
\hline curpbm & INTEGER. The current problem in the current level in the overall merge routine (counting from upper left to lower right). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{d} & REAL for slaed7/claed7 \\
\hline & \begin{tabular}{l}
Array, dimension at least \(\max (1, n)\). \\
Array \(d(*)\) contains the eigenvalues of the rank-1-perturbed matrix.
\end{tabular} \\
\hline \multirow[t]{7}{*}{q, work} & REAL for slaed7 \\
\hline & DOUBLE PRECISION for dlaed7 \\
\hline & COMPLEX for claed7 \\
\hline & COMPLEX*16 for zlaed7. \\
\hline & Arrays: \\
\hline & \(q(I d q, *)\) contains the the eigenvectors of the rank-1-perturbed matrix. The second dimension of \(q\) must be at least \(\max (1, n)\). \\
\hline & work (*) is a workspace array, dimension at least \(\left(3 n+q s i z^{\star} n\right)\) for real flavors and at least \(\left(q s i z^{\star} n\right)\) for complex flavors. \\
\hline 1 dq & Integer. The first dimension of the array \(q\); \(I d q \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{rho} & REAL for slaed7/claed7 \\
\hline & DOUBLE PRECISION for dlaed7/zlaed7. \\
\hline & The subdiagonal element used to create the rank-1 modification. \\
\hline \multirow[t]{3}{*}{qstore} & REAL for slaed7/claed7 \\
\hline & DOUBLE PRECISION for dlaed7/zlaed7. Array, dimension \(\left(n^{2}+1\right)\). Serves also as output parameter. \\
\hline & Stores eigenvectors of submatrices encountered during divide and conquer, packed together. qptr points to beginning of the submatrices. \\
\hline \multirow[t]{2}{*}{qptr} & integer. Array, dimension ( \(n+2\) ). Serves also as output parameter. \\
\hline & List of indices pointing to beginning of submatrices stored in qstore. The submatrices are numbered starting at the bottom left of the divide and conquer tree, from left to right and bottom to top. \\
\hline
\end{tabular}
```

prmptr, perm,
givptr INTEGER. Arrays, dimension (}n\operatorname{lg}n)\mathrm{ each.
The array prmptr(*) contains a list of pointers which
indicate where in perma level's permutation is stored.
prmptr(i+1) - prmptr(i) indicates the size of the
permutation and also the size of the full, non-deflated
problem.
The array perm(*) contains the permutations (from deflation and sorting) to be applied to each eigenblock. The array givptr(*) contains a list of pointers which indicate where in givcol a level's Givens rotations are stored. givptr(i+1)-givptr(i) indicates the number of Givens rotations.
givcol INTEGER. Array, dimension (2, $n \lg n$). Each pair of numbers indicates a pair of columns to take place in a Givens rotation.
givnum REAL for slaed7/claed7 DOUBLE PRECISION for dlaed7/zlaed7. Array, dimension (2, $n \lg n$). Each number indicates the S value to be used in the corresponding Givens rotation.
iwork INTEGER. Workspace array, dimension (4n).
rwork REAL for claed7
DOUBLE PRECISION for zlaed7.
Workspace array, dimension ($3 n+2 q s i z^{\star} n$). Used in complex flavors only.

```

\section*{Output Parameters}
```

d	On exit, contains the eigenvalues of the repaired matrix
q	On exit, q contains the eigenvectors of the repaired tridiagonal matrix.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll} 
indxq & INTEGER. Array, dimension \((n)\). \\
& Contains the permutation which will reintegrate the \\
& subproblems back into sorted order, that is, \\
& \(d(\) indxq( \(i=1, n))\) will be in ascending order. \\
info & INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value. \\
& If info \(=1\), an eigenvalue did not converge.
\end{tabular}

\section*{?laed8}

Used by ?stedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
```

call slaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z,
dlamda, q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx,
info)
call dlaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z,
dlamda, q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx,
info)
call claed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2,
ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum,
info)
call zlaed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2,
ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum,
info)

```

\section*{Discussion}

This routine merges the two sets of eigenvalues together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more eigenvalues are close together or if there is a tiny element in the z vector. For each such occurrence the order of the related secular equation problem is reduced by one.

\section*{Input Parameters}
\(\left.\begin{array}{ll}\text { icompq } & \text { INTEGER. Used with real flavors only. } \\
\text { If } i \text { compq }=0, \text { compute eigenvalues only. } \\
\text { If } i \text { compq }=1, \text { compute eigenvectors of original dense } \\
\text { symmetric matrix also. On entry, the array } q \text { must } \\
\text { contain the orthogonal matrix used to reduce the original } \\
\text { matrix to tridiagonal form. }\end{array}\right\}\)\begin{tabular}{l} 
INTEGER. The dimension of the symmetric tridiagonal \\
matrix \((n \geq 0)\).
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline cutpnt & integer. The location of the last eigenvalue in the leading sub-matrix. \(\min (1, n) \leq\) cutpnt \(\leq n\). \\
\hline qsiz & INTEGER. The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; \(q s i z \geq_{n}\) (for real flavors, \(q s i z \geq_{n}\) if icompq \(^{\text {c }}=1\) ). \\
\hline d, z & \begin{tabular}{l}
REAL for slaed8/claed8 \\
DOUBLE PRECISION for dlaed8/zlaed8. \\
Arrays, dimension at least \(\max (1, n)\) each. \\
The array \(d(*)\) contains the eigenvalues of the two submatrices to be combined. \\
On entry, \(z(*)\) contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix). The contents of \(z\) are destroyed by the updating process.
\end{tabular} \\
\hline \(q\) & \begin{tabular}{l}
REAL for slaed8 \\
DOUBLE PRECISION for dlaed8 \\
COMPLEX for claed8 \\
COMPLEX*16 for zlaed8. \\
Array \(q(I d q, *)\). The second dimension of \(q\) must be at least \(\max (1, n)\). On entry, \(q\) contains the eigenvectors of the partially solved system which has been previously updated in matrix multiplies with other partially solved eigensystems. \\
For real flavors, if \(i c o m p q=0, q\) is not referenced.
\end{tabular} \\
\hline \(1 d q\) & integer. The first dimension of the array \(q\); \(l d q \geq \max (1, n)\). \\
\hline 1dq2 & Integer. The first dimension of the output array \(q 2\); Idq2 \(\geq \max (1, n)\). \\
\hline indxq & \begin{tabular}{l}
integer. Array, dimension ( \(n\) ). \\
The permutation which separately sorts the two sub-problems in \(d\) into ascending order. Note that elements in the second half of this permutation must first have cutpnt added to their values in order to be accurate.
\end{tabular} \\
\hline
\end{tabular}

\section*{rho}

REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
On entry, the off-diagonal element associated with the rank- 1 cut which originally split the two submatrices which are now being recombined.

\section*{Output Parameters}


Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

The array indxp(*) will contain the permutation used to place deflated values of \(d\) at the end of the array. On output, indxp \((1: k)\) points to the nondeflated \(d\)-values and \(i n d x p(k+1: n)\) points to the deflated eigenvalues.
The array indx(*) will contain the permutation used to sort the contents of \(d\) into ascending order.
integer. Array, dimension ( \(n\) ).
Contains the permutations (from deflation and sorting) to be applied to each eigenblock.
givptr INTEGER. Contains the number of Givens rotations which took place in this subproblem.
integer. Array, dimension (2, n ).
Each pair of numbers indicates a pair of columns to take place in a Givens rotation.
givnum REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Array, dimension (2, n).
Each number indicates the \(S\) value to be used in the corresponding Givens rotation.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{?laed9}

Used by sstedc/dstedc.
Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is dense.
```

call slaed9(k, kstart, kstop, n, d, q, ldq, rho,
dlamda, w, s, lds, info)
call dlaed9(k, kstart, kstop, n, d, q, ldq, rho,
dlamda, w, s, lds, info)

```

\section*{Discussion}

This routine finds the roots of the secular equation, as defined by the values in \(d, \mathbf{Z}\), and rho, between kstart and kstop. It makes the appropriate calls to slaed \(4 / \mathrm{dlaed} 4\) and then stores the new matrix of eigenvectors for use in calculating the next level of \(Z\) vectors.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline k & INTEGER. The number of terms in the rational function to be solved by slaed4/dlaed4 ( \(k \geq 0\) ). \\
\hline kstart, kstop & \begin{tabular}{l}
INTEGER. The updated eigenvalues \(\operatorname{lambda(i),}\) kstart \(\leq \mathrm{i} \leq k s t o p\) are to be computed. \\
\(1 \leq k s t a r t \leq k s t o p \leq k\).
\end{tabular} \\
\hline \(n\) & INTEGER. The number of rows and columns in the \(Q\) matrix. \(n \geq k\) (deflation may result in \(n>k\) ). \\
\hline q & \begin{tabular}{l}
REAL for slaed9 \\
DOUBLE PRECISION for dlaed9. \\
Workspace array, dimension ( \(1 d q\), *). The second dimension of \(q\) must be at least \(\max (1, n)\).
\end{tabular} \\
\hline \(1 d q\) & integer. The first dimension of the array \(q\); \(I d q \geq \max (1, n)\). \\
\hline
\end{tabular}
\begin{tabular}{ll} 
rho & \begin{tabular}{l} 
REAL for slaed9 \\
DOUBLE PRECISION for dlaed9 \\
The value of the parameter in the rank one update \\
equation. rho \(\geq 0\) required.
\end{tabular} \\
dlamda, \(w \quad\)\begin{tabular}{l} 
REAL for slaed9 \\
DOUBLE PRECISION for dlaed9 \\
Arrays, dimension \((k)\) each. \\
The first \(k\) elements of the array dlamda(*) contain the \\
old roots of the deflated updating problem. These are \\
the poles of the secular equation.
\end{tabular} \\
& The first \(k\) elements of the array \(w(*)\) contain the \\
& components of the deflation-adjusted updating vector. \\
& INTEGER. The first dimension of the output array \(s ;\) \\
& \(I d s \geq \max (1, k)\).
\end{tabular}

\section*{Output Parameters}
\(d\)
s
info

REAL for slaed9
DOUBLE PRECISION for dlaed9
Array, dimension (n). d (i ) contains the updated eigenvalues for \(k s t a r t \leq \mathrm{i} \leq k s t o p\).

REAL for slaed9
DOUBLE PRECISION for dlaed9.
Array, dimension ( \(I d s, *\) ). The second dimension of \(s\) must be at least \(\max (1, k)\).
Will contain the eigenvectors of the repaired matrix which will be stored for subsequent \(Z\) vector calculation and multiplied by the previously accumulated eigenvectors to update the system.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=1\), the eigenvalue did not converge.

\section*{?laeda}

Used by ?stedc. Computes the \(Z\) vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.
```

call slaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol,
givnum, q, qptr, z, ztemp, info)
call dlaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol,
givnum, q, qptr, z, ztemp, info)

```

\section*{Discussion}

The routine ?laeda computes the z vector corresponding to the merge step in the curlvl-th step of the merge process with tlvls steps for the curpbm-th problem.

\section*{Input Parameters}
\(n \quad\) INTEGER. The dimension of the symmetric tridiagonal matrix ( \(n \geq 0\) ).
tlvls INTEGER. The total number of merging levels in the overall divide and conquer tree.
curlvi INTEGER. The current level in the overall merge routine, \(0 \leq\) curlvl \(\leq t \operatorname{lvls}\).
curpbm INTEGER. The current problem in the current level in the overall merge routine (counting from upper left to lower right).
prmptr, perm, givptr INTEGER. Arrays, dimension \((n \lg n)\) each.

The array prmpt \(n^{(*)}\) contains a list of pointers which indicate where in perm a level's permutation is stored. prmptr ( \(\mathbf{i}+1\) ) - prmptr(i) indicates the size of the permutation and also the size of the full, non-deflated problem.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

The array perm(*) contains the permutations (from deflation and sorting) to be applied to each eigenblock.
The array givptr(*) contains a list of pointers which indicate where in givcol a level's Givens rotations are stored. givptr(i+1)-givptr(i) indicates the number of Givens rotations.
givcol INteger. Array, dimension (2, \(n \lg n\) ).
Each pair of numbers indicates a pair of columns to take place in a Givens rotation.
givnum REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension ( \(2, n \lg n\) ).
Each number indicates the \(S\) value to be used in the corresponding Givens rotation.
REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension ( \(n^{2}\) ).
Contains the square eigenblocks from previous levels, the starting positions for blocks are given by qptr.
integer. Array, dimension ( \(n+2\) ). Contains a list of pointers which indicate where in \(q\) an eigenblock is stored. sqrt ( \(q p t r(i+1)-q p t r(i))\) indicates the size of the block.

REAL for slaeda
DOUBLE PRECISION for dlaeda.
Workspace array, dimension ( \(n\) ).

\section*{Output Parameters}
z
REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension ( \(n\) ). Contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix).

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value .

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?laein}

Computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
```

call slaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb,
work, eps3, smlnum, bignum, info)
call dlaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb,
work, eps3, smlnum, bignum, info)
call claein(rightv, noinit, n, h, ldh, w, v, b, ldb,
rwork, eps3, smlnum, info)
call zlaein(rightv, noinit, n, h, ldh, w, v, b, ldb,
rwork, eps3, smlnum, info)

```

\section*{Discussion}

The routine ? laein uses inverse iteration to find a right or left eigenvector corresponding to the eigenvalue ( \(w r, w i\) ) of a real upper Hessenberg matrix \(H\) (for real flavors slaein/dlaein) or to the eigenvalue \(w\) of a complex upper Hessenberg matrix \(H\) (for complex flavors claein/zlaein).

Input Parameters
\begin{tabular}{ll} 
rightv & LOGICAL. \\
& If rightv =.TRUE., compute right eigenvector; \\
if rightv \(=\). FALSE., compute left eigenvector. \\
noinit & LOGICAL. \\
& If noinit \(=\). TRUE., no initial vector is supplied in \\
& \((v r, v i)\) or in \(v\) (for complex flavors); \\
& if noinit \(=\). FALSE., initial vector is supplied in \\
& \((v r, v i)\) or in \(v\) (for complex flavors). \\
\(n\) & INTEGER. The order of the matrix \(H(n \geq 0)\).
\end{tabular}

REAL for slaein
DOUBLE PRECISION for dlaein
COMPLEX for claein
COMPLEX*16 for zlaein.
Array \(h(I d h, *)\). The second dimension of \(h\) must be at least \(\max (1, n)\). Contains the upper Hessenberg matrix \(H\).

INTEGER. The first dimension of the array \(h\); \(I d h \geq \max (1, n)\).

REAL for slaein DOUBLE PRECISION for dlaein.
The real and imaginary parts of the eigenvalue of \(H\) whose corresponding right or left eigenvector is to be computed (for real flavors of the routine).
COMPLEX for claein
COMPLEX*16 for zlaein.
The eigenvalue of \(H\) whose corresponding right or left eigenvector is to be computed (for complex flavors of the routine).
REAL for slaein
DOUBLE PRECISION for dlaein.
Arrays, dimension ( \(n\) ) each. Used for real flavors only. On entry, if noinit = .FALSE. and wi \(=0.0\), vr must contain a real starting vector for inverse iteration using the real eigenvalue wr;
if noinit \(=\).FALSE. and wi \(\neq 0.0\), vr and vi must contain the real and imaginary parts of a complex starting vector for inverse iteration using the complex eigenvalue ( \(w r, w i\) ); otherwise vr and vi need not be set.

COMPLEX for claein COMPLEX*16 for zlaein.
Array, dimension ( \(n\) ). Used for complex flavors only. On entry, if noinit = .FALSE., v must contain a starting vector for inverse iteration; otherwise \(v\) need not be set.
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{b} & REAL for slaein \\
\hline & DOUBLE PRECISION for dlaein \\
\hline & COMPLEX for claein \\
\hline & COMPLEX*16 for zlaein. \\
\hline & Workspace array \(b(I \mathrm{db}, ~ *)\). The second dimension of \(b\) must be at least \(\max (1, n)\). \\
\hline \multirow[t]{3}{*}{1 db} & INTEGER. The first dimension of the array \(b\); \\
\hline & \(l \mathrm{db} \geq \mathrm{n}+1\) for real flavors; \\
\hline & \(I d b \geq \max (1, n)\) for complex flavors. \\
\hline \multirow[t]{3}{*}{work} & REAL for slaein \\
\hline & DOUBLE PRECISION for dlaein. \\
\hline & Workspace array, dimension ( \(n\) ). Used for real flavors only. \\
\hline \multirow[t]{4}{*}{rwork} & REAL for claein \\
\hline & DOUBLE PRECISION for zlaein. \\
\hline & Workspace array, dimension ( \(n\) ). Used for complex \\
\hline & flavors only. \\
\hline \multirow[t]{4}{*}{eps3, smlnum} & REAL for slaein/claein \\
\hline & DOUBLE PRECISION for dlaein/zlaein. \\
\hline & eps 3 is a small machine-dependent value which is used to perturb close eigenvalues, and to replace zero pivots. \\
\hline & smlnum is a machine-dependent value close to underflow threshold. \\
\hline \multirow[t]{3}{*}{bignum} & REAL for slaein \\
\hline & DOUBLE PRECISION for dlaein. \\
\hline & bignum is a machine-dependent value close to overflow threshold. Used for real flavors only. \\
\hline
\end{tabular}

\section*{Output Parameters}

\author{
vr, vi
}

On exit, if wi \(=0.0\) (real eigenvalue), vr contains the computed real eigenvector; if wi \(\neq 0.0\) (complex eigenvalue), vr and vi contain the real and imaginary parts of the computed complex eigenvector. The eigenvector is normalized so that the component of
largest magnitude has magnitude 1 ; here the magnitude of a complex number \((x, y)\) is taken to be \(|x|+|y|\). \(v i\) is not referenced if \(w i=0.0\).

On exit, v contains the computed eigenvector, normalized so that the component of largest magnitude has magnitude 1 ; here the magnitude of a complex number \((x, y)\) is taken to be \(|x|+|y|\).
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=1\), inverse iteration did not converge. For real flavors, \(v r\) is set to the last iterate, and so is \(v i\) if \(w i \neq\) 0.0. For complex flavors, \(v\) is set to the last iterate.

\section*{?laev2}

Computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
```

call slaev2 (a, b, c, rt1, rt2, cs1, sn1)
call dlaev2 (a, b, c, rt1, rt2, cs1, sn1)
call claev2 (a, b, c, rt1, rt2, cs1, sn1)
call zlaev2 (a, b, c, rt1, rt2, cs1, sn1)

```

\section*{Discussion}

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix
\(\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]\) (for slaev2/dlaev2) or Hermitian matrix \(\left[\begin{array}{cc}a & b \\ \operatorname{conjg}(b) & c\end{array}\right]\)
(for claev2/zlaev2).
On return, \(r t 1\) is the eigenvalue of larger absolute value, \(r t 2\) of smaller absolute value, and (csis sn1) is the unit right eigenvector for \(r t 1\), giving the decomposition
\[
\left[\begin{array}{cc}
\operatorname{csi} & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{csi} 1
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \cdot\left[\begin{array}{cc}
\operatorname{csi} & -\operatorname{sn} 1 \\
\operatorname{sn} 1 & \operatorname{csi} 1
\end{array}\right]=\left[\begin{array}{cc}
r t 1 & 0 \\
0 & r t 2
\end{array}\right]
\]
(for slaev2/dlaev2),
or
\[
\left[\begin{array}{cc}
\operatorname{csi} & \operatorname{conjg}(\operatorname{sn} 1) \\
-\operatorname{sn} 1 & \operatorname{csi}
\end{array}\right] \cdot\left[\begin{array}{cc}
a & b \\
\operatorname{conjg}(b) & c
\end{array}\right] \cdot\left[\begin{array}{cc}
\operatorname{csi} & -\operatorname{conjg}(\operatorname{sn} 1) \\
\operatorname{sn} 1 & \operatorname{csi}
\end{array}\right]=\left[\begin{array}{cc}
r t 1 & 0 \\
0 & r t 2
\end{array}\right]
\]
(for claev2/zlaev2).

\section*{Input Parameters}
\[
\begin{array}{ll}
a, b, c \quad & \text { REAL for slaev2 } \\
& \text { DOUBLE PRECISION for dlaev2 } \\
& \text { COMPLEX for claev2 } \\
& \text { COMPLEX*16 for zlaev2. } \\
& \text { Elements of the input matrix. }
\end{array}
\]

\section*{Output Parameters}
\begin{tabular}{ll} 
rt1, rt2 & REAL for slaev2/claev2 \\
DOUBLE PRECISION for dlaev2/zlaev2. \\
Cs1 & Eigenvalues of larger and smaller absolute value, \\
respectively. \\
sn1 & REAL for slaev2/claev2 \\
& DOUBLE PRECISION for dlaev2/zlaev2. \\
& REAL for slaev2 \\
& DOUBLE PRECISION for dlaev2 \\
& COMPLEX for claev2 \\
& COMPLEX*16 for zlaev2. \\
& The vector (cs1, sn1) is the unit right eigenvector for \\
& rt1.
\end{tabular}

\section*{Application Notes}
\(r t 1\) is accurate to a few ulps barring over/underflow. \(r t 2\) may be inaccurate if there is massive cancellation in the determinant \(a^{\star} c-b^{*} b\); higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute \(r t 2\) accurately in all cases. \(c s 1\) and \(s n 1\) are accurate to a few ulps barring over/underflow. Overflow is possible only if \(r t 1\) is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / macheps.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?laexc}
```

Swaps adjacent diagonal blocks of a real
upper quasi-triangular matrix in Schur
canonical form, by an orthogonal similarity
transformation.

```
```

call slaexc (wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)

```
call slaexc ( wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info )
call dlaexc ( wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info )
```

call dlaexc (wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)

```

\section*{Discussion}

This routine swaps adjacent diagonal blocks \(T_{11}\) and \(T_{22}\) of order 1 or 2 in an upper quasi-triangular matrix \(T\) by an orthogonal similarity transformation.
\(T\) must be in Schur canonical form, that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign.

\section*{Input Parameters}
```

wantq LOGICAL.
If wantq=. TRUE., accumulate the transformation in
the matrix Q;
If wantq=.FALSE., do not accumulate the
transformation.
INTEGER. The order of the matrix T(}n\geq0)\mathrm{ .
REAL for slaexc
DOUBLE PRECISION for dlaexc
Arrays:
t(ldt,*) contains on entry the upper quasi-triangular
matrix T, in Schur canonical form.
The second dimension of t must be at least max (1,n).

```
\(q(I d q, *)\) contains on entry, if want \(q=\). TRUE. , the orthogonal matrix \(Q\). If want \(q=\). FALSE., \(q\) is not referenced.
The second dimension of \(q\) must be at least \(\max (1, n)\).
\(l d t \quad\) INTEGER. The first dimension of \(t\); at least \(\max (1, n)\).
Idq INTEGER. The first dimension of \(q\);
If want \(q=\). FALSE., then \(I d q \geq 1\).
If want \(q=\). TRUE ., then \(I d q \geq \max (1, n)\).
INTEGER. The index of the first row of the first block \(T_{11}\).
integer. The order of the first block \(T_{11}\) ( \(n 1=0,1\), or 2 ).
INTEGER. The order of the second block \(T_{22}\) ( \(n 2=0,1\), or 2 ).
work REAL for slaexc; DOUBLE PRECISION for dlaexc. Workspace array, DIMENSION (n).

\section*{Output Parameters}
\begin{tabular}{ll}
\(t\) & On exit, the updated matrix \(T\), again in Schur canonical \\
form. \\
info & On exit, if want \(q=\). TRUE., the updated matrix \(Q\). \\
& INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=1\), the transformed matrix \(T\) would be too far \\
from Schur form; the blocks are not swapped and \(T\) and \\
& \(Q\) are unchanged.
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lag2}

Computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.
```

call slag2 (a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)
call dlag2 (a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)

```

\section*{Discussion}

This routine computes the eigenvalues of a \(2 \times 2\) generalized eigenvalue problem \(A-w B\), with scaling as necessary to avoid over-/underflow. The scaling factor, \(s\), results in a modified eigenvalue equation
\(s A-w B\),
where \(s\) is a non-negative scaling factor chosen so that \(w, w B\), and \(s A\) do not overflow and, if possible, do not underflow, either.

\section*{Input Parameters}
```

a, b
lda INTEGER. The first dimension of a; lda \geq2.

```
```

ldb
safmin

```

INTEGER. The first dimension of \(b ; 1 d b \geq 2\).
REAL for slag2;
DOUBLE PRECISION for dlag2.
The smallest positive number such that \(1 /\) safmin does not overflow. (This should always be ?lamch('S') - it is an argument in order to avoid having to call ?lamch frequently.)

\section*{Output Parameters}
```

scale1 REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the eigenvalue equation which defines the first eigenvalue. If the eigenvalues are complex, then the eigenvalues are (wrl +/- wi i)/scale1 (which may lie outside the exponent range of the machine), scale1=scale2, and scalel will always be positive.
If the eigenvalues are real, then the first (real) eigenvalue is wri / scale1, but this may overflow or underflow, and in fact, scalel may be zero or less than the underflow threshhold if the exact eigenvalue is sufficiently large.

```
```

scale2 REAL for slag2;

```
scale2 REAL for slag2;
    DOUBLE PRECISION for dlag2.
    DOUBLE PRECISION for dlag2.
    A scaling factor used to avoid over-/underflow in the
    A scaling factor used to avoid over-/underflow in the
    eigenvalue equation which defines the second
    eigenvalue equation which defines the second
    eigenvalue. If the eigenvalues are complex, then
    eigenvalue. If the eigenvalues are complex, then
    scale2=scale1. If the eigenvalues are real, then the
    scale2=scale1. If the eigenvalues are real, then the
    second (real) eigenvalue is wr2/scale2,but this may
    second (real) eigenvalue is wr2/scale2,but this may
    overflow or underflow, and in fact, scale2 may be zero
    overflow or underflow, and in fact, scale2 may be zero
    or less than the underflow threshold if the exact
    or less than the underflow threshold if the exact
    eigenvalue is sufficiently large.
    eigenvalue is sufficiently large.
wr1 REAL for slag2;
wr1 REAL for slag2;
    DOUBLE PRECISION for dlag2.
    DOUBLE PRECISION for dlag2.
    If the eigenvalue is real, then wrl is scalel times the
```

 If the eigenvalue is real, then wrl is scalel times the
    ```
eigenvalue closest to the \((2,2)\) element of \(A B^{-1}\). If the eigenvalue is complex, then wrl=wr2 is scalel times the real part of the eigenvalues.

REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wr2 is scale 2 times the other eigenvalue. If the eigenvalue is complex, then wrl=wr2 is scalel times the real part of the eigenvalues.
REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then \(w i\) is zero. If the eigenvalue is complex, then \(w i\) is scalel times the imaginary part of the eigenvalues. wi will always be non-negative.

\section*{?lags2}

Computes 2-by-2 orthogonal matrices \(U, V\), and \(Q\), and applies them to matrices \(A\) and \(B\) such that the rows of the transformed \(A\) and \(B\) are parallel.
```

call slags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu,
Csv, snv, csq, snq)
call dlags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu,
csv, snv, csq, snq)

```

\section*{Discussion}

This routine computes 2-by-2 orthogonal matrices \(U, V\) and \(Q\), such that if upper \(=\). TRUE. , then
\(U^{\prime} * A * Q=U^{\prime} *\left[\begin{array}{cc}A_{1} & A_{2} \\ 0 & A_{3}\end{array}\right] * Q=\left[\begin{array}{cc}\mathrm{x} & 0 \\ \mathrm{x} & \mathrm{x}\end{array}\right]\)
and
\(V^{\prime} * B * Q=V^{\prime} *\left[\begin{array}{cc}B_{1} & B_{2} \\ 0 & B_{3}\end{array}\right] * Q=\left[\begin{array}{ll}\mathrm{x} & 0 \\ \mathrm{x} & \mathrm{x}\end{array}\right]\)
or if upper \(=\). FALSE. , then
\(U^{\prime} * A * Q=U^{\prime} *\left[\begin{array}{ll}A_{1} & 0 \\ A_{2} & A_{3}\end{array}\right] * Q=\left[\begin{array}{cc}\mathrm{x} & \mathrm{x} \\ 0 & \mathrm{x}\end{array}\right]\)
and
\(V^{\prime} * B * Q=V^{\prime} *\left[\begin{array}{ll}B_{1} & 0 \\ B_{2} & B_{3}\end{array}\right] * Q=\left[\begin{array}{ll}\mathrm{x} & \mathrm{x} \\ 0 & \mathrm{x}\end{array}\right]\)

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

The rows of the transformed \(A\) and \(B\) are parallel, where
\[
U=\left[\begin{array}{cc}
\operatorname{csu} & \operatorname{snu} \\
-\operatorname{sn} u & \operatorname{csu}
\end{array}\right], V=\left[\begin{array}{cc}
\operatorname{csv} & \operatorname{snv} \\
-\operatorname{snv} & \operatorname{csv}
\end{array}\right], Q=\left[\begin{array}{cc}
\operatorname{csq} q & \operatorname{sn} q \\
-\operatorname{snq} & \operatorname{csq} q
\end{array}\right]
\]

Here \(Z^{\prime}\) denotes the transpose of \(Z\).
Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{upper} & LOGICAL. \\
\hline & If upper \(=\). TRUE., the input matrices \(A\) and \(B\) are upper triangular; \\
\hline & If upper \(=\).FALSE., the input matrices \(A\) and \(B\) are \\
\hline & lower triangular. \\
\hline \multirow[t]{4}{*}{a1, a2, a3} & REAL for slags2 \\
\hline & DOUBLE PRECISION for dlags2 \\
\hline & On entry, a1, 22 and 33 are elements of the input \\
\hline & 2-by-2 upper (lower) triangular matrix \(A\). \\
\hline \multirow[t]{4}{*}{b1, b2, b3} & REAL for slags2 \\
\hline & DOUBLE PRECISION for dlags2 \\
\hline & On entry, b1, b2 and b3 are elements of the input \\
\hline & 2-by-2 upper (lower) triangular matrix \(B\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
csu, snu & REAL for slags2 \\
& DOUBLE PRECISION for dlags2 \\
& The desired orthogonal matrix \(U\). \\
csv, snv & REAL for slags2 \\
& DOUBLE PRECISION for dlags2 \\
& The desired orthogonal matrix \(V\). \\
& REAL for slags2 \\
& DOUBLE PRECISION for dlags2 \\
& The desired orthogonal matrix \(Q\).
\end{tabular}

\section*{?lagtf}

Computes an LU factorization of a matrix
\(T-\lambda I\), where \(T\) is a general tridiagonal
matrix, and \(\lambda\) a scalar, using partial
pivoting with row interchanges.
```

call slagtf (n, a, lambda, b, c, tol, d, in, info)
call dlagtf (n, a, lambda, b, c, tol, d, in, info)

```

\section*{Discussion}

This routine factorizes the matrix ( \(T-1\) ambda \(\star I\) ), where \(T\) is an \(n\)-by- \(n\) tridiagonal matrix and lambda is a scalar, as
\[
T-l a m b d a \star I=P L U,
\]
where \(P\) is a permutation matrix, \(L\) is a unit lower tridiagonal matrix with at most one non-zero sub-diagonal elements per column and \(U\) is an upper triangular matrix with at most two non-zero super-diagonal elements per column. The factorization is obtained by Gaussian elimination with partial pivoting and implicit row scaling. The parameter lambda is included in the routine so that ?lagtf may be used, in conjunction with ? lagts, to obtain eigenvectors of \(T\) by inverse iteration..

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) \\
\(a, b, c \quad\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
& REAL for slagtf \\
& DOUBLE PRECISION for dlagte \\
& Arrays, dimension \(a(n), b(n-1), c(n-1)\) : \\
& On entry, \(a(*)\) must contain the diagonal elements of \\
the matrix \(T\). \\
& On entry, \(b(*)\) must contain the ( \(n-1)\) super-diagonal \\
& elements of \(T\). \\
& On entry, \(c(*)\) must contain the ( \(n-1)\) sub-diagonal \\
& elements of \(T\).
\end{tabular}
tol REAL for slagtf
DOUBLE PRECISION for dlagtf

On entry, a relative tolerance used to indicate whether or not the matrix ( \(T\) - lambda \({ }^{\star} I\) ) is nearly singular. tol should normally be chose as approximately the largest relative error in the elements of \(T\). For example, if the elements of \(T\) are correct to about 4 significant figures, then \(t \circ 1\) should be set to about \(5^{*} 10^{-4}\). If \(\operatorname{tol}\) is supplied as less than eps, where eps is the relative machine precision, then the value eps is used in place of tol.

\section*{Output Parameters}

On exit, a is overwritten by the \(n\) diagonal elements of the upper triangular matrix \(U\) of the factorization of \(T\).

On exit, \(b\) is overwritten by the \(n-1\) super-diagonal elements of the matrix \(U\) of the factorization of \(T\).
On exit, \(c\) is overwritten by the \(n-1\) sub-diagonal elements of the matrix \(L\) of the factorization of \(T\).
REAL for slagtf
DOUBLE PRECISION for dlagtf
Array, dimension ( \(n-2\) ).
On exit, \(d\) is overwritten by the \(n-2\) second super-diagonal elements of the matrix \(U\) of the factorization of \(T\).

INTEGER.
Array, dimension ( \(n\) ).
On exit, in contains details of the permutation matrix \(P\). If an interchange occurred at the \(k\)-th step of the elimination, then \(\operatorname{in}(\mathrm{k})=1\), otherwise \(\operatorname{in}(\mathrm{k})=0\). The element \(i n(n)\) returns the smallest positive integer \(j\) such that
\(\operatorname{abs}(u(j, j)) \leq \operatorname{norm}((T-\operatorname{lambda}) I(j)) \star\) tol, where \(\operatorname{norm}(A(j))\) denotes the sum of the absolute values of the \(j\)-th row of the matrix \(A\). If no such \(j\) exists then \(\operatorname{in}(n)\) is returned as zero. If \(i n(n)\) is returned as
positive, then a diagonal element of \(U\) is small, indicating that ( \(T-\operatorname{lambda} I)\) is singular or nearly singular.

INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=-k\), the \(k\) th parameter had an illegal value.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lagtm}

Performs a matrix-matrix product of the form \(C=\alpha A B+\beta C\), where \(A\) is a tridiagonal matrix, \(B\) and \(C\) are rectangular matrices, and \(\alpha\) and \(\beta\) are scalars, which may be 0,1 , or -1 .
```

call slagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
call dlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
call clagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
call zlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

```

\section*{Discussion}

This routine performs a matrix-vector product of the form :
\[
B:=\text { alpha* } A * X+\text { beta* } B
\]
where \(A\) is a tridiagonal matrix of order \(n, B\) and \(X\) are \(n\)-by- \(n r h s\) matrices, and alpha and beta are real scalars, each of which may be \(0 ., 1\). , or -1 .

\section*{Input Parameters}
```

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans='N', then B:= alpha\star A* X+beta\star B
(no transpose);
If trans= 'T', then B:= alpha* A *}*X+\mathrm{ beta*B
(transpose);
If trans = 'C', then B:= alpha* A H*X + beta*B
(conjugate transpose)
INTEGER. The order of the matrix A (}n\geq0)\mathrm{ .
INTEGER. The number of right-hand sides, i.e., the
number of columns in X and B (nrhs \geq0).

```
```

alpha, beta REAL for slagtm/clagtm
DOUBLE PRECISION for dlagtm/zlagtm
The scalars }\alpha\mathrm{ and }\beta\mathrm{ . alpha must be 0., 1., or -1.;
otherwise, it is assumed to be 0. beta must be 0., 1., or
-1.; otherwise, it is assumed to be 1.
dl,d,du REAL for slagtm
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
COMPLEX*16 for zlagtm.
Arrays: dl(n-1),d(n),du(n-1).
The array dl contains the (n-1) sub-diagonal elements
of T.
The array d contains the n diagonal elements of T.
The array du contains the (n-1) super-diagonal
elements of T.
x, b REAL for slagtm
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
COMPLEX*16 for zlagtm.
Arrays:
x(ldx,*) contains the n-by-nrhs matrix X. The
second dimension of x must be at least max(1, nrhs).
b(Idb,*) contains the n-by-nrhs matrix B. The
second dimension of b must be at least max(1, nrhs).
Idx INTEGER. The leading dimension of the array x;
ldx}\geq\operatorname{max}(1,n)
INTEGER. The leading dimension of the array b;
ldb \geq max (1,n).

```

\section*{Output Parameters}

Overwritten by the matrix expression \(B:=\) alpha* \(A \star X+\) beta* \(B\)

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lagts}

Solves the system of equations \((T-\lambda I) x=y\) or \((T-\lambda I)^{T} x=y\), where \(T\) is a general tridiagonal matrix and \(\lambda\) a scalar, using the \(L U\) factorization computed by ? lagt f .
```

call slagts (job, n, a, b, c, d, in, y, tol, info)
call dlagts (job, n, a, b, c, d, in, y, tol, info)

```

\section*{Discussion}

This routine may be used to solve for \(x\) one of the systems of equations:
```

(T- lambda* I)*x = y or (T- lambda*I ' * x = y,

```
where \(T\) is an \(n\)-by- \(n\) tridiagonal matrix, following the factorization of ( \(T\) - lambda* \(I\) ) as
\(T\) - lambda* \(I=P L U\),
computed by the routine ? lagt \(f\).
The choice of equation to be solved is controlled by the argument job, and in each case there is an option to perturb zero or very small diagonal elements of \(U\), this option being intended for use in applications such as inverse iteration.

\section*{Input Parameters}

\author{
job
}

INTEGER. Specifies the job to be performed by ?lagts as follows:
\(=1\) : The equations \((T-\operatorname{lambda} \star I) x=y\) are to be solved, but diagonal elements of \(U\) are not to be perturbed.
\(=-1\) : The equations \((T-\operatorname{lambda} \star I) x=y\) are to be solved and, if overflow would otherwise occur, the diagonal elements of \(U\) are to be perturbed. See argument tol below.
\(=2\) : The equations \((T-1 \text { ambda } \star I)^{\prime} x=y\) are to be solved, but diagonal elements of \(U\) are not to be perturbed.
\(=-2\) : The equations \(\left(T-\right.\) lambda \(\star I^{\prime} x=y\) are to be solved and, if overflow would otherwise occur, the diagonal elements of \(U\) are to be perturbed. See argument tol below.
```

n
a,b, c, d

```
Integer. The order of the matrix \(T(n \geq 0)\).
REAL for slagts
DOUBLE PRECISION for dlagts
Arrays, dimension \(a(n), b(n-1), c(n-1), d(n-2)\) :
On entry, \(a^{(*)}\) must contain the diagonal elements of \(U\) as returned from ?lagtf.
On entry, \(b(*)\) must contain the first super-diagonal elements of \(U\) as returned from ?lagtf.
On entry, \(c\) (*) must contain the sub-diagonal elements of \(L\) as returned from ?lagtf.
On entry, \(d(*)\) must contain the second super-diagonal elements of \(U\) as returned from ?lagtf.
INTEGER.
Array, dimension ( \(n\) ).
On entry, in (*) must contain details of the matrix \(P\) as returned from ?lagtf.
\(y\) REAL for slagts
DOUBLE PRECISION for dlagts
Array, dimension (n). On entry, the right hand side vector \(y\).
REAL for slagtf
DOUBLE PRECISION for dlagtf.
On entry, with job \(<0\), tol should be the minimum perturbation to be made to very small diagonal elements of \(U\). tol should normally be chosen as about \(e p s * \operatorname{norm}(U)\), where eps is the relative machine

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
precision, but if tol is supplied as non-positive, then it is reset to \(e p s^{*} \max (\operatorname{abs}(\mathrm{u}(\mathrm{i}, \mathrm{j})))\). If job>0 then tol is not referenced.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline Y & On exit, \(y\) is overwritten by the solution vector \(x\). \\
\hline tol & On exit, tol is changed as described in Input Parameters section above, only if tol is non-positive on entry. Otherwise tol is unchanged. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If \(i n f O=-i\), the \(i\) th parameter had an illegal value. \\
If info \(=i>0\), overflow would occur when computing the \(i\) th element of the solution vector \(x\). This can only occur when job is supplied as positive and either means that a diagonal element of \(U\) is very small, or that the elements of the right-hand side vector \(y\) are very large.
\end{tabular} \\
\hline
\end{tabular}

\section*{?lagv2}

Computes the Generalized Schur factorization of a real 2-by-2 matrix pencil \((A, B)\) where \(B\) is upper triangular.
```

call slagv2 (a, lda, b, ldb, alphar, alphai, beta, csl,
snl, csr, snr)
call dlagv2 (a, lda, b, ldb, alphar, alphai, beta, csl,
snl, csr, snr)

```

\section*{Discussion}

This routine computes the Generalized Schur factorization of a real 2-by-2 matrix pencil \((A, B)\) where \(B\) is upper triangular. The routine computes orthogonal (rotation) matrices given by \(c s l, s n l\) and \(c s r, s n r\) such that:
1) if the pencil \((A, B)\) has two real eigenvalues (include \(0 / 0\) or \(1 / 0\) types), then
\[
\begin{aligned}
& {\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
c s l & s n 1 \\
-s n l & c s 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{csr} & -s n r \\
\operatorname{snr} & c s r
\end{array}\right]} \\
& {\left[\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{22}
\end{array}\right]=\left[\begin{array}{cc}
c s l & s n 1 \\
-s n l & c s I
\end{array}\right]\left[\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{22}
\end{array}\right]\left[\begin{array}{ccc}
\operatorname{csr} & -s n r \\
\operatorname{snr} & c s r
\end{array}\right]}
\end{aligned}
\]
\(2)\) if the pencil \((A, B)\) has a pair of complex conjugate eigenvalues, then
\[
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{csi} & \operatorname{snI} \\
-\operatorname{snI} & c s 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{csr} & -\operatorname{snr} \\
\operatorname{snr} & \operatorname{csr}
\end{array}\right]
\]
\[
\left[\begin{array}{cc}
b_{11} & 0 \\
0 & b_{22}
\end{array}\right]=\left[\begin{array}{cc}
c s l & s n 1 \\
-s n 1 & c s 1
\end{array}\right]\left[\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{csr} & -\operatorname{snr} \\
\operatorname{snr} & c s r
\end{array}\right]
\]
where \(b_{11} \geq b_{22}>0\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
\(a, b\)

Ida
\(1 d b\)

REAL for slagv2
DOUBLE PRECISION for dlagv2
Arrays:
a(Ida,2) contains the 2-by-2 matrix \(A\);
\(b(I d b, 2)\) contains the upper triangular 2-by-2 matrix
B.

INTEGER. The leading dimension of the array \(a\); \(I d a \geq 2\).

INTEGER. The leading dimension of the array \(b\); \(1 d b \geq 2\).

\section*{Output Parameters}

On exit, \(a\) is overwritten by the " \(A\)-part" of the generalized Schur form.
b
On exit, \(b\) is overwritten by the " \(B\)-part" of the generalized Schur form.
alphar, alphai, beta REAL for slagv2

DOUBLE PRECISION for dlagv2.
Arrays, dimension (2) each.
(alphar \((\mathrm{k})+\boldsymbol{i} *\) alphai \((\mathrm{k})) /\) beta \((\mathrm{k})\) are the eigenvalues of the pencil \((A, B), \mathrm{k}=1,2\) and \(i=\operatorname{sqrt}(-1)\).
Note that beta(k) may be zero.
CSI, snl REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the left rotation matrix, respectively.

Csr, snr REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the right rotation matrix, respectively.

\section*{?lahqr}

Computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
```

call slahqr (wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
iloz, ihiz, z, ldz, info)
call dlahqr (wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
iloz, ihiz, z, ldz, info)
call clahqr (wantt, wantz, n, ilo, ihi, h, ldh, w,
iloz, ihiz, z, ldz, info)
call zlahqr (wantt, wantz, n, ilo, ihi, h, ldh, w,
iloz, ihiz, z, ldz, info)

```

\section*{Discussion}

This routine is an auxiliary routine called by ?hseqr to update the eigenvalues and Schur decomposition already computed by ?hseqr, by dealing with the Hessenberg submatrix in rows and columns ilo to ihi.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{wantt} & LOGICAL. \\
\hline & \begin{tabular}{l}
If wantt = . TRUE., the full Schur form \(T\) is required; \\
If wantt \(=\).FALSE., eigenvalues only are required.
\end{tabular} \\
\hline \multirow[t]{3}{*}{wantz} & LOGICAL. \\
\hline & If wantz=.TRUE., the matrix of Schur vectors \(Z\) is required; \\
\hline & If wantz =. FALSE., Schur vectors are not required. \\
\hline \(n\) & INTEGER. The order of the matrix \(H(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{ilo, ihi} & INTEGER. \\
\hline & It is assumed that \(H\) is already upper quasi-triangular in rows and columns ihi+1:n, and that \(H(i l o, i l o-1)=0\) (unless ilo \(=1\) ). The routine ?lahqr works primarily \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of \(H\) if wantt =.TRUE..
Constraints:
\(1 \leq i l o \leq \max (1, i h i)\); ihi \(\leq n\).
h, \(z\)
ldh
\(I d z \quad\) INTEGER. The first dimension of \(z\); at least \(\max (1, n)\).
iloz, ihiz INTEGER. Specify the rows of \(Z\) to which transformations must be applied if wantz =. TRUE.. \(1 \leq i l o z \leq i l o ; ~ i h i \leq i h i z \leq n\).

\section*{Output Parameters}
h \begin{tabular}{l} 
On exit, if wantt =.TRUE., \(H\) is upper quasi-triangular \\
(upper triangular for complex flavors) in rows and \\
columns ilo:ihi, with any 2-by-2 diagonal blocks in \\
standard form. If wantt =.FALSE., the contents of \(H\) \\
are unspecified on exit.
\end{tabular}
computed eigenvalues ilo to \(i h i\) are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and wi, say the \(i\)-th and \((i+1)\) th, with \(w i(i)>0\) and \(w i(i+1)<0\). If wantt \(=\). TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(H\), with \(w r(i)=H(i, i)\), and, if \(H(i: i+1, i: i+1)\) is a 2-by-2 diagonal block, \(w i(i)=\operatorname{sqrt}(H(i+1, i) \star H(i, i+1))\) and \(w i(i+1)=-w i(i)\).

COMPLEX for clahqr
COMPLEX*16 for zlahqr.
Array, DIMENSION at least max \((1, n)\). Used with complex flavors only.
The computed eigenvalues ilo to ihi are stored in the corresponding elements of \(w\).
If wantt \(=\). TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(H\), with \(w(i)=H(i, i)\).

If want \(z=\). TRUE., then, on exit \(z\) has been updated; transformations are applied only to the submatrix Z(iloz:ihiz, ilo:ihi).

INTEGER.
If info \(=0\), the execution is successful.
If info \(=i>0\), ? lahqr failed to compute all the eigenvalues ilo to \(i h i\) in a total of \(30 *(i h i-i l o+1)\) iterations; elements \(i+1\) :ihi of wr and wi (for slahqr/dlahqr) or w (for clahqr/zlahqr) contain those eigenvalues which have been successfully computed.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lahrd}

Reduces the first nb columns of a general rectangular matrix A so that elements below the \(k\)-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of \(A\).
call slahrd ( \(n, k, n b, a, l d a, ~ t a u, ~ t, l d t, ~ y, ~ l d y)\)
call dlahrd ( \(n, k, n b, a, l d a, ~ t a u, ~ t, l d t, ~ y, ~ l d y)\)
call clahrd ( \(n, k, n b, a, l d a, ~ t a u, ~ t, l d t, ~ y, ~ l d y)\)
call zlahrd ( \(n, k, n b, a, l d a, ~ t a u, ~ t, l d t, ~ y, ~ l d y)\)

\section*{Discussion}

The routine reduces the first \(n b\) columns of a real/complex general \(n\)-by-( \(n-k+1\) ) matrix \(A\) so that elements below the \(k\)-th subdiagonal are zero. The reduction is performed by an orthogonal/unitary similarity transformation \(Q^{\prime} A Q\). The routine returns the matrices \(V\) and \(T\) which determine \(Q\) as a block reflector \(I-V T V^{\prime}\), and also the matrix \(Y=A V T\).
The matrix \(Q\) is represented as products of \(n b\) elementary reflectors: \(Q=H(1) H(2) \ldots H(n b)\)
Each \(H\) (i) has the form
\(H(\mathrm{i})=I-t a u \star v^{\star} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector.
This is an auxiliary routine called by ? gehrd.

\section*{Input Parameters}
n
k
nb

Integer. The order of the matrix \(A(n \geq 0)\).
INTEGER. The offset for the reduction. Elements below the \(k\)-th subdiagonal in the first \(n b\) columns are reduced to zero.

INTEGER. The number of columns to be reduced.
a
REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.
Array a (lda, \(n-k+1\) ) contains the \(n-b y-(n-k+1)\) general matrix \(A\) to be reduced.
Ida INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
ldt INTEGER. The first dimension of the output array \(t\); must be at least \(\max (1, n b)\).

INTEGER. The first dimension of the output array \(y\); must be at least \(\max (1, n)\).

\section*{Output Parameters}

On exit, the elements on and above the \(k\)-th subdiagonal in the first \(n b\) columns are overwritten with the corresponding elements of the reduced matrix; the elements below the \(k\)-th subdiagonal, with the array tau, represent the matrix \(Q\) as a product of elementary reflectors. The other columns of \(a\) are unchanged. See Application Notes below.

REAL for slahrd DOUBLE PRECISION for dlahrd COMPLEX for clahrd COMPLEX*16 for zlahrd.

Array, DIMENSION (nb).
Contains scalar factors of the elementary reflectors.
\(t, \quad y\)
REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.
Arrays, dimension \(t(I d t, n b), y(I d y, n b)\).
The array \(t\) contains upper triangular matrix \(T\).
The array y contains the \(n\)-by-nb matrix \(Y\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Application Notes}

For the elementary reflector \(H(i)\),
\(v(1: \mathrm{i}+k-1)=0, v(\mathrm{i}+k)=1 ; \quad v(\mathrm{i}+k+1: n)\) is stored on exit in \(a(\mathrm{i}+k+1: n, \mathrm{i})\) and tau is stored in tau(i).

The elements of the vectors \(v\) together form the ( \(n-k+1\) )-by-nb matrix \(V\) which is needed, with \(T\) and \(Y\), to apply the transformation to the unreduced part of the matrix, using an update of the form:
\(A:=\left(I-V T V^{\prime}\right) *\left(A-Y V^{\prime}\right)\).
The contents of \(A\) on exit are illustrated by the following example with \(n=7, k=3\) and \(n b=2\) :
\[
\left[\begin{array}{lllll}
a & h & a & a & a \\
a & h & a & a & a \\
a & h & a & a & a \\
h & h & a & a & a \\
v_{1} & h & a & a & a \\
v_{1} & v_{2} & a & a & a \\
v_{1} & v_{2} & a & a & a
\end{array}\right]
\]
where \(a\) denotes an element of the original matrix \(A, h\) denotes a modified element of the upper Hessenberg matrix \(H\), and \(v_{\mathrm{i}}\) denotes an element of the vector defining \(H(\mathrm{i})\).

\section*{?laic1}

Applies one step of incremental condition estimation.
```

call slaic1 (job, j, x, sest, w, gamma, sestpr, s, c)
call dlaic1 (job, j, x, sest, w, gamma, sestpr, s, c)
call claic1 (job, j, x, sest, w, gamma, sestpr, s, c)
call zlaic1 (job, j, x, sest, w, gamma, sestpr, s, c)

```

\section*{Discussion}

The routine ?laic1 applies one step of incremental condition estimation in its simplest version.
Let \(x, \|\left. x\right|_{2}=1\) (where \(\|\left. a\right|_{2}\) denotes the 2-norm of \(a\) ), be an approximate singular vector of an \(j\)-by- \(j\) lower triangular matrix \(L\), such that
\(\| L^{*} x| |_{2}=\) sest
Then ?laicl computes sestpr, \(s, c\) such that the vector
xhat \(=\left[\begin{array}{c}s * x \\ c\end{array}\right]\)
is an approximate singular vector of
Lhat \(=\left[\begin{array}{cc}L & 0 \\ w^{\prime} & \text { gamma }\end{array}\right]\)
in the sense that
|| Lhat \(\left.* x h a t\right|_{\mid} ^{2}=\) sestpr.
Depending on job, an estimate for the largest or smallest singular value is computed.
Note that \([s c]^{\prime}\) and sestpr \({ }^{2}\) is an eigenpair of the system (for slaic1/claic)

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\[
\operatorname{diag}(\text { sest*sest }, 0)+\left[\begin{array}{ll}
\text { alpha } & \text { gamma }
\end{array}\right] *\left[\begin{array}{l}
\text { alpha } \\
\text { gamma }
\end{array}\right]
\]
where alpha \(=x^{\prime} * w\);
or of the system (for claic1/zlaic)
\[
\operatorname{diag}(\text { sest*sest, } 0)+\left[\begin{array}{ll}
\text { alpha } & \text { gamma }
\end{array}\right] *\left[\begin{array}{l}
\operatorname{conjg}(\text { alpha }) \\
\operatorname{conjg}(\text { gamma })
\end{array}\right]
\]
where \(\operatorname{alpha}=\operatorname{conjg}(x)^{\prime} * w\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{job} & INTEGER. \\
\hline & If \(j \circ b=1\), an estimate for the largest singular value is computed; \\
\hline & If \(j \circ b=2\), an estimate for the smallest singular value is computed; \\
\hline j & INTEGER. Length of \(x\) and w. \\
\hline \multirow[t]{6}{*}{\(x\), w} & REAL for slaic1 \\
\hline & DOUBLE PRECISION for dlaic1 \\
\hline & COMPLEX for claic1 \\
\hline & COMPLEX*16 for zlaic1. \\
\hline & Arrays, dimension ( \(j\) ) each. \\
\hline & Contain vectors \(x\) and \(w\), respectively. \\
\hline \multirow[t]{3}{*}{sest} & REAL for slaic1/claici; \\
\hline & DOUBLE PRECISION for dlaic1/zlaic1. \\
\hline & Estimated singular value of \(j\)-by- \(j\) matrix \(L\). \\
\hline \multirow[t]{5}{*}{gamma} & REAL for slaic1 \\
\hline & DOUBLE PRECISION for dlaic1 \\
\hline & COMPLEX for claic1 \\
\hline & COMPLEX*16 for zlaic1. \\
\hline & The diagonal element gamma. \\
\hline
\end{tabular}

Output Parameters
```

sestpr REAL for slaic1/claic1;
DOUBLE PRECISION for dlaic1/zlaic1.
Estimated singular value of (j+1)-by-(j+1) matrix
Lhat.
s,c REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
COMPLEX*16 for zlaic1.
Sine and cosine needed in forming xhat.

```

\section*{?laln2}

Solves a 1-by-1 or 2-by-2 linear system of equations of the specified form.
```

call slaln2(ltrans, na, nw, smin, ca, a, lda, dl, d2,
b, ldb, wr, wi, x, ldx, scale, xnorm, info)
call dlaln2(ltrans, na, nw, smin, ca, a, lda, d1, d2,
b, ldb, wr, wi, x, ldx, scale, xnorm, info)

```

\section*{Discussion}

The routine solves a system of the form
\((c a A-w D) X=s B\) or \(\left(c a A^{\prime}-w D\right) X=s B\)
with possible scaling \((s)\) and perturbation of \(A\) ( \(A^{\prime}\) means \(A\)-transpose.)
\(A\) is an na-by-na real matrix, ca is a real scalar, \(D\) is an na-by-na real diagonal matrix, \(w\) is a real or complex value, and \(X\) and \(B\) are na-by- 1 matrices: real if \(w\) is real, complex if \(w\) is complex. The parameter na may be 1 or 2 .
If \(w\) is complex, \(X\) and \(B\) are represented as na-by- 2 matrices, the first column of each being the real part and the second being the imaginary part.
The routine computes the scaling factor \(s(\leq 1)\) so chosen that \(X\) can be computed without overflow. \(X\) is further scaled if necessary to assure that \(\operatorname{norm}(\) ca \(A-w D) \star \operatorname{norm}(X)\) is less than overflow.

If both singular values of \((c a A-w D)\) are less than \(\operatorname{smin}, \operatorname{smin} * I\) (where \(I\) stands for identity) will be used instead of (ca \(A-w D\) ). If only one singular value is less than smin, one element of (caA-wD) will be perturbed enough to make the smallest singular value roughly \(\operatorname{smin}\). If both singular values are at least \(\operatorname{smin},(\operatorname{ca} A-w D)\) will not be perturbed. In any case, the perturbation will be at most some small multiple of
\(\max (\operatorname{smin}, u l p * \operatorname{norm}(c a A-w D)\) ).
The singular values are computed by infinity-norm approximations, and thus will only be correct to a factor of 2 or so.

NOTE. All input quantities are assumed to be smaller than overflow by a reasonable factor (see bignum).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{trans} & LOGICAL. \\
\hline & If trans =. TRUE., \(A\) - transpose will be used. \\
\hline & If trans \(=\). FALSE.,\(A\) will be used (not transposed.) \\
\hline na & Integer. The size of the matrix \(A\). May only be 1 or 2 . \\
\hline nw & INTEGER. This parameter must be 1 if \(w\) is real, and 2 if \(w\) is complex. May only be 1 or 2 . \\
\hline \multirow[t]{6}{*}{smin} & REAL for slaln2 \\
\hline & DOUBLE PRECISION for dlaln2. \\
\hline & The desired lower bound on the singular values of \(A\). \\
\hline & This should be a safe distance away from underflow or overflow, for example, between \\
\hline & (underflow/machine_precision) and \\
\hline & (machine_precision * overflow). (See bignum and ulp) \\
\hline \multirow[t]{3}{*}{ca} & REAL for slaln2 \\
\hline & DOUBLE PRECISION for dlaln2. \\
\hline & The coefficient by which \(A\) is multiplied. \\
\hline \multirow[t]{3}{*}{a} & REAL for slaln2 \\
\hline & DOUBLE PRECISION for dlaln2. \\
\hline & Array, DIMENSION (lda,na). The na-by-na matrix \(A\). \\
\hline \multirow[t]{2}{*}{Ida} & Integer. The leading dimension of \(a\). Must be at least \\
\hline & na. \\
\hline \multirow[t]{3}{*}{d1, d2} & REAL for slaln2 \\
\hline & DOUBLE PRECISION for dlaln2. \\
\hline & The \((1,1)\) and \((2,2)\) elements in the diagonal matrix \(D\), respectively. \(d 2\) is not used if \(n w=1\). \\
\hline
\end{tabular}

REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION ( \(1 \mathrm{db}, \mathrm{nw}\) ). The na-by-nw matrix \(B\) (right-hand side). If \(n w=2\) ( \(w\) is complex), column 1 contains the real part of \(B\) and column 2 contains the imaginary part.
integer. The leading dimension of \(b\). Must be at least na.
REAL for slaln2
DOUBLE PRECISION for dlaln2.
The real and imaginary part of the scalar \(w\), respectively. \(w i\) is not used if \(n w=1\).
INTEGER. The leading dimension of the output array \(x\). Must be at least na.

\section*{Output Parameters}

REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION ( \(1 d x, n w\) ). The na-by-nw matrix \(X\) (unknowns), as computed by the routine. If \(n w=2\) ( \(w\) is complex), on exit, column 1 will contain the real part of \(X\) and column 2 will contain the imaginary part.
REAL for slaln2
DOUBLE PRECISION for dlaln2.
The scale factor that \(B\) must be multiplied by to insure that overflow does not occur when computing \(X\). Thus (ca \(A-w D\) ) \(X\) will be scale \({ }^{*} B\), not \(B\) (ignoring perturbations of \(A\).) It will be at most 1 .
REAL for slaln2
DOUBLE PRECISION for dlaln2.
The infinity-norm of \(X\), when \(X\) is regarded as an na-by-nw real matrix.

INTEGER.
An error flag. It will be zero if no error occurs, a negative number if an argument is in error, or a positive
number if (ca \(A-w D\) ) had to be perturbed.
The possible values are:
If info \(=0\) : no error occurred, and ( ca \(A-w D\) ) did not have to be perturbed.
If info \(=1:(\operatorname{ca} A-w D)\) had to be perturbed to make its smallest (or only) singular value greater than smin.

NOTE. In the interests of speed, this routine does not check the inputs for errors.

\section*{?lals0}

Applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by ?gelsd.
```

call slals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, work, info)
call dlals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, work, info)
call clals0 (icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, rwork, info)
call zlals0 (icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
k, c, s, rwork, info)

```

\section*{Discussion}

The routine applies back the multiplying factors of either the left or right singular vector matrix of a diagonal matrix appended by a row to the right hand side matrix \(B\) in solving the least squares problem using the divide-and-conquer SVD approach.

For the left singular vector matrix, three types of orthogonal matrices are involved:
(1L) Givens rotations: the number of such rotations is givptr; the pairs of columns/rows they were applied to are stored in givcol; and the c-and \(s\)-values of these rotations are stored in givnum.
(2L) Permutation. The \((n l+1)\)-st row of \(B\) is to be moved to the first row, and for \(\mathrm{j}=2: n\), perm \((\mathrm{j})\)-th row of \(B\) is to be moved to the j -th row.
(3L) The left singular vector matrix of the remaining matrix.
For the right singular vector matrix, four types of orthogonal matrices are involved:
(1R) The right singular vector matrix of the remaining matrix.
\((2 R)\) If sqre \(=1\), one extra Givens rotation to generate the right null space.
(3R) The inverse transformation of (2L).
(4R) The inverse transformation of (1L).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & \begin{tabular}{l}
INTEGER. Specifies whether singular vectors are to be computed in factored form: \\
If \(i\) compq \(=0\) : Left singular vector matrix. \\
If icompq \(=1\) : Right singular vector matrix.
\end{tabular} \\
\hline nl & INTEGER. The row dimension of the upper block. \(n \mathrm{l} \geq 1\). \\
\hline \(n \mathrm{r}\) & INTEGER. The row dimension of the lower block. \(n r \geq 1\). \\
\hline sqre & \begin{tabular}{l}
INTEGER. \\
If sqre \(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix. \\
If sqre \(=1\) : the lower block is an \(n r-\) by- \((n r+1)\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & rectangular matrix. The bidiagonal matrix has row dimension \(n=n l+n r+1\), and column dimension \(m=n+\) sqre. \\
\hline nrhs & INTEGER. The number of columns of \(b\) and \(b x\). Must be at least 1 . \\
\hline \multirow[t]{5}{*}{b} & REAL for slals0 \\
\hline & DOUBLE PRECISION for dlals0 \\
\hline & COMPLEX for clals0 \\
\hline & COMPLEX*16 for zlals0. \\
\hline & Array, DIMENSION ( 1 db, nrhs ). Contains the right hand sides of the least squares problem in rows 1 through \(m\). \\
\hline 1 db & integer. The leading dimension of \(b\). Must be at least \(\max (1, \max (m, n))\). \\
\hline \multirow[t]{5}{*}{\(b x\)} & REAL for slals0 \\
\hline & DOUBLE PRECISION for dlals0 \\
\hline & COMPLEX for clals0 \\
\hline & COMPLEX*16 for zlals0. \\
\hline & Workspace array, DIMENSION ( 1 dbx , nrhs ) . \\
\hline 1 dbx & Integer. The leading dimension of bx. \\
\hline \multirow[t]{2}{*}{perm} & INTEGER. \\
\hline & Array, DIMENSION ( \(n\) ). The permutations (from deflation and sorting) applied to the two blocks. \\
\hline givptr & INTEGER. The number of Givens rotations which took place in this subproblem. \\
\hline \multirow[t]{2}{*}{givcol} & INTEGER. \\
\hline & Array, DIMENSION ( \(1 d g c o 1,2\) ). Each pair of numbers indicates a pair of rows/columns involved in a Givens rotation. \\
\hline Idgcol & INTEGER. The leading dimension of givcol, must be at least \(n\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{givnum} & REAL for slals0/clals0 \\
\hline & DOUBLE PRECISION for dlals0/zlals0 \\
\hline & Array, DIMENSION ( Idgnum, 2 ). Each number indicates the \(c\) or \(s\) value used in the corresponding Givens rotation. \\
\hline Idgnum & Integer. The leading dimension of arrays \(d i f r\), poles and givnum, must be at least \(k\). \\
\hline \multirow[t]{3}{*}{poles} & REAL for slals0/clals0 \\
\hline & DOUBLE PRECISION for dlals0/zlals0 \\
\hline & Array, DIMENSION ( Idgnum, 2 ). On entry, poles \((1: k, 1)\) contains the new singular values obtained from solving the secular equation, and poles(1:k,2) is an array containing the poles in the secular equation. \\
\hline \multirow[t]{3}{*}{difl} & REAL for slals0/clals0 \\
\hline & DOUBLE PRECISION for dlals0/zlals0 \\
\hline & Array, DIMENSION ( \(k\) ). On entry, difl(i) is the distance between \(i\)-th updated (undeflated) singular value and the \(i\)-th (undeflated) old singular value. \\
\hline \multirow[t]{3}{*}{difr} & REAL for slals0/clals0 \\
\hline & DOUBLE PRECISION for dlals0/zlals0 \\
\hline & Array, DIMENSION ( Idgnum, 2 ). On entry, difr(i, 1) contains the distances between \(i\)-th updated (undeflated) singular value and the \(i+1\)-th (undeflated) old singular value. And \(\operatorname{difr}(i, 2)\) is the normalizing factor for the \(i\)-th right singular vector. \\
\hline \multirow[t]{3}{*}{\(z\)} & REAL for slals0/clals0 \\
\hline & DOUBLE PRECISION for dlals0/zlals0 \\
\hline & Array, DIMENSION ( \(k\) ). Contains the components of the deflation-adjusted updating row vector. \\
\hline k & INTEGER. Contains the dimension of the non-deflated matrix. This is the order of the related secular equation. \(1 \leq k \leq n\). \\
\hline
\end{tabular}
c

REAL for slals0/clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre \(=0\) and the \(c\) value of a Givens rotation related to the right null space if sqre \(=1\).
REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre \(=0\) and the \(s\) value of a Givens rotation related to the right null space if sqre \(=1\).
REAL for slals0 DOUBLE PRECISION for dlals0
Workspace array, DIMENSION ( \(k\) ). Used with real flavors only.
REAL for clals0 DOUBLE PRECISION for zlals0
Workspace array, DIMENSION \((k *(1+n r h s)+2 * n r h s)\). Used with complex flavors only.

\section*{Output Parameters}

On exit, contains the solution \(X\) in rows 1 through \(n\). INTEGER.

If info \(=0\) : successful exit. If info \(=-i<0\), the \(i\)-th argument had an illegal value.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lalsa}

Computes the SVD of the coefficient matrix in compact form. Used by ?gelsd.
```

call slalsa (icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, work,
iwork, info)
call dlalsa (icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, work,
iwork, info)
call clalsa (icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, rwork,
iwork, info)
call zlalsa (icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, rwork,
iwork, info)

```

\section*{Discussion}

The routine is an itermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form. The singular vectors are computed as products of simple orthorgonal matrices.
If \(i\) compq \(=0\), ?lalsa applies the inverse of the left singular vector matrix of an upper bidiagonal matrix to the right hand side; and if icompq \(=1\), the routine applies the right singular vector matrix to the right hand side. The singular vector matrices were generated in the compact form by ?lalsa.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & \begin{tabular}{l}
INTEGER. Specifies whether the left or the right singular vector matrix is involved. \\
If \(i\) compq \(=0\) : left singular vector matrix is used \\
If icompq \(=1\) : right singular vector matrix is used.
\end{tabular} \\
\hline smlsiz & INTEGER. The maximum size of the subproblems at the bottom of the computation tree. \\
\hline \(n\) & INTEGER. The row and column dimensions of the upper bidiagonal matrix. \\
\hline nrhs & INTEGER. The number of columns of \(b\) and \(b x\). Must be at least 1 . \\
\hline \multirow[t]{5}{*}{\(b\)} & REAL for slalsa \\
\hline & DOUBLE PRECISION for dlalsa \\
\hline & COMPLEX for clalsa \\
\hline & COMPLEX*16 for zlalsa \\
\hline & Array, DIMENSION ( 1 db, nrhs ). Contains the right hand sides of the least squares problem in rows 1 through \(m\). \\
\hline 1 db & integer. The leading dimension of \(b\) in the calling subprogram. Must be at least max \((1, \max (m, n))\). \\
\hline 1 dbx & INTEGER. The leading dimension of the output array bx . \\
\hline \multirow[t]{3}{*}{\(u\)} & REAL for slalsa/clalsa \\
\hline & DOUBLE PRECISION for dlalsa/zlalsa \\
\hline & Array, DIMENSION ( Idu, smlsiz). On entry, u contains the left singular vector matrices of all subproblems at the bottom level. \\
\hline \(1 d u\) & INTEGER, \(I d u \geq n\). The leading dimension of arrays \(u\), vt, difl, difr, poles, givnum, and \(z\). \\
\hline \multirow[t]{3}{*}{\(v t\)} & REAL for slalsa/clalsa \\
\hline & DOUBLE PRECISION for dlalsa/zlalsa \\
\hline & Array, DIMENSION ( Idu, smlsiz +1). On entry, contains the right singular vector matrices of all subproblems at the bottom level. \\
\hline k & INTEGER array, DIMENSION ( \(n\) ) . \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{difl} & ReAL for slalsa/clalsa \\
\hline & DOUBLE PRECISION for dlalsa/zlalsa \\
\hline & Array, DIMENSION ( \(1 d u, n l v l\) ), where \(n l v l=\) \(\operatorname{int}\left(\log _{2}(n /(s m l s i z+1))\right)+1\). \\
\hline \multirow[t]{5}{*}{difr} & REAL for slalsa/clalsa \\
\hline & DOUBLE PRECISION for dlalsa/zlalsa \\
\hline & Array, DIMENSION ( \(1 d u, 2 \star_{n} 1 v \beth\) ). On entry, \\
\hline & singular values on the \(i\)-th level and singular values on \\
\hline & the ( \(i-1\) )-th level, and \(\operatorname{difr}(*, 2 i\) ) record the normalizing factors of the right singular vectors matrices of subproblems on \(i\)-th level. \\
\hline \multirow[t]{3}{*}{\(z\)} & REAL for slalsa/clalsa \\
\hline & DOUBLE PRECISION for dlalsa/zlalsa \\
\hline & Array, DIMENSION ( \(I d u, n l v I)\). On entry, \(z(1, i)\) contains the components of the deflation- adjusted updating the row vector for subproblems on the \(i\)-th level. \\
\hline \multirow[t]{4}{*}{poles} & ReAL for slalsa/clalsa \\
\hline & DOUBLE PRECISION for dlalsa/zlalsa \\
\hline & Array, DIMENSION ( \(1 \mathrm{du}, 2 \star_{\text {n }} \mathrm{lv} \mathrm{l}\) ) . \\
\hline & On entry, poles(*, \(2 i-1: 2 i\) ) contains the new and old singular values involved in the secular equations on the \(i\)-th level. \\
\hline \multirow[t]{3}{*}{givptr} & Integer. \\
\hline & Array, dimension ( \(n\) ). \\
\hline & On entry, givptr( i ) records the number of Givens rotations performed on the \(i\)-th problem on the computation tree. \\
\hline \multirow[t]{2}{*}{givcol} & INTEGER. \\
\hline & Array, dimension ( 1 dgcol, \(2 *_{n l v l}\) ). On entry, for each \(i\), \(\operatorname{givcol}(*, 2 i-1: 2 i)\) records the locations of Givens rotations performed on the \(i\)-th level on the computation tree. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
ldgcol & INTEGER, \(1 d g c o l \geq n\). The leading dimension of \\
perm & arrays givcol and perm. \\
& INTEGER. \\
& Array, DIMENSION ( 1 dgcol, nlvi ). On entry, perm(*, \\
i) records permutations done on the \(i\)-th level of the \\
computation tree.
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}
\begin{tabular}{ll}
\(b \mathrm{bx}\) & On exit, contains the solution \(X\) in rows 1 through n. \\
& REAL for slalsa \\
DOUBLE PRECISION for dlalsa \\
& COMPLEX for clalsa \\
COMPLEX*16 for zlalsa \\
info & Array, DIMENSION \((1 d b x, n r h s)\). On exit, the result of \\
& applying the left or right singular vector matrix to \(b\). \\
& INTEGER. \\
& If info \(=0:\) successful exit \\
& If info \(=-i<0\), the \(i\)-th argument had an illegal value.
\end{tabular}

\section*{?lalsd}

Uses the singular value decomposition of A to solve the least squares problem.
```

call slalsd (uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, iwork, info)
call dlalsd (uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, iwork, info)
call clalsd (uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, rwork, iwork, info)
call zlalsd (uplo, smlsiz, n, nrhs, d, e, b, ldb,
rcond, rank, work, rwork, iwork, info)

```

\section*{Discussion}

The routine uses the singular value decomposition of \(A\) to solve the least squares problem of finding \(X\) to minimize the Euclidean norm of each column of \(A X-B\), where \(A\) is \(n\)-by- \(n\) upper bidiagonal, and \(X\) and \(B\) are n-by-nrhs. The solution \(X\) overwrites \(B\).

The singular values of \(A\) smaller than rcond times the largest singular value are treated as zero in solving the least squares problem; in this case a minimum norm solution is returned. The actual singular values are returned in \(d\) in ascending order.
This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

\section*{Input Parameters}
```

uplo CHARACTER*1.
If uplo = 'U', d and e define an upper bidiagonal
matrix.
If uplo = 'L', d and e define a lower bidiagonal matrix.
smlsiz INTEGER. The maximum size of the subproblems at the
bottom of the computation tree.
INTEGER. The dimension of the bidiagonal matrix.
n}\geq0\mathrm{ .
INTEGER. The number of columns of B}\mathrm{ . Must be at
least 1.
d
e
b
REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
Array, DIMENSION (n). On entry, d contains the main
diagonal of the bidiagonal matrix.
REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
Array, DIMENSION (}n-1\mathrm{). Contains the super-diagonal
entries of the bidiagonal matrix. On exit, e is destroyed.
REAL for slalsd
DOUBLE PRECISION for dlalsd
COMPLEX for clalsd
COMPLEX*16 for zlalsd

```

Array, DIMENSION ( \(1 \mathrm{db}, \mathrm{nrhs}\) ). On input, b contains the right hand sides of the least squares problem. On output, b contains the solution \(X\).
\begin{tabular}{|c|c|}
\hline 1 db & integer. The leading dimension of \(b\) in the calling subprogram. Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{5}{*}{rcond} & REAL for slalsd/clalsd \\
\hline & DOUBLE PRECISION for dlalsd/zlalsd \\
\hline & The singular values of \(A\) less than or equal to reond times the largest singular value are treated as zero in solving the least squares problem. \\
\hline & If rcond is negative, machine precision is used instead. \\
\hline & For example, if \(\operatorname{diag}(S) \star X=B\) were the least squares problem, where \(\operatorname{diag}(S)\) is a diagonal matrix of singular values, the solution would be \(X(i)=B(i) / S(i)\) if \(S(i)\) is greater than \(r \operatorname{cond} * \max (S)\), and \(X(i)=0\) if \(S(i)\) is less than or equal to rcond \(* \max (S)\). \\
\hline rank & Integer. The number of singular values of \(A\) greater than rcond times the largest singular value. \\
\hline \multirow[t]{8}{*}{work} & REAL for slalsd \\
\hline & DOUBLE PRECISION for dlalsd \\
\hline & COMPLEX for clalsd \\
\hline & COMPLEX*16 for zlalsd \\
\hline & Workspace array. \\
\hline & DIMENSION for real flavors at least
\[
\left(9 n+2 n * s m l s i z+8 n * n l v l+n * n r h s+(s m l s i z+1)^{2}\right),
\] where \\
\hline & \(n l v l=\max \left(0, \operatorname{int}\left(\log _{2}(n /(s m l s i z+1))\right)+1\right)\). \\
\hline & DIMENSION for complex flavors at least ( \(n * n r h s\) ). \\
\hline \multirow[t]{5}{*}{rwork} & REAL for clalsd \\
\hline & DOUBLE PRECISION for zlalsd \\
\hline & Workspace array, used with complex flavors only. \\
\hline & \begin{tabular}{l}
DIMENSION at least \(\left(9 n+2 n * \operatorname{smlsiz}+8 n^{\star} n l v I+\right.\) \(\left.3 \star_{m l s i z}{ }_{n r h s}+(s m l s i z+1)^{2}\right)\), \\
where
\end{tabular} \\
\hline & \(n \backslash v 1=\max \left(0, \operatorname{int}\left(\log _{2}(\min (m, n) /(s m l s i z+1))\right)+1\right)\). \\
\hline
\end{tabular}
iwork
INTEGER.
Workspace array, DIMENSION at least \((3 n \star n l v I+11 n)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline d & On exit, if info \(=0, d\) contains singular values of the bidiagonal matrix. \\
\hline \(b\) & On exit, b contains the solution \(X\). \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & If info \(=0\) : successful exit. \\
\hline & If info \(=-i<0\), the \(i\)-th argument had an illegal value. \\
\hline & If info >0: The algorithm failed to compute a singular value while working on the submatrix lying in rows and columns infol \((n+1)\) through \(\bmod (i n f o, n+1)\). \\
\hline
\end{tabular}

\section*{?lamch}

\section*{Determines machine parameters for}
floating-point arithmetic.
```

val = slamch (cmach)
val = dlamch (cmach)

```

\section*{Discussion}

The function ?lamch determines single precision and double precision machine parameters.

\section*{Input Parameters}
```

cmach
CHARACTER*1. Specifies the value to be returned by
? lamch:
= ' E ' or 'e', val $=e p s$
= 's' or's, val = sfmin
= 'B' or 'b', val = base
$=$ ' P ' or 'p', val = eps*base

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\(={ }^{\prime} N\) ' or ' \(n\) ', val \(=t\)
\(=\) ' \(R\) ' or 'r', val \(=\) rnd
\(={ }^{\prime} M\) ' or ' \(m\) ', val \(=e m i n\)
= 'U' or 'u', val = rmin
= 'L' or 'I', val = emax
= 'o' or 'o', val = rmax
where
eps = relative machine precision;
sfmin \(=\) safe minimum, such that \(1 /\) sfmin does not overflow;
base = base of the machine;
prec \(=e p s^{*}\) base;
\(t \quad=\) number of (base) digits in the mantissa;
rnd \(=1.0\) when rounding occurs in addition, 0.0
otherwise;
emin \(=\) minimum exponent before (gradual) underflow;
rmin \(=\) underflow_threshold - base**(emin-1);
emax \(=\) largest exponent before overflow;
rmax \(=\) overflow_threshold \(-\left(\text { base }{ }^{* *} \text { emax }\right)^{*}(1-e p s)\).

\section*{Output Parameters}

REAL for slamch
DOUBLE PRECISION for dlamch
Value returned by the function.

\section*{?lamc1}

Called from ?lamc2.
Determines machine parameters given
by beta, t, rnd, ieeel.
```

call slamc1 (beta, t, rnd, ieee1)
call dlamc1 (beta, t, rnd, ieee1)

```

\section*{Discussion}

The routine ?lamc1 determines machine parameters given by beta, \(t\), rnd, ieeel.

\section*{Output Parameters}
\begin{tabular}{ll} 
beta & INTEGER. The base of the machine. \\
\(t\) & INTEGER. The number of (beta) digits in the mantissa. \\
rnd & LOGICAL. \\
Specifies whether proper rounding ( rnd=. TRUE.) or \\
chopping ( rnd=.FALSE.) occurs in addition. This \\
may not be a reliable guide to the way in which the \\
machine performs its arithmetic.
\end{tabular}

\section*{?lamc2}

Used by ?lamch.
Determines machine parameters
specified in its arguments list.
```

call slamc2 (beta, t, rnd, eps, emin, rmin, emax, rmax)
call dlamc2 (beta, t, rnd, eps, emin, rmin, emax, rmax)

```

\section*{Discussion}

The routine ? lamc2 determines machine parameters specified in its arguments list.

Output Parameters
\begin{tabular}{ll} 
beta & INTEGER. The base of the machine. \\
\(t\) & INTEGER. The number of (beta \()\) digits in the mantissa.
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{rnd} & LOGICAL. \\
\hline & Specifies whether proper rounding ( \(r n d=\).TRUE. ) or chopping ( \(r n d=\).FALSE. ) occurs in addition. This may not be a reliable guide to the way in which the machine performs its arithmetic. \\
\hline \multirow[t]{3}{*}{eps} & REAL for slamc2 \\
\hline & DOUBLE PRECISION for dlamc2 \\
\hline & \begin{tabular}{l}
The smallest positive number such that \(f l(1.0-e p s)<1.0\), \\
where \(f l\) denotes the computed value.
\end{tabular} \\
\hline emin & Integer. The minimum exponent before (gradual) underflow occurs. \\
\hline \multirow[t]{3}{*}{rmin} & REAL for slamc2 \\
\hline & DOUBLE PRECISION for dlamc2 \\
\hline & The smallest normalized number for the machine, given by base emin-1, where base is the floating point value of beta. \\
\hline emax & INTEGER.The maximum exponent before overflow occurs. \\
\hline \multirow[t]{3}{*}{rmax} & REAL for slamc2 \\
\hline & DOUBLE PRECISION for dlamc2 \\
\hline & The largest positive number for the machine, given by base \({ }^{e m a x(1-e p s)}\), where base is the floating point value of beta. \\
\hline
\end{tabular}

\section*{?lamc3}

Called from ? lamc1-? lamc5. Intended to force \(a\) and \(b\) to be stored prior to doing the addition of a and b.
```

val = slamc3 (a, b)
val = dlamc3 (a, b)

```

\section*{Discussion}

The routine is intended to force \(a\) and \(b\) to be stored prior to doing the addition of \(a\) and \(b\), for use in situations where optimizers might hold one of these in a register.

\section*{Input Parameters}
```

a,b REAL for slamc3
DOUBLE PRECISION for dlamc3
The values a and b.
Output Parameters
val
REAL for slamc3
DOUBLE PRECISION for dlamc3
The result of adding values a and b.

```

\section*{?lamc4}

This is a service routine for ? 1 amc 2 .
```

call slamc4 (emin, start, base)
call dlamc4 (emin, start, base)

```

\section*{Discussion}

This is a service routine for ? lamc2.
Input Parameters
\begin{tabular}{ll} 
start & REAL for slamc4 \\
& DOUBLE PRECISION for dlamc4 \\
& The starting point for determining emin. \\
base & INTEGER. The base of the machine.
\end{tabular}

\section*{Output Parameters}

INTEGER. The minimum exponent before (gradual) underflow, computed by setting \(a=\) start and dividing by base until the previous a can not be recovered.

\section*{?lamc5}

Called from ? lamc2.
Attempts to compute the largest machine
floating-point number, without overflow.
```

call slamc5 (beta, p, emin, ieee, emax, rmax)
call dlamc5 (beta, p, emin, ieee, emax, rmax)

```

\section*{Discussion}

The routine ?lamc5 attempts to compute rmax, the largest machine floating-point number, without overflow. It assumes that emax \(+\operatorname{abs}(e m i n)\) sum approximately to a power of 2 . It will fail on machines where this assumption does not hold, for example, the Cyber 205 \(\left(e m i n=-28625, e_{\max }=28718\right)\). It will also fail if the value supplied for emin is too large (that is, too close to zero), probably with overflow.

\section*{Input Parameters}
\(\left.\begin{array}{ll}\text { beta } & \text { INTEGER. The base of floating-point arithmetic. } \\
p & \text { INTEGER. The number of base beta digits in the } \\
\text { mantissa of a floating-point value. }\end{array}\right\}\)\begin{tabular}{l} 
INTEGER. The minimum exponent before (gradual) \\
underflow.
\end{tabular}\(\quad\)\begin{tabular}{l} 
LOGICAL. A logical flag specifying whether or not the \\
arithmetic system is thought to comply with the IEEE \\
standard.
\end{tabular}

Output Parameters.
```

emax INTEGER. The largest exponent before overflow.
rmax REAL for slamc5
DOUBLE PRECISION for dlamc5
The largest machine floating-point number.

```

\section*{?lamrg}

Creates a permutation list to merge the entries of two independently sorted sets into a single set sorted in acsending order.
```

call slamrg (n1, n2, a, strd1, strd2, index)
call dlamrg (n1, n2, a, strd1, strd2, index)

```

\section*{Discussion}

The routine creates a permutation list which will merge the elements of a (which is composed of two independently sorted sets) into a single set which is sorted in ascending order.

\section*{Input Parameters}
```

n1, n2 INTEGER.

```

These arguments contain the respective lengths of the two sorted lists to be merged.

REAL for slamrg
DOUBLE PRECISION for dlamrg.
Array, DIMENSION ( \(n 1+n 2\) ).
The first \(n 1\) elements of a contain a list of numbers which are sorted in either ascending or descending order. Likewise for the final \(n 2\) elements.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
strd1, strd2 INTEGER.
These are the strides to be taken through the array \(a\). Allowable strides are 1 and -1 . They indicate whether a subset of \(a\) is sorted in ascending (strdx \(=1\) ) or descending (strdx \(=-1\) ) order.

\section*{Output Parameters}

\author{
index
}

INTEGER.
Array, DIMENSION ( \(n 1+n 2\) ).
On exit, this array will contain a permutation such that if \(b(i)=a(i n \operatorname{dex}(i))\) for \(i=1, n 1+n 2\), then \(b\) will be sorted in ascending order.

\section*{?langb}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
```

val = slangb (norm, n, kl, ku, ab, ldab, work)
val = dlangb (norm, n, kl, ku, ab, ldab, work)
val = clangb (norm, n, kl, ku, ab, ldab, work)
val = zlangb (norm, n, kl, ku, ab, ldab, work)

```

\section*{Discussion}

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \(n\)-by- \(n\) band matrix \(A\), with \(k l\) sub-diagonals and \(k u\) super-diagonals.
The value val returned by the function is:
```

val = max(abs((Aij)), if norm ' 'M' or 'm'
= norm1(A), if norm= ' 1' or 'O' or ' }0\mathrm{ '
= normI(A), if norm= 'I' or 'i'

```
```

$=\operatorname{normF}(A), \quad$ if norm $=' F$ ', ' f ', ' E ' or ' e '

```
where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline norm & CHARACTER*1. Specifies the value to be returned by the routine as described above. \\
\hline \(n\) & Integer. The order of the matrix \(A\). \(n \geq 0\). When \(n=0\), ?langb is set to zero. \\
\hline kI & INTEGER. The number of sub-diagonals of the matrix \(A\). \(k I \geq 0\). \\
\hline \(k u\) & INTEGER. The number of super-diagonals of the matrix A. \(k u \geq 0\). \\
\hline \(a b\) & REAL for slangb \\
\hline & DOUBLE PRECISION for dlangb \\
\hline & COMPLEX for clangb \\
\hline & COMPLEX*16 for zlangb \\
\hline & \begin{tabular}{l}
Array, DIMENSION ( \(1 d a b, n\) ). The band matrix \(A\), stored in rows 1 to \(k I+k u+1\). The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
\[
a b(k u+1+i-j, j)=a(i, j)
\] \\
for \(\max (1, j-k u) \leq i \leq \min (n, j+k l)\).
\end{tabular} \\
\hline Idab & INTEGER. The leading dimension of the array \(a b\). \(l d a b \geq k l+k u+1\). \\
\hline work & REAL for slangb/clangb \\
\hline & DOUBLE PRECISION for dlangb/zlangb \\
\hline & Workspace array, DIMENSION (lwork), where \\
\hline & lwork \(\geq n\) when norm = 'I'; otherwise, work is not referenced. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}

REAL for slangb/clangb
DOUBLE PRECISION for dlangb/zlangb
Value returned by the function.

\section*{?lange}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
```

val = slange (norm, m, n, a, lda, work)
val = dlange (norm, m, n, a, lda, work)
val = clange (norm, m, n, a, lda, work)
val = zlange (norm, m, n, a, lda, work)

```

Discussion
The function ?lange returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex matrix \(A\).
The value val returned by the function is:
```

val = max(abs((Aij)), if norm ='M' or 'm'
= norm1(A), if norm= '1' or 'O' or '0'
= normI(A), if norm= 'I' or 'i'
= normF(A), if norm= 'F', ' }f\mathrm{ ', ' E' or 'e'

```
where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline norm & CHARACTER* 1 . Specifies the value to be returned in ?lange as described above. \\
\hline m & INTEGER. The number of rows of the matrix \(A\). \(m \geq 0\). When \(m=0\), ? lange is set to zero. \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(A\). \(n \geq 0\). When \(n=0\), ? lange is set to zero. \\
\hline \multirow[t]{5}{*}{a} & REAL for slange \\
\hline & DOUBLE PRECISION for dlange \\
\hline & COMPLEX for clange \\
\hline & COMPLEX*16 for zlange \\
\hline & Array, DIMENSION ( 1 da, \(n\) ). The \(m\)-by-n matrix \(A\). \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). \(I d a \geq \max (m, 1)\). \\
\hline \multirow[t]{3}{*}{work} & REAL for slange and clange. \\
\hline & DOUBLE PRECISION for dlange and zlange. \\
\hline & Workspace array, DIMENSION (Iwork), where lwork \(\geq\) \(m\) when norm = ' \(I\) '; otherwise, work is not referenced. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

val REAL for slange/clange
DOUBLE PRECISION for dlange/zlange
Value returned by the function.

```

\section*{?langt}

Returns the value of the 1-norm,
Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.
```

val = slangt (norm, n, dl, d, du)

```
```

val = dlangt (norm, n, dl, d, du)
val = clangt (norm, n, dl, d, du)
val = zlangt (norm, n, dl, d, du)

```

\section*{Discussion}

The routine returns the value of the 1 -norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex tridiagonal matrix \(A\).
The value val returned by the function is:
```

val = max(abs((Aij)), if norm = 'M' or 'm'
= norm1(A), if norm= '1' or 'O' or 'O'
= normI(A), if norm='I' or 'i'
= normF(A), if norm= 'F', 'f', 'E' or 'e'

```
where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
\begin{tabular}{ll} 
norm & CHARACTER* 1 . Specifies the value to be returned in \\
\(n\) & ?langt as described above. \\
& INTEGER. The order of the matrix \(A\). \\
& \(n \geq 0\). When \(n=0\), ?langt is set to zero. \\
\(n, d u \quad\) & REAL for slangt \\
& DOUBLE PRECISION for dlangt \\
& COMPLEX for clangt \\
& COMPLEX* 16 for zlangt \\
& Arrays: \(d l(n-1), d(n), d u(n-1)\). \\
& The array \(d l\) contains the \((n-1)\) sub-diagonal elements \\
& of \(A\). \\
& The array \(d\) contains the diagonal elements of \(A\). \\
& The array \(d u\) contains the \((n-1)\) super-diagonal \\
& elements of \(A\).
\end{tabular}

\section*{Output Parameters}
```

val REAL for slangt/clangt
DOUBLE PRECISION for dlangt/zlangt
Value returned by the function.

```

\section*{?lanhs}

Returns the value of the 1-norm,
Frobenius norm, infinity-norm, or the
largest absolute value of any element of an upper Hessenberg matrix.
```

val = slanhs (norm, n, a, lda, work)
val = dlanhs (norm, n, a, lda, work)
val = clanhs (norm, n, a, lda, work)
val = zlanhs (norm, n, a, lda, work)

```

\section*{Discussion}

The function ? lanhs returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hessenberg matrix \(A\).
The value val returned by the function is:
```

val = max(abs(A (Aj)), if norm = 'M' or 'm'
= norm1(A), if norm = '1' or 'O' or 'o'
= normI(A), if norm= 'I' or 'i'
= normF(A), if norm= 'F', ' f', 'E' or 'e'

```
where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline norm & CHARACTER* 1 . Specifies the value to be returned in ?lanhs as described above. \\
\hline \(n\) & INTEGER. The order of the matrix \(A\). \(n \geq 0\). When \(n=0\), ? lanhs is set to zero. \\
\hline \multirow[t]{5}{*}{a} & REAL for slanhs \\
\hline & DOUBLE PRECISION for dlanhs \\
\hline & COMPLEX for clanhs \\
\hline & COMPLEX*16 for zlanhs \\
\hline & Array, DIMENSION (Ida, \(n\) ). The \(n\)-by- \(n\) upper Hessenberg matrix \(A\); the part of \(A\) below the first sub-diagonal is not referenced. \\
\hline Ida & INTEGER. The leading dimension of the array a. Ida \(\geq \max (n, 1)\). \\
\hline \multirow[t]{2}{*}{work} & REAL for slanhs and clanhs. \\
\hline & DOUBLE PRECISION for dlange and zlange. Workspace array, DIMENSION (lwork), where lwork \(\geq\) \(n\) when norm = ' \(I\) '; otherwise, work is not referenced. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

val REAL for slanhs/clanhs
DOUBLE PRECISION for dlanhs/zlanhs

```
    Value returned by the function.

\section*{?lansb}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.
```

val = slansb (norm, uplo, n, k, ab, ldab, work)
val = dlansb (norm, uplo, n, k, ab, ldab, work)

```
```

val = clansb (norm, uplo, n, k, ab, ldab, work)
val = zlansb (norm, uplo, n, k, ab, ldab, work)

```

\section*{Discussion}

The function ? lansb returns the value of the 1 -norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \(n\)-by- \(n\) real/complex symmetric band matrix \(A\), with \(k\) super-diagonals.

The value val returned by the function is:
```

val $=\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)$, if norm $=$ ' M ' or ' m '
$=\operatorname{norm} 1(A), \quad$ if norm $=$ ' 1 ' or ' O ' or ' 0 '
$=\operatorname{normI}(A), \quad$ if norm $=$ ' I ' or ' i '
$=\operatorname{normF}(A), \quad$ if norm $=' F$ ', ' f ', ' E ' or 'e'

```
where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline norm & CHARACTER*1. Specifies the value to be returned in ?lansb as described above. \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the upper or lower triangular part of the band matrix \(A\) is supplied. \\
If uplo = 'u': upper triangular part is supplied; \\
If uplo = 'L': lower triangular part is supplied.
\end{tabular} \\
\hline \(n\) & Integer. The order of the matrix \(A . n \geq 0\). When \(n=0\), ? lansb is set to zero. \\
\hline k & INTEGER. The number of super-diagonals or sub-diagonals of the band matrix \(A\). \(k \geq 0\). \\
\hline \(a b\) & REAL for slansb \\
\hline & DOUBLE PRECISION for dlansb \\
\hline & COMPLEX for clansb \\
\hline & COMPLEX*16 for zlansb \\
\hline & Array, DIMENSION ( 1 dab, \(n\) ). The upper or lower triangle of the symmetric band matrix \(A\), stored in the \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
first \(k+1\) rows of \(a b\). The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
if uplo = ' U ', \(a b(k+1+i-j, j)=a(i, j)\)
for \(\max (1, j-k) \leq i \leq j ;\)
if uplo='L', ab( \(1+i-j, j)=a(i, j)\) for \(j \leqslant \operatorname{minin}(n, j+k)\).
Idab INTEGER. The leading dimension of the array \(a b\). \(I\) dab \(\geq k+1\).
work REAL for slansb and clansb.
DOUBLE PRECISION for dlansb and zlansb.
Workspace array, DIMENSION (I work), where
lwork \(\geq n\) when norm = 'I' or ' 1 ' or 'O'; otherwise, work is not referenced.

\section*{Output Parameters}
```

val
REAL for slansb/clansb
DOUBLE PRECISION for dlansb/zlansb
Value returned by the function.

```

\section*{?lanhb}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
```

val = clanhb (norm, uplo, n, k, ab, ldab, work)
val = zlanhb (norm, uplo, n, k, ab, ldab, work)

```

\section*{Discussion}

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \(n\)-by- \(n\) Hermitian band matrix \(A\), with \(k\) super-diagonals.
The value val returned by the function is:
```

val $=\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)$, if norm $=$ ' M ' or ' m '
$=\operatorname{norm} 1(A), \quad$ if norm $=$ ' 1 ' or ' O ' or ' 0 '
$=\operatorname{normI}(A), \quad$ if norm $=$ 'I' or ' i '
$=\operatorname{normF}(A), \quad$ if norm $=' F$ ', ' f ', ' E ' or ' e '

```
where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
```

norm CHARACTER*1.Specifies the value to be returned in
?lanhb as described above.
uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the band matrix }A\mathrm{ is supplied.
If uplo = 'U': upper triangular part is supplied;
If uplo = 'L': lower triangular part is supplied.
INTEGER. The order of the matrix A. n\geq0. When
n=0, ? l anhb is set to zero.
INTEGER. The number of super-diagonals or
sub-diagonals of the band matrix }A.k\geq0
COMPLEX for clanhb.
COMPLEX*16 for zlanhb.
Array, DIMENSION (Idab,n). The upper or lower
triangle of the Hermitian band matrix A, stored in the
first k+1 rows of ab. The j-th column of A is stored in
the j-th column of the array ab as follows:
if uplO= 'U', ab (k+1+i-j,j) = a(i,j)
for max (1,j-k) \leq i\leq j;
if uplo= 'L', ab(1+i-j,j) =a(i,j) for j<<<min (}n,j+k)

```

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
ldab
INTEGER. The leading dimension of the array \(a b\). \(I d a b \geq k+1\).
work REAL for clanhb. DOUBLE PRECISION for zlanhb.
Workspace array, DIMENSION (I work), where
1 work \(\geq n\) when norm \(=\) ' 1 ' or ' 1 ' or 'O'; otherwise, work is not referenced.

\section*{Output Parameters}
```

val REAL for slanhb/clanhb
DOUBLE PRECISION for dlanhb/zlanhb
Value returned by the function.

```

\section*{?lansp}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.
```

val = slansp (norm, uplo, n, ap, work)
val = dlansp (norm, uplo, n, ap, work)
val = clansp (norm, uplo, n, ap, work)
val = zlansp (norm, uplo, n, ap, work)

```

\section*{Discussion}

The function ?lansp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix \(A\), supplied in packed form.

The value val returned by the function is:
```

val = max(abs((Aij)), if norm ='M' or 'm'
= norm1(A), if norm= ' 1' or 'O' or 'o'
= normI(A), if norm= 'I' or 'i'

```
\[
=\operatorname{normF}(A), \quad \text { if } \operatorname{norm}=' F ', ' f \text { ', ' } E \text { ' or 'e' }
\]
where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline norm & CHARACTER* 1 . Specifies the value to be returned in ?lansp as described above. \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is supplied. \\
If uplo = ' U ': Upper triangular part of \(A\) is supplied \\
If uplo = ' L ': Lower triangular part of \(A\) is supplied.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A\). \(n \geq 0\). When \(n=0\), ? lansp is set to zero. \\
\hline \(a p\) & REAL for slansp \\
\hline & DOUBLE PRECISION for dlansp \\
\hline & COMPLEX for clansp \\
\hline & COMPLEX*16 for zlansp \\
\hline
\end{tabular}

Array, DIMENSION \((n(n+1) / 2)\). The upper or lower triangle of the symmetric matrix \(A\), packed columnwise in a linear array. The \(j\)-th column of \(A\) is stored in the array \(a p\) as follows: if uplo \(=\) ' U ', ap \((i+(j-1) j / 2)=A(i, j)\) for \(1 \leq_{i} \leq_{j}\); if uplo \(=\) 'L', ap \((i+(j-1)(2 n-j) / 2)=A(i, j)\) for \(j \leq \leq \leq\).
work REAL for slansp and clansp. DOUBLE PRECISION for dlansp and zlansp. Workspace array, DIMENSION (I work), where \(l_{\text {work }} \geq n\) when norm \(=\) ' \(I\) ' or ' 1 ' or 'O'; otherwise, work is not referenced.

\section*{Output Parameters}
```

val REAL for slansp/clansp
DOUBLE PRECISION for dlansp/zlansp
Value returned by the function.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lanhp}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
```

val = clanhp (norm, uplo, n, ap, work)
val = zlanhp (norm, uplo, n, ap, work)

```

\section*{Discussion}

The function ? lanhp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix \(A\), supplied in packed form.
The value val returned by the function is:
```

val = max(abs((Aji)), if norm ='M' or 'm'
= norm1(A), if norm= '1' or 'O' or '0'
= normI(A), if norm= 'I' or 'i'
= normF(A), if norm= 'F', ' }f\mathrm{ ', ' E' or 'e'

```
where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
norm CHARACTER*1. Specifies the value to be returned in ?lanhp as described above.
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is supplied. If uplo = 'U': Upper triangular part of \(A\) is supplied If uplo = ' \(\llcorner\) ': Lower triangular part of \(A\) is supplied.
```

n
ap COMPLEX for clanhp.
COMPLEX*16 for zlanhp.
Array, DIMENSION (n(n+1)/2). The upper or lower
triangle of the Hermitian matrix }A\mathrm{ , packed columnwise
in a linear array. The j-th column of }A\mathrm{ is stored in the
array ap as follows:
if uplo = 'U', ap(i+(j-1)j/2)=A(i,j) for 1\leqi\leqj;
if uplo= 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for jSiss.
work REAL for clanhp.
DOUBLE PRECISION for zlanhp.
Workspace array, DIMENSION (lwork), where
lwork \geqn when norm='I' or '1' or 'O'; otherwise, work
is not referenced.

```

\section*{Output Parameters}
```

val REAL for clanhp.

```
val REAL for clanhp.
DOUBLE PRECISION for zlanhp.
DOUBLE PRECISION for zlanhp.
Value returned by the function.
```

Value returned by the function.

```

\section*{?lanst/?lanht}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric or complex Hermitian tridiagonal matrix.
```

val = slanst (norm, n, d, e)
val = dlanst (norm, n, d, e)
val = clanht (norm, n, d, e)
val = zlanht (norm, n, d, e)

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Discussion}

The functions ? lanst/?lanht return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric or a complex Hermitian tridiagonal matrix \(A\).

The value val returned by the function is:
\[
\begin{aligned}
& \text { val }=\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right) \text {, if norm }=\text { ' } \mathrm{M} \text { ' or ' } m \text { ' } \\
& =\operatorname{norm} 1(A), \quad \text { if norm }=\text { ' } 1 \text { ' or ' } O \text { ' or ' } 0 \text { ' } \\
& =\operatorname{normI}(A), \quad \text { if norm }=\text { ' } I \text { ' or ' } i \text { ' } \\
& =\operatorname{normF}(A), \quad \text { if norm }=' F \text { ', ' } f \text { ', ' } E \text { ' or ' } e \text { ' }
\end{aligned}
\]
where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
norm
\(n\)
d
e REAL for slanst
DOUBLE PRECISION for dlanst
COMPLEX for clanht
COMPLEX*16 for zlanht
Array, DIMENSION ( \(n-1\) ). The ( \(n-1\) ) sub-diagonal or super-diagonal elements of \(A\).

\section*{Output Parameters}

REAL for slanst/clanht
DOUBLE PRECISION for dlanst/zlanht
Value returned by the function.

\section*{?lansy}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix.
```

val = slansy (norm, uplo, n, a, lda, work)
val = dlansy (norm, uplo, n, a, lda, work)
val = clansy (norm, uplo, n, a, lda, work)
val = zlansy (norm, uplo, n, a, lda, work)

```

\section*{Discussion}

The function ?lansy returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix \(A\).
The value val returned by the function is:
```

val $=\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)$, if norm $=$ ' M ' or ' m '
$=\operatorname{norm} 1(A), \quad$ if norm $=$ ' 1 ' or ' O ' or ' 0 '
$=\operatorname{normI}(A), \quad$ if norm $=$ 'I' or ' i '
$=\operatorname{normF}(A), \quad$ if norm $=' F$ ', ' f ', ' E ' or ' e '

```
where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
norm
CHARACTER*1. Specifies the value to be returned in ? lansy as described above.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
uplo
n
a

Ida
work

CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is to be referenced.
= 'u': Upper triangular part of \(A\) is referenced.
= 'L': Lower triangular part of \(A\) is referenced
INTEGER. The order of the matrix \(A\). \(n \geq 0\). When \(n=0\), ? lansy is set to zero.
REAL for slansy
DOUBLE PRECISION for dlansy
COMPLEX for clansy
COMPLEX*16 for zlansy
Array, DIMENSION ( 1 da, \(n\) ). The symmetric matrix \(A\). If uplo = ' u ', the leading \(n\)-by- \(n\) upper triangular part of \(a\) contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo= 'L', the leading \(n-b y-n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

INTEGER. The leading dimension of the array \(a\). \(I d a \geq \max (n, 1)\).
REAL for slansy and clansy.
DOUBLE PRECISION for dlansy and zlansy.
Workspace array, DIMENSION (lwork), where lwork \(\geq n\) when norm \(=\) ' \(I\) ' or ' 1 ' or 'O'; otherwise, work is not referenced.

\section*{Output Parameters}
```

val
REAL for slansy/clansy
DOUBLE PRECISION for dlansy/zlansy

```

Value returned by the function.

\section*{?lanhe}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
```

val = clanhe (norm, uplo, n, a, lda, work)
val = zlanhe (norm, uplo, n, a, lda, work)

```

\section*{Discussion}

The function ?lanhe returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix \(A\).
The value val returned by the function is:
```

val $=\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)$, if norm $=$ ' M ' or ' m '
$=\operatorname{norm} 1(A), \quad$ if norm $=$ ' 1 ' or ' O ' or ' 0 '
$=\operatorname{normI}(A), \quad$ if norm $=$ ' I ' or ' i '
$=\operatorname{normF}(A), \quad$ if norm $=$ ' F ', ' f ', ' E ' or ' e '

```
where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right.\) ) is not a matrix norm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline norm & CHARACTER*1. Specifies the value to be returne ?lanhe as described above. \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the upper or triangular part of the Hermitian matrix \(A\) is to be referenced. \\
= 'u': Upper triangular part of \(A\) is referenced. \\
= 'L': Lower triangular part of \(A\) is referenced
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \(n\) & InTEGER. The order of the matrix \(A\). \(n \geq 0\). When \(n=0\), ? lanhe is set to zero. \\
\hline \multirow[t]{5}{*}{a} & COMPLEX for clanhe. \\
\hline & COMPLEX*16 for zlanhe. \\
\hline & Array, dimension (lda, \(n\) ). The Hermitian matrix \(A\). \\
\hline & If uplo = ' U ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. \\
\hline & If uplo= ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced. \\
\hline Ida & INTEGER. The leading dimension of the array a. \(I d a \geq \max (n, 1)\). \\
\hline \multirow[t]{4}{*}{work} & REAL for clanhe. \\
\hline & DOUBLE PRECISION for zlanhe. \\
\hline & Workspace array, DIMENSION ( 1 work), where \\
\hline & lwork \(\geq n\) when norm = 'I' or ' 1 ' or 'O'; otherwise, work is not referenced. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \multirow[t]{3}{*}{val} & REAL for clanhe. \\
\hline & DOUBLE PRECISION for zlanhe. \\
\hline & Value returned by the function. \\
\hline
\end{tabular}

\section*{?lantb}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
```

val = slantb (norm, uplo, diag, n, k, ab, ldab, work)
val = dlantb (norm, uplo, diag, n, k, ab, ldab, work)

```
```

val = clantb (norm, uplo, diag, n, k, ab, ldab, work)
val = zlantb (norm, uplo, diag, n, k, ab, ldab, work)

```

\section*{Discussion}

The function ? lantb returns the value of the 1 -norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \(n\)-by- \(n\) triangular band matrix \(A\), with \((k+1)\) diagonals.

The value val returned by the function is:
```

val $=\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)$, if norm $=$ ' M ' or ' m '
$=\operatorname{norm} 1(A), \quad$ if norm $=$ ' 1 ' or ' O ' or ' 0 '
$=\operatorname{normI}(A), \quad$ if norm $=$ ' I ' or ' i '
$=\operatorname{normF}(A), \quad$ if norm $=' F$ ', ' f ', ' E ' or 'e'

```
where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline norm & CHARACTER*1. Specifies the value to be returned in ? lantb as described above. \\
\hline uplo & \begin{tabular}{l}
CHARACTER* 1 . Specifies whether the matrix \(A\) is upper or lower triangular. \\
= 'u': Upper triangular \\
= ' L ': Lower triangular.
\end{tabular} \\
\hline diag & \begin{tabular}{l}
CHARACTER* 1 . Specifies whether or not the matrix \(A\) is unit triangular. \\
\(=\) ' N ': Non-unit triangular \\
\(=\) ' U ': Unit triangular.
\end{tabular} \\
\hline \(n\) & \begin{tabular}{l}
Integer. The order of the matrix \(A\). \\
\(n \geq 0\). When \(n=0\), ? lantb is set to zero.
\end{tabular} \\
\hline k & INTEGER. The number of super-diagonals of the matrix \(A\) if uplo= ' \(u\) ', or the number of sub-diagonals of the matrix \(A\) if uplo = 'L'. \(k \geq 0\). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \(a b\) & \begin{tabular}{l}
REAL for slantb \\
DOUBLE PRECISION for dlantb \\
COMPLEX for clantb \\
COMPLEX*16 for zlantb \\
Array, DIMENSION ( 1 dab, \(n\) ). The upper or lower triangular band matrix \(A\), stored in the first \(k+1\) rows of \(a b\). The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows: \\
if uplo = 'U', ab \((k+1+i-j, j)=a(i, j)\) for \(\max (1, j-k) \leq \mathrm{i} \leq \mathrm{j}\); \\
if uplo='L', ab \((1+i-j, j)=a(i, j)\) for \(j \leq i \leq \min (n, j+k)\). \\
Note that when diag = ' u ', the elements of the array \(a b\) corresponding to the diagonal elements of the matrix \(A\) are not referenced, but are assumed to be one.
\end{tabular} \\
\hline Idab & INTEGER. The leading dimension of the array \(a b\). \(I\) dab \(\geq k+1\). \\
\hline work & \begin{tabular}{l}
REAL for slantb and clantb. \\
DOUBLE PRECISION for dlantb and zlantb. Workspace array, DIMENSION (l work), where lwork \(\geq n\) when norm \(=\) 'I'; otherwise, work is not referenced.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline val & \begin{tabular}{l}
REAL for slantb/clantb. \\
DOUBLE PRECISION for dlantb/zlantb. \\
Value returned by the function.
\end{tabular} \\
\hline
\end{tabular}

\section*{?lantp}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
```

val = slantp (norm, uplo, diag, n, ap, work)
val = dlantp (norm, uplo, diag, n, ap, work)
val = clantp (norm, uplo, diag, n, ap, work)
val = zlantp (norm, uplo, diag, n, ap, work)

```

\section*{Discussion}

The function ?lantp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix \(A\), supplied in packed form.
The value val returned by the function is:
```

$\operatorname{val}=\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)$, if norm $=$ ' M ' or ' m '
$=\operatorname{norml}(A), \quad$ if norm $=1$ ' or ' O ' or ' o '
$=\operatorname{normI}(A), \quad$ if norm $=$ ' I ' or ' i '
$=\operatorname{normF}(A), \quad$ if norm $=$ ' F ', ' f ', ' E ' or ' e '

```
where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}

\author{
norm
}

CHARACTER*1. Specifies the value to be returned in ?lantp as described above.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the matrix \(A\) is upper or lower triangular. \\
= 'u': Upper triangular \\
= 'L': Lower triangular.
\end{tabular} \\
\hline diag & \begin{tabular}{l}
CHARACTER*1. Specifies whether or not the matrix \(A\) is unit triangular. \\
= ' N ': Non-unit triangular \\
= 'u': Unit triangular.
\end{tabular} \\
\hline \(n\) & InTEGER. The order of the matrix \(A\). \(n \geq 0\). When \(n=0\), ? lantp is set to zero. \\
\hline \multirow[t]{7}{*}{\(a p\)} & REAL for slantp \\
\hline & DOUBLE PRECISION for dlantp \\
\hline & COMPLEX for clantp \\
\hline & COMPLEX*16 for zlantp \\
\hline & Array, DIMENSION ( \(n(n+1) / 2\) ). The upper or lower triangular matrix \(A\), packed columnwise in a linear array. The \(j\)-th column of \(A\) is stored in the array ap as follows: \\
\hline & if uplo='U', AP(i \(+(j-1) j / 2)=a(i, j)\) for \(1 \leq i \leq j\); \\
\hline & if uplo = 'L', ap \((i+(j-1)(2 n-j) / 2)=a(i, j)\) for \(j \leq i \leq n\). \\
\hline
\end{tabular}

Note that when diag= 'u', the elements of the array ap corresponding to the diagonal elements of the matrix \(A\) are not referenced, but are assumed to be one.
work
REAL for slantp and clantp.
DOUBLE PRECISION for dlantp and zlantp.
Workspace array, DIMENSION (I work), where lwork \(\geq n\) when norm = 'I'; otherwise, work is not referenced.

\section*{Output Parameters}

REAL for slantp/clantp. DOUBLE PRECISION for dlantp/zlantp. Value returned by the function.

\section*{?lantr}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
```

val = slantr (norm, uplo, diag, m, n, a, lda, work)
val = dlantr (norm, uplo, diag, m, n, a, lda, work)
val = clantr (norm, uplo, diag, m, n, a, lda, work)
val = zlantr (norm, uplo, diag, m, n, a, lda, work)

```

\section*{Discussion}

The function ? lantr returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix \(A\).
The value val returned by the function is:
\[
\begin{aligned}
& \text { val }=\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right) \text {, if norm }=\text { ' } \mathrm{M} \text { ' or ' } m \text { ' } \\
& =\operatorname{norm} 1(A), \quad \text { if norm }=\text { ' } 1 \text { ' or ' } O \text { ' or ' } 0 \text { ' } \\
& =\operatorname{normI}(A), \quad \text { if norm }=\text { ' } I \text { ' or ' } i \text { ' } \\
& =\operatorname{normF}(A), \quad \text { if norm }=' F \text { ', ' } f \text { ', ' } E \text { ' or ' } e \text { ' }
\end{aligned}
\]
where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that \(\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)\) is not a matrix norm.

\section*{Input Parameters}
norm
CHARACTER*1. Specifies the value to be returned in ? lantr as described above.

CHARACTER*1. Specifies whether the matrix \(A\) is upper or lower trapezoidal.
= 'u': Upper trapezoidal
= 'L': Lower trapezoidal.
Note that \(A\) is triangular instead of trapezoidal if \(m=n\).
CHARACTER*1. Specifies whether or not the matrix \(A\) has unit diagonal.
\(=\) ' N ': Non-unit diagonal
\(=\) ' u ': Unit diagonal.
INTEGER. The number of rows of the matrix \(A\). \(m \geq 0\), and if uplo \(=\) ' \(\cup\) ', \(m \leq n\). When \(m=0\), ? lantr is set to zero.
INTEGER. The number of columns of the matrix \(A\).
\(n \geq 0\), and if uplo \(=\) ' \(L\) ', \(n \leq m\). When \(n=0\), ? lantr is set to zero.

REAL for slantr
DOUBLE PRECISION for dlantr
COMPLEX for clantr
COMPLEX*16 for zlantr
Array, DIMENSION (Ida, \(n\) ).
The trapezoidal matrix \(A\) ( \(A\) is triangular if \(m=n\) ). If uplo \(=\) ' \(v\) ', the leading \(m\)-by- \(n\) upper trapezoidal part of the array a contains the upper trapezoidal matrix, and the strictly lower triangular part of \(a\) is not referenced. If uplo = ' \(L\) ', the leading \(m\)-by- \(n\) lower trapezoidal part of the array a contains the lower trapezoidal matrix, and the strictly upper triangular part of \(a\) is not referenced. Note that when diag \(=\) ' u ', the diagonal elements of \(a\) are not referenced and are assumed to be one.

INTEGER. The leading dimension of the array a. \(I d a \geq \max (m, 1)\).
```

work REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Workspace array, DIMENSION (lwork), where
lwork \geqm when norm = 'I'; otherwise, work is not
referenced.

```

\section*{Output Parameters}
val REAL for slantr/clantrp. DOUBLE PRECISION for dlantr/zlantr. Value returned by the function.

\section*{?lanv2}

Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.
```

call slanv2 (a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)

```
call dlanv2 ( \(a, b, c, d, r t 1 r, r t 1 i, r t 2 r, r t 2 i, c s, s n)\)

\section*{Discussion}

The routine computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form:
\[
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
c s & -s n \\
s n & c s
\end{array}\right]\left[\begin{array}{ll}
a a & b b \\
c & c \\
d d
\end{array}\right]\left[\begin{array}{cc}
c s & s n \\
-s n & c s
\end{array}\right]
\]
where either
1. \(c c=0\) so that \(a a\) and \(d d\) are real eigenvalues of the matrix, or
2. \(a a=d d\) and \(b b * c c<0\), so that \(a a \pm \operatorname{sqrt}(b b * c c)\) are complex conjugate eigenvalues.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

The routine was adjusted to reduce the risk of cancellation errors, when computing real eigenvalues, and to ensure, if possible, that abs \((r t 1 r) \geq\) abs(rt2r).

\section*{Input Parameters}
```

a,b,c,d REAL for slanv2
DOUBLE PRECISION for dlanv2.

```
    On entry, elements of the input matrix.

\section*{Output Parameters}
```

a,b,c,d On exit, overwritten by the elements of the standardized
Schur form.
rt1r, rtli,
rt2r, rt2i, REAL for slanv2
DOUBLE PRECISION for dlanv2.
The real and imaginary parts of the eigenvalues. If the
eigenvalues are a complex conjugate pair,rt1i>0.
REAL for slanv2
DOUBLE PRECISION for dlanv2.
Parameters of the rotation matrix.

```

\section*{?lapII}

Measures the linear dependence of two vectors.
```

call slapll (n, x, incx, y, incy, ssmin)
call dlapll (n, x, incx, y, incy, ssmin)
call clapll (n, x, incx, y, incy, ssmin)
call zlapll (n, x, incx, y, incy, ssmin)

```

\section*{Discussion}

Given two column vectors \(x\) and \(y\) of length \(n\), let
\(\mathrm{A}=\left(\begin{array}{ll}x & y\end{array}\right)\) be the \(n\)-by- 2 matrix.
The routine ? lapll first computes the \(Q R\) factorization of \(A\) as \(A=Q R\) and then computes the SVD of the 2-by-2 upper triangular matrix \(R\). The smaller singular value of \(R\) is returned in \(\operatorname{ssmin}\), which is used as the measurement of the linear dependency of the vectors \(x\) and \(y\).

\section*{Input Parameters}
\(n \quad\) INTEGER. The length of the vectors \(x\) and \(y\).
\(x \quad\) REAL for slapll
DOUBLE PRECISION for dlapll
COMPLEX for clapll
COMPLEX*16 for zlapll
Array, DIMENSION ( \(1+(n-1)\) incx \()\).
On entry, \(x\) contains the \(n\)-vector \(x\).
\(y \quad\) REAL for slapll
DOUBLE PRECISION for dlapll
COMPLEX for clapll
COMPLEX*16 for zlapll
Array, DIMENSION ( \(1+(n-1)\) incy). On entry, \(y\) contains the \(n\)-vector \(y\).
incx INTEGER. The increment between successive elements of \(x\); incx \(>0\).
incy INTEGER. The increment between successive elements of \(y\); incy \(>0\).

\section*{Output Parameters}
\begin{tabular}{ll}
\(x\) & On exit, \(x\) is overwritten. \\
\(y\) & On exit, \(y\) is overwritten. \\
\(\operatorname{ssmin}\) & REAL for slapll/clapll \\
& DOUBLE PRECISION for dlapll/zlapll \\
& The smallest singular value of the \(n\)-by- 2 matrix \\
& \(A=(x y)\).
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lapmt}

> Performs a forward or backward permutation of the columns of a matrix.
```

call slapmt (forwrd, m, n, x, ldx, k)
call dlapmt (forwrd, m, n, x, ldx, k)
call clapmt (forwrd, m, n, x, ldx, k)
call zlapmt (forwrd, m, n, x, ldx, k)

```

\section*{Discussion}

The routine ? lapmt rearranges the columns of the \(m\)-by- \(n\) matrix \(X\) as specified by the permutation \(k(1), k(2), \ldots, k(n)\) of the integers \(1, \ldots, n\).
If forwrd = .TRUE., forward permutation:
\(X(*, k(j))\) is moved to \(X(*, j)\) for \(j=1,2, \ldots, n\).
If forwrd = .FALSE., backward permutation:
\(X(*, j)\) is moved to \(X(*, k(j))\) for \(j=1,2, \ldots, n\).

\section*{Input Parameters}
```

forwrd LOGICAL.
If forwrd= .TRUE., forward permutation
If forwrd= .FALSE., backward permutation
INTEGER. The number of rows of the matrix }X\mathrm{ .
m}\geq0
INTEGER. The number of columns of the matrix }X\mathrm{ .
n}\geq0
REAL for slapmt
DOUBLE PRECISION for dlapmt
COMPLEX for clapmt
COMPLEX*16 for zlapmt
Array, DIMENSION (Idx,n). On entry, the m-by-n
matrix X.

```
```

Idx INTEGER. The leading dimension of the array }x\mathrm{ ,
ldx}\geqmax(1,m)
k
INTEGER.
Array, DIMENSION (n). On entry, k contains the
permutation vector.

```

\section*{Output Parameters}

On exit, \(x\) contains the permuted matrix \(X\).

\section*{?lapy2}

Returns \(\operatorname{sqrt}\left(x^{2}+y^{2}\right)\).
```

val = slapy2 (x, y)
val = dlapy2 (x, y)

```

\section*{Discussion}

The function ?lapy2 returns \(\operatorname{sqrt}\left(x^{2}+y^{2}\right)\), avoiding unnecessary overflow or harmful underflow.

\section*{Input Parameters}
```

x, y REAL for slapy2
DOUBLE PRECISION for dlapy2
Specify the input values }x\mathrm{ and }y\mathrm{ .
Output Parameters
val REAL for slapy2
DOUBLE PRECISION for dlapy2.
Value returned by the function.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lapy3}

Returns \(\operatorname{sqrt}\left(x^{2}+y^{2}+z^{2}\right)\).
```

val = slapy3 (x, y, z)
val = dlapy3 (x, y, z)

```

Discussion
The function ? lapy 3 returns \(\operatorname{sqrt}\left(x^{2}+y^{2}+z^{2}\right)\), avoiding unnecessary overflow or harmful underflow.

Input Parameters
\(x, y, z \quad\) REAL for slapy 3
DOUBLE PRECISION for dlapy3
Specify the input values \(x, y\) and \(z\).

\section*{Output Parameters}
```

val REAL for slapy3
DOUBLE PRECISION for dlapy3.
Value returned by the function.

```

\section*{?laqgb}

Scales a general band matrix, using row and column scaling factors computed by ?gbequ.
```

call slaqgb (m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed)
call dlaqgb (m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed)

```
```

call claqgb (m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed)
call zlaqgb (m, n, kl, ku, ab, ldab, r, c, rowcnd,
colcnd, amax, equed)

```

\section*{Discussion}

The routine equilibrates a general \(m\)-by- \(n\) band matrix \(A\) with \(k l\) subdiagonals and \(k u\) superdiagonals using the row and column scaling factors in the vectors \(r\) and \(c\).

\section*{Input Parameters}
\begin{tabular}{ll}
m & INTEGER. The number of rows of the matrix \(A\). \\
& \(m \geq 0\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a b\) & On exit, the equilibrated matrix, in the same storage format as \(A\). \\
\hline & See equed for the form of the equilibrated matrix. \\
\hline \(r, \quad c\) & REAL for slaqgb/claqgb \\
\hline & DOUBLE PRECISION for dlaqgb/zlaqgb \\
\hline & Arrays \(r(m), c(n)\). Contain the row and column scale factors for \(A\), respectively. \\
\hline rowend & REAL for slaqgb/claqgb \\
\hline & DOUBLE PRECISION for dlaqgb/zlaqgb \\
\hline & Ratio of the smallest \(r(i)\) to the largest \(r(i)\). \\
\hline colcnd & REAL for slaggb/claqgb \\
\hline & DOUBLE PRECISION for dlaqgb/zlaqgb \\
\hline & Ratio of the smallest \(c(i)\) to the largest \(C(i)\). \\
\hline equed & CHARACTER*1. \\
\hline & Specifies the form of equilibration that was done. If equed = ' \(N\) ': No equilibration \\
\hline & If equed = ' R ': Row equilibration, that is, \(A\) has been premultiplied by \(\operatorname{diag}(r)\). \\
\hline & If equed \(=\) ' \(c\) ': Column equilibration, that is, \(A\) has been postmultiplied by \(\operatorname{diag}(c)\). \\
\hline & If equed \(=\) ' \(B\) ': Both row and column equilibration, that is, \(A\) has been replaced by \(\operatorname{diag}(r) \star A * \operatorname{diag}(c)\). \\
\hline
\end{tabular}

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if row or column scaling should be done based on the ratio of the row or column scaling factors. If rowend < thresh, row scaling is done, and if colcnd < thresh, column scaling is done. large and small are threshold values used to decide if row scaling should be done based on the absolute size of the largest matrix element. If amax> large or amax < small, row scaling is done.

\section*{?laqge}

\section*{Scales a general rectangular matrix, using row and column scaling factors computed by ?geequ.}
```

call slaqge (m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)
call dlaqge (m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)
call claqge (m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)
call zlaqge (m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

```

\section*{Discussion}

The routine equilibrates a general \(m\)-by- \(n\) matrix \(A\) using the row and scaling factors in the vectors \(r\) and \(c\).

\section*{Input Parameters}
\(m \quad\) INTEGER. The number of rows of the matrix \(A\). \(m \geq 0\).
\(n \quad\) INTEGER. The number of columns of the matrix \(A\). \(n \geq 0\).
a REAL for slagge
DOUBLE PRECISION for dlaqge
COMPLEX for claqge
COMPLEX*16 for zlaqge
Array, DIMENSION ( 1 da, \(n\) ). On entry, the \(m\)-by- \(n\) matrix \(A\).
Ida integer. The leading dimension of the array \(A\). \(l d a \geq \max (m, 1)\).

REAL for slangge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION ( \(m\) ). The row scale factors for \(A\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{c} & REAL for slanqge/claqge \\
\hline & DOUBLE PRECISION for dlaqge/zlaqge \\
\hline & Array, DIMENSION ( \(n\) ). The column scale factors for \(A\). \\
\hline \multirow[t]{3}{*}{rowend} & REAL for slanqge/claqge \\
\hline & DOUBLE PRECISION for dlaqge/zlaqge \\
\hline & Ratio of the smallest \(r(i)\) to the largest \(r(i)\). \\
\hline \multirow[t]{3}{*}{colcnd} & REAL for slanqge/claqge \\
\hline & DOUBLE PRECISION for dlaqge/zlaqge \\
\hline & Ratio of the smallest \(c(i)\) to the largest \(c(i)\). \\
\hline \multirow[t]{3}{*}{amax} & REAL for slanqge/claqge \\
\hline & DOUBLE PRECISION for dlaqge/zlaqge \\
\hline & Absolute value of largest matrix entry. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
a & On exit, the equilibrated matrix. \\
See equed for the form of the equilibrated matrix. \\
equed & CHARACTER*1. \\
Specifies the form of equilibration that was done. \\
If equed = ' \(N\) ': No equilibration \\
If equed = \(R\) ': Row equilibration, that is, \(A\) has been \\
premultiplied by \(\operatorname{diag}(r)\). \\
If equed = ' \(C\) ': Column equilibration, that is, \(A\) has \\
been postmultiplied by diag \((c)\). \\
If equed = \(B\) ': Both row and column equilibration, \\
that is, \(A\) has been replaced by \(\operatorname{diag}(r) \star A * \operatorname{diag}(c)\).
\end{tabular}

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if row or column scaling should be done based on the ratio of the row or column scaling factors. If rowend < thresh, row scaling is done, and if colcnd < thresh, column scaling is done. large and small are threshold values used to decide if row scaling should be done based on the absolute size of the largest matrix element. If amax> large or amax < small, row scaling is done.

\section*{?laqp2}

Computes a QR factorization with column pivoting of the matrix block.
```

call slaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
call dlaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
call claqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
call zlaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

```

\section*{Discussion}

The routine computes a \(Q R\) factorization with column pivoting of the block \(A(\circ f f s e t+1: m, 1: n)\). The block \(A\left(1: \circ f f_{s e t}, 1: n\right)\) is accordingly pivoted, but not factorized.

Input Parameters
\begin{tabular}{|c|c|}
\hline m & Integer. The number of rows of the matrix \(A\). \(m \geq 0\). \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(A\). \(n \geq 0\). \\
\hline offset & INTEGER. The number of rows of the matrix \(A\) that must be pivoted but no factorized. offset \(\geq 0\). \\
\hline a & REAL for slaqp2 \\
\hline & DOUBLE PRECISION for dlaqp2 \\
\hline & COMPLEX for claqp2 \\
\hline & COMPLEX*16 for zlaqp2 \\
\hline & Array, DIMENSION (Ida, n). On entry, the \(m\)-by- \(n\) matrix \(A\). \\
\hline Ida & Integer. The leading dimension of the array A. Ida \(\geq\) \(\max (1, m)\). \\
\hline
\end{tabular}


\section*{?laqps}

Computes a step of QR factorization
with column pivoting of a real \(m\)-by-n
matrix A by using BLAS level 3 .
```

call slaqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)
call dlaqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)
call claqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)
call zlaqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)

```

\section*{Discussion}

This routine computes a step of \(Q R\) factorization with column pivoting of a real \(m\)-by- \(n\) matrix \(A\) by using BLAS level 3 . The routine tries to factorize \(n b\) columns from \(A\) starting from the row offset +1 , and updates all of the matrix with BLAS level 3 routine ? gemm.

In some cases, due to catastrophic cancellations, ?laqps cannot factorize \(n b\) columns. Hence, the actual number of factorized columns is returned in \(k b\).

Block \(A(1: \circ f f s e t, 1: n)\) is accordingly pivoted, but not factorized.

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & INTEGER. The number of rows of the matrix \(A\). \\
\(n\) & \(m \geq 0\). \\
offset & INTEGER. The number of columns of the matrix \(A\). \\
& \(n \geq 0\). \\
& \begin{tabular}{l} 
INTEGER. The number of rows of \(A\) that have been \\
factorized in previous steps.
\end{tabular}
\end{tabular}
\(\mathrm{nb} \quad\) INTEGER. The number of columns to factorize.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
a

Ida
f
\(\operatorname{ldf}\)

REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION ( 1 da, \(n\) ).
On entry, the \(m\)-by- \(n\) matrix \(A\).
INTEGER. The leading dimension of the array \(a\). Ida \(\geq \max (1, m)\).

INTEGER.
Array, DIMENSION ( \(n\) ). If jpvt (i) \(=k\) then column \(k\) of the full matrix \(A\) has been permuted into position \(i\) in \(A P\).
REAL for slaqps/claqps DOUBLE PRECISION for dlaqps/zlaqps
Arrays, DIMENSION ( \(n\) ) each. Contain the vectors with the partial and exact column norms, respectively.
REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (n.b). Auxiliary vector.
REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (Idf,nb). Matrix \(F^{\prime}=L^{\star} Y^{\prime} \star A\).
integer. The leading dimension of the array \(f\). \(I d f \geq \max (1, n)\).

\section*{Output Parameters}

INTEGER. The number of columns actually factorized.
On exit, block \(A(o f f s e t+1: m, 1: k b)\) is the triangular factor obtained and block \(A(1: \circ f f s e t, 1: n)\) has been accordingly pivoted, but no factorized. The rest of the matrix, block \(A(o f f s e t+1: m, k b+1: n)\) has been updated.
\begin{tabular}{|c|c|}
\hline jpvt & INTEGER array, DIMENSION \((n)\). If jpvt (i) \(=k\) then column \(k\) of the full matrix \(A\) has been permuted into position \(i\) in \(A P\). \\
\hline \multirow[t]{5}{*}{tau} & REAL for slaqps \\
\hline & DOUBLE PRECISION for dlaqps \\
\hline & COMPLEX for claqps \\
\hline & COMPLEX*16 for zlaqps \\
\hline & Array, DIMENSION (kb). The scalar factors of the elementary reflectors. \\
\hline vn1, vn2 & The vectors with the partial and exact column norms, respectively. \\
\hline auxv & Auxiliary vector. \\
\hline \(f\) & Matrix \(F^{\prime}=L \star Y^{\prime} \star A\). \\
\hline
\end{tabular}

\section*{?laqsb}

Scales a symmetric/Hermitian band matrix, using scaling factors computed
by ?pbequ.
```

call slaqsb (uplo, n, kd, ab, ldab, s, scond, amax, equed)
call dlaqsb (uplo, n, kd, ab, ldab, s, scond, amax, equed)
call claqsb (uplo, n, kd, ab, ldab, s, scond, amax, equed)
call zlaqsb (uplo, n, kd, ab, ldab, s, scond, amax, equed)

```

\section*{Discussion}

The routine equilibrates a symmetric band matrix \(A\) using the scaling factors in the vector \(s\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER* 1 . Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored. \\
If uplo = 'U': upper triangular. \\
If uplo = 'L': lower triangular.
\end{tabular} \\
\hline \(n\) & integer. The order of the matrix \(A\).
\[
n \geq 0 .
\] \\
\hline kd & INTEGER. The number of super-diagonals of the matrix \(A\) if uplo= ' U ', or the number of sub-diagonals if uplo \(=\) 'L'. \(k d \geq 0\). \\
\hline \(a . b\) & \begin{tabular}{l}
REAL for slaqsb \\
DOUBLE PRECISION for dlaqsb \\
COMPLEX for claqsb \\
COMPLEX*16 for zlaqsb \\
Array, DIMENSION ( 1 dab, \(n\) ). On entry, the upper or lower triangle of the symmetric band matrix \(A\), stored in the first \(k d+1\) rows of the array. The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows: \\
if uplo = 'U', ab \((k d+1+i-j, j)=A(i, j)\) for \(\max (1, j-k d) \leq i \leq j ;\) \\
if uplo='L', ab \((1+i-j, j)=A(i, j)\) for \\
\(j \leq i \leq \min (n, j+k d)\).
\end{tabular} \\
\hline Idab & INTEGER. The leading dimension of the array \(a b\). \(l d a b \geq k d+1\). \\
\hline scond & \begin{tabular}{l}
REAL for slaqsb/claqsb \\
DOUBLE PRECISION for dlaqsb/zlaqsb \\
Ratio of the smallest \(s(i)\) to the largest \(s(i)\).
\end{tabular} \\
\hline amax & \begin{tabular}{l}
REAL for slaqsb/claqsb \\
DOUBLE PRECISION for dlaqsb/zlaqsb \\
Absolute value of largest matrix entry.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
ab \(\quad\) On exit, if info \(=0\), the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{\prime} U\) or \(A=L L^{\prime}\) of the band matrix \(A\), in the same storage format as \(A\).

\section*{s}
equed

REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Array, DIMENSION ( \(n\) ). The scale factors for \(A\).
CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = ' \(N\) ': No equilibration.
If equed \(=\) ' \(Y\) ': Equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(s) \star A \star \operatorname{diag}(s)\).

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond< thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

\section*{?laqsp}

Scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by ? ppequ.
```

call slaqsp (uplo, n, ap, s, scond, amax, equed)
call dlaqsp (uplo, n, ap, s, scond, amax, equed)
call claqsp (uplo, n, ap, s, scond, amax, equed)
call zlaqsp (uplo, n, ap, s, scond, amax, equed)

```

\section*{Discussion}

The routine ?laqsp equilibrates a symmetric matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Internal Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored. \\
If uplo = 'u': upper triangular. \\
If uplo = 'L': lower triangular.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A\). \(n \geq 0\). \\
\hline \multirow[t]{5}{*}{ap} & REAL for slaqsp \\
\hline & DOUBLE PRECISION for dlaqsp \\
\hline & COMPLEX for claqsp \\
\hline & COMPLEX*16 for zlaqsp \\
\hline & \begin{tabular}{l}
Array, DIMENSION \((n(n+1) / 2)\). On entry, the upper or lower triangle of the symmetric matrix \(A\), packed columnwise in a linear array. The \(j\)-th column of \(A\) is stored in the array \(a p\) as follows: \\
if uplo \(=\) ' u ', ap \((\mathrm{i}+(j-1) j / 2)=A(i, j)\) for \(1 \leq i \leq j\); if uplo = 'L', ap \((\mathrm{i}+(j-1)(2 n-j) / 2)=A(i, j)\) for \(j \leq \leq\).
\end{tabular} \\
\hline \multirow[t]{3}{*}{\(s\)} & REAL for slaqsp/claqsp \\
\hline & DOUBLE PRECISION for dlaqsp/zlaqsp \\
\hline & Array, DIMENSION ( \(n\) ). The scale factors for \(A\). \\
\hline \multirow[t]{3}{*}{scond} & REAL for slaqsp/claqsp \\
\hline & DOUBLE PRECISION for dlaqsp/zlaqsp \\
\hline & Ratio of the smallest \(s(i)\) to the largest \(s(i)\). \\
\hline \multirow[t]{3}{*}{\(\operatorname{amax}\)} & REAL for slaqsp/claqsp \\
\hline & DOUBLE PRECISION for dlaqsp/zlaqsp \\
\hline & Absolute value of largest matrix entry. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
ap & \begin{tabular}{l} 
On exit, the equilibrated matrix: \(\operatorname{diag}(s) \star A \star \operatorname{diag}(s)\), in \\
the same storage format as \(A\).
\end{tabular} \\
equed & CHARACTER*1. \\
Specifies whether or not equilibration was done. \\
If equed \(=' N\) ': No equilibration. \\
If equed \(=' Y\) ': Equilibration was done, that is, \(A\) has \\
been replaced by \(\operatorname{diag}(s) \star A \star \operatorname{diag}(s)\).
\end{tabular}

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond < thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

\section*{?laqsy}

\section*{Scales a symmetric/Hermitian matrix,} using scaling factors computed by
?poequ.
```

call slaqsy (uplo, n, a, lda, s, scond, amax, equed)
call dlaqsy (uplo, n, a, lda, s, scond, amax, equed)
call claqsy (uplo, n, a, lda, s, scond, amax, equed)
call zlaqsy (uplo, n, a, lda, s, scond, amax, equed)

```

\section*{Discussion}

The routine equilibrates a symmetric matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored. \\
If uplo='U': upper triangular. \\
If uplo = 'L': lower triangular.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A\).
\[
n \geq 0 .
\] \\
\hline a & \begin{tabular}{l}
REAL for slaqsy \\
DOUBLE PRECISION for dlaqsy COMPLEX for claqsy
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & COMPLEX*16 for zlaqsy \\
\hline & Array, DIMENSION (Ida, \(n\) ). On entry, the symmetric matrix \(A\). If uplo \(=\) ' \(U\) ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo= ' L ', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced. \\
\hline Ida & INTEGER. The leading dimension of the array a. \(I d a \geq \max (n, 1)\). \\
\hline \(s\) & \begin{tabular}{l}
REAL for slaqsy/claqsy \\
DOUBLE PRECISION for dlaqsy/zlaqsy \\
Array, DIMENSION ( \(n\) ). The scale factors for \(A\).
\end{tabular} \\
\hline scond & \begin{tabular}{l}
REAL for slaqsy/claqsy \\
DOUBLE PRECISION for dlaqsy/zlaqsy \\
Ratio of the smallest \(s(i)\) to the largest \(s(i)\).
\end{tabular} \\
\hline amax & \begin{tabular}{l}
REAL for slaqsy/claqsy \\
DOUBLE PRECISION for dlaqsy/zlaqsy \\
Absolute value of largest matrix entry.
\end{tabular} \\
\hline Outpu & ers \\
\hline
\end{tabular}
a
equed

On exit, if equed = ' y ', the equilibrated matrix: \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).

CHARACTER*1.
Specifies whether or not equilibration was done.
If equed \(=\) ' N ': No equilibration.
If equed = ' Y ': Equilibration was done, i.e., \(A\) has been replaced by \(\operatorname{diag}(s) \star A * \operatorname{diag}(s)\).

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond<
thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

\section*{?laqtr}

Solves a real quasi-triangular system of equations, or a complex quasi-triangular system of special form, in real arithmetic.
```

call slaqtr (ltran, lreal, n, t, ldt, b, w, scale, x,
work, info)
call dlaqtr (ltran, lreal, n, t, ldt, b, w, scale, x,
work, info)

```

\section*{Discussion}

The routine ? laqtr solves the real quasi-triangular system
\(\operatorname{op}(T) * p=\) scale* \(c, \quad\) if lreal \(=\). TRUE.
or the complex quasi-triangular systems
\(\mathrm{op}(T+\boldsymbol{i} B) \star(p+\boldsymbol{i} q)=\operatorname{scale}(c+\boldsymbol{i} d), \quad\) if lreal \(=\). FALSE.
in real arithmetic, where \(T\) is upper quasi-triangular.
If lreal \(=\).FALSE., then the first diagonal block of \(T\) must be 1-by-1,
\(B\) is the specially structured matrix
\(B=\left[\begin{array}{ccccc}b_{1} & b_{2} & \ldots & \ldots . b_{n} \\ & w & & \\ & & w & \\ & & & & \\ & & & & \\ & & & & w\end{array}\right]\)
\(\mathrm{op}(A)=A\) or \(A^{\prime}, A^{\prime}\) denotes the conjugate transpose of matrix \(A\).
On input,

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\(\mathrm{x}=\left[\begin{array}{l}c \\ d\end{array}\right], \quad\) on output \(\mathrm{x}=\left[\begin{array}{l}p \\ q\end{array}\right]\)
This routine is designed for the condition number estimation in routine ?trsna.

\section*{Input Parameters}

\author{
Itran
}

Ireal
\(n\)
\(t\)

W

LOGICAL.
On entry, It ran specifies the option of conjugate transpose:
\(=. \operatorname{FALSE} ., \operatorname{op}(T+i B)=T+i B\),
\(=. \operatorname{TRUE} ., \quad o p(T+i B)=(T+i B)^{\prime}\).
LOGICAL.
On entry, Ireal specifies the input matrix structure:
\(=\).FALSE. , the input is complex
\(=\). TRUE., the input is real.
INTEGER. On entry, \(n\) specifies the order of \(T+\boldsymbol{i} B\). \(n \geq 0\).

REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension ( \(1 d t, n\) ). On entry, \(t\) contains a matrix in Schur canonical form. If Ireal =.FALSE., then the first diagonal block of \(t\) must be 1-by-1.
INTEGER. The leading dimension of the matrix \(T\).
\(I d t \geq \max (1, n)\).
REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (n). On entry, b contains the elements to form the matrix \(B\) as described above. If lreal \(=\). TRUE., \(b\) is not referenced.

REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On entry, w is the diagonal element of the matrix \(B\). If Ireal \(=\). TRUE., \(w\) is not referenced.
\(x\)
REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension ( \(2 n\) ). On entry, \(x\) contains the right hand side of the system.
work REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Workspace array, dimension (n).
Output Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{scale} & REAL forslaqtr \\
\hline & DOUBLE PRECISION for dlaqtr \\
\hline & On exit, scale is the scale factor. \\
\hline \(x\) & On exit, \(x\) is overwritten by the solution. \\
\hline \multirow[t]{6}{*}{info} & INTEGER. \\
\hline & If info \(=0\) : successful exit. \\
\hline & If info \(=1\) : the some diagonal 1-by-1 block has been perturbed by a small number smin to keep \\
\hline & nonsingularity. \\
\hline & If info \(=2\) : the some diagonal 2-by-2 block has been perturbed by a small number in ?laln2 to keep \\
\hline & nonsingularity. \\
\hline
\end{tabular}

NOTE. In the interests of speed, this routine does not check the inputs for errors.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lar1v}

Computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix \(L D L^{T}\) - बI.
```

call slarlv (n, bl, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work)
call dlarlv (n, bl, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work)
call clarlv (n, bl, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work)
call zlar1v (n, bl, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work)

```

\section*{Discussion}

The routine ? lar1v computes the (scaled) \(r\)-th column of the inverse of the submatrix in rows \(b 1\) through \(b n\) of the tridiagonal matrix \(L D L^{T}-\sigma \star I\).
The following steps accomplish this computation :
1. Stationary \(q d\) transform, \(L D L^{T}-\sigma^{\star} I=L(+) D(+) L(+)^{T}\)
2. Progressive \(q d\) transform, \(L D L^{T}-\sigma^{*} I=U(-) D(-) U(-)^{T}\),
3. Computation of the diagonal elements of the inverse of \(L D L^{T}-\sigma \times I\) by combining the above transforms, and choosing \(r\) as the index where the diagonal of the inverse is (one of the) largest in magnitude.
4. Computation of the (scaled) \(r\)-th column of the inverse using the twisted factorization obtained by combining the top part of the stationary and the bottom part of the progressive transform.

\section*{Input Parameters}
n
b1
integer. The order of the matrix \(L D L^{T}\).
INTEGER. First index of the submatrix of \(L D L^{T}\).


Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}

Z
\(z\) 七Z
mingma
\(r\)
isuppz

REAL for slar1v
DOUBLE PRECISION for dlar1v
COMPLEX for clarlv
COMPLEX*16 for zlarlv
Array, DIMENSION ( \(n\) ). The (scaled) \(r\)-th column of the inverse. \(z(r)\) is returned to be 1 .

REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The square of the norm of \(z\).
REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The reciprocal of the largest (in magnitude) diagonal element of the inverse of \(L D L^{T}-\sigma^{\star} I\).

On output, \(r\) is the index where the diagonal element of the inverse is largest in magnitude.

INTEGER.
Array, DIMENSION (2). The support of the vector in \(z\), that is, the vector \(z\) is nonzero only in elements isuppz(1) through isuppz(2).

\section*{?lar2v}

Applies a vector of plane rotations with real cosines and real/complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
```

call slar2v (n, x, y, z, incx, c, s, incc)
call dlar2v (n, x, y, z, incx, c, s, incc)
call clar2v (n, x, y, z, incx, c, s, incc)
call zlar2v (n, x, y, z, incx, c, s, incc)

```

\section*{Discussion}

The routine ? lar2v applies a vector of real/complex plane rotations with real cosines from both sides to a sequence of 2-by-2 real symmetric or complex Hermitian matrices, defined by the elements of the vectors \(x, y\) and \(z\). For \(i=1,2, \ldots, n\)
\[
\left[\begin{array}{cc}
x_{i} & z_{i} \\
\operatorname{conjg}\left(z_{i}\right) & y_{i}
\end{array}\right]:=\left[\begin{array}{cc}
c(i) & \operatorname{conjg}(s(i)) \\
-s(i) & c(i)
\end{array}\right]\left[\begin{array}{cc}
x_{i} & z_{i} \\
\operatorname{conjg}\left(z_{i}\right) & y_{i}
\end{array}\right]\left[\begin{array}{ll}
c(i) & -\operatorname{conjg}(s(i)) \\
s(i) & c(i)
\end{array}\right]
\]

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The number of plane rotations to be applied. \\
\hline \multirow[t]{5}{*}{\(x, y, z\)} & REAL for slar2v \\
\hline & DOUBLE PRECISION for dlar2v \\
\hline & COMPLEX for clar2v \\
\hline & COMPLEX*16 for zlar2v \\
\hline & Arrays, DIMENSION \((1+(n-1) *\) incx \()\) each. Contain the vectors \(x, y\) and \(z\), respectively. For all flavors of ?lar2v, elements of \(x\) and \(y\) are assumed to be real. \\
\hline incx & INTEGER. The increment between elements of \(x, y\), and \(z\). incx \(>0\). \\
\hline \multirow[t]{3}{*}{c} & REAL for slar2v/clar2v \\
\hline & DOUBLE PRECISION for dlar2v/zlar2v \\
\hline & Array, DIMENSION \((1+(n-1) *\) incc \()\). The cosines of the plane rotations. \\
\hline \multirow[t]{5}{*}{\(s\)} & REAL for slar2v \\
\hline & DOUBLE PRECISION for dlar2v \\
\hline & COMPLEX for clar2v \\
\hline & COMPLEX*16 for zlar2v \\
\hline & Array, DIMENSION \((1+(n-1) *\) incc). The sines of the plane rotations. \\
\hline incc & INTEGER. The increment between elements of \(c\) and \(s\). incc>0. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}

\author{
\(X, Y, \quad Z\)
}

Vectors \(x, y\) and \(z\), containing the results of transform.

\section*{?larf}

Applies an elementary reflector to a general rectangular matrix.
```

call slarf (side, m, n, v, incv, tau, c, ldc, work)
call dlarf (side, m, n, v, incv, tau, c, ldc, work)
call clarf (side, m, n, v, incv, tau, c, ldc, work)
call zlarf (side, m, n, v, incv, tau, c, ldc, work)

```

\section*{Discussion}

The routine applies a real/complex elementary reflector \(H\) to a real/complex \(m\)-by-n matrix \(C\), from either the left or the right. \(H\) is represented in the form
\(H=I-\operatorname{tau} * v^{*} v^{\prime}\), where \(t a u\) is a real/complex scalar and \(v\) is a real/complex vector.
If \(\operatorname{tau}=0\), then \(H\) is taken to be the unit matrix.
For clarf/zlarf, to apply \(H^{\prime}\) (the conjugate transpose of \(H\) ), supply conjg( \(t a u\) ) instead of tau.

\section*{Input Parameters}
side
n

V

CHARACTER*1.
If side = 'L': form \(H * C\)
If side \(=\) 'R': form \(C * H\).
INTEGER. The number of rows of the matrix \(C\).
INTEGER. The number of columns of the matrix \(C\).
REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
```

COMPLEX*16 for zlarf
Array, DIMENSION
(1+(m-1)*abs(incv)) if side = 'L' or
(1+(n-1)*abs(inCV)) if side = 'R'.
The vector v in the representation of H.v is not used if
tau=0.
incv INTEGER. The increment between elements of v
incv}=00
REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
The value tau in the representation of H.
REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Array, DIMENSION (Idc,n).
On entry, the m-by-n matrix C.
Idc INTEGER. The leading dimension of the array c.
ldc}\geqmax(1,m)
work REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.

```

\section*{Output Parameters}

On exit, c is overwritten by the matrix \(H \star C\) if side \(=\) 'L', or \(C \star H\) if side \(=\) 'R'.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?larfb}
```

Applies a block reflector or its transpose/conjugate-transpose to a general rectangular matrix.

```
```

call slarfb (side, trans, direct, storev, m, n, k, v,

```
call slarfb ( side, trans, direct, storev, m, n, k, v,
    ldv, t, ldt, c, ldc, work, ldwork )
    ldv, t, ldt, c, ldc, work, ldwork )
call dlarfb ( side, trans, direct, storev, m, n, k, v,
call dlarfb ( side, trans, direct, storev, m, n, k, v,
    ldv, t, ldt, c, ldc, work, ldwork )
    ldv, t, ldt, c, ldc, work, ldwork )
call clarfb ( side, trans, direct, storev, m, n, k, v,
call clarfb ( side, trans, direct, storev, m, n, k, v,
    ldv, t, ldt, c, ldc, work, ldwork )
    ldv, t, ldt, c, ldc, work, ldwork )
call zlarfb ( side, trans, direct, storev, m, n, k, v,
call zlarfb ( side, trans, direct, storev, m, n, k, v,
    ldv, t, ldt, c, ldc, work, ldwork )
```

 ldv, t, ldt, c, ldc, work, ldwork)
    ```

\section*{Discussion}

The routine ? larfb applies a complex block reflector \(H\) or its transpose \(H^{\prime}\) to a complex \(m\)-by- \(n\) matrix \(C\) from either left or right.

\section*{Input Parameters}
side
trans
direct
storev

CHARACTER*1.
If side = 'L': apply \(H\) or \(H\) ' from the left
If side = 'R': apply \(H\) or \(H\) ' from the right
CHARACTER*1.
If trans = 'v': apply \(H\) (No transpose)
If trans = 'C': apply \(H^{\prime}\) (Conjugate transpose)
CHARACTER*1. Indicates how \(H\) is formed from a product of elementary reflectors
If direct = ' F ': \(H=H(1) \mathrm{H}(2) \ldots H(k)\) (forward) If direct = ' B ': \(H=H(k) \ldots H(2) H(1)\) (backward)

CHARACTER*1. Indicates how the vectors which define the elementary reflectors are stored:
If storev = 'c': Column-wise If storev = 'R': Row-wise

INTEGER. The number of rows of the matrix \(C\).
INTEGER. The number of columns of the matrix \(C\).
INTEGER. The order of the matrix \(T\) (equal to the number of elementary reflectors whose product defines the block reflector).

REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION
\((l d v, k)\) if storev = 'C'
\((I d v, m)\) if storev \(=\) ' R ' and side \(=\) 'L'
\((I d v, n)\) if storev \(=\) ' \(R\) ' and side \(=\) ' \(\mathrm{R}^{\prime}\)
The matrix \(V\).
INTEGER.
The leading dimension of the array v .
If storev \(=\) 'C' and side \(=\) 'L', \(I d v \geq \max (1, m)\);
if storev = 'C' and side \(=\) ' R ', \(I d v \geq \max (1, n)\);
if storev \(=\) ' R ', \(I d v \geq k\).
REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION ( \(I d t, k\) ).
Contains the triangular \(k\)-by- \(k\) matrix \(T\) in the representation of the block reflector.
INTEGER. The leading dimension of the array \(t\). \(l d t \geq k\).

REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION (Idc, \(n\) ).
On entry, the \(m-b y-n\) matrix \(C\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Idc INTEGER. The leading dimension of the array \(c\). \(I_{c} \geq \max (1, m)\).
work REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Workspace array, DIMENSION (Idwork, k).
Idwork INTEGER. The leading dimension of the array work.
If side \(=\) 'L', 1 dwork \(\geq \max (1, n)\);
if side \(=\) ' R ', Idwork \(\geq \max (1, m)\).
Output parameters
C
On exit, \(c\) is overwritten by \(H^{\star} C\) or \(H^{\star}{ }^{\star} C\) or \(C^{\star} H\) or \(C^{\star} H^{\prime}\).

\section*{?larfg}

Generates an elementary reflector
(Householder matrix).
```

call slarfg (n, alpha, x, incx, tau)
call dlarfg (n, alpha, x, incx, tau)
call clarfg (n, alpha, x, incx, tau)
call zlarfg (n, alpha, x, incx, tau)

```

\section*{Discussion}

The routine ? larfg generates a real/complex elementary reflector \(H\) of order \(n\), such that
\(H^{\prime} *\left[\begin{array}{c}\text { alpha } \\ x\end{array}\right]=\left[\begin{array}{c}\text { beta } \\ 0\end{array}\right], \quad H^{\prime} * H=I\),
where alpha and beta are scalars (with beta real for all flavors), and \(x\) is an ( \(n-1\) )-element real/complex vector. \(H\) is represented in the form
\(H=I-\operatorname{tau} *\left[\begin{array}{l}1 \\ v\end{array}\right] *\left[\begin{array}{ll}1 & v^{\prime}\end{array}\right]\)
where \(t a u\) is a real/complex scalar and \(v\) is a real/complex ( \(n-1\) )-element vector. Note that for clarfg/zlarfg, \(H\) is not Hermitian.

If the elements of \(x\) are all zero (and, for complex flavors, alpha is real), then \(t a u=0\) and \(H\) is taken to be the unit matrix.

Otherwise, \(1 \leq \operatorname{tau} \leq\) (for real flavors), or
\(1 \leq \operatorname{Re}(\operatorname{tau}) \leq \preceq\) and \(\operatorname{abs}(\operatorname{tau}-1) \leq 1\) (for complex flavors).

\section*{Input Parameters}
```

n INTEGER. The order of the elementary reflector.
alpha REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
On entry, the value alpha.
x REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
Array, DIMENSION (1+(n-2)*abs(incx)).
On entry, the vector }x\mathrm{ .
incx INTEGER.
The increment between elements of x. incx}>0\mathrm{ .

```

\section*{Output Parameters}
```

alpha
On exit, it is overwritten with the value beta.
x
On exit, it is overwritten with the vector v.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
```

tau REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg

```

The value tau.

\section*{?larft}

Forms the triangular factor \(T\) of a block reflector \(H=I-V T V^{H}\).
```

call slarft (direct, storev, n, k, v, ldv, tau, t, ldt)
call dlarft (direct, storev, n, k, v, ldv, tau, t, ldt)
call clarft (direct, storev, n, k, v, ldv, tau, t, ldt)
call zlarft (direct, storev, n, k, v, ldv, tau, t, ldt)

```

\section*{Discussion}

The routine ? larft forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order \(n\), which is defined as a product of \(k\) elementary reflectors.

If direct = ' F ', \(H=H(1) H(2) \ldots H(k)\) and \(T\) is upper triangular;
If direct \(=\) 'в', \(H=H(k) \ldots H(2) H(1)\) and \(T\) is lower triangular.
If storev \(=\) ' \(C\) ', the vector which defines the elementary reflector \(\mathrm{H}(i)\) is stored in the \(i\)-th column of the array v , and \(H=I-V \star T * V\).

If storev \(=\) ' R ', the vector which defines the elementary reflector \(\mathrm{H}(i)\) is stored in the \(i\)-th row of the array v , and \(H=I-V^{\prime} * T * V\).

\section*{Input Parameters}
direct
CHARACTER*1. Specifies the order in which the elementary reflectors are multiplied to form the block reflector:
\[
\begin{aligned}
& =\text { ' } \mathrm{F}^{\prime}: H=H(1) H(2) \ldots H(k) \text { (forward) } \\
& =\text { 'B': } H=H(k) \ldots H(2) H(1) \text { (backward) }
\end{aligned}
\]
```

storev
n
k
v
ldv
tau
ldt

```

\section*{Output Parameters}
```

t
REAL for slarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION (ldt,k). The k-by-k triangular factor

```
\(T\) of the block reflector. If direct \(=\) ' F ', \(T\) is upper triangular; if direct \(=\) ' B ', \(T\) is lower triangular. The rest of the array is not used.

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors which define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
direct \(=\) ' \(F\) ' and storev \(=\) ' \(C\) ': direct \(=\) ' \(F\) ' and storev = ' \(R\) ':
\[
\left[\begin{array}{ccc}
1 & & \\
v_{1} & 1 & \\
v_{1} & v_{2} & 1 \\
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right]
\]
\[
\left[\begin{array}{ccccc}
1 & v_{1} & v_{1} & v_{1} & v_{1} \\
& 1 & v_{2} & v_{2} & v_{2} \\
& & 1 & v_{3} & v_{3}
\end{array}\right]
\]
\[
\text { direct }=\text { ' } \mathrm{B} \text { ' and storev = ' } \mathrm{C} \text { ': }
\]
\[
\text { direct }=\text { 'B' and storev = 'R': }
\]
\[
\left[\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3} \\
1 & v_{2} & v_{3} \\
& 1 & v_{3} \\
& & \\
& &
\end{array}\right]
\]
\[
\left[\begin{array}{lllll}
v_{1} & v_{1} & 1 & & \\
v_{2} & v_{2} & v_{2} & 1 & \\
v_{3} & v_{3} & v_{3} & v_{3} & 1
\end{array}\right]
\]

\section*{?larfx}

Applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order \(\leq 10\).
```

call slarfx (side, m, n, v, tau, c, ldc, work)
call dlarfx (side, m, n, v, tau, c, ldc, work)
call clarfx (side, m, n, v, tau, c, ldc, work)
call zlarfx (side, m, n, v, tau, c, ldc, work)

```

\section*{Discussion}

The routine ?larfx applies a real/complex elementary reflector \(H\) to a real/complex \(m\)-by- \(n\) matrix \(C\), from either the left or the right. \(H\) is represented in the form \(H=I-\operatorname{tau} * v^{*} v^{\prime}\), where \(t a u\) is a real/complex scalar and \(v\) is a real/complex vector.
If \(t a u=0\), then \(H\) is taken to be the unit matrix

\section*{Input Parameters}
\begin{tabular}{ll} 
side & CHARACTER*1. \\
& If side = 'L': form \(H \star C\) \\
\(m\) & If side = 'R': form \(C \star H\). \\
\(v\) & INTEGER. The number of rows of the matrix \(C\). \\
& INTEGER. The number of columns of the matrix \(C\). \\
& REAL for slarfx \\
& DOUBLE PRECISION for dlarfx \\
& COMPLEX for clarfx \\
& COMPLEX*16 for zlarfx \\
& Array, DIMENSION \\
& \((m)\) if \(s i d e=' L '\) or \\
& \((n)\) if side \(=\) 'R'.
\end{tabular}
\[
\text { The vector } v \text { in the representation of } H \text {. }
\]

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{tau} & REAL for slarfx \\
\hline & DOUBLE PRECISION for dlarfx \\
\hline & COMPLEX for clarfx \\
\hline & COMPLEX*16 for zlarfx \\
\hline & The value tau in the representation of \(H\). \\
\hline \multirow[t]{6}{*}{c} & REAL for slarfx \\
\hline & DOUBLE PRECISION for dlarfx \\
\hline & COMPLEX for clarfx \\
\hline & COMPLEX*16 for zlarfx \\
\hline & Array, DIMENSION ( \(1 d c, n\) ). On entry, the \(m\)-by-n matrix \\
\hline & C. \\
\hline \multirow[t]{2}{*}{\(1 d c\)} & INTEGER. The leading dimension of the array \(c\). \\
\hline & \[
I d a \geq(1, m)
\] \\
\hline \multirow[t]{8}{*}{work} & REAL for slarfx \\
\hline & DOUBLE PRECISION for dlarfx \\
\hline & COMPLEX for clarfx \\
\hline & COMPLEX*16 for zlarfx \\
\hline & Workspace array, DIMENSION \\
\hline & \((\mathrm{n})\) if side \(=\) 'L' or \\
\hline & \((m)\) if side \(=\) 'R'. \\
\hline & work is not referenced if \(H\) has order < 11 . \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, C is overwritten by the matrix \(H^{\star} C\) if side \(=\) 'L', or \(C \star H\) if side = 'R'.

\section*{?largv}

Generates a vector of plane rotations with real cosines and real/complex sines.
```

call slargv (n, x, incx, y, incy, c, incc)

```
```

call dlargv (n, x, incx, y, incy, c, incc)
call clargv (n, x, incx, y, incy, c, incc)
call zlargv (n, x, incx, y, incy, c, incc)

```

\section*{Discussion}

The routine generates a vector of real/complex plane rotations with real cosines, determined by elements of the real/complex vectors \(x\) and \(y\).

For slargv/dlargv:
\[
\left[\begin{array}{cc}
c(i) & s(i) \\
-s(i) & c(i)
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]=\left[\begin{array}{c}
a_{i} \\
0
\end{array}\right] \quad, \text { for } i=1,2, \ldots, n
\]

For clargv/zlargv:
\[
\left[\begin{array}{cc}
c(i) & s(i) \\
-\operatorname{conjg}(s(i)) & c(i)
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]=\left[\begin{array}{l}
r_{i} \\
0
\end{array}\right] \text {, for } i=1,2, \ldots, n
\]
where \(c(i)^{2}+\operatorname{abs}(s(i))^{2}=1\) and the following conventions are used (these are the same as in clartg/zlartg but differ from the BLAS Level 1 routine crotg/zrotg): If \(y_{i}=0\), then \(c(i)=1\) and \(s(i)=0\); If \(x_{i}=0\), then \(c(i)=0\) and \(s(i)\) is chosen so that \(r_{i}\) is real.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & \begin{tabular}{l} 
Integer. The number of plane rotations to be \\
generated.
\end{tabular} \\
\(x, y\) & \begin{tabular}{l} 
REAL for slargv \\
DOUBLE PRECISION for dlargv \\
COMPLEX for clargv
\end{tabular} \\
& COMPLEX*16 for zlargv \\
& Arrays, DIMENSION \((1+(n-1) *\) incx \()\) and \\
\((1+(n-1) *\) incy), respectively. \\
incx & On entry, the vectors \(x\) and \(y\). \\
& \begin{tabular}{l} 
Integer. The increment between elements of \(x\). \\
incx \(>0\).
\end{tabular}
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll} 
incy & INTEGER. The increment between elements of \(y\). \\
incy \(>0\).
\end{tabular}
incc INTEGER. The increment between elements of the output array c. incc \(>0\).

\section*{Output Parameters}
\(\left.\begin{array}{ll}x & \text { On exit, } x(i) \text { is overwritten by } a_{i} \text { (for real flavors), or by } \\
r_{i} \text { (for complex flavors), for } i=1, \ldots, n . \\
\text { y } & \text { On exit, the sines } s(i) \text { of the plane rotations. } \\
\text { REAL for slargv/clargv }\end{array}\right\}\)\begin{tabular}{l} 
DOUBLE PRECISION for dlargv/zlargv \\
Array, DIMENSION \(\left(1+(n-1)^{*}\right.\) incc). The cosines of the \\
plane rotations.
\end{tabular}

\section*{? larnv}

Returns a vector of random numbers
from a uniform or normal distribution.
```

call slarnv (idist, iseed, n, x)
call dlarnv (idist, iseed, n, x)
call clarnv (idist, iseed, n, x)
call zlarnv (idist, iseed, n, x)

```

\section*{Discussion}

The routine ?larnv returns a vector of \(n\) random real/complex numbers from a uniform or normal distribution.

This routine calls the auxiliary routine ?laruv to generate random real numbers from a uniform \((0,1)\) distribution, in batches of up to 128 using vectorisable code. The Box-Muller method is used to transform numbers from a uniform to a normal distribution.

\section*{Input Parameters}

\section*{idist Integer. Specifies the distribution of the random numbers:}
for slarnv and dlanrv:
\(=1\) : uniform \((0,1)\)
\(=2\) : uniform \((-1,1)\)
=3: normal \((0,1)\).
for clarnv and zlanrv:
\(=1\) : real and imaginary parts each uniform \((0,1)\)
\(=2\) : real and imaginary parts each uniform ( \(-1,1\) )
\(=3\) : real and imaginary parts each normal \((0,1)\)
= 4: uniformly distributed on the disc \(\operatorname{abs}(z)<1\)
= 5: uniformly distributed on the circle \(\operatorname{abs}(z)=1\)
iseed INTEGER.
Array, DIMENSION (4).
On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and iseed(4) must be odd.

INTEGER. The number of random numbers to be generated.

\section*{Output Parameters}

REAL for slarnv
DOUBLE PRECISION for dlarnv
COMPLEX for clarnv
COMPLEX*16 for zlarnv
Array, DIMENSION ( \(n\) ). The generated random numbers.
iseed On exit, the seed is updated.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?larrb}

Provides limited bisection to locate eigenvalues for more accuracy.
```

call slarrb (n, d, l, ld, lld, ifirst, ilast, sigma,
reltol, w, wgap, werr, work, iwork, info)
call dlarrb (n, d, l, ld, lld, ifirst, ilast, sigma,
reltol, w, wgap, werr, work, iwork, info)

```

\section*{Discussion}

Given the relatively robust representation(RRR) \(L D L^{T}\), the routine does "limited" bisection to locate the eigenvalues of \(L D L^{T}\), w(ifirst) through \(w\) (ilast), to more accuracy. Intervals [left, right] are maintained by storing their mid-points and semi-widths in the arrays \(w\) and werr respectively.

\section*{Input Parameters}
integer. The order of the matrix.
REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, Dimension ( \(n\) ). The \(n\) diagonal elements of the diagonal matrix \(D\).
REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION ( \(n-1\) ). The \(n-1\) subdiagonal elements of the unit bidiagonal matrix \(L\).
REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION ( \(n-1\) ). The \(n\) - 1 elements \(L_{i}{ }^{*} D_{i}\).
ReAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION ( \(n-1\) ). The \(n\) - 1 elements \(L_{i} * L_{i}{ }^{*} D_{i}\).
integer. The index of the first eigenvalue in the cluster.
```

ilast INTEGER. The index of the last eigenvalue in the cluster.
sigma REAL for slarrb
DOUBLE PRECISION for dlarrb
The shift used to form LDL'T
reltol REAL for slarrb
DOUBLE PRECISION for dlarrb
The relative tolerance.
REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). On input,w(ifirst) through
w(ilast) are estimates of the corresponding
eigenvalues of LDL'
REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (}n\mathrm{). The gaps between the
eigenvalues of LDL'
werr REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). On input, werr(ifirst)
through werr(ilast) are the errors in the estimates
w(ifirst) through w(ilast).
work REAL for slarrb
DOUBLE PRECISION for dlarrb
Workspace array. Note that this parameter is never used
in the routine.
iwork INTEGER.
Workspace array, DIMENSION (2n).

```

\section*{Output Parameters}
werr

On output these estimates of the eigenvalues are "refined".

Very small gaps are changed on output.
On output, "refined" errors in the estimates w(ifirst) through w(ilast).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{info INTEGER.}

Error flag. Note that this parameter is never set in the routine.

\section*{?larre}

Given the tridiagonal matrix T, sets small off-diagonal elements to zero and for each unreduced block \(T_{i}\), finds base representations and eigenvalues.
```

call slarre (n, d, e, tol, nsplit, isplit, m, w, woff,
gersch, work, info)
call dlarre (n, d, e, tol, nsplit, isplit, m, w, woff,
gersch, work, info)

```

\section*{Discussion}

Given the tridiagonal matrix \(T\), the routine sets "small" off-diagonal elements to zero, and for each unreduced block \(T_{i}\), it finds
- the numbers \(\sigma_{i}\)
- the base \(T_{i}-\sigma_{i} I=L_{i} D_{i} L_{i}^{T}\) representations and
- eigenvalues of each \(L_{i} D_{i} L_{i}^{T}\).

The representations and eigenvalues found are then used by ?stegr to compute the eigenvectors of a symmetric tridiagonal matrix. Currently, the base representations are limited to being positive or negative definite, and the eigenvalues of the definite matrices are found by the \(d q d s\) algorithm (subroutine ?lasq2). As an added benefit, ?larre also outputs the \(n\) Gerschgorin intervals for each \(L_{i} D_{i} L_{i}{ }^{T}\).

\section*{Input Parameters}

Integer. The order of the matrix.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{d} & REAL for slarre \\
\hline & DOUBLE PRECISION for dlarre \\
\hline & Array, DIMENSION ( \(n\) ). On entry, the \(n\) diagonal elements of the tridiagonal matrix \(T\). \\
\hline \multirow[t]{3}{*}{\(e\)} & REAL for slarre \\
\hline & DOUBLE PRECISION for dlarre \\
\hline & Array, DIMENSION \((n)\). On entry, the \((n-1)\) subdiagonal elements of the tridiagonal matrix \(T\); \(e(n)\) need not be set. \\
\hline \multirow[t]{3}{*}{tol} & REAL for slarre \\
\hline & DOUBLE PRECISION for dlarre \\
\hline & The threshold for splitting. If on input \(|e(i)|<t \circ 1\), then the matrix \(T\) is split into smaller blocks. \\
\hline \multirow[t]{2}{*}{nsplit} & INTEGER. The number of blocks \(T\) splits into. \\
\hline & \(1 \leq_{n s p l i t} \leq_{n}\). \\
\hline \multirow[t]{3}{*}{work} & REAL for slarre \\
\hline & DOUBLE PRECISION for dlarre \\
\hline & Workspace array, DIMENSION ( \(4 *_{n}\) ). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline d & On exit, the \(n\) diagonal elements of the diagonal matrices \(D_{i}\). \\
\hline \(e\) & On exit, the subdiagonal elements of the unit bidiagonal matrices \(L_{i}\). \\
\hline \multirow[t]{2}{*}{isplit} & INTEGER. \\
\hline & Array, DIMENSION ( \(2 n\) ). The splitting points, at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc., and the nsplit-th consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n. \\
\hline m & INTEGER. The total number of eigenvalues (of all the \(L_{i} D_{i} L_{i}^{T}\) ) found. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
w REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION \((n)\). The first \(m\) elements contain the eigenvalues. The eigenvalues of each of the blocks, \(L_{i} D_{i} L_{i}^{T}\), are sorted in ascending order.
woff REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION \((n)\).The nsplit base points \(\sigma_{i}\).
gersch
info INTEGER. Output error code from ?lasq2.

\section*{?larrf}

Finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.
```

call slarrf (n, d, l, ld, lld, ifirst, ilast, w, dplus,
lplus, work, iwork, info)
call dlarrf (n, d, l, ld, lld, ifirst, ilast, w, dplus,
lplus, work, iwork, info)

```

\section*{Discussion}

Given the initial representation \(L D L^{T}\) and its cluster of close eigenvalues (in a relative measure), w(ifirst), w(ifirst+1), ... w(ilast), the routine ? larrf finds a new relatively robust representation
\(L D L^{T}-\sigma_{i} I=L(+) D(+) L(+)^{T}\)
such that at least one of the eigenvalues of \(L(+) D(+) L(+)^{T}\) is relatively isolated.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The order of the matrix. \\
\hline \multirow[t]{3}{*}{d} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, DIMENSION ( \(n\) ). The \(n\) diagonal elements of the diagonal matrix \(D\). \\
\hline \multirow[t]{3}{*}{1} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, DIMENSION ( \(n-1\) ). The ( \(n-1\) ) subdiagonal elements of the unit bidiagonal matrix \(L\). \\
\hline \multirow[t]{3}{*}{ld} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, DIMENSION ( \(n-1\) ). The \(n-1\) elements \(L_{i}{ }^{*} D_{i}\). \\
\hline \multirow[t]{3}{*}{lld} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, DIMENSION ( \(n-1\) ). The \(n-1\) elements \(L_{i} * L_{i} * D_{i}\). \\
\hline ifirst & integer. The index of the first eigenvalue in the cluster. \\
\hline ilast & INTEGER. The index of the last eigenvalue in the cluster. \\
\hline \multirow[t]{4}{*}{w} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, DIMENSION ( \(n\) ). On input, the eigenvalues of \(L D L^{T}\) in ascending order. w(ifirst) through \\
\hline & \(w(\) ilast ) form the cluster of relatively close eigenvalues. \\
\hline \multirow[t]{3}{*}{sigma} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & The shift used to form \(L(+) D(+) L(+)^{T}\). \\
\hline \multirow[t]{3}{*}{work} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Workspace array. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline W & On output, w(ifirst) through w(ilast) are estimates of the corresponding eigenvalues of \(L(+) D(+) L(+)^{T}\). \\
\hline \multirow[t]{3}{*}{dplus} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, DIMENSION ( \(n\) ). The \(n\) diagonal elements of the diagonal matrix \(D(+)\). \\
\hline \multirow[t]{4}{*}{lplus} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, DIMENSION ( \(n\) ). The first ( \(n-1\) ) elements of \\
\hline & lplus contain the subdiagonal elements of the unit bidiagonal matrix \(L(+)\). \(\operatorname{lpIus}(n)\) is set to sigma. \\
\hline
\end{tabular}

\section*{?larrv}

Computes the eigenvectors of the tridiagonal matrix \(T=L D L^{T}\) given \(L\), \(D\) and the eigenvalues of \(L D L^{T}\).
```

call slarrv (n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info)
call dlarrv (n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info)
call clarrv (n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info)
call zlarrv (n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info)

```

\section*{Discussion}

The routine ? larrv computes the eigenvectors of the tridiagonal matrix \(T=L D L^{T}\) given \(L, D\) and the eigenvalues of \(L D L^{T}\). The input eigenvalues should have high relative accuracy with respect to the entries of \(L\) and \(D\). The desired accuracy of the output can be specified by the input parameter tol.

\section*{Input Parameters}
\(n \quad\) INTEGER. The order of the matrix. \(n \geq 0\).
d REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION ( \(n\) ). On entry, the \(n\) diagonal elements of the diagonal matrix \(D\).

REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION ( \(n-1\) ). On entry, the ( \(n-1\) )
subdiagonal elements of the unit bidiagonal matrix \(L\) are contained in elements 1 to \(n-1\) of \(l\). \(I(n)\) need not be set.
isplit INTEGER.
Array, DIMENSION ( \(n\) ). The splitting points, at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc.

REAL for slarrv/clarrv DOUBLE PRECISION for dlarrv/zlarrv
The absolute error tolerance for the eigenvalues/eigenvectors.
Errors in the input eigenvalues must be bounded by tol. The eigenvectors output have residual norms bounded by tol, and the dot products between different eigenvectors are bounded by tol. tol must be at least \(n^{\star} e p s^{\star}|T|\), where eps is the machine precision and \(|T|\) is the 1 -norm of the tridiagonal matrix.
INTEGER. The total number of eigenvalues found.
\(0 \leq_{m} \leq_{n}\). If range \(=\) 'A', \(m=n\), and if range \(=\) ' \(I\) ',
\(m=i u-i l+1\).
REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION ( \(n\) ). The first \(m\) elements of \(w\) contain the eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by
split-off block and ordered from smallest to largest within the block (The output array \(w\) from ?larre is expected here). Errors in w must be bounded by tol.

INTEGER.
Array, DIMENSION ( \(n\) ). The submatrix indices associated with the corresponding eigenvalues in \(\mathrm{w}^{\prime}\), \(i b \operatorname{lock}(i)=1\) if eigenvalue \(w(i)\) belongs to the first submatrix from the top, \(=2\) if \(w(i)\) belongs to the second submatrix, etc.
INTEGER. The leading dimension of the output array \(z\). \(I d z \geq 1\), and if jobz \(=' V^{\prime}\) ', \(I d z \geq \max (1, n)\).

REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Workspace array, DIMENSION ( \(13 n\) ).
INTEGER.
Workspace array, DIMENSION ( \(6 n\) ).

\section*{Output Parameters}
\(d \quad\) On exit, \(d\) may be overwritten.
\(I \quad\) On exit, \(I\) is overwritten.
z REAL for slarrv
DOUBLE PRECISION for dlarrv
COMPLEX for clarrv
COMPLEX*16 for zlarrv
Array, DIMENSION ( \(1 d z, \max (1, m)\) ).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the i-th column of \(z\) holding the eigenvector associated
with \(w(i)\).
If jobz \(={ }^{\prime} \mathrm{N}^{\prime}\), then \(z\) is not referenced.

NOTE. The user must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=' \mathrm{~V}\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
```

isuppz INTEGER.
Array,DIMENSION (2*max (1,m)). The support of the
eigenvectors in z, i.e., the indices indicating the nonzero
elements in z. The i-th eigenvector is nonzero only in
elements isuppz(2i-1) through isuppz(2i).
info INTEGER.
If info = 0: successful exit
If info =-i<0: the i-th argument had an illegal value
info > 0: if info = 1, there is an internal error in
?larrb;
if info =2, there is an internal error in ?stein.

```

\section*{?lartg}

Generates a plane rotation with real cosine and real/complex sine.
```

call slartg (f, g, cs, sn, r)
call dlartg (f, g, cs, sn, r)
call clartg (f, g, cs, sn, r)
call zlartg (f, g, cS, sn, r)

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Discussion}

The routine generates a plane rotation so that
\[
\left[\begin{array}{cc}
c s & s n \\
-\operatorname{conjg}(s n) & c s
\end{array}\right] \cdot\left[\begin{array}{l}
f \\
g
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]
\]
where \(c s^{2}+|s n|^{2}=1\)
This is a slower, more accurate version of the BLAS Level 1 routine ?rotg, except for the following differences.

\section*{For slartg/dlartg:}
\(f\) and \(g\) are unchanged on return;
If \(g=0\), then \(c s=1\) and \(s n=0\);
If \(f=0\) and \(g \neq 0\), then \(c s=0\) and \(s n=1\) without doing any floating
point operations (saves work in ?bdsqr when there are zeros on the diagonal);
If \(f\) exceeds \(g\) in magnitude, cs will be positive.
For clartg/zlartg:
\(f\) and \(g\) are unchanged on return;
If \(g=0\), then \(c s=1\) and \(s n=0\);
If \(f=0\), then \(c s=0\) and \(s n\) is chosen so that \(r\) is real.

\section*{Input Parameters}
f, \(g\)
REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The first and second component of vector to be rotated.

\section*{Output Parameters}
```

CS
REAL for slartg/clartg DOUBLE PRECISION for dlartg/zlartg The cosine of the rotation.

```
\(s n\)
```

REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The sine of the rotation.

```
r
REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The nonzero component of the rotated vector.

\section*{?lartv}

Applies a vector of plane rotations with real cosines and real/complex sines to the elements of a pair of vectors.
```

call slartv (n, x, incx, y, incy, c, s, incc)
call dlartv (n, x, incx, y, incy, c, s, incc)
call clartv (n, x, incx, y, incy, c, s, incc)
call zlartv (}n,x, incx, y, incy, c, s, incc

```

\section*{Discussion}

The routine applies a vector of real/complex plane rotations with real cosines to elements of the real/complex vectors \(x\) and \(y\). For \(\mathrm{i}=1,2, \ldots, n\)
\(\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]:=\left[\begin{array}{cc}c(i) & s(i) \\ -\operatorname{conjg}(s(i)) & c(i)\end{array}\right]\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]\)

\section*{Input Parameters}
\(n\)
INTEGER. The number of plane rotations to be applied.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{\(x, y\)} & REAL for slartv \\
\hline & DOUBLE PRECISION for dlartv \\
\hline & COMPLEX for clartv \\
\hline & COMPLEX*16 for zlartv \\
\hline & Arrays, DIMENSION \((1+(n-1) *\) incx \()\) and \(\left(1+(n-1)^{*}\right.\) incy), respectively. The input vectors \(x\) and \(y\) \\
\hline incx & integer. The increment between elements of \(x\). incx \(>0\). \\
\hline incy & Integer. The increment between elements of \(y\). incy>0. \\
\hline \multirow[t]{3}{*}{C} & REAL for slartv/clartv \\
\hline & DOUBLE PRECISION for dlartv/zlartv \\
\hline & Array, dimension ( \(1+(n-1) *\) incc \()\). The cosines of the plane rotations. \\
\hline \multirow[t]{5}{*}{s} & REAL for slartv \\
\hline & DOUBLE PRECISION for dlartv \\
\hline & COMPLEX for clartv \\
\hline & COMPLEX*16 for zlartv \\
\hline & Array, DIMENSION ( \(1+(n-1)^{*}\) incc). The sines of the plane rotations. \\
\hline incc & integer. The increment between elements of \(c\) and \(s\). incc>0. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

x, y The rotated vectors }x\mathrm{ and }y\mathrm{ .

```

\section*{?laruv}

Returns a vector of \(n\) random real numbers from a uniform distribution.
```

call slaruv (iseed, n, x)
call dlaruv (iseed, n, x)

```

\section*{Discussion}

The routine ? laruv returns a vector of \(n\) random real numbers from a uniform \((0,1)\) distribution \((\mathrm{n} \leq 128)\).

This is an auxiliary routine called by ?larnv.

\section*{Input Parameters}

\section*{iseed \\ INTEGER.}

Array, DIMENSION (4). On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and iseed(4) must be odd.

INTEGER. The number of random numbers to be generated. \(n \leq 128\).

\section*{Output Parameters}
\begin{tabular}{ll}
\(x\) & REAL for slaruv \\
DOUBLE PRECISION for dlaruv \\
Array, DIMENSION \((n)\). The generated random \\
numbers. \\
seed & On exit, the seed is updated.
\end{tabular}

\section*{?larz}

Applies an elementary reflector (as
returned by ?tzrzf) to a general
matrix.
```

call slarz (side, m, n, l, v, incv, tau, c, ldc, work)
call dlarz (side, m, n, l, v, incv, tau, c, ldc, work)
call clarz (side, m, n, l, v, incv, tau, c, ldc, work)
call zlarz (side, m, n, l, v, incv, tau, c, ldc, work)

```

\section*{Discussion}

The routine ? larz applies a real/complex elementary reflector \(H\) to a real/complex m-by- \(n\) matrix \(C\), from either the left or the right.
\(H\) is represented in the form
\(H=I-\operatorname{tau} * v^{*} v^{\prime}\),
where \(t a u\) is a real/complex scalar and \(v\) is a real/complex vector. If \(t a u=0\), then \(H\) is taken to be the unit matrix.
For complex flavors, to apply \(H^{\prime}\) (the conjugate transpose of \(H\) ), supply conjg ( \(t a u\) ) instead of tau.
\(H\) is a product of \(k\) elementary reflectors as returned by ?tzrzf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline side & \begin{tabular}{l}
CHARACTER*1. \\
If side = 'L': form \(H \star C\) \\
If side \(=\) 'R': form \(C \star H\)
\end{tabular} \\
\hline m & INTEGER. The number of rows of the matrix \(C\). \\
\hline \(n\) & Integer. The number of columns of the matrix \(C\). \\
\hline 1 & \begin{tabular}{l}
INTEGER. The number of entries of the vector \(v\) containing the meaningful part of the Householder vectors. \\
If side \(=\) 'L', \(m \geq 1 \geq 0\), if side \(=' R\) ', \(n \geq 1 \geq 0\).
\end{tabular} \\
\hline v & REAL for slarz \\
\hline & DOUBLE PRECISION for dlarz \\
\hline & COMPLEX for clarz \\
\hline & COMPLEX*16 for zlarz \\
\hline & Array, DIMENSION ( \(1+(1-1) *\) abs (incv)). The vector \(v\) in the representation of \(H\) as returned by ?tzrzf. \(v\) is not used if \(t a u=0\). \\
\hline incv & Integer. The increment between elements of \(v\). incv \(=0\). \\
\hline tau & REAL for slarz \\
\hline & DOUBLE PRECISION for dlarz \\
\hline & COMPLEX for clarz \\
\hline & COMPLEX*16 for zlarz \\
\hline & The value tau in the representation of \(H\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{c} & REAL for slarz \\
\hline & DOUBLE PRECISION for dlarz \\
\hline & COMPLEX for clarz \\
\hline & COMPLEX*16 for zlarz \\
\hline & Array, DIMENSION ( \(1 d c, n\) ). \\
\hline & On entry, the \(m\)-by- \(n\) matrix \(C\). \\
\hline ldc & INTEGER. The leading dimension of the array \(c\). \(I_{d c} \geq \max (1, m)\). \\
\hline \multirow[t]{7}{*}{work} & REAL for slarz \\
\hline & DOUBLE PRECISION for dlarz \\
\hline & COMPLEX for clarz \\
\hline & COMPLEX*16 for zlarz \\
\hline & Workspace array, DIMENSION \\
\hline & (n) if side = 'L' or \\
\hline & \((\mathrm{m})\) if side \(=\) 'R'. \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, \(c\) is overwritten by the matrix \(H \star C\) if side \(=\) 'L', or \(C \star H\) if side \(=\) 'R'.

\section*{?larzb}

\section*{Applies a block reflector or its transpose/conjugate-transpose to a general matrix.}
```

call slarzb (side, trans, direct, storev, m, n, k, l,
v, ldv, t, ldt, c, ldc, work, ldwork)
call dlarzb (side, trans, direct, storev, m, n, k, l,
v, ldv, t, ldt, c, ldc, work, ldwork)
call clarzb (side, trans, direct, storev, m, n, k, l,
v, ldv, t, ldt, c, ldc, work, ldwork)
call zlarzb (side, trans, direct, storev, m, n, k, l,
v, ldv, t, ldt, c, ldc, work, ldwork)

```

\section*{Discussion}

The routine applies a real/complex block reflector \(H\) or its transpose \(H^{T}\) (or \(H^{H}\) for complex flavors) to a real/complex distributed \(m\)-by- \(n\) matrix \(C\) from the left or the right.
Currently, only storev = 'R' and direct = 'B' are supported.

\section*{Input Parameters}
side
trans
direct
storev
m
n
k

V

CHARACTER*1.
If side = 'L': apply \(H\) or \(H\) ' from the left If side = 'R': apply \(H\) or \(H^{\prime}\) from the right

CHARACTER*1.
If trans = 'N': apply \(H\) (No transpose)


CHARACTER*1. Indicates how \(H\) is formed from a product of elementary reflectors = ' \(\mathrm{F}^{\prime}: H=H(1) H(2) \ldots H(k)\) (forward, not supported yet) = 'в': \(H=H(k) \ldots H(2) H(1)\) (backward)

CHARACTER*1. Indicates how the vectors which define the elementary reflectors are stored:
= 'C': Column-wise (not supported yet)
= 'R': Row-wise.
INTEGER. The number of rows of the matrix \(C\).
INTEGER. The number of columns of the matrix \(C\).
INTEGER. The order of the matrix \(T\) (equal to the number of elementary reflectors whose product defines the block reflector).

INTEGER. The number of columns of the matrix \(V\) containing the meaningful part of the Householder reflectors.
If side \(=\) 'L', \(m \geq 1 \geq 0\), if side \(=\) ' \(R\) ', \(n \geq 1 \geq 0\).
REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
```

 COMPLEX*16 for zlarzb
 Array, DIMENSION (Idv, nv).
 If storev= 'C', nv = k; if storev= 'R', nv = 1.
 Idv INTEGER. The leading dimension of the array v.
If storev = 'C', ldv \geqI; if storev= 'R', ldv \geq k.
REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldt,k). The triangular k-by-k
matrix T in the representation of the block reflector.
ldt INTEGER. The leading dimension of the array t.
ldt }\geqk
REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (Idc,n). On entry, the m-by-n matrix
C.
integer. The leading dimension of the array c.
ldc}\geqm\operatorname{max}(1,m)
work REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Workspace array, DIMENSION (ldwork, k).
Idwork INTEGER. The leading dimension of the array work.
If side = 'L', ldwork \geq max(1,n);
if side = 'R', ldwork \geq max (1,m).

```

\section*{Output Parameters}

On exit, \(c\) is overwritten by \(H^{\star} C\) or \(H^{\prime} \star C\) or \(C \star H\) or \(C{ }^{\star} H^{\prime}\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?larzt}

Forms the triangular factor \(T\) of a block reflector \(H=I-V T V^{H}\).
```

call slarzt (direct, storev, n, k, v, ldv, tau, t, ldt)
call dlarzt (direct, storev, n, k, v, ldv, tau, t, ldt)
call clarzt (direct, storev, n, k, v, ldv, tau, t, ldt)
call zlarzt (direct, storev, n, k, v, ldv, tau, t, ldt)

```

\section*{Discussion}

The routine forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order \(>n\), which is defined as a product of \(k\) elementary reflectors.
If direct = ' \(\mathrm{F}^{\prime}, H=H(1) H(2) \ldots H(k)\) and \(T\) is upper triangular.
If direct = ' B ', \(H=H(k) \ldots H(2) H(1)\) and T is lower triangular.
If storev = 'c', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th column of the array v , and \(H=I-V \star T * V^{\prime}\)
If storev = 'R', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th row of the array v , and
\(H=I-V^{\prime} * T * V\)
Currently, only storev = 'R' and direct = 'B' are supported.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{direct} & CHARACTER* 1 . Specifies the order in which the elementary reflectors are multiplied to form the block reflector: \\
\hline & If direct = 'F': \(H=H(1) H(2) \ldots H(k)\) (forward, not supported yet) \\
\hline & If direct = ' B ': \(H=H(\mathrm{k}) \ldots . \mathrm{H}(2) H(1)\) (backward) \\
\hline \multirow[t]{4}{*}{storev} & CHARACTER*1. Specifies how the vectors which define the elementary reflectors are stored (see also \\
\hline & Application Notes below): \\
\hline & If storev = 'C': column-wise (not supported yet) \\
\hline & If storev = 'R': row-wise \\
\hline
\end{tabular}

INTEGER. The order of the block reflector \(H\). \(n \geq 0\).
INTEGER. The order of the triangular factor \(T\) (equal to the number of elementary reflectors). \(k \geq 1\).

REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION
\((I d v, k)\) if storev \(=\) ' \(C\) '
\((I d v, n)\) if storev \(=\) 'R'
The matrix \(V\).
INTEGER. The leading dimension of the array \(v\).
If storev \(=\) ' \(C\) ', \(I d v \geq \max (1, n)\);
if storev \(=\) ' R ', \(I d v \geq k\).
REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION ( \(k\) ). tau(i) must contain the scalar factor of the elementary reflector \(H(i)\).

INTEGER. The leading dimension of the output array \(t\). \(l d t \geq k\).

\section*{Output Parameters}
t

V

REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENS ION ( \(I d t, k\) ). The \(k\)-by- \(k\) triangular factor \(T\) of the block reflector. If direct \(={ }^{\prime} \mathrm{F}^{\prime}, T\) is upper triangular; if direct \(=\) ' B ', \(T\) is lower triangular. The rest of the array is not used.
The matrix V. See Application Notes below.

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors which define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
\[
\begin{aligned}
& \text { direct }=\text { ' } F \text { ' and storev }=\text { 'C': direct }=\text { ' } F \text { ' and storev }=\text { ' } R \text { ': } \\
& V=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right] \\
& \text { - • - } \\
& 1 \text {. } \\
& 1 . \\
& 1 \\
& \text { direct }=\text { ' } \mathrm{B} \text { ' and storev }=\text { ' } \mathrm{C} \text { ': } \\
& \text { direct }=\text { ' } \mathrm{B} \text { ' and storev }=\text { ' } \mathrm{R} \text { ': } \\
& 1 \\
& \text {. } 1 \\
& \text {. . } 1 \\
& V=\left[\begin{array}{ccc}
\cdot & \cdot & \cdot \\
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right] \\
& 1-\quad V- \\
& {\left[\begin{array}{llllllll}
v_{1} & v_{1} & v_{1} & v_{1} & v_{1} & \cdots & \cdot & 1 \\
v_{2} & v_{2} & v_{2} & v_{2} & v_{2} & \cdots & 1 \\
v_{3} & v_{3} & v_{3} & v_{3} & v_{3} & \cdots & 1 &
\end{array}\right]} \\
& 1 . \\
& 1 \\
& 1 \\
& \text { } \\
& {\left[\begin{array}{ccccccccc}
1 & \cdot & \cdots & \cdots & v_{1} & v_{1} & v_{1} & v_{1} & v_{1} \\
. & 1 & \cdots & \cdots & v_{2} & v_{2} & v_{2} & v_{2} & v_{2} \\
\cdot & \cdot & 1 & \cdots & v_{3} & v_{3} & v_{3} & v_{3} & v_{3}
\end{array}\right]}
\end{aligned}
\]

\section*{?las2}

Computes singular values of a 2-by-2
triangular matrix.
```

call slas2 (f, g, h, ssmin, ssmax)
call dlas2 (f, g, h, ssmin, ssmax)

```

\section*{Discussion}

The routine ?las 2 computes the singular values of the 2-by-2 matrix
\[
\left[\begin{array}{ll}
f & g \\
0 & h
\end{array}\right]
\]

On return, \(s \operatorname{smin}\) is the smaller singular value and \(s\) smax is the larger singular value.

\section*{Input Parameters}
```

f, g, h REAL for slas2
DOUBLE PRECISION for dlas2
The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix,
respectively.

```

\section*{Output Parameters}
```

ssmin, ssmax REAL for slas2
DOUBLE PRECISION for dlas2
The smaller and the larger singular values, respectively.

```

\section*{Application Notes}

Barring over/underflow, all output quantities are correct to within a few units in the last place (ulps), even in the absence of a guard digit in addition/subtraction.
In IEEE arithmetic, the code works correctly if one matrix element is infinite.

Overflow will not occur unless the largest singular value itself overflows, or is within a few ulps of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix modified by perturbations of size near the underflow threshold.

\section*{?lascl}

Multiplies a general rectangular matrix
by a real scalar defined as \(c_{t o} / c_{\text {from }}\).
```

call slascl (type, kl, ku, cfrom, cto, m, n, a, lda, info)
call dlascl (type, kl, ku, cfrom, cto, m, n, a, lda, info)
call clascl (type, kl, ku, cfrom, cto, m, n, a, lda, info)
call zlascl (type, kl, ku, cfrom, cto, m, n, a, lda, info)

```

\section*{Discussion}

The routine ?lascl multiplies the \(m\)-by- \(n\) real/complex matrix \(A\) by the real scalar ctolcfrom. The operation is performed without over/underflow as long as the final result \(c t \circ * A(i, j) / c f r o m\) does not over/underflow. type specifies that \(A\) may be full, upper triangular, lower triangular, upper Hessenberg, or banded.

\section*{Input Parameters}
type CHARACTER*1. type indices the storage type of the input matrix.
= ' \(G\) ': \(A\) is a full matrix.
\(=\) ' L ': \(A\) is a lower triangular matrix.
\(=\) ' u ': \(A\) is an upper triangular matrix.
\(=\) ' H ': \(A\) is an upper Hessenberg matrix.
\(=\) ' B ': \(A\) is a symmetric band matrix with lower
bandwidth \(k I\) and upper bandwidth \(k u\) and with the
```

 only the lower half stored
 = 'Q':A is a symmetric band matrix with lower
 bandwidth kl and upper bandwidth ku and with the
 only the upper half stored.
 = 'z':A is a band matrix with lower bandwidth kl and
 upper bandwidth ku.
 kl INTEGER. The lower bandwidth of A. Referenced only if
type = 'B', 'Q' or 'z'.
INTEGER. The upper bandwidth of }A\mathrm{ . Referenced only if
type = 'B', 'Q' or 'z'.
cfrom, cto REAL for slascl/clascl
DOUBLE PRECISION for dlascl/zlascl
The matrix }A\mathrm{ is multiplied by ctol cfrom. A(i,j) is
computed without over/underflow if the final result
cto*A(i,j)/ cfrom can be represented without
over/underflow. cfrom must be nonzero.
INTEGER. The number of rows of the matrix A. m \geq0.
INTEGER. The number of columns of the matrix }A\mathrm{ .
n}\geq0
REAL for slascl
DOUBLE PRECISION for dlascl
COMPLEX for clascl
COMPLEX*16 for zlascl
Array, DIMENSION (lda,m). The matrix to be multiplied
by ctol cfrom. See type for the storage type.
Ida INTEGER. The leading dimension of the array a.
Ida}\geq\mp@code{max}(1,m)

```

\section*{Output Parameters}
```

a	The multiplied matrix A.
info	INTEGER.
	If info $=0-$ successful exit
	If info $=-i<0$, the i-th argument had an illegal
value.	

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lasd0}

Computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal \(d\) and off-diagonal e. Used by ?bdsdc.
```

call slasdO (n, sqre, d, e, u, ldu, vt, ldvt, smlsiz,
iwork, work, info)
call dlasdO (n, sqre, d, e, u, ldu, vt, ldvt, smlsiz,
iwork, work, info)

```

\section*{Discussion}

Using a divide and conquer approach, the routine ? lasdo computes the singular value decomposition (SVD) of a real upper bidiagonal \(n-b y-m\) matrix \(B\) with diagonal \(d\) and offdiagonal \(e\), where \(m=n+\) sqre.

The algorithm computes orthogonal matrices \(U\) and \(V T\) such that \(B=U \star S \star V T\). The singular values \(S\) are overwritten on \(d\).

A related subroutine, ? lasda, computes only the singular values, and optionally, the singular vectors in compact form.

\section*{Input Parameters}

INTEGER. On entry, the row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array \(d\).
sqre
INTEGER. Specifies the column dimension of the bidiagonal matrix.
If sqre \(=0\) : The bidiagonal matrix has column dimension \(m=n\);
If sqre \(=1\) : The bidiagonal matrix has column dimension \(m=n+1\);
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{d} & REAL for slasdo \\
\hline & DOUBLE PRECISION for dlasdo \\
\hline & Array, DIMENSION ( \(n\) ). On entry, \(d\) contains the main diagonal of the bidiagonal matrix. \\
\hline \multirow[t]{3}{*}{\(e\)} & REAL for slasdo \\
\hline & DOUBLE PRECISION for dlasd0 \\
\hline & Array, DIMENSION ( \(m-1\) ). Contains the subdiagonal entries of the bidiagonal matrix. On exit, e is destroyed. \\
\hline \(1 d u\) & INTEGER. On entry, leading dimension of the output array \(u\). \\
\hline Idvt & INTEGER. On entry, leading dimension of the output array \(v t\). \\
\hline smlsiz & INTEGER. On entry, maximum size of the subproblems at the bottom of the computation tree. \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION must be at least (8n). \\
\hline \multirow[t]{3}{*}{work} & REAL for slasdo \\
\hline & DOUBLE PRECISION for dlasdo \\
\hline & Workspace array, DIMENSION must be at least \(\left(3 m^{2}+2 m\right)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit \(d\), if info \(=0\), contains singular values of the bidiagonal matrix.

REAL for slasd0 DOUBLE PRECISION for dlasd0
Array, DIMENSION at least ( \(I d q, n\) ). On exit, \(u\) contains the left singular vectors.
vt
REAL for slasdo
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least (Idvt, \(m\) ). On exit, \(v t^{\prime}\) contains the right singular vectors.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
info INTEGER.
If info \(=0\) : successful exit.
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
If info \(=1\), an singular value did not converge.

\section*{?lasd1}

Computes the SVD of an upper
bidiagonal matrix \(B\) of the specified size. Used by ?bdsdc.
```

call slasdl (nl, nr, sqre, d, alpha, beta, u, ldu, vt,
ldvt, idxq, iwork, work, info)
call dlasdl (nl, nr, sqre, d, alpha, beta, u, ldu, vt,
ldvt, idxq, iwork, work, info)

```

\section*{Discussion}

This routine computes the SVD of an upper bidiagonal \(n\)-by- \(m\) matrix \(B\), where \(n=n l+n r+1\) and \(m=n+\) sqre. The routine ?lasd1 is called from ?lasdo.

A related subroutine ?lasd7 handles the case in which the singular values (and the singular vectors in factored form) are desired.
?lasd1 computes the SVD as follows:
\[
\begin{aligned}
& B=U(\text { in }) *\left[\begin{array}{cccc}
D 1(\text { in }) & 0 & 0 & 0 \\
Z 1^{\prime} & a & Z 2^{\prime} & b \\
0 & 0 & D 2(\text { in }) & 0
\end{array}\right] * V T(\text { in }) \\
&=U(\text { out }) *(D(\text { out }) \\
&0) * V T(\text { out })
\end{aligned}
\]
where \(Z=\left(Z 1^{\prime} a \quad Z 2^{\prime} b\right)=u^{\prime} V T^{\prime}\), and \(u\) is a vector of dimension \(m\) with alpha and beta in the \(n l+1\) and \(n l+2\)-th entries and zeros elsewhere; and the entry \(b\) is empty if sqre \(=0\).

The left singular vectors of the original matrix are stored in \(u\), and the transpose of the right singular vectors are stored in \(v t\), and the singular values are in \(d\). The algorithm consists of three stages:
The first stage consists of deflating the size of the problem when there are multiple singular values or when there are zeros in the \(Z\) vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?lasd2.
The second stage consists of calculating the updated singular values. This is done by finding the square roots of the roots of the secular equation via the routine ?lasd4 (as called by ?lasd3). This routine also calculates the singular vectors of the current problem.
The final stage consists of computing the updated singular vectors directly using the updated singular values. The singular vectors for the current problem are multiplied with the singular vectors from the overall problem.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline nl & INTEGER. The row dimension of the upper block. \(n \geq \geq 1\). \\
\hline \(n r\) & INTEGER. The row dimension of the lower block. \(n r \geq 1\). \\
\hline sqre & \begin{tabular}{l}
INTEGER. \\
If sqre \(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix. \\
If sqre \(=1\) : the lower block is an \(n r-\) by- \((n r+1)\) rectangular matrix. The bidiagonal matrix has row dimension \(n=n I+n r+1\), and column dimension \(m=n+\) sqre.
\end{tabular} \\
\hline d & \begin{tabular}{l}
REAL for slasd1 \\
DOUBLE PRECISION for dlasd1 \\
Array, DIMENSION ( \(n=n l+n r+1\) ). On entry \(d(1: n 1,1: n 1)\) contains the singular values of the upper block; and \(d(n I+2: n)\) contains the singular values of the lower block.
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{alpha} & REAL for slasd1 \\
\hline & DOUBLE PRECISION for dlasd1 \\
\hline & Contains the diagonal element associated with the added row. \\
\hline \multirow[t]{3}{*}{beta} & REAL for slasd1 \\
\hline & DOUBLE PRECISION for dlasd1 \\
\hline & Contains the off-diagonal element associated with the added row. \\
\hline \multirow[t]{3}{*}{u} & REAL for slasd1 \\
\hline & DOUBLE PRECISION for dlasd1 \\
\hline & Array, DIMENSION ( \(1 d u, n\) ). On entry \(u(1: n l, 1: n l)\) contains the left singular vectors of the upper block; \(u(n l+2: n, n l+2: n)\) contains the left singular vectors of the lower block. \\
\hline \(1 d u\) & INTEGER. The leading dimension of the array \(u\). \(I d u \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{\(v t\)} & REAL for slasd1 \\
\hline & DOUBLE PRECISION for dlasd1 \\
\hline & Array, DIMENSION (ldvt, \(m\) ), where \(m=n+\) sqre. On entry \(v t(1: n l+1,1: n l+1)\) ' contains the right singular vectors of the upper block; \(v t(n l+2: m, n l+2: m)^{\prime}\) contains the right singular vectors of the lower block. \\
\hline Idvt & Integer. The leading dimension of the array \(v t\). \(I d v t \geq \max (1, m)\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION (4n). \\
\hline \multirow[t]{3}{*}{work} & REAL for slasd1 \\
\hline & DOUBLE PRECISION for dlasd1 \\
\hline & Workspace array, DIMENSION \(\left(3 m^{2}+2 m\right)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
d
On exit \(d(1: n)\) contains the singular values of the modified matrix.
\begin{tabular}{|c|c|}
\hline \(u\) & On exit \(u\) contains the left singular vectors of the bidiagonal matrix. \\
\hline vt & On exit \(v t^{\prime}\) contains the right singular vectors of the bidiagonal matrix. \\
\hline \multirow[t]{2}{*}{\(i d x q\)} & INTEGER \\
\hline & Array, DIMENSION ( \(n\) ). Contains the permutation which will reintegrate the subproblem just solved back into sorted order, that is, \(d(i d x q(i=1, n))\) will be in ascending order. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\) : successful exit. \\
\hline & \begin{tabular}{l}
If info \(=-i<0\), the \(i\)-th argument had an illegal value \\
If info \(=1\), an singular value did not converge.
\end{tabular} \\
\hline
\end{tabular}

\section*{?lasd2}

Merges the two sets of singular values
together into a single sorted set.
Used by ?bdsdc.
```

call slasd2 (nl, nr, sqre, k, d, z, alpha, beta, u, ldu,
vt, ldvt, dsigma, u2, ldu2, vt2, ldvt2,
idxp, idx, idxc, idxq, coltyp, info)
call dlasd2 (nl, nr, sqre, k, d, z, alpha, beta, u, ldu,
vt, ldvt, dsigma, u2, ldu2, vt2, ldvt2,
idxp, idx, idxc, idxq, coltyp, info)

```

\section*{Discussion}

The routine ?lasd2 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the \(Z\) vector. For each such occurrence the order of the related secular equation problem is reduced by one.

The routine ?lasd2 is called from ?lasd1.

\section*{Input Parameters}

INTEGER. The row dimension of the upper block. \(n \_\geq 1\).

INTEGER. The row dimension of the lower block. \(n r \geq 1\).

INTEGER.
If sqre \(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix
If sqre \(=1\) : the lower block is an \(n r\)-by- \((n r+1)\) rectangular matrix. The bidiagonal matrix has \(n=n l+\) \(n r+1\) rows and \(m=n+\) sqre \(\geq n\) columns.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION ( \(n\) ). On entry d contains the singular values of the two submatrices to be combined.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Contains the diagonal element associated with the added row.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Contains the off-diagonal element associated with the added row.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION ( \(I d u, n\) ). On entry \(u\) contains the left singular vectors of two submatrices in the two square blocks with corners at \((1,1),(n 1, n 1)\), and \((n l+2, n l+2),(n, n)\).

INTEGER. The leading dimension of the array \(u\). \(I d u \geq n\).
\begin{tabular}{|c|c|}
\hline Idu2 & INTEGER. The leading dimension of the output array u2. ldu2 \(\geq n\). \\
\hline \multirow[t]{3}{*}{\(v t\)} & REAL for slasd2 \\
\hline & DOUBLE PRECISION for dlasd2 \\
\hline & Array, DIMENSION ( \(1 d v t, m\) ). On entry \(v t\) ' contains the right singular vectors of two submatrices in the two square blocks with corners at \((1,1),(n l+1, n l+1)\), and ( \(n l+2, n l+2\) ) , ( \(m, m\) ). \\
\hline ldvt & Integer. The leading dimension of the array \(v t\). ldvt \(\geq m\). \\
\hline ldvt 2 & integer. The leading dimension of the output array vt2. Idvt \(2 \geq m\). \\
\hline \multirow[t]{2}{*}{idxp} & INTEGER. \\
\hline & Workspace array, DIMENSION ( \(n\) ). This will contain the permutation used to place deflated values of \(d\) at the end of the array. On output \(i d x p(2: k)\) points to the nondeflated \(d\)-values and \(i d x p(k+1: n)\) points to the deflated singular values. \\
\hline \multirow[t]{2}{*}{\(i d x\)} & INTEGER. \\
\hline & Workspace array, DIMENSION ( \(n\) ). This will contain the permutation used to sort the contents of \(d\) into ascending order. \\
\hline \multirow[t]{6}{*}{coltyp} & INTEGER. \\
\hline & Workspace array, DIMENSION (n). As workspace, this will contain a label which will indicate which of the following types a column in the \(u 2\) matrix or a row in the vt 2 matrix is: \\
\hline & \(1:\) non-zero in the upper half only \\
\hline & 2 : non-zero in the lower half only \\
\hline & 3 : dense \\
\hline & 4 : deflated. \\
\hline \multirow[t]{2}{*}{\(i d x q\)} & INTEGER. \\
\hline & Array, DIMENSION ( \(n\) ). This contains the permutation which separately sorts the two sub-problems in \(d\) into ascending order. Note that entries in the first half of this \\
\hline
\end{tabular}
permutation must first be moved one position backward; and entries in the second half must first have \(n l+1\) added to their values.

\section*{Output Parameters}

INTEGER. Contains the dimension of the non-deflated matrix, This is the order of the related secular equation. \(1 \leq k \leq\).

On exit \(d\) contains the trailing ( \(n-k\) ) updated singular values (those which were deflated) sorted into increasing order.
On exit \(u\) contains the trailing ( \(n-k\) ) updated left singular vectors (those which were deflated) in its last \(n-k\) columns.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION ( \(n\) ). On exit \(z\) contains the updating row vector in the secular equation.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION ( \(n\) ). Contains a copy of the diagonal elements ( \(k-1\) singular values and one zero) in the secular equation.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (Idu2, n). Contains a copy of the first \(k-1\) left singular vectors which will be used by ?lasd3 in a matrix multiply (?gemm) to solve for the new left singular vectors. \(u 2\) is arranged into four blocks. The first block contains a column with 1 at \(n l+1\) and zero everywhere else; the second block contains non-zero entries only at and above \(n l\); the third contains non-zero entries only below \(n l+1\); and the fourth is dense.


Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lasd3}

Finds all square roots of the roots of the secular equation, as defined by the values in \(D\) and \(Z\), and then updates the singular vectors by matrix multiplication. Used by ?bdsdc.
```

call slasd3 (nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu,
u2, ldu2, vt, ldvt, vt2, ldvt2, idxc, ctot,
z, info)
call dlasd3 (nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu,
u2, ldu2, vt, ldvt, vt2, ldvt2, idxc, ctot,
z, info)

```

\section*{Discussion}

The routine ?lasd3 finds all the square roots of the roots of the secular equation, as defined by the values in \(D\) and \(Z\). It makes the appropriate calls to ?lasd4 and then updates the singular vectors by matrix multiplication.

The routine ?lasd 3 is called from ?lasd1.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n 1\) & INTEGER. The row dimension of the upper block. \(n \geq \geq 1\). \\
\hline \(n r\) & INTEGER. The row dimension of the lower block. \(n r \geq 1\). \\
\hline sqre & \begin{tabular}{l}
INTEGER. \\
If sqre \(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix.
\end{tabular} \\
\hline & If sqre \(=1\) : the lower block is an \(n r\)-by- \((n r+1)\) rectangular matrix. The bidiagonal matrix has \(n=n l+\) \(n r+1\) rows and \(m=n+s q r e \geq n\) columns. \\
\hline k & Integer. The size of the secular equation, \(1 \leq k \leq n\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{q} & REAL for slasd3 \\
\hline & DOUBLE PRECISION for dlasd3 \\
\hline & Workspace array, DIMENSION at least ( \(I d q, k\) ). \\
\hline \(1 d q\) & integer. The leading dimension of the array \(q\). \(l d q \geq k\). \\
\hline \multirow[t]{3}{*}{dsigma} & REAL for slasd3 \\
\hline & DOUBLE PRECISION for dlasd3 \\
\hline & Array, DIMENSION (k). The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation. \\
\hline \multirow[t]{3}{*}{u} & REAL for slasd3 \\
\hline & DOUBLE PRECISION for dlasd3 \\
\hline & Array, DIMENSION ( \(I d u, n\) ). The last \(n-k\) columns of this matrix contain the deflated left singular vectors. \\
\hline \(1 d u\) & integer. The leading dimension of the array \(u\). \(I d u \geq n\). \\
\hline \multirow[t]{3}{*}{u2} & REAL for slasd3 \\
\hline & DOUBLE PRECISION for dlasd3 \\
\hline & Array, DIMENSION ( \(1 d u 2, n\) ). The first \(k\) columns of this matrix contain the non-deflated left singular vectors for the split problem. \\
\hline Idu2 & INTEGER. The leading dimension of the array u2. \(1 d u 2 \geq n\). \\
\hline \multirow[t]{3}{*}{vt} & REAL for slasd3 \\
\hline & DOUBLE PRECISION for dlasd3 \\
\hline & Array, DIMENSION (Idvt, \(m\) ). The last \(m-k\) columns of \(v t\) ' contain the deflated right singular vectors. \\
\hline ldvt & INTEGER. The leading dimension of the array \(v t\). \\
\hline \multirow[t]{3}{*}{vt 2} & REAL for slasd3 \\
\hline & DOUBLE PRECISION for dlasd3 \\
\hline & Array, DIMENSION (Idvt 2, n). The first \(k\) columns of \(v t 2^{\prime}\) contain the non-deflated right singular vectors for the split problem. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll} 
Idvt 2 & INTEGER. The leading dimension of the array \(v t 2\). \\
& Idvt \(2 \geq n\). \\
idxc & INTEGER.
\end{tabular}

Array, DIMENSION ( \(n\) ). The permutation used to arrange the columns of \(u\) (and rows of \(v t\) ) into three groups: the first group contains non-zero entries only at and above (or before) \(n l+1\); the second contains non-zero entries only at and below (or after) \(n l+2\); and the third is dense. The first column of \(u\) and the row of \(v t\) are treated separately, however. The rows of the singular vectors found by ?lasd4 must be likewise permuted before the matrix multiplies can take place.

INTEGER.
Array, DIMENSION (4). A count of the total number of the various types of columns in \(u\) (or rows in \(v t\) ), as described in idxc. The fourth column type is any column which has been deflated.

REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, dimension ( \(k\) ). The first \(k\) elements of this array contain the components of the deflation-adjusted updating row vector.

\section*{Output Parameters}

REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION ( \(k\) ). On exit the square roots of the roots of the secular equation, in ascending order.

INTEGER.
If info \(=0\) : successful exit.
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
If info \(=1\), an singular value did not converge.

\section*{Application Notes}

This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

\section*{?lasd4}

Computes the square root of the \(i\)-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by ?bdsdc.
```

call slasd4 (n, i, d, z, delta, rho, sigma, work, info)
call dlasd4 (n, i, d, z, delta, rho, sigma, work, info)

```

\section*{Discussion}

This routine computes the square root of the \(i\)-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix whose entries are given as the squares of the corresponding entries in the array \(d\), and that \(0 \leq \alpha(i)<\alpha(j)\) for \(i<j\) and that \(r h o>0\). This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus
\(\operatorname{diag}(d) * \operatorname{diag}(d)+r h o * Z * Z\) transpose
where we assume the Euclidean norm of \(Z\) is 1 .The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.

\section*{Input Parameters}
\(n \quad\) INTEGER. The length of all arrays.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
i
\(d\)

Z
rho
work

INTEGER. The index of the eigenvalue to be computed. \(1 \leq i \leq n\).

REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION ( \(n\) ).
The original eigenvalues. It is assumed that they are in order, \(0 \leq a(i)<\alpha(j)\) for \(i<j\).
REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION ( \(n\) ).
The components of the updating vector.
REAL for slasd4
DOUBLE PRECISION for dlasd4
The scalar in the symmetric updating formula.
REAL for slasd4
DOUBLE PRECISION for dlasd4
Workspace array, DIMENSION ( \(n\) ).
If \(n \neq 1\), work contains \((a(j)+\) sigma_i) in its \(j\)-th component. If \(n=1\), then \(\operatorname{work}(1)=1\).

\section*{Output Parameters}
delta
sigma
info

REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION ( \(n\) ).
If \(n \neq 1\), delta contains \((\alpha(j)-\) sigma_ \(i)\) in its \(j\)-th component. If \(n=1\), then delta \((1)=1\). The vector delta contains the information necessary to construct the (singular) eigenvectors.
REAL for slasd4
DOUBLE PRECISION for dlasd4
The computed \(\lambda_{i}\), the \(i\)-th updated eigenvalue.
INTEGER.
\(=0\) : successful exit
\(>0\) : if info \(=1\), the updating process failed.

\section*{?lasd5}

Computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix.Used by ?bdsdc.
```

call slasd5 (i, d, z, delta, rho, dsigma, work)
call dlasd5 (i, d, z, delta, rho, dsigma, work)

```

\section*{Discussion}

This routine computes the square root of the \(i\)-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix
\(\operatorname{diag}(d) * \operatorname{diag}(d)+r h o * Z * Z \_\)transpose
The diagonal entries in the array \(d\) are assumed to satisfy \(0 \leq d(i)<d(j)\) for \(i<j\).We also assume rho>0 and that the Euclidean norm of the vector \(Z\) is one.

\section*{Input Parameters}
\begin{tabular}{ll}
\(i\) & INTEGER.The index of the eigenvalue to be computed. \\
\(i=1\) or \(i=2\). \\
\(d \quad\) & REAL for slasd5 \\
DOUBLE PRECISION for dlasd5 \\
Array, DIMENSION \((2)\). \\
& The original eigenvalues. We assume \(0 \leq d(1)<d(2)\). \\
REAL for slasd5 \\
rho & DOUBLE PRECISION for dlasd5 \\
& Array, DIMENSION 2\().\) \\
& The components of the updating vector. \\
& REAL for slasd5 \\
& DOUBLE PRECISION for dlasd5 \\
& The scalar in the symmetric updating formula.
\end{tabular}
work REAL for slasd5
DOUBLE PRECISION for dlasd5.
Workspace array, DIMENSION (2).
Contains \(\left(d(j)+s i g m a \_i\right)\) in its \(j\)-th component.

\section*{Output Parameters}
\begin{tabular}{ll} 
delta & REAL for slasd5 \\
& DOUBLE PRECISION for dlasd5. \\
& Array, DIMENSION \((2)\). \\
& Contains \(\left(\alpha(j)-\lambda_{i}\right)\) in its \(j\)-th component. The vector \\
& delta contains the information necessary to construct \\
dsigma & the eigenvectors. \\
& REAL for slasd5 \\
& DOUBLE PRECISION for dlasd5. \\
& The computed \(\lambda_{i}\), the \(i\)-th updated eigenvalue.
\end{tabular}

\section*{?lasd6}

Computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row.
Used by ?bdsdc.
```

call slasd6 (icompq, nl, nr, sqre, d, vf, vl, alpha,
beta, idxq, perm, givptr, givcol, ldgcol,
givnum, ldgnum, poles, difl, difr, z, k, c,
s, work, iwork, info)
call dlasd6 (icompq, nl, nr, sqre, d, vf, vl, alpha,
beta, idxq, perm, givptr, givcol, ldgcol,
givnum, ldgnum, poles, difl, difr, z, k, c,
s, work, iwork, info)

```

\section*{Discussion}

The routine ? lasd6 computes the \(S V D\) of an updated upper bidiagonal matrix \(B\) obtained by merging two smaller ones by appending a row. This routine is used only for the problem which requires all singular values and optionally singular vector matrices in factored form. \(B\) is an \(n-b y-m\) matrix with
\(n=n l+n r+1\) and \(m=n+s q r e\). \(A\) related subroutine, ?lasd1, handles the case in which all singular values and singular vectors of the bidiagonal matrix are desired. ?lasd6 computes the SVD as follows:
\[
\begin{aligned}
& B=U(\text { in }) *\left[\begin{array}{cccc}
D 1(\text { in }) & 0 & 0 & 0 \\
Z 1^{\prime} & a & Z 2^{\prime} & b \\
0 & 0 & D 2(\text { in }) & 0
\end{array}\right] * V T(\text { in }) \\
&=U(\text { out }) *(D(\text { out }) \\
&0) * V T(\text { out })
\end{aligned}
\]
where \(Z=\left(Z 1^{\prime} a Z 2^{\prime} b\right)=u^{\prime} V T^{\prime}\), and \(u\) is a vector of dimension \(m\) with alpha and beta in the \(n l+1\) and \(n l+2\)-th entries and zeros elsewhere; and the entry \(b\) is empty if sqre \(=0\).

The singular values of \(B\) can be computed using \(D 1, D 2\), the first components of all the right singular vectors of the lower block, and the last components of all the right singular vectors of the upper block. These components are stored and updated in \(v f\) and \(v l\), respectively, in ?lasd6. Hence \(U\) and \(V T\) are not explicitly referenced.
The singular values are stored in \(D\). The algorithm consists of two stages: the first stage consists of deflating the size of the problem when there are multiple singular values or if there is a zero in the \(Z\) vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?lasd7.
The second stage consists of calculating the updated singular values. This is done by finding the roots of the secular equation via the routine ?lasd4 (as called by ?lasd8). This routine also updates \(v f\) and \(v l\) and computes the distances between the updated singular values and the old singular values. ?lasd6 is called from ?lasda.

\section*{Input Parameters}

Integer. Specifies whether singular vectors are to be computed in factored form:
\(=0\) : Compute singular values only
\(=1\) : Compute singular vectors in factored form as well.
INTEGER. The row dimension of the upper block.
\(n \_\geq 1\).
INTEGER. The row dimension of the lower block.
\(n r \geq 1\).
INTEGER.
\(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix.
\(=1\) : the lower block is an \(n r-\) by- \((n r+1)\) rectangular matrix.
The bidiagonal matrix has row dimension \(n=n l+n r+1\), and column dimension \(m=n+\) sqre.

REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION ( \(n \downarrow+n r+1\) ). On entry \(d(1: n 1,1: n l)\)
contains the singular values of the upper block, and \(d(n l+2: n)\) contains the singular values of the lower block.

REAL for slasd 6
DOUBLE PRECISION for dlasd6
Array, DIMENSION ( \(m\) ). On entry, \(v f(1: n l+1)\) contains the first components of all right singular vectors of the upper block; and \(v f(n I+2: m)\) contains the first components of all right singular vectors of the lower block.

REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION ( \(m\) ). On entry, \(v l(1: n l+1)\) contains the last components of all right singular vectors of the upper block; and \(v l(n l+2: m)\) contains the last components of all right singular vectors of the lower block.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{alpha} & REAL for slasd6 \\
\hline & DOUBLE PRECISION for dlasd6 \\
\hline & Contains the diagonal element associated with the added row. \\
\hline \multirow[t]{3}{*}{beta} & REAL for slasd6 \\
\hline & DOUBLE PRECISION for dlasd6 \\
\hline & Contains the off-diagonal element associated with the added row. \\
\hline \(1 d g c o l\) & INTEGER.The leading dimension of the output array givcol, must be at least \(n\). \\
\hline Idgnum & INTEGER. The leading dimension of the output arrays givnum and poles, must be at least \(n\). \\
\hline \multirow[t]{3}{*}{work} & REAL for slasd6 \\
\hline & DOUBLE PRECISION for dlasd6 \\
\hline & Workspace array, DIMENSION ( 4 m ). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER \\
\hline & Workspace array, DIMENSION ( \(3 n\) ). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline d & On exit \(d(1: n)\) contains the singular values of the modified matrix. \\
\hline vf & On exit, vf contains the first components of all right singular vectors of the bidiagonal matrix. \\
\hline vl & On exit, vl contains the last components of all right singular vectors of the bidiagonal matrix. \\
\hline \multirow[t]{2}{*}{idxq} & INTEGER. \\
\hline & Array, DIMENSION ( \(n\) ). This contains the permutation which will reintegrate the subproblem just solved back into sorted order, that is, \(\alpha(i d x q(i=1, n))\) will be in ascending order. \\
\hline \multirow[t]{2}{*}{perm} & INTEGER. \\
\hline & Array, DIMENSION ( \(n\) ). The permutations (from deflation and sorting) to be applied to each block. Not referenced if \(i c o m p q=0\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline givptr & Integer. The number of Givens rotations which took place in this subproblem. Not referenced if \(i c o m p q=0\). \\
\hline givcol & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION ( \(1 d g c o 1,2\) ). Each pair of numbers indicates a pair of columns to take place in a Givens rotation. Not referenced if \(i c o m p q=0\).
\end{tabular} \\
\hline givnum & \begin{tabular}{l}
REAL for slasd6 \\
double precision for dlasd6 \\
Array, DIMENSION ( Idgnum, 2 ). Each number indicates the \(C\) or \(S\) value to be used in the corresponding Givens rotation. Not referenced if icompq \(=0\).
\end{tabular} \\
\hline poles & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Array, DIMENSION ( Idgnum, 2 ). On exit, poles(1,*) is an array containing the new singular values obtained from solving the secular equation, and poles \(\left(2,{ }^{*}\right)\) is an array containing the poles in the secular equation. Not referenced if icompq \(=0\).
\end{tabular} \\
\hline difl & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Array, DIMENSION ( \(n\) ). On exit, \(\operatorname{difl}(i)\) is the distance between \(i\)-th updated (undeflated) singular value and the \(i\)-th (undeflated) old singular value.
\end{tabular} \\
\hline difr & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Array, \\
DIMENSION (Idgnum, 2 ) if icompq \(=1\) and DIMENSION \((n)\) if \(i c o m p q=0\). \\
On exit, \(\operatorname{difr}(i, 1)\) is the distance between \(i\)-th updated (undeflated) singular value and the \(i+1\)-th (undeflated) old singular value. If \(i \operatorname{compq}=1, \operatorname{difr}(1: k, 2)\) is an array containing the normalizing factors for the right singular vector matrix.
\end{tabular} \\
\hline & See ?lasd8 for details on difl and di \\
\hline
\end{tabular}
```

z
REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION (m).
The first elements of this array contain the components
of the deflation-adjusted updating row vector.
k
c
s
INTEGER. Contains the dimension of the non-deflated
matrix. This is the order of the related secular equation.
1 \leqk \leqn.
REAL for slasd6
DOUBLE PRECISION for dlasd6
C contains garbage if sqre = 0 and the C-value of a
Givens rotation related to the right null space if
sqre=1.
REAL for slasd6
DOUBLE PRECISION for dlasd6
s contains garbage if sqre = 0 and the S-value of a
Givens rotation related to the right null space if
sqre=1.
info
INTEGER.
=0: successful exit.
<0: if info =-i, the i-th argument had an illegal value.
>0}\mathrm{ :if info = 1, an singular value did not converge

```

\section*{?lasd7}

Merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by ?bdsdc.
```

call slasd7 (icompq, nl, nr, sqre, k, d, z, zw, vf, vfw,
vl, vlw, alpha, beta, dsigma, idx, idxp,
idxq, perm, givptr, givcol, ldgcol, givnum,
Idgnum, c, s, info)

```
```

call dlasd7 (icompq, nl, nr, sqre, k, d, z, zw, vf, vfw,
vl, vlw, alpha, beta, dsigma, idx, idxp,
idxq, perm, givptr, givcol, ldgcol, givnum,
ldgnum, c, s, info)

```

\section*{Discussion}

The routine ?lasd7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the \(Z\) vector. For each such occurrence the order of the related secular equation problem is reduced by one. ?lasd7 is called from ?lasd6.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & \begin{tabular}{l}
Integer.Specifies whether singular vectors are to be computed in compact form, as follows: \\
\(=0\) : Compute singular values only. \\
\(=1\) : Compute singular vectors of upper bidiagonal matrix in compact form.
\end{tabular} \\
\hline \(n 1\) & INTEGER. The row dimension of the upper block. \(n \geq \geq 1\). \\
\hline \(n r\) & INTEGER. The row dimension of the lower block. \(n r \geq 1\). \\
\hline sqre & \begin{tabular}{l}
INTEGER. \\
\(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix. \(=1\) : the lower block is an nr-by- \((n r+1)\) rectangular matrix. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+s q r e \geq n\) columns.
\end{tabular} \\
\hline d & \begin{tabular}{l}
REAL for slasd7 \\
DOUBLE PRECISION for dlasd7 \\
Array, DIMENSION ( \(n\) ). On entry \(d\) contains the singular values of the two submatrices to be combined.
\end{tabular} \\
\hline zw & \begin{tabular}{l}
REAL for slasd7 \\
DOUBLE PRECISION for dlasd7 Array, DIMENSION ( \(m\) ). Workspace for \(z\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{vf} & REAL for slasd7 \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dlasd7 \\
Array, DIMENSION ( \(m\) ). On entry, \(v f(1: n l+1\) ) contains the first components of all right singular vectors of the upper block; and \(v f(n l+2: m)\) contains the first components of all right singular vectors of the lower block.
\end{tabular} \\
\hline \multirow[t]{3}{*}{\(v f w\)} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Array, DIMENSION ( m ). Workspace for vf. \\
\hline \multirow[t]{3}{*}{vl} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Array, DIMENSION ( \(m\) ). On entry, \(v l(1: n l+1\) ) contains the last components of all right singular vectors of the upper block; and \(v l(n l+2: m)\) contains the last components of all right singular vectors of the lower block. \\
\hline \multirow[t]{3}{*}{vlw} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Array, DIMENSION ( \(m\) ). Workspace for \(v 1\). \\
\hline \multirow[t]{3}{*}{alpha} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7. \\
\hline & Contains the diagonal element associated with the added row. \\
\hline \multirow[t]{3}{*}{beta} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Contains the off-diagonal element associated with the added row. \\
\hline \multirow[t]{2}{*}{\(i d x\)} & INTEGER. \\
\hline & Workspace array, DIMENSION ( \(n\) ). This will contain the permutation used to sort the contents of \(d\) into ascending order. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
idxp INTEGER.
Workspace array, DIMENSION ( \(n\) ). This will contain the permutation used to place deflated values of \(d\) at the end of the array.

Idgnum INTEGER. The leading dimension of the output array givnum, must be at least \(n\).

\section*{Output Parameters}

INTEGER. Contains the dimension of the non-deflated matrix, this is the order of the related secular equation. \(1 \leq k \leq\).

On exit, \(d\) contains the trailing ( \(n-k\) ) updated singular values (those which were deflated) sorted into increasing order.

REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION ( \(m\) ). On exit, \(z\) contains the updating row vector in the secular equation.

On exit, \(v f\) contains the first components of all right singular vectors of the bidiagonal matrix.

On exit, vl contains the last components of all right singular vectors of the bidiagonal matrix.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{dsigma} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7. \\
\hline & Array, DIMENSION ( \(n\) ). Contains a copy of the diagonal elements ( \(k-1\) singular values and one zero) in the secular equation. \\
\hline \(i d x p\) & On output, \(i d x p(2: k)\) points to the nondeflated \(d\)-values and \(i d x p(k+1: n)\) points to the deflated singular values. \\
\hline \multirow[t]{2}{*}{perm} & Integer. \\
\hline & Array, DIMENSION ( \(n\) ). The permutations (from deflation and sorting) to be applied to each singular block. Not referenced if icompq \(=0\). \\
\hline givptr & INTEGER.The number of Givens rotations which took place in this subproblem. Not referenced if \(i c \circ m p q=0\). \\
\hline \multirow[t]{2}{*}{givcol} & INTEGER. \\
\hline & Array, DIMENSION ( \(1 d g c o 1,2\) ). Each pair of numbers indicates a pair of columns to take place in a Givens rotation. Not referenced if \(i c o m p q=0\). \\
\hline \multirow[t]{3}{*}{givnum} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7. \\
\hline & Array, DIMENSION ( Idgnum, 2 ). Each number indicates the \(C\) or \(S\) value to be used in the corresponding Givens rotation. Not referenced if icompq \(=0\). \\
\hline \multirow[t]{3}{*}{c} & REAL for slasd7. \\
\hline & DOUBLE PRECISION for dlasd7. \\
\hline & Givens rotation related to the right null space if sqre \(=1\). \\
\hline \multirow[t]{4}{*}{\(s\)} & REAL for slasd7. \\
\hline & DOUBLE PRECISION for dlasd7. \\
\hline & \(s\) contains garbage if sqre \(=0\) and the \(S\)-value of a \\
\hline & Givens rotation related to the right null space if sqre \(=1\). \\
\hline
\end{tabular}
```

info INTEGER.
= 0: successful exit.
<0: if infO =-i, the i-th argument had an illegal
value.

```

\section*{?lasd8}

Finds the square roots of the roots of the secular equation, and stores, for each element in \(D\), the distance to its two nearest poles. Used by ?bdsdc.
```

call slasd8 (icompq, k, d, z, vf, vl, difl, difr,
lddifr, dsigma, work, info)
call dlasd8 (icompq, k, d, z, vf, vl, difl, difr,
lddifr, dsigma, work, info)

```

\section*{Discussion}

The routine ?lasd8 finds the square roots of the roots of the secular equation, as defined by the values in dsigma and \(z\). It makes the appropriate calls to ?lasd4, and stores, for each element in \(d\), the distance to its two nearest poles (elements in dsigma). It also updates the arrays vf and \(v 1\), the first and last components of all the right singular vectors of the original bidiagonal matrix. ?lasd8 is called from ?lasd6.

\section*{Input Parameters}
icompq
k

INTEGER. Specifies whether singular vectors are to be computed in factored form in the calling routine:
\(=0\) : Compute singular values only.
\(=1\) : Compute singular vectors in factored form as well.
INTEGER. The number of terms in the rational function to be solved by ?lasd4. \(k \geq 1\).
z

REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION ( \(k\) ). The first \(k\) elements of this array contain the components of the deflation-adjusted updating row vector.
vf REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION ( \(k\) ). On entry, \(v f\) contains information passed through dbede8.
1 REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION ( \(k\) ).On entry, vl contains information passed through dbede8.
INTEGER. The leading dimension of the output array difr, must be at least \(k\).

REAL for slasd8 DOUBLE PRECISION for dlasd8. Array, DIMENSION ( \(k\) ). The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.
REAL for slasd8
DOUBLE PRECISION for dlasd8.
Workspace array, DIMENSION at least ( 3 k ).

\section*{Output Parameters}

REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION ( \(k\) ). On output, \(d\) contains the updated singular values.

On exit, \(v f\) contains the first \(k\) components of the first components of all right singular vectors of the bidiagonal matrix.
On exit, vl contains the first \(k\) components of the last components of all right singular vectors of the bidiagonal matrix.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll} 
difl & REAL for slasd8 \\
DOUBLE PRECISION for dlasd8. \\
Array, DIMENSION \((k)\). On exit, difl \((i)=d(i)-\) \\
difr & REAL for slasd8 \((i)\). \\
& DOUBLE PRECISION for dlasd8. \\
& Array, \\
& DIMENSION \((I d d i f r, 2)\) if \(i c o m p q=1\) and \\
& DIMENSION \((k)\) if \(i c o m p q=0\).
\end{tabular}

\section*{?lasd9}

Finds the square roots of the roots of the secular equation, and stores, for each element in \(D\), the distance to its two nearest poles. Used by ?bdsdc.
```

call slasd9 (icompq, ldu, k, d, z, vf, vl, difl, difr,
dsigma, work, info)
call dlasd9 (icompq, ldu, k, d, z, vf, vl, difl, difr,
dsigma, work, info)

```

\section*{Discussion}

The routine ?lasd9 finds the square roots of the roots of the secular equation, as defined by the values in dsigma and \(z\). It makes the appropriate calls to ?lasd4, and stores, for each element in \(d\), the distance
to its two nearest poles (elements in dsigma). It also updates the arrays \(v f\) and \(v 1\), the first and last components of all the right singular vectors of the original bidiagonal matrix. ?lasd9 is called from ?lasd7.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & \begin{tabular}{l}
INTEGER.Specifies whether singular vectors are to be computed in factored form in the calling routine: \\
If icompq \(=0\), compute singular values only; \\
If \(i c o m p q=1\), compute singular vector matrices in factored form also.
\end{tabular} \\
\hline k & INTEGER.The number of terms in the rational function to be solved by slasd4. \(k \geq 1\). \\
\hline dsigma & \begin{tabular}{l}
REAL for slasd9 \\
DOUBLE PRECISION for dlasd9. \\
Array, DIMENSION( \(k\) ). The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.
\end{tabular} \\
\hline \(z\) & \begin{tabular}{l}
REAL for slasd9 \\
DOUBLE PRECISION for dlasd9. \\
Array, DIMENSION (k). The first \(k\) elements of this array contain the components of the deflation-adjusted updating row vector.
\end{tabular} \\
\hline vf & \begin{tabular}{l}
REAL for slasd9 \\
DOUBLE PRECISION for dlasd9. \\
Array, DIMENSION( \(k\) ). On entry, \(v f\) contains information passed through sbede 8.
\end{tabular} \\
\hline v1 & \begin{tabular}{l}
REAL for slasd9 \\
DOUBLE PRECISION for dlasd9. \\
Array, DIMENSION( \(k\) ). On entry, vl contains information passed through sbede 8.
\end{tabular} \\
\hline work & \begin{tabular}{l}
REAL for slasd9 \\
DOUBLE PRECISION for dlasd. \\
Workspace array, DIMENSION at least (3k).
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{d} & REAL for slasd9 \\
\hline & DOUBLE PRECISION for dlasd9. \\
\hline & Array, DIMENSION( \(k\) ). \(\alpha(i)\) contains the updated singular values. \\
\hline \(v f\) & On exit, \(v f\) contains the first \(k\) components of the first components of all right singular vectors of the bidiagonal matrix. \\
\hline vl & On exit, vl contains the first \(k\) components of the last components of all right singular vectors of the bidiagonal matrix. \\
\hline \multirow[t]{4}{*}{difl} & REAL for slasd9 \\
\hline & DOUBLE PRECISION for dlasd9. \\
\hline & Array, DIMENSION (k). \\
\hline & On exit, \(\operatorname{difl}(\boldsymbol{i})=d(i)-d s i g m a(i)\). \\
\hline \multirow[t]{7}{*}{difr} & REAL for slasd9 \\
\hline & DOUBLE PRECISION for dlasd9. \\
\hline & Array, \\
\hline & DIMENSION ( \(1 \mathrm{du}, 2\) ) if \(\mathrm{icompq}=1\) and \\
\hline & DIMENSION ( \(k\) ) if \(i\) compq \(=0\). \\
\hline & On exit, \(\operatorname{difr}(i, 1)=d(i)-d \operatorname{sigma}(i+1), \operatorname{difr}(k, 1)\) is not defined and will not be referenced. \\
\hline & If \(i c o m p q=1, \operatorname{difr}(1: k, 2)\) is an array containing the normalizing factors for the right singular vector matrix. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & = 0: successful exit. \\
\hline & <0: if info \(=-i\), the \(i\)-th argument had an illegal value. \\
\hline & \(>0\) : if info \(=1\), an singular value did not converge \\
\hline
\end{tabular}

\section*{?lasda}

Computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal \(d\) and off-diagonal e. Used by ?bdsdc.
```

call slasda (icompq, smlsiz, n, sqre, d, e, u, ldu, vt,
k, difl, difr, z, poles, givptr, givcol,
ldgcol, perm, givnum, c, s, work, iwork,
info)
call dlasda (icompq, smlsiz, n, sqre, d, e, u, ldu, vt,
k, difl, difr, z, poles, givptr, givcol,
ldgcol, perm, givnum, c, s, work, iwork,
info)

```

\section*{Discussion}

Using a divide and conquer approach, ? lasda computes the singular value decomposition (SVD) of a real upper bidiagonal \(n\)-by- \(m\) matrix \(B\) with diagonal \(d\) and off-diagonal \(e\), where \(m=n+\) sqre. The algorithm computes the singular values in the \(S V D B=U \star S \star V T\). The orthogonal matrices \(U\) and \(V T\) are optionally computed in compact form. \(A\) related subroutine, ? lasd0, computes the singular values and the singular vectors in explicit form.

\section*{Input Parameters}
> icompq
> INTEGER. Specifies whether singular vectors are to be computed in compact form, as follows:
> \(=0\) : Compute singular values only.
> \(=1\) : Compute singular vectors of upper bidiagonal matrix in compact form.
> smlsiz INTEGER. The maximum size of the subproblems at the bottom of the computation tree.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array \(d\). \\
\hline sqre & \begin{tabular}{l}
INTEGER. Specifies the column dimension of the bidiagonal matrix. \\
If sqre \(=0\) : The bidiagonal matrix has column dimension \(m=n\); \\
If sqre \(=1\) : The bidiagonal matrix has column dimension \(m=n+1\).
\end{tabular} \\
\hline d & \begin{tabular}{l}
REAL for slasda \\
DOUBLE PRECISION for dlasda. \\
Array, DIMENSION ( \(n\) ). On entry d contains the main diagonal of the bidiagonal matrix.
\end{tabular} \\
\hline e & \begin{tabular}{l}
REAL for slasda \\
DOUBLE PRECISION for dlasda. \\
Array, DIMENSION ( \(m-1\) ). Contains the subdiagonal entries of the bidiagonal matrix. On exit, e has been destroyed.
\end{tabular} \\
\hline \(1 d u\) & INTEGER. The leading dimension of arrays \(u\), \(v t\), difl, difr, poles, givnum, and \(z . l d u \geq n\). \\
\hline \(1 d g c o l\) & integer. The leading dimension of arrays givcol and perm. 1 dgcol \(\geq n\). \\
\hline work & REAL for slasda \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dlasda. \\
Workspace array, DIMENSION \(\left(6 n+(s m l s i z+1)^{2}\right)\).
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION must be at least ( \(7 n\) ).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit \(d\), if info \(=0\), contains the singular values of the bidiagonal matrix.

REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, smlsiz) if icompq \(=1\).

Not referenced if \(i\) compq \(=0\).
If \(i\) compq \(=1\), on exit, \(u\) contains the left singular vector matrices of all subproblems at the bottom level.


REAL for slasda DOUBLE PRECISION for dlasda. Array, DIMENSION ( \(I d u\), smlsiz+1 ) if icompq \(=1\), and not referenced if \(i c o m p q=0\). If \(i c o m p q=1\), on exit, vt contains the right singular vector matrices of all subproblems at the bottom level.

INTEGER.
Array,
DIMENSION ( \(n\) ) if icompq \(=1\) and DIMENSION (1) if icompq \(=0\).
If \(i\) compq \(=1\), on exit, \(k(i)\) is the dimension of the \(i\)-th secular equation on the computation tree.
REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION ( \(1 d u, n l v l)\),
where \(n l v l=\) floor \(\left(\log _{2}(n /\right.\) smlsiz \(\left.)\right)\) ).
REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION ( \(1 d u, 2 n l v l\) ) if \(i c o m p q=1\) and DIMENSION \((n)\) if \(i c o m p q=0\).
If \(i \operatorname{compq}=1\), on exit, \(\operatorname{difl}(1: n, i)\) and \(\operatorname{difr}(1: n, 2 i-1)\) record distances between singular values on the \(i\)-th level and singular values on the ( \(i-1\) )-th level, and \(\operatorname{difr}(1: n, 2 i)\) contains the normalizing factors for the right singular vector matrix. See ?lasd8 for details.
```

REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (ldu, nlvl) if icompq=1 and
DIMENSION (n) if icompq = 0.

```

The first \(k\) elements of \(z(1, i)\) contain the components of the deflation-adjusted updating row vector for subproblems on the \(i\)-th level.
poles

REAL for slasda
DOUBLE PRECISION for dlasda
Array, DIMENSION ( \(\left.I d u, 2^{*} n l v l\right)\) if \(i c o m p q=1\), and not referenced if \(i c o m p q=0\). If \(i c o m p q=1\), on exit, poles \((1,2 i-1)\) and poles \((1,2 i)\) contain the new and old singular values involved in the secular equations on the \(i\)-th level.

INTEGER.
Array, DIMENSION ( \(n\) ) if icompq \(=1\), and not referenced if \(i c o m p q=0\). If \(i c o m p q=1\), on exit, givptr( \(i\) ) records the number of Givens rotations performed on the \(i\)-th problem on the computation tree.

\section*{INTEGER.}

Array, DIMENSION ( 1 dgcol, \(2 * n l v l\) ) if \(i c o m p q=1\), and not referenced if \(i c o m p q=0\). If \(i c o m p q=1\), on exit, for each \(i\), \(\operatorname{givcol}(1,2 i-1)\) and \(\operatorname{givcol}(1,2 i)\) record the locations of Givens rotations performed on the \(i\)-th level on the computation tree.

\section*{INTEGER.}

Array, DIMENSION ( \(1 d g c o l, n l v l\) ) if \(i c o m p q=1\), and not referenced if \(i c o m p q=0\). If \(i c o m p q=1\), on exit, perm ( \(1, i\) ) records permutations done on the \(i\)-th level of the computation tree.

REAL for slasda
DOUBLE PRECISION for dlasda.
Array DIMENSION ( \(1 d u, 2 \star_{n} \operatorname{lv} 1\) ) if \(i\) compq \(=1\), and not referenced if \(i c o m p q=0\). If \(i c o m p q=1\), on exit, for each \(i\), givnum(1,2i-1) and givnum(1,2i) record the \(C\) - and \(S\)-values of Givens rotations performed on the \(i\)-th level on the computation tree.
```

c
S
info
REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (n) if icompq = 1, and
DIMENSION (1) if icompq=0.
If icompq=1 and the i-th subproblem is not square, on
exit, c(i) contains the C-value of a Givens rotation
related to the right null space of the i-th subproblem.
REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (n) icompq=1, and
DIMENSION (1) if icompq=0.
If icompq=1 and the i-th subproblem is not square, on
exit, s(i) contains the S-value of a Givens rotation
related to the right null space of the i-th subproblem.
INTEGER.
= 0: successful exit.
<0: if infO=-i, the i-th argument had an illegal value
>0: if info= 1, an singular value did not converge

```

\section*{?lasdq}

Computes the SVD of a real bidiagonal
matrix with diagonal d and off-diagonal e. Used by ?bdsdc.
```

call slasdq (uplo, sqre, n, ncvt, nru, ncc, d, e, vt,
ldvt, u, ldu, c, ldc, work, info)
call dlasdq (uplo, sqre, n, ncvt, nru, ncc, d, e, vt,
ldvt, u, ldu, c, ldc, work, info)

```

\section*{Discussion}

The routine ?lasdq computes the singular value decomposition (SVD) of a real (upper or lower) bidiagonal matrix with diagonal \(d\) and off-diagonal \(e\), accumulating the transformations if desired. Letting \(B\) denote the input bidiagonal matrix, the algorithm computes orthogonal matrices \(Q\) and \(P\) such that \(B=Q S P^{\prime}\left(P^{\prime}\right.\) denotes the transpose of \(\left.P\right)\). The singular values \(S\) are overwritten on \(d\).
The input matrix \(U\) is changed to \(U Q\) if desired. The input matrix \(V T\) is changed to \(P^{\prime} V T\) if desired. The input matrix \(C\) is changed to \(Q^{\prime} C\) if desired.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. On entry, uplo specifies whether the input bidiagonal matrix is upper or lower bidiagonal. \\
If uplo = 'u' or 'u', \(B\) is upper bidiagonal; \\
If uplo = 'L' or ' 1 ', \(B\) is lower bidiagonal.
\end{tabular} \\
\hline sqre & \begin{tabular}{l}
integer. \\
\(=0\) : then the input matrix is \(n-b y-n\). \(=1\) : then the input matrix is \(n\)-by- \((n+1)\) if uplu \(=\) ' \(u\) ' and \((n+1)\)-by- \(n\) if \(u p l u=\) ' \(L\) '. The bidiagonal matrix has \(n=n I+n r+1\) rows and \(m=n+s q r e \geq n\) columns.
\end{tabular} \\
\hline \(n\) & INTEGER. On entry, \(n\) specifies the number of rows and columns in the matrix. \(n\) must be at least 0 . \\
\hline ncvt & INTEGER. On entry, ncvt specifies the number of columns of the matrix \(V T\). ncvt must be at least 0 . \\
\hline nru & INTEGER. On entry, nru specifies the number of rows of the matrix \(U\). nru must be at least 0 . \\
\hline ncc & INTEGER. On entry, ncc specifies the number of columns of the matrix \(C\). ncc must be at least 0 . \\
\hline d & \begin{tabular}{l}
REAL for slasdq \\
DOUBLE PRECISION for dlasdq. \\
Array, DIMENSION (n). On entry, d contains the diagonal entries of the bidiagonal matrix whose \(S V D\) is desired.
\end{tabular} \\
\hline
\end{tabular}

REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION is ( \(n-1\) ) if sqre \(=0\) and \(n\) if sqre \(=\) 1. On entry, the entries of e contain the off-diagonal entries of the bidiagonal matrix whose \(S V D\) is desired.
REAL for slasdq DOUBLE PRECISION for dlasdq. Array, DIMENSION (ldvt, ncvt). On entry, contains a matrix which on exit has been premultiplied by \(P^{\prime}\), dimension \(n\)-by-ncvt if sqre \(=0\) and \((n+1)\)-by- \(n c v t\) if sqre \(=1(\) not referenced if ncvt=0).
INTEGER. On entry, Idvt specifies the leading dimension of \(v t\) as declared in the calling (sub) program. Idvt must be at least 1 . If ncvt is nonzero, ldvt must also be at least \(n\).
REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION ( \(1 d u, n\) ). On entry, contains a matrix which on exit has been postmultiplied by \(Q\), dimension nru-by-n if sqre \(=0\) and nru-by- \((n+1)\) if sqre \(=1\) (not referenced if nru=0).
INTEGER. On entry, Idu specifies the leading dimension of \(u\) as declared in the calling (sub) program. Idu must be at least max ( 1 , nru ) .
REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION ( \(I d c, n c c\) ). On entry, contains an n-by-ncc matrix which on exit has been premultiplied by \(Q^{\prime}\), dimension \(n\)-by-ncc if sqre \(=0\) and \((n+1)\)-by-ncc if sqre \(=1(\) not referenced if \(n c c=0)\).
INTEGER. On entry, Idc specifies the leading dimension of \(c\) as declared in the calling (sub) program. \(I d c\) must be at least 1 . If \(n c c\) is non-zero, \(I d c\) must also be at least \(n\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
work \begin{tabular}{l} 
REAL for slasdq \\
DOUBLE PRECISION for dlasdq. \\
Array, DIMENSION \((4 n)\).This is a workspace array. Only \\
\\
referenced if one of \(n c v t, n r u\), or \(n c c\) is nonzero, and \\
if \(n\) is at least 2.
\end{tabular}

\section*{Output Parameters}

On normal exit, \(d\) contains the singular values in ascending order.
e On normal exit, e will contain 0 . If the algorithm does not converge, \(d\) and \(e\) will contain the diagonal and superdiagonal entries of a bidiagonal matrix orthogonally equivalent to the one given as input.
vt On exit, the matrix has been premultiplied by \(P^{\prime}\).
\(u \quad\) On exit, the matrix has been postmultiplied by \(Q\).
c On exit, the matrix has been premultiplied by \(Q^{\prime}\).
info INTEGER. On exit, a value of 0 indicates a successful exit. If info \(<0\), argument number -info is illegal. If info \(>0\), the algorithm did not converge, and info specifies how many superdiagonals did not converge.

\section*{?lasdt}

Creates a tree of subproblems for
bidiagonal divide and conquer.
Used by ?bdsdc.
```

call slasdt (n, lvl, nd, inode, ndiml, ndimr, msub)
call dlasdt (n, lvl, nd, inode, ndiml, ndimr, msub)

```

\section*{Discussion}

The routine creates a tree of subproblems for bidiagonal divide and conquer.

Input Parameters
\begin{tabular}{ll}
\(n\) & \begin{tabular}{l} 
INTEGER. On entry, the number of diagonal elements of \\
the bidiagonal matrix.
\end{tabular} \\
msub & \begin{tabular}{l} 
INTEGER. On entry, the maximum row dimension each \\
subproblem at the bottom of the tree can be of.
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline lvl & INTEGER. On exit, the number of levels on the computation tree. \\
\hline nd & INTEGER. On exit, the number of nodes on the tree. \\
\hline inode & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION ( \(n\) ). On exit, centers of subproblems
\end{tabular} \\
\hline ndiml & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION (n). On exit, row dimensions of left children.
\end{tabular} \\
\hline ndimr & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION ( \(n\) ). On exit, row dimensions of right children.
\end{tabular} \\
\hline
\end{tabular}

\section*{?laset}

\section*{Initializes the off-diagonal elements \\ and the diagonal elements of a matrix to given values.}
```

call slaset (uplo, m, n, alpha, beta, a, lda)
call dlaset (uplo, m, n, alpha, beta, a, lda)
call claset (uplo, m, n, alpha, beta, a, lda)
call zlaset (uplo, m, n, alpha, beta, a, lda)

```

\section*{Discussion}

The routine initializes an \(m\)-by- \(n\) matrix \(A\) to beta on the diagonal and alpha on the off-diagonals .

\section*{Input parameters}
uplo
m
n
alpha, beta
a

Ida

\section*{Output Parameters}
```

otherwise, $A(i, j)=$ alpha, $1 \leq i \leq m, 1 \leq j \leq n, i \neq j$,
and, for all uplo, $A(i, i)=$ beta, $1 \leq i \leq \min (m, n)$.

```

\section*{?lasq1}

Computes the singular values of a real square bidiagonal matrix. Used by
?bdsqr.
```

call slasq1 (n, d, e, work, info)
call dlasq1 (n, d, e, work, info)

```

\section*{Discussion}

The routine ?lasq1 computes the singular values of a real \(n\)-by- \(n\) bidiagonal matrix with diagonal \(d\) and off-diagonal \(e\). The singular values are computed to high relative accuracy, in the absence of denormalization, underflow and overflow.

\section*{Input Parameters}

INTEGER.The number of rows and columns in the matrix. \(n \geq 0\).

DOUBLE PRECISION for dlasq1. Array, DIMENSION ( \(n\) ). On entry, \(d\) contains the diagonal elements of the bidiagonal matrix whose \(S V D\) is desired.

REAL for slasq1 DOUBLE PRECISION for dlasq1. Array, DIMENSION ( \(n\) ). On entry, elements \(e(1: n-1)\) contain the off-diagonal elements of the bidiagonal matrix whose \(S V D\) is desired.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll} 
work & REAL for slasq1 \\
& DOUBLE PRECISION for dlasq1. \\
& Workspace array, DIMENSION \((4 n)\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline d & On normal exit, \(d\) contains the singular values in decreasing order. \\
\hline e & On exit, e is overwritten. \\
\hline info & ```
INTEGER.
= 0: successful exit;
<0: if info=-i, the i-th argument had an illegal value;
> 0: the algorithm failed:
=1, a split was marked by a positive value in e;
=2, current block of z not diagonalized after 30*n
iterations (in inner while loop);
=3, termination criterion of outer while loop not met
(program created more than n unreduced blocks.
``` \\
\hline
\end{tabular}

\section*{?lasq2}

Computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd array z to high relative accuracy. Used by ?bdsqr and ?stegr.
```

call slasq2 ( n, z, info )
call dlasq2 ( n, z, info )

```

\section*{Discussion}

The routine ?lasq2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the \(q d\) array \(z\) to high relative accuracy, in the absence of denormalization, underflow and overflow.

To see the relation of \(z\) to the tridiagonal matrix, let \(L\) be a unit lower bidiagonal matrix with subdiagonals \(z(2,4,6, \ldots)\) and let \(U\) be an upper bidiagonal matrix with 1 's above and diagonal \(z(1,3,5,, .\).\() . The tridiagonal\) is \(L U\) or, if you prefer, the symmetric tridiagonal to which it is similar.

\section*{Input Parameters}
\(n \quad\) INTEGER. The number of rows and columns in the matrix. \(n \geq 0\).
\(z \quad\) REAL for slasq2
DOUBLE PRECISION for dlasq2.
Array, DIMENSION (4n). On entry, \(z\) holds the \(q d\) array.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(z\) & On exit, entries 1 to \(n\) hold the eigenvalues in decreasing order, \(z(2 n+1)\) holds the trace, and \(z(2 n+2)\) holds the sum of the eigenvalues. If \(n>2\), then \(z(2 n+3)\) holds the iteration count, \(z(2 n+4)\) holds ndivs/nin \({ }^{2}\), and \(z(2 n+5)\) holds the percentage of shifts that failed. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
\(=0\) : successful exit; \\
<0: if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\), if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=\) \(-(i \star 100+j)\); \\
\(>0\) : the algorithm failed: \\
\(=1\), a split was marked by a positive value in \(e\); \(=2\), current block of \(z\) not diagonalized after \(30 \star n\) iterations (in inner while loop); \(=3\), termination criterion of outer while loop not met (program created more than \(n\) unreduced blocks).
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Application Notes}

The routine ?lasq2 defines a logical variable, ieee, which is .TRUE. on machines which follow IEEE-754 floating-point standard in their handling of infinities and NaNs, and .FALSE . otherwise. This variable is passed to ?lasq3.

\section*{?lasq3}

Checks for deflation, computes a shift and calls dqds. Used by ?bdsqr.
```

call slasq3 ( i0, n0, z, pp, dmin, sigma, desig, qmax,
nfail, iter, ndiv, ieee )
call dlasq3 ( iO, n0, z, pp, dmin, sigma, desig, qmax,
nfail, iter, ndiv, ieee )

```

\section*{Discussion}

The routine ?lasq3 checks for deflation, computes a shift (\(t a u\)) and calls \(d q d s\).In case of failure, it changes shifts, and tries again until output is positive.

Input Parameters
\begin{tabular}{ll}
io & INTEGER. First index. \\
nO & INTEGER. Last index. \\
\(z\) & REAL for slasq3 \\
pp & DOUBLE PRECISION for dlasq3. \\
& Array, DIMENSION \((4 n) . z\) holds the \(q d\) array. \\
desig & INTEGER. \\
& pp=0 for ping, pp=1 for pong. \\
& REAL for slasq3 \\
& DOUBLE PRECISION for dlasq3. \\
& Lower order part of sigma.
\end{tabular}
```

qmax REAL for slasq3
DOUBLE PRECISION for dlasq3.
Maximum value of q.
ieee LOGICAL. Flag for IEEE or non-IEEE arithmetic
(passed to ?lasq5).

```

\section*{Output Parameters}
```

dmin REAL for slasq3
DOUBLE PRECISION for dlasq3.
Minimum value of d
sigma REAL for slasq3
DOUBLE PRECISION for dlasq3.
Sum of shifts used in current segment.
desig Lower order part of sigma.
nfail INTEGER. Number of times shift was too big.
iter INTEGER. Number of iterations.
ndiv INTEGER. Number of divisions.
ttype INTEGER. Shift type.

```

\section*{?lasq4}

Computes an approximation to the smallest eigenvalue using values of \(d\) from the previous transform.
Used by ?bdsqr.
```

call slasq4 ( i0, n0, z, pp, n0in, dmin, dmin1, dmin2,
dn, dn1, dn2, tau, ttype )
call dlasq4 ( i0, n0, z, pp, nOin, dmin, dmin1, dmin2,
dn, dn1, dn2, tau, ttype )

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Discussion}

The routine computes an approximation \(t a u\) to the smallest eigenvalue using values of \(d\) from the previous transform.

Input Parameters
\begin{tabular}{|c|c|}
\hline io & Integer. First index. \\
\hline no & Integer. Last index. \\
\hline \multirow[t]{3}{*}{z} & REAL for slasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Array, DIMENSION (4n). \(z\) holds the \(q d\) array. \\
\hline pp & INTEGER. \(p p=0\) for ping, \(p p=1\) for pong. \\
\hline noin & INTEGER. The value of \(n 0\) at start of eigtest. \\
\hline \multirow[t]{3}{*}{dmin} & REAL for slasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Minimum value of \(d\). \\
\hline \multirow[t]{3}{*}{dmin1} & REAL for slasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Minimum value of \(d\), excluding \(d(n 0)\). \\
\hline \multirow[t]{3}{*}{dmin2} & REAL for slasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Minimum value of \(d\), excluding \(d(n 0)\) and \(d(n 0-1)\) \\
\hline \multirow[t]{3}{*}{\(d n\)} & REAL for slasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Contains \(d(n)\). \\
\hline \multirow[t]{3}{*}{\(d n 1\)} & REAL for slasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Contains \(d(n-1)\). \\
\hline \multirow[t]{2}{*}{dn2} & REAL for slasq4 \\
\hline & DOUBLE PRECISION for dlasq4. Contains \(d(n-2)\) \\
\hline
\end{tabular}

\section*{Output Parameters}
```

tau REAL for slasq4
DOUBLE PRECISION for dlasq4.
This is the shift.
ttype INTEGER. Shift type.

```

\section*{?lasq5}

Computes one dqds transform in ping-pong form. Used by ?.bdsqr and ?stegr.
```

call slasq5 ( i0, n0, z, pp, tau, dmin, dmin1, dmin2,
dn, dnm1, dnm2, ieee )
call dlasq5 ( i0, n0, z, pp, tau, dmin, dmin1, dmin2,
dn, dnm1, dnm2, ieee )

```

\section*{Discussion}

The routine computes one \(d q d s\) transform in ping-pong form, one version for IEEE machines another for non-IEEE machines.

\section*{Input Parameters}
\begin{tabular}{ll}
io & INTEGER First index. \\
no & INTEGER Last index. \\
\(z\) & REAL for slasq5 \\
& DOUBLE PRECISION for dlasq5. \\
& Array, DIMENSION \((4 n) . z\) holds the \(q d\) array. emin is \\
stored in \(z(4 \star n 0)\) to avoid an extra argument. \\
tau & INTEGER. pp=0 for ping, pp=1 for pong. \\
& REAL for slasq5 \\
& DOUBLE PRECISION for dlasq5. \\
& This is the shift.
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
ieee LOGICAL. Flag for IEEE or non-IEEE arithmetic.
Output Parameters
```

dmin REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d
dmin1 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of }d\mathrm{ , excluding }d(n0)\mathrm{ .
dmin2 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of }d\mathrm{ , excluding }d(n0)\mathrm{ and }d(n0-1)
REAL for slasq5
DOUBLE PRECISION for dlasq5.
Contains d(n0), the last value of d
REAL for slasq5
DOUBLE PRECISION for dlasq5.
Contains d(nO-1).
dnm2 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Contains d(nO-2).

```

\section*{?lasq6}

Computes one dqds transform in ping-pong form. Used by ?bdsqr and ?stegr.
```

call slasq6 ( i0, n0, z, pp, dmin, dmin1, dmin2, dn,
dnm1, dnm2 )
call dlasq6 ( i0, n0, z, pp, dmin, dmin1, dmin2, dn,
dnm1, dnm2 )

```

\section*{Discussion}

The routine ?lasq6 computes one \(d q d\) (shift equal to zero) transform in ping-pong form, with protection against underflow and overflow.

\section*{Input Parameters}
\begin{tabular}{ll}
iO & INTEGER. First index. \\
no & INTEGER. Last index. \\
\(z\) & REAL for slasq6 \\
& DOUBLE PRECISION for dlasq6. \\
& Array, DIMENSION \((4 n) . z\) holds the \(q d\) array. emin is \\
stored in \(z(4 \star n 0)\) to avoid an extra argument. \\
& INTEGER. \(p p=0\) for ping, \(p p=1\) for pong.
\end{tabular}

\section*{Output Parameters}
```

dmin REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of d
dmin1 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of }d\mathrm{ , excluding }d(n0)\mathrm{ .
dmin2 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of }d\mathrm{ , excluding }d(n0)\mathrm{ and }d(n0-1)
dn REAL for slasq6
DOUBLE PRECISION for dlasq6.
Contains d(n0), the last value of d
dnm1 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Contains d(n0-1).
dnm2 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Contains d(n0-2).

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lasr}

\section*{Applies a sequence of plane rotations to a general rectangular matrix.}
```

call slasr ( side, pivot, direct, m, n, c, s, a, lda )
call dlasr ( side, pivot, direct, m, n, c, s, a, lda )
call clasr ( side, pivot, direct, m, n, c, s, a, lda )
call zlasr ( side, pivot, direct, m, n, c, s, a, lda )

```

\section*{Discussion}

The routine performs the transformation:
\(A:=P A, \quad\) when side \(=\) 'L' or '1' (Left-hand side)
\(A:=A P^{\prime}\), when side \(=\) ' \(R\) ' or ' \(r\) ' (Right-hand side)
where \(A\) is an \(m\)-by- \(n\) real matrix and \(P\) is an orthogonal matrix, consisting of a sequence of plane rotations determined by the parameters pivot and direct as follows (\(z=m\) when side \(=\) 'L' or ' \(I\) ' and \(z=n\) when side \(=\) ' R ' or 'r'):

When direct \(=\) ' \(F\) ' or ' \(f^{\prime}\) (Forward sequence \()\) then
\[
P=P(z-1) \ldots P(2) P(1),
\]
and when direct \(=\) 'в' or 'b' \((\) Backward sequence \()\) then
\(P=P(1) P(2) \ldots P(z-1)\),
where \(P(k)\) is a plane rotation matrix for the following planes:
when pivot \(=\) ' \(v\) ' or ' \(v\) ' (Variable pivot), the plane \((k, k+1)\)
when pivot \(=\) ' I ' or ' \(t\) ' (Top pivot), the plane \((1, k+1)\)
when pivot = 'B' or 'b' (Bottom pivot), the plane (\(k, z\))
\(c(k)\) and \(s(k)\) must contain the cosine and sine that define the matrix \(P(k)\). The 2-by-2 plane rotation part of the matrix \(P(k), R(k)\), is assumed to be of the form:
\[
R(k)=\left[\begin{array}{cc}
c(k) & s(k) \\
-s(k) & c(k)
\end{array}\right]
\]

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline side & CHARACTER*1. Specifies whether the plane rotation matrix \(P\) is applied to \(A\) on the left or the right.
\[
\begin{aligned}
& =\text { 'L': Left, compute } A:=P A \\
& =\text { 'R': Right, compute } A:=A P \text { ' }
\end{aligned}
\] \\
\hline direct & CHARACTER*1. Specifies whether \(P\) is a forward or backward sequence of plane rotations.
\[
\begin{aligned}
& =\text { ' } \mathrm{F} \text { : Forward, } P=P(z-1) \ldots P(2) P(1) \\
& =\text { 'B': Backward, } P=P(1) P(2) \ldots P(z-1)
\end{aligned}
\] \\
\hline pivot & CHARACTER*1. Specifies the plane for which \(P(k)\) is a plane rotation matrix.
\[
\begin{aligned}
& =\text { ' } v \text { ': Variable pivot, the plane }(k, k+1) \\
& =\text { ' } \mathrm{I} \text { : Top pivot, the plane }(1, k+1) \\
& =\text { 'B': Bottom pivot, the plane }(k, z)
\end{aligned}
\] \\
\hline m & INTEGER. The number of rows of the matrix \(A\). If \(m \leq 1\), an immediate return is effected. \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(A\). If \(n \leq 1\), an immediate return is effected. \\
\hline \(c, s\) & REAL for slasr/clasr \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dlasr/zlasr. \\
Arrays, DIMENSION \\
(m-1) if side = 'L', \\
\((n-1)\) if side \(=\) ' \(R\) '. \\
\(c(k)\) and \(s(k)\) contain the cosine and sine that define the matrix \(P(k)\) as described above.
\end{tabular} \\
\hline a & REAL for slasr \\
\hline & DOUBLE PRECISION for dlasr \\
\hline & COMPLEX for clasr \\
\hline & COMPLEX*16 for zlasr. \\
\hline & Array, DIMENSION (lda, \(n\)). The \(m\)-by-n matrix \(A\). \\
\hline Ida & integer. The leading dimension of the array \(A\). \(I d a \geq \max (1, m)\). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}

On exit, \(A\) is overwritten by \(P A\) if side \(=\) ' R ' or by \(A P\) ' if side = 'L'.

\section*{?lasrt}

Sorts numbers in increasing or decreasing order.
```

call slasrt ( id, n, d, info )
call dlasrt ( id, n, d, info )

```

\section*{Discussion}

The routine ? lasrt sorts the numbers in \(d\) in increasing order (if id='I) or in decreasing order (if \(i d=\) ' \(D\) '). It uses Quick Sort, reverting to Insertion Sort on arrays of size \(\leq 20\). Dimension of stack limits \(n\) to about \(2^{32}\).

\section*{Input Parameters}
```

id CHARACTER*1.
= 'I': sort d in increasing order;
= 'D': sort d in decreasing order.
INTEGER. The length of the array d.
REAL for slasrt
DOUBLE PRECISION for dlasrt.
On entry, the array to be sorted.

```

\section*{Output Parameters}

On exit, \(d\) has been sorted into increasing order \((d(1) \leq \ldots \leq d(n))\) or into decreasing order \((a(1) \geq \ldots \geq d(n))\), depending on id. INTEGER. \(=0\) : successful exit
<0: if info \(=-i\), the \(i\)-th argument had an illegal value.

\section*{?lassq}

Updates a sum of squares represented in scaled form.
```

call slassq ( n, x, incx, scale, sumsq )
call dlassq ( n, x, incx, scale, sumsq )
call classq ( n, x, incx, scale, sumsq )
call zlassq ( n, x, incx, scale, sumsq )

```

\section*{Discussion}

The real routines slassq/dlassq return the values scl and smsq such that
\[
s c l^{2} * \operatorname{sms} q=x(1)^{2}+\ldots+x(n)^{2}+\text { scale }^{2} * \text { sums } q,
\]
where \(x(i)=x(1+(i-1)\) incx \()\).
The value of sumsq is assumed to be non-negative and scl returns the value
\[
s c l=\max (\operatorname{scale}, \operatorname{abs}(x(i)))
\]

Values scale and sumsq must be supplied in scale and sumsq, and scl and \(s m s q\) are overwritten on scale and sumsq, respectively.

The complex routines classq/zlassq return the values \(s c l\) and \(s s q\) such that
\[
s c l^{2} * s s q=x(1)^{2}+\ldots+x(n)^{2}+s c a l e^{2} * s u m s q,
\]
where \(x(i)=\operatorname{abs}(x(1+(i-1)\) incx \())\).
The value of sumsq is assumed to be at least unity and the value of \(s s q\) will then satisfy
\(1.0 \leq s s q \leq s u m s q+2 n\)
scale is assumed to be non-negative and scl returns the value
\(s c l=\max _{i}(\operatorname{scale}, \operatorname{abs}(\operatorname{real}(x(i))), \quad \operatorname{abs}(\operatorname{aimag}(x(i))))\).
Values scale and sumsq must be supplied in scale and sumsq, and scl and \(s s q\) are overwritten on scale and sumsq, respectively.

All routines ?lassq make only one pass through the vector \(x\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
n
\(x\)
incx
scale
sumsq

\section*{Output Parameters}

On exit, scale is overwritten with \(s c l\), the scaling factor for the sum of squares.
For real flavors:
On exit, sumsq is overwritten with the value smsq in the equation above.
For complex flavors:
On exit, sumsq is overwritten with the value \(s s q\) in the equation above.

\section*{?lasv2}

Computes the singular value
decomposition of a 2-by-2 triangular matrix
```

call slasv2 ( f, g, h, ssmin, ssmax, snr, csr, snl, csl )
call dlasv2 ( f, g, h, ssmin, ssmax, snr, csr, snl, csl )

```

\section*{Discussion}

The routine ? lasv 2 computes the singular value decomposition of a 2-by-2 triangular matrix
\[
\left[\begin{array}{ll}
f & g \\
0 & h
\end{array}\right]
\]

On return, abs (ssmax) is the larger singular value, \(\operatorname{abs}(\operatorname{ssmin})\) is the smaller singular value, and (csl,snl) and (csr,snr) are the left and right singular vectors for abs(ssmax), giving the decomposition
\[
\left[\begin{array}{cc}
\operatorname{csl} & \operatorname{snl} \\
-\operatorname{snl} & \operatorname{csl}
\end{array}\right]\left[\begin{array}{ll}
f & g \\
0 & h
\end{array}\right]\left[\begin{array}{cc}
\operatorname{csr} & -\operatorname{snr} \\
\operatorname{snr} & \operatorname{csr}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{ssmax} & 0 \\
0 & \operatorname{ssmin}
\end{array}\right]
\]

\section*{Input Parameters}
```

f, g, h REAL for slasv2
DOUBLE PRECISION for dlasv2.

```

The \((1,1),(1,2)\) and (2,2) elements of the 2-by-2 matrix, respectively.

\section*{Output Parameters}
```

ssmin, ssmax REAL for slasv2
DOUBLE PRECISION for dlasv2.
abs(ssmin) and abs(ssmax) is the smaller and the
larger singular value, respectively.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
```

snl, csl REAL for slasv2
DOUBLE PRECISION for dlasv2.
The vector (csl,snl) is a unit left singular vector for
the singular value abs(ssmax).
REAL for slasv2
DOUBLE PRECISION for dlasv2.
The vector (csr, snr) is a unit right singular vector for the singular value abs(ssmax).

```

\section*{Application Notes}

Any input parameter may be aliased with any output parameter. Barring over/underflow and assuming a guard digit in subtraction, all output quantities are correct to within a few units in the last place (ulps).
In IEEE arithmetic, the code works correctly if one matrix element is infinite.
Overflow will not occur unless the largest singular value itself overflows or is within a few ulps of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix modified by perturbations of size near the underflow threshold.

\section*{?laswp}

Performs a series of row interchanges on a general rectangular matrix.
```

call slaswp ( n, a, lda, k1, k2, ipiv, incx )
call dlaswp ( n, a, lda, k1, k2, ipiv, incx )
call claswp ( n, a, lda, kl, k2, ipiv, incx )
call zlaswp ( n, a, lda, kl, k2, ipiv, incx )

```

\section*{Discussion}

The routine performs a series of row interchanges on the matrix \(A\). One row interchange is initiated for each of rows \(k 1\) through \(k 2\) of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The number of columns of the matrix \(A\). \\
\hline \multirow[t]{6}{*}{a} & REAL for slaswp \\
\hline & DOUBLE PRECISION for dlaswp \\
\hline & COMPLEX for claswp \\
\hline & COMPLEX*16 for zlaswp. \\
\hline & Array, DIMENSION (lda, \(n\)). \\
\hline & On entry, the matrix of column dimension \(n\) to which the row interchanges will be applied. \\
\hline Ida & INTEGER. The leading dimension of the array a. \\
\hline k1 & INTEGER. The first element of ipiv for which a row interchange will be done. \\
\hline k2 & Integer. The last element of ipiv for which a row interchange will be done. \\
\hline \multirow[t]{4}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION (\(m\) * abs(incx)). \\
\hline & The vector of pivot indices. Only the elements in positions \(k 1\) through \(k 2\) of ipiv are accessed. \\
\hline & \(\operatorname{ipiv}(k)=l\) implies rows \(k\) and \(l\) are to be interchanged. \\
\hline incx & INTEGER. The increment between successive values of ipiv. If ipiv is negative, the pivots are applied in reverse order. \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the permuted matrix.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lasy2}

Solves the Sylvester matrix equation where the matrices are of order 1 or 2 .
```

call slasy2 ( ltranl, ltranr, isgn, n1, n2, tl, ldtl,
tr,ldtr, b, ldb, scale, x, ldx, xnorm, info )
call dlasy2 ( ltranl, ltranr, isgn, n1, n2, tl, ldtl,
tr,ldtr, b, ldb, scale, x, ldx, xnorm, info )

```

\section*{Discussion}

The routine solves for the \(n 1\)-by- \(n 2\) matrix \(X, 1 \leq n 1, n 2 \leq 2\), in
```

op(TL)* X + isgn * X *op(TR) = scale *B,

```
where
\(T L\) is \(n 1\)-by- \(n 1\),
\(T R\) is \(n 2\) - by-n2,
\(B\) is \(n 1\)-by \(-n 2\),
and isgn \(=1\) or \(-1 . \operatorname{op}(T)=T\) or \(T\), where \(T\) denotes the transpose of \(T\).

\section*{Input Parameters}
ltranl

Itranr
isgn
n1

LOGICAL.
On entry, \(1 t r a n l\) specifies the \(o p(T L)\) :
= . \(\operatorname{FALSE} ., \mathrm{op}(T L)=T L\),
\(=\). TRUE., \(\quad\) op \((T L)=T L^{\prime}\).
LOGICAL.
On entry, ltranr specifies the \(\mathrm{op}(T R)\) :
= . \(\mathrm{FALSE} ., \mathrm{op}(T R)=T R\),
\(=\). TRUE., \(\quad \mathrm{op}(T R)=T R^{\prime}\).
integer. On entry, isgn specifies the sign of the equation as described before. isgn may only be 1 or -1 .
integer. On entry, \(n 1\) specifies the order of matrix \(T L\). \(n 1\) may only be 0,1 or 2 .
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{n2} & INTEGER. \\
\hline & On entry, \(n 2\) specifies the order of matrix \(T R\). n 2 may only be 0,1 or 2 . \\
\hline \multirow[t]{3}{*}{tI} & REAL for slasy2 \\
\hline & DOUBLE PRECISION for dlasy2. \\
\hline & Array, DIMENSION (\(1 d t 1,2\)). On entry, \(t I\) contains an n1-by-n 1 matrix \(T L\). \\
\hline \(1 d t 1\) & INTEGER.The leading dimension of the matrix \(t\). \(1 d t I \geq \max (1, n 1)\). \\
\hline \multirow[t]{3}{*}{tr} & REAL for slasy2 \\
\hline & DOUBLE PRECISION for dlasy2. \\
\hline & Array, DIMENSION (\(1 d t r, 2\)). On entry, tr contains an n2-by-n2 matrix \(T R\). \\
\hline \multirow[t]{3}{*}{\(1 d t r\)} & INTEGER. \\
\hline & The leading dimension of the matrix \(t r\). \\
\hline & \(l d t r \geq \max (1, n 2)\). \\
\hline \multirow[t]{3}{*}{\(b\)} & REAL forslasy2 \\
\hline & DOUBLE PRECISION for dlasy2. \\
\hline & Array, DIMENSION (\(1 d b, 2\)). On entry, the \(n 1\)-by- \(n 2\) matrix \(b\) contains the right-hand side of the equation. \\
\hline \multirow[t]{3}{*}{\(1 d b\)} & INTEGER. \\
\hline & The leading dimension of the matrix \(b\). \\
\hline & \(1 d b \geq \max (1, n 1)\) \\
\hline \multirow[t]{3}{*}{\(1 d x\)} & INTEGER. \\
\hline & The leading dimension of the output matrix \(x\). \\
\hline & \\
\hline
\end{tabular}

\section*{Output Parameters}
```

scale REAL for slasy2
DOUBLE PRECISION for dlasy2.
On exit, scale contains the scale factor.
scale is chosen less than or equal to 1 to prevent the
solution overflowing.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{ll}
\(x\) & REAL for slasy2 \\
DOUBLE PRECISION for dlasy2. \\
Array, DIMENSION (ldx,2). On exit, \(x\) contains the \\
xnorm & n1-by-n2 solution. \\
info & REAL for slasy2 \\
& DOUBLE PRECISION for dlasy2. \\
& On exit, xnorm is the infinity-norm of the solution. \\
& INTEGER. On exit, info is set to \\
& \(0:\) successful exit. \\
& \(1: T L\) and \(T R\) have too close eigenvalues, so \(T L\) or \(T R\) is \\
& perturbed to get a nonsingular equation.
\end{tabular}

NOTE. In the interests of speed, this routine does not check the inputs for errors.

\section*{?lasyf}

Computes a partial factorization of a real/complex symmetric matrix, using the diagonal pivoting method.
```

call slasyf ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call dlasyf ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call clasyf ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call zlasyf ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

```

Discussion
The routine ?lasyf computes a partial factorization of a real/complex symmetric matrix \(A\) using the Bunch-Kaufman diagonal pivoting method. The partial factorization has the form:
\[
\begin{aligned}
& A=\left[\begin{array}{ll}
I & U_{12} \\
0 & U_{22}
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
U_{12}^{\prime} & U_{22}^{\prime}
\end{array}\right] \quad \text { if uplo = 'U', or } \\
& A=\left[\begin{array}{ll}
L_{11} & 0 \\
L_{21} & I
\end{array}\right]\left[\begin{array}{cc}
D & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{\prime} & L_{21}^{\prime} \\
0 & I
\end{array}\right] \quad \text { if uplo = 'L' }
\end{aligned}
\]
where the order of \(D\) is at most \(n b\). The actual order is returned in the argument \(k b\), and is either \(n b\) or \(n b-1\), or \(n\) if \(n \leq n b\).
This is an auxiliary routine called by ?sytrf. It uses blocked code (calling Level 3 BLAS) to update the submatrix \(A_{11}\) (if uplo = ' u ') or \(A_{22}\) (if uplo = 'L').

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & CHARACTER*1. \\
\hline & \begin{tabular}{l}
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored: \\
= 'u': Upper triangular \\
\(=\) '土': Lower triangular
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(n\)} & INTEGER. \\
\hline & The order of the matrix \(A . n \geq 0\). \\
\hline \multirow[t]{2}{*}{nb} & INTEGER. \\
\hline & The maximum number of columns of the matrix \(A\) that should be factored. nb should be at least 2 to allow for 2-by-2 pivot blocks. \\
\hline \multirow[t]{5}{*}{a} & REAL for slasyf \\
\hline & DOUBLE PRECISION for dlasyf \\
\hline & COMPLEX for clasyf \\
\hline & COMPLEX*16 for zlasyf. \\
\hline & Array, DIMENSION (\(1 d a, n\)). On entry, the symmetric matrix \(A\). If uplo = ' u ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

Ida
w

Idw

INTEGER.
The leading dimension of the array a. \(I d a \geq \max (1, n)\).
REAL for slasyf
DOUBLE PRECISION for dlasyf
COMPLEX for clasyf
COMPLEX*16 for zlasyf.
Workspace array, DIMENSION (\(I d w, n b\)).
INTEGER.
The leading dimension of the array w. \(\quad I d_{w} \geq \max (1, n)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline kb & Integer. \\
\hline & The number of columns of \(A\) that were actually factored \(k b\) is either \(n b-1\) or \(n b\), or \(n\) if \(n \leq n b\). \\
\hline a & On exit, a contains details of the partial factorization. \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION (\(n\)). Details of the interchanges and the block structure of \(D\). \\
If uplo = ' u ', only the last \(k b\) elements of ipiv are set; if uplo = ' L ', only the first \(k b\) elements are set.
\end{tabular} \\
\hline & \begin{tabular}{l}
If \(i p i v(k)>0\), then rows and columns \(k\) and \(i p i v(k)\) were interchanged and \(D(k, k)\) is a 1 -by- 1 diagonal block. If uplo ='u' and \(\operatorname{ipiv}(k)=\operatorname{ipiv}(k-1)<0\), then rows and columns \(k\)-1 and -ipiv \((k)\) were interchanged and \(D(k-1: k, k-1: k)\) is a 2 -by- 2 diagonal block. \\
If uplo = 'L' and ipiv \((k)=\operatorname{ipiv}(k+1)<0\), then rows and columns \(k+1\) and \(-i p i v(k)\) were interchanged and \(D(k: k+1, k: k+1)\) is a 2 -by- 2 diagonal block.
\end{tabular} \\
\hline
\end{tabular}

\section*{info INTEGER.}
\(=0\) : successful exit
\(>0\) : if info \(=k, D(k, k)\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular.

\section*{?lahef}

Computes a partial factorization of a complex Hermitian indefinite matrix, using the diagonal pivoting method.
```

call clahef ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call zlahef ( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

```

\section*{Discussion}

The routine ?lahef computes a partial factorization of a complex
Hermitian matrix \(A\), using the Bunch-Kaufman diagonal pivoting method.
The partial factorization has the form:
\[
\begin{aligned}
& A=\left[\begin{array}{ll}
I & U_{12} \\
0 & U_{22}
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
U_{12}^{\prime} & U_{22}^{\prime}
\end{array}\right] \quad \text { if upIo = 'U', or } \\
& A=\left[\begin{array}{ll}
L_{11} & 0 \\
L_{21} & I
\end{array}\right]\left[\begin{array}{cc}
D & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{\prime} & L_{21}^{\prime} \\
0 & I
\end{array}\right] \quad \text { if uplo }=\text { 'L' }
\end{aligned}
\]
where the order of \(D\) is at most \(n b\). The actual order is returned in the argument \(k b\), and is either \(n b\) or \(n b-1\), or \(n\) if \(n \leq n b\). Note that \(U^{\prime}\) denotes the conjugate transpose of \(U\).
This is an auxiliary routine called by ?hetrf. It uses blocked code (calling Level 3 BLAS) to update the submatrix \(A_{11}\) (if uplo = 'U') or \(A_{22}\) (if uplo \(=\) 'L').

\section*{Input Parameters}

CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored:
= 'u': Upper triangular
= 'L': Lower triangular
INTEGER.
The order of the matrix \(A . n \geq 0\).
INTEGER.
The maximum number of columns of the matrix \(A\) that should be factored. nb should be at least 2 to allow for 2-by-2 pivot blocks.

COMPLEX for clahef
COMPLEX*16 for zlahef.
Array, DIMENSION (Ida, n).
On entry, the Hermitian matrix \(A\). If uplo \(=\) ' \(u\) ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.
If uplo = ' L ', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

INTEGER.
The leading dimension of the array a. Ida \(\geq \max (1, n)\).
COMPLEX for clahef
COMPLEX*16 for zlahef.
Workspace array, DIMENSION (Idw, nb).
INTEGER.
The leading dimension of the array w. \(\quad l d w \geq \max (1, n)\).

\section*{Output Parameters}

INTEGER.
The number of columns of \(A\) that were actually factored \(k b\) is either \(n b-1\) or \(n b\), or \(n\) if \(n \leq n b\).
```

a
ipiv
info
On exit, a contains details of the partial factorization. INTEGER.
Array, DIMENSION ( $n$ ). Details of the interchanges and the block structure of $D$.
If uplo = 'U', only the last kb elements of ipiv are set; if uplo = 'L', only the first $k b$ elements are set.
If ipiv $(k)>0$, then rows and columns $k$ and ipiv $(k)$ were interchanged and $D(k, k)$ is a 1-by-1 diagonal block. If uplo $=$ 'U' and $\operatorname{ipiv}(k)=\operatorname{ipiv}(k-1)<0$, then rows and columns $k$-1and-ipiv $(k)$ were interchanged and $D(k-1: k, k-1: k)$ is a 2-by-2 diagonal block.
If uplo $=$ 'L' and $\operatorname{ipiv}(k)=\operatorname{ipiv}(k+1)<0$, then rows and columns $k+1$ and -ipiv(k) were interchanged and $D(k: k+1, k: k+1)$ is a 2-by-2 diagonal block.
info
INTEGER.
= 0: successful exit
$>0$ : if info $=k, D(k, k)$ is exactly zero. The factorization has been completed, but the block diagonal matrix $D$ is exactly singular.

```

\section*{?latbs}

Solves a triangular banded system of equations.
```

call slatbs ( uplo, trans, diag, normin, n, kd, ab,
ldab, x, scale, cnorm, info )
call dlatbs ( uplo, trans, diag, normin, n, kd, ab,
ldab, x, scale, cnorm, info )
call clatbs ( uplo, trans, diag, normin, n, kd, ab,
ldab, x, scale, cnorm, info )
call zlatbs ( uplo, trans, diag, normin, n, kd, ab,
ldab, x, scale, cnorm, info )

```

\section*{Discussion}

The routine solves one of the triangular systems
\(A x=s b\) or \(A^{\mathrm{T}} x=s b\) or \(A^{\mathrm{H}} x=s b\) (for complex flavors)
with scaling to prevent overflow, where \(A\) is an upper or lower triangular band matrix. Here \(A^{\mathrm{T}}\) denotes the transpose of \(A, A^{\mathrm{H}}\) denotes the conjugate transpose of \(A, x\) and \(b\) are \(n\)-element vectors, and \(s\) is a scaling factor, usually less than or equal to 1 , chosen so that the components of \(x\) will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine ?tbsv is called. If the matrix \(A\) is singular \((A(j, j)=0\) for some \(j)\), then \(s\) is set to 0 and a non-trivial solution to \(A x=0\) is returned.

\section*{Input Parameters}

CHARACTER*1.
Specifies whether the matrix \(A\) is upper or lower triangular.
= 'u': Upper triangular
\(=\) ' L ': Lower triangular
CHARACTER*1.
Specifies the operation applied to \(A\).
\(=\) 'n': Solve \(A \mathrm{x}=s b\) (no transpose)
\(=\) ' T ': Solve \(A^{\mathrm{T}} x=s b\) (transpose)
\(=\) 'C': Solve \(A^{\mathrm{H}} x=s b\) (conjugate transpose)
CHARACTER*1.
Specifies whether or not the matrix \(A\) is unit triangular = ' v ': Non-unit triangular
= 'u': Unit triangular
CHARACTER*1.
Specifies whether cnorm has been set or not.
= ' Y ': cnorm contains the column norms on entry;
\(=\) ' N ': cnorm is not set on entry. On exit, the norms will be computed and stored in cnorm.

INTEGER.
The order of the matrix \(A . n \geq 0\).
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{kd} & INTEGER. \\
\hline & The number of subdiagonals or superdiagonals in the triangular matrix \(A . k d \geq 0\). \\
\hline \multirow[t]{8}{*}{\(a b\)} & REAL for slatbs \\
\hline & DOUBLE PRECISION for dlatbs \\
\hline & COMPLEX for clatbs \\
\hline & COMPLEX*16 for zlatbs. \\
\hline & Array, DIMENSION (1 dab, \(n\)). The upper or lower triangular band matrix \(A\), stored in the first \(k d+1\) rows of the array. The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows: \\
\hline & if uplo = 'U', ab \((k d+1+i-j, j)=A(i, j)\) for \\
\hline & \begin{tabular}{l}
\(\max (1, j-k d) \leq i \leq j ;\) \\
if uplo = 'L', ab \((1+i-j, j)=A(i, j)\) for
\end{tabular} \\
\hline & \(j \leq i \leq m i n(n, j+k d)\). \\
\hline \multirow[t]{2}{*}{Idab} & INTEGER. \\
\hline & The leading dimension of the array \(a b .1 d a b \geq k d+1\). \\
\hline \multirow[t]{6}{*}{\(x\)} & REAL for slatbs \\
\hline & DOUBLE PRECISION for dlatbs \\
\hline & COMPLEX for clatbs \\
\hline & COMPLEX*16 for zlatbs. \\
\hline & Array, DIMENSION (\(n\)). \\
\hline & On entry, the right hand side \(b\) of the triangular system. \\
\hline \multirow[t]{7}{*}{cnorm} & REAL for slatbs/clatbs \\
\hline & DOUBLE PRECISION for dlatbs/zlatbs. \\
\hline & Array, DIMENSION (\(n\)). \\
\hline & If normin = ' Y ', cnorm is an input argument and \\
\hline & cnorm(\(j\)) contains the norm of the off-diagonal part of the \(j\)-th column of \(A\). If trans \(=' N\) ', cnorm (\(j\)) must be \\
\hline & greater than or equal to the infinity-norm, and if \\
\hline & trans \(=\) ' I or \(\mathrm{C}^{\prime}\), cnorm \((\mathrm{j})\) must be greater than or equal to the 1-norm. \\
\hline
\end{tabular}

Output Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{scale} & REAL for slatbs/clatbs \\
\hline & DOUBLE PRECISION for dlatbs/zlatbs. \\
\hline & The scaling factor \(s\) for the triangular system as described above. \\
\hline & If scale \(=0\), the matrix \(A\) is singular or badly scaled, and the vector \(x\) is an exact or approximate solution to \(\mathrm{A} x=0\). \\
\hline cnorm & If normin \(=\) ' N ', cnorm is an output argument and cnorm(\(j\)) returns the 1-norm of the off-diagonal part of the \(j\)-th column of \(A\). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & = 0: successful exit \\
\hline & <0: if info \(=-k\), the \(k\)-th argument had an illegal value \\
\hline
\end{tabular}

\section*{?latdf}

Uses the LU factorization of the \(n-b y-n\) matrix computed by ?getc 2 and computes a contribution to the reciprocal Dif-estimate.
```

call slatdf ( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )
call dlatdf ( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )
call clatdf ( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )
call zlatdf ( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )

```

\section*{Discussion}

The routine ? latdf uses the \(L U\) factorization of the \(n\)-by- \(n\) matrix \(Z\) computed by ?getc2 and computes a contribution to the reciprocal Dif-estimate by solving \(\mathrm{Z} x=b\) for \(x\), and choosing the right-hand side \(b\) such that the norm of \(x\) is as large as possible. On entry rhs \(=b\) holds the contribution from earlier solved sub-systems, and on return rhs \(=x\).

The factorization of \(Z\) returned by ?getc2 has the form \(Z=P L U Q\), where \(P\) and \(Q\) are permutation matrices. \(L\) is lower triangular with unit diagonal elements and \(U\) is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{ijob} & INTEGER. \\
\hline & \begin{tabular}{l}
i job \(=2\) : First compute an approximative null-vector \(e\) of \(Z\) using ? gecon, \(e\) is normalized, and solve for \(Z x= \pm e-f\) with the sign giving the greater value of \(2-\operatorname{norm}(x)\). This option is about 5 times as expensive as default. \\
i job \(\neq 2\) (default): Local look ahead strategy where all entries of the right-hand side \(b\) is chosen as either +1 or -1.
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(n\)} & INTEGER. \\
\hline & The number of columns of the matrix \(Z\). \\
\hline \multirow[t]{3}{*}{\(z\)} & REAL for slatdf/clatdf \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dlatdf/zlatdf. \\
Array, DIMENSION (\(1 d z, n\))
\end{tabular} \\
\hline & On entry, the \(L U\) part of the factorization of the \(n-b y-n\) matrix \(Z\) computed by ?getc2: \(Z=P L U Q\). \\
\hline \multirow[t]{2}{*}{\(1 d z\)} & INTEGER. \\
\hline & The leading dimension of the array z. \(1 \mathrm{lda} \geq \max (1, n)\). \\
\hline \multirow[t]{4}{*}{rhs} & REAL for slatdf/clatdf \\
\hline & DOUBLE PRECISION for dlatdf/zlatdf. \\
\hline & Array, DIMENSION (\(n\)). \\
\hline & On entry, rhs contains contributions from other subsystems. \\
\hline \multirow[t]{3}{*}{rdsum} & REAL for slatdf/clatdf \\
\hline & DOUBLE PRECISION for dlatdf/zlatdf. \\
\hline & On entry, the sum of squares of computed contributions to the Dif-estimate under computation by ?tgsyl, where the scaling factor rdscal has been factored out. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If trans \(=\) ' \(T\) ', rdsum is not touched. \\
Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl.
\end{tabular} \\
\hline \multirow[t]{4}{*}{rdscal} & REAL for slatdf/clatdf \\
\hline & DOUBLE PRECISION for dlatdf/zlatdf. \\
\hline & On entry, scaling factor used to prevent overflow in rdsum. If trans \(=T^{\prime}\), rdscal is not touched. \\
\hline & Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyl. \\
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION (\(n\)). \\
\hline & The pivot indices; for \(1 \leq i \leq n\), row \(i\) of the matrix has been interchanged with row ipiv(i). \\
\hline \multirow[t]{3}{*}{jpiv} & INTEGER. \\
\hline & Array, DIMENSION (\(n\)). \\
\hline & The pivot indices; for \(1 乌 \leq n\), column \(j\) of the matrix has been interchanged with column \(j p i v(j)\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline rhs & On exit, rhs contains the solution of the subsystem with entries according to the value of \(i\) job. \\
\hline rdsum & \begin{tabular}{l}
On exit, the corresponding sum of squares updated with the contributions from the current sub-system. \\
If trans \(=\) ' \(T\) ', rdsum is not touched.
\end{tabular} \\
\hline rdscal & \begin{tabular}{l}
On exit, rdscal is updated with respect to the current contributions in rdsum. \\
If trans = ' T ', rdscal is not touched.
\end{tabular} \\
\hline
\end{tabular}

\section*{?latps}

\section*{Solves a triangular system of equations}
with the matrix held in packed storage.
```

call slatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
call dlatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
call clatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
call zlatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

```

\section*{Discussion}

The routine ?latps solves one of the triangular systems
\(A x=s b\) or \(A^{\mathrm{T}} x=s b\) or \(A^{\mathrm{H}} x=s b\) (for complex flavors)
with scaling to prevent overflow, where \(A\) is an upper or lower triangular matrix stored in packed form. Here \(A^{\mathrm{T}}\) denotes the transpose of \(A, A^{\mathrm{H}}\) denotes the conjugate transpose of \(A, x\) and \(b\) are \(n\)-element vectors, and \(s\) is a scaling factor, usually less than or equal to 1 , chosen so that the components of \(x\) will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine ?tpsv is called. If the matrix \(A\) is singular \((A(j, j)=0\) for some \(j\)), then \(s\) is set to 0 and a non-trivial solution to \(A x=0\) is returned.

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower
triangular.
= 'U': Upper triangular
= 'L':Lower triangular
trans CHARACTER*1.
Specifies the operation applied to }A\mathrm{ .
= 'N':Solve Ax =s b (no transpose)
= 'T': Solve A AT
= 'c': Solve A }\mp@subsup{A}{}{H}x=sb\mathrm{ (conjugate transpose)

```

Specifies whether or not the matrix \(A\) is unit triangular.
\(=\) ' N ': Non-unit triangular
= ' u ': Unit triangular
CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
\(=\) ' N ': cnorm is not set on entry. On exit, the norms will be computed and stored in cnorm.

INTEGER.
The order of the matrix \(A . n \geq 0\).
REAL for slatps
DOUBLE PRECISION for dlatps
COMPLEX for clatps
COMPLEX*16 for zlatps.
Array, DIMENSION \((n(n+1) / 2)\). The upper or lower triangular matrix \(A\), packed columnwise in a linear array. The \(j\)-th column of \(A\) is stored in the array ap as follows:
if uplo \(=\) ' \(\mathrm{U}^{\prime}, \operatorname{ap}(i+(j-1) j / 2)=A(i, j)\) for \(1 \leq_{i} \leq_{j}\); if uplo = 'L', ap \((i+(j-1)(2 n-j) / 2)=A(i, j)\) for \(j \leq \leq\).
REAL for slatps
DOUBLE PRECISION for dlatps
COMPLEX for clatps
COMPLEX*16 for zlatps.
Array, DIMENSION (\(n\))
On entry, the right hand side \(b\) of the triangular system.
REAL for slatps/clatps
DOUBLE PRECISION for dlatps/zlatps.
Array, DIMENSION (\(n\)).
If normin \(=\) ' \(Y\) ', cnorm is an input argument and cnorm(\(j\)) contains the norm of the off-diagonal part of the \(j\)-th column of \(A\). If trans \(=\) ' \(N\) ', cnorm \((j)\) must be greater than or equal to the infinity-norm, and if trans \(=\) ' \(T\) ' or ' \(C\) ', cnorm \((j)\) must be greater than or equal to the 1-norm.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(x\) & On exit, \(x\) is overwritten by the solution vector \(x\). \\
\hline \multirow[t]{3}{*}{scale} & REAL for slatps/clatps \\
\hline & DOUBLE PRECISION for dlatps/zlatps. The scaling factor \(s\) for the triangular system as described above. \\
\hline & If scale \(=0\), the matrix \(A\) is singular or badly scaled, and the vector \(x\) is an exact or approximate solution to \(A x=0\). \\
\hline cnorm & If normin \(=\) ' N ', cnorm is an output argument and cnorm(\(j\)) returns the 1 -norm of the off-diagonal part of the \(j\)-th column of \(A\). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & = 0: successful exit \\
\hline & <0: if info \(=-k\), the \(k\)-th argument had an illegal value \\
\hline
\end{tabular}

\section*{?latrd}

Reduces the first nb rows and columns
of a symmetric/Hermitian matrix A to
real tridiagonal form by an
orthogonal/unitary similarity
transformation.
```

call slatrd ( uplo, n, nb, a, lda, e, tau, w, ldw )
call dlatrd ( uplo, n, nb, a, lda, e, tau, w, ldw )
call clatrd ( uplo, n, nb, a, lda, e, tau, w, ldw )
call zlatrd ( uplo, n, nb, a, lda, e, tau, w, ldw )

```

\section*{Discussion}

The routine ? latrd reduces nb rows and columns of a real symmetric or complex Hermitian matrix \(A\) to symmetric/Hermitian tridiagonal form by an orthogonal/unitary similarity transformation \(Q^{\prime} A Q\), and returns the
matrices \(V\) and \(W\) which are needed to apply the transformation to the unreduced part of \(A\).
If uplo = 'U', ? latrd reduces the last nb rows and columns of a matrix, of which the upper triangle is supplied;
if uplo = 'L', ? latrd reduces the first n.b rows and columns of a matrix, of which the lower triangle is supplied.
This is an auxiliary routine called by ?sytrd/?hetrd.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER \\
\hline & \begin{tabular}{l}
Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix \(A\) is stored: \\
= 'U': Upper triangular \\
\(=\) ' L ': Lower triangular
\end{tabular} \\
\hline \(n\) & \begin{tabular}{l}
INTEGER. \\
The order of the matrix \(A\).
\end{tabular} \\
\hline \(n b\) & \begin{tabular}{l}
INTEGER. \\
The number of rows and columns to be reduced.
\end{tabular} \\
\hline a & \begin{tabular}{l}
REAL for slatrd \\
DOUBLE PRECISION for dlatrd \\
COMPLEX for clatrd \\
COMPLEX*16 for zlatrd. \\
Array, DIMENSION (lda, n). \\
On entry, the symmetric/Hermitian matrix \(A\) \\
If uplo = ' U ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.
\end{tabular} \\
\hline Ida & \begin{tabular}{l}
INTEGER. \\
The leading dimension of the array \(a\). \(1 d a \geq(1, n)\).
\end{tabular} \\
\hline
\end{tabular}

Idw INTEGER.
The leading dimension of the output array w . \(I_{d w} \geq \max (1, n)\).

\section*{Output Parameters}
On exit, if uplo = ' u ', the last \(n b\) columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of \(a\); the elements above the diagonal with the array \(t a u\), represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors;
if uplo = 'L', the first nb columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of \(a\); the elements below the diagonal with the array \(t a u\), represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors.
```

```
REAL for slatrd/clatrd
```

REAL for slatrd/clatrd
DOUBLE PRECISION for dlatrd/zlatrd.
If uplo = 'U', e(n-nb:n-1) contains the superdiagonal
elements of the last nb columns of the reduced matrix;
if uplo = 'L', e(1:nb) contains the subdiagonal
elements of the first nb columns of the reduced matrix.

```
```

REAL for slatrd

```
REAL for slatrd
DOUBLE PRECISION for dlatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n).
Array, DIMENSION (lda, n).
The scalar factors of the elementary reflectors, stored in
The scalar factors of the elementary reflectors, stored in
tau(n-nb:n-1) if uplo = 'U', and in tau(1:nb) if uplo
tau(n-nb:n-1) if uplo = 'U', and in tau(1:nb) if uplo
= 'L'.
= 'L'.
REAL for slatrd
REAL for slatrd
DOUBLE PRECISION for dlatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
```

COMPLEX*16 for zlatrd.

```

Array, DIMENSION (1 da, \(n\)).
The \(n\)-by- \(n b\) matrix \(W\) required to update the unreduced part of \(A\).

\section*{Application Notes}

If uplo = ' \(u\) ', the matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(n) H(n-1) \ldots H(n-n b+1)
\]

Each \(H(i)\) has the form
\[
H(i)=I-\operatorname{ta} u^{\star} v^{\star} v^{\prime}
\]
where \(\operatorname{tau}\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(i: n)=0\) and \(v(i-1)=1 ; v(1: i-1)\) is stored on exit in \(a(1: i-1, i)\), and tau in \(\operatorname{tau}(i-1)\).
If uplo = ' L ', the matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(1) H(2) \ldots H(n b)
\]

Each \(H(i)\) has the form
\(H(i)=I-\operatorname{ta} u^{\star} \nu^{\star} \nu^{\prime}\)
where \(t a u\) is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i)=0\) and \(v(i+1)=1 ; v(i+1: \mathrm{n})\) is stored on exit in \(a(i+1: n, \mathrm{i})\), and tau in \(\operatorname{tau}(\mathrm{i})\).
The elements of the vectors \(v\) together form the \(n\)-by- \(n b\) matrix \(V\) which is needed, with \(W\), to apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian rank-2k update of the form:
\(A:=A-V W^{\prime}-W V^{\prime}\).
The contents of a on exit are illustrated by the following examples with \(n=5\) and \(n b=2\) :
\[
\text { if uplo= 'U': } \quad \text { if uplo= ' } 工 ':
\]
\[
\left[\begin{array}{rrrrr}
a & a & a & v_{4} & v_{5} \\
& a & a & v_{4} & v_{5} \\
& a & 1 & v_{5} \\
& & & d & 1 \\
& & & & d
\end{array}\right] \quad\left[\begin{array}{lllll}
d & & & \\
1 & d & & \\
v_{1} & 1 & & a & \\
v_{1} & v_{2} & a & a \\
v_{1} & v_{2} & a & a & a
\end{array}\right]
\]
where \(d\) denotes a diagonal element of the reduced matrix, \(a\) denotes an element of the original matrix that is unchanged, and \(v_{i}\) denotes an element of the vector defining \(H(i)\).

\section*{?latrs}

\section*{Solves a triangular system of equations \\ with the scale factor set to prevent \\ overflow.}
```

call slatrs ( uplo, trans, diag, normin, n, a, lda, x,
scale, cnorm, info )
call dlatrs ( uplo, trans, diag, normin, n, a, lda, x,
scale, cnorm, info )
call clatrs ( uplo, trans, diag, normin, n, a, lda, x,
scale, cnorm, info )
call zlatrs ( uplo, trans, diag, normin, n, a, lda, x,
scale, cnorm, info )

```

\section*{Discussion}

The routine solves one of the triangular systems
\(A x=s b\) or \(A^{\mathrm{T}} x=s b\) or \(A^{\mathrm{H}} x=s b\) (for complex flavors)
with scaling to prevent overflow. Here \(A\) is an upper or lower triangular matrix, \(A^{\mathrm{T}}\) denotes the transpose of \(A, A^{\mathrm{H}}\) denotes the conjugate transpose of \(A, x\) and \(b\) are \(n\)-element vectors, and \(s\) is a scaling factor, usually less than or equal to 1 , chosen so that the components of \(x\) will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine ?trsv is called. If the matrix \(A\) is singular \((A(j, j)\) \(=0\) for some \(j\)), then \(s\) is set to 0 and a non-trivial solution to \(A x=0\) is returned.

\section*{Input Parameters}

CHARACTER*1.
Specifies whether the matrix \(A\) is upper or lower triangular.
= ' u ': Upper triangular
\(=\) ' L ': Lower triangular
CHARACTER*1.
Specifies the operation applied to \(A\).
\(=\) ' N ': Solve \(A \mathrm{x}=s b\) (no transpose)
\(=\) ' T ': Solve \(A^{\mathrm{T}} x=s b\) (transpose)
\(=\) ' \(C^{\prime}\) : Solve \(A^{\mathrm{H}} x=s b\) (conjugate transpose)
CHARACTER*1.
Specifies whether or not the matrix \(A\) is unit triangular.
= ' N ': Non-unit triangular
= 'U': Unit triangular
CHARACTER*1.
Specifies whether cnorm has been set or not. = ' Y ': cnorm contains the column norms on entry; = ' N ': cnorm is not set on entry. On exit, the norms will be computed and stored in cnorm.

INTEGER.
The order of the matrix \(A . n \geq 0\)
REAL for slatrs
DOUBLE PRECISION for dlatrs
COMPLEX for clatrs
COMPLEX*16 for zlatrs.
Array, DIMENSION (Ida, n). Contains the triangular matrix \(A\). If uplo \(=\) ' \(u\) ', the leading \(n\)-by- \(n\) upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of \(a\) is not referenced. If uplo = ' L ', the leading \(n\)-by- \(n\) lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of \(a\) is not referenced. If \(d i a g=\) ' \(u\) ', the diagonal elements of \(a\) are also not referenced and are assumed to be 1 .
```

Ida INTEGER.
The leading dimension of the array a. Ida }\geq\operatorname{max}(1,n)
x
cnorm REAL forslatrs/clatrs)
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (n). If normin= 'Y', cnorm is an
input argument and cnorm (j) contains the norm of the
off-diagonal part of the j-th column of A. If trans=
' N', cnorm (j) must be greater than or equal to the
infinity-norm, and if trans = 'T' or 'C', cnorm( j) must
be greater than or equal to the 1-norm.

```

\section*{Output Parameters}
info

On exit, \(x\) is overwritten by the solution vector \(x\).
REAL for slatrs/clatrs)
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (\(1 \mathrm{da}, \mathrm{n}\)). The scaling factor \(s\) for the triangular system as described above.
If scale \(=0\), the matrix \(A\) is singular or badly scaled, and the vector \(x\) is an exact or approximate solution to \(A x=0\).
If normin = ' \(N\) ', cnorm is an output argument and \(\operatorname{cnorm}(j)\) returns the 1 -norm of the off-diagonal part of the \(j\)-th column of \(A\).

INTEGER.
\(=0\) : successful exit
<0: if info \(=-k\), the \(k\)-th argument had an illegal value

\section*{Application Notes}

A rough bound on \(x\) is computed; if that is less than overflow, ?trsv is called, otherwise, specific code is used which checks for possible overflow or divide-by-zero at every operation.

A columnwise scheme is used for solving \(A x=b\). The basic algorithm if \(A\) is lower triangular is
```

$x[1: n]:=b[1: n]$
for $j=1, \ldots, n$
$x(j):=x(j) / A(j, j)$
$x[j+1: n]:=x[j+1: n]-x(j) * A[j+1: n, j]$
end

```

Define bounds on the components of \(x\) after \(j\) iterations of the loop:
\(M(j)=\) bound on \(x[1: j]\)
\(G(j)=\) bound on \(x[j+1: n]\)
Initially, let \(M(0)=0\) and \(G(0)=\max \{x(\mathrm{i}), \mathrm{i}=1, \ldots, n\}\).
Then for iteration \(j+1\) we have
\(\mathrm{M}(j+1) \leq \mathrm{G}(j) /|A(j+1, j+1)|\)
\(G(j+1) \leq G(j)+M(j+1) *|A[j+2: n, j+1]|\)
\(\leq G(j)(1+\operatorname{cnorm}(j+1) /|A(j+1, j+1)|\),
where \(\operatorname{cnorm}(j+1)\) is greater than or equal to the infinity-norm of column \(j+1\) of \(A\), not counting the diagonal. Hence
\[
G(j) \leq G(0) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) /|A(i, i)|)
\]
and
\[
|x(j)| \leq(G(0) /|A(j, j)|) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) /|A(i, i)|)
\]

Since \(|x(j)| \leq M(j)\), we use the Level 2 BLAS routine ?trsv if the reciprocal of the largest \(M(j), j=1, . ., n\), is larger than \(\max\) (underflow, 1/overflow).
The bound on \(x(j)\) is also used to determine when a step in the columnwise method can be performed without fear of overflow. If the computed bound
is greater than a large constant, \(x\) is scaled to prevent overflow, but if the bound overflows, \(x\) is set to \(0, x(j)\) to 1 , and scale to 0 , and a non-trivial solution to \(A x=0\) is found.

Similarly, a row-wise scheme is used to solve \(A^{\mathrm{T}} x=b\) or \(A^{\mathrm{H}} x=b\). The basic algorithm for \(A\) upper triangular is
```

for j = 1, ..., n
x(j):=(b(j)-A[1:j-1,j]' x[1:j-1])/A(j,j)
end

```

We simultaneously compute two bounds
```

G(j) = bound on ( b(i)-A[1:i-1,i]'*x[1:i-1] ), 1\leqi\leq j
M(j) = bound on }x(i),1\leqi\leq

```

The initial values are \(G(0)=0, M(0)=\max \{b(i), i=1, . ., n\}\), and we add the constraint \(G(j) \geq G(j-1)\) and \(M(j) \geq M(j-1)\) for \(j \geq 1\).
Then the bound on \(x(j)\) is
\[
\begin{aligned}
M(j) & \leq M(j-1) *(1+\operatorname{cnorm}(j)) /|A(j, j)| \\
& \leq M(0) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) /|A(i, i)|)
\end{aligned}
\]
and we can safely call ?trsv if \(1 / M(n)\) and \(1 / G(n)\) are both greater than \(\max\) (underflow, 1/overflow).

\section*{? latrz}

Factors an upper trapezoidal matrix by means of orthogonal/unitary
transformations.
```

call slatrz ( m, n, l, a, lda, tau, work )
call dlatrz ( m, n, l, a, lda, tau, work )
call clatrz ( m, n, l, a, lda, tau, work )
call zlatrz ( m, n, l, a, lda, tau, work )

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Discussion}

The routine ? latrz factors the \(m\)-by- \((m+1)\) real/complex upper trapezoidal matrix
\(\left[\begin{array}{ll}A 1 & A 2\end{array}\right]=\left[\begin{array}{ll}A(1: m, 1: m) & A(1: m, n-1+1: n)\end{array}\right]\)
as \(\left(\begin{array}{ll}R & 0\end{array}\right) \star Z\), by means of orthogonal/unitary transformations. \(Z\) is an \((m+1)\)-by- \((m+1)\) orthogonal/unitary matrix and \(R\) and \(A 1\) are \(m\)-by-m upper triangular matrices.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{m} & INTEGER. \\
\hline & The number of rows of the matrix \(A . m \geq 0\). \\
\hline \multirow[t]{2}{*}{\(n\)} & INTEGER. \\
\hline & The number of columns of the matrix \(A . n \geq 0\). \\
\hline \multirow[t]{2}{*}{1} & INTEGER. \\
\hline & The number of columns of the matrix \(A\) containing the meaningful part of the Householder vectors.
\[
n-m \geq 1 \geq 0
\] \\
\hline \multirow[t]{6}{*}{a} & REAL for slatrz \\
\hline & DOUBLE PRECISION for dlatrz \\
\hline & COMPLEX for clatrz \\
\hline & COMPLEX*16 for zlatrz. \\
\hline & Array, DIMENSION (lda, n). \\
\hline & On entry, the leading \(m\)-by- \(n\) upper trapezoidal part of the array a must contain the matrix to be factorized. \\
\hline \multirow[t]{2}{*}{Ida} & INTEGER. \\
\hline & The leading dimension of the array \(a .1 d a \geq \max (1, m)\). \\
\hline \multirow[t]{5}{*}{work} & REAL for slatrz \\
\hline & DOUBLE PRECISION for dlatrz \\
\hline & COMPLEX for clatrz \\
\hline & COMPLEX*16 for zlatrz. \\
\hline & Workspace array, DIMENSION (m). \\
\hline
\end{tabular}

\section*{Output Parameters}

\author{
a
}

On exit, the leading \(m\)-by- \(m\) upper triangular part of a contains the upper triangular matrix \(R\), and elements \(n-l+1\) to \(n\) of the first \(m\) rows of \(a\), with the array \(\operatorname{tau}\), represent the orthogonal/unitary matrix \(Z\) as a product of \(m\) elementary reflectors.

REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (m). The scalar factors of the elementary reflectors.

\section*{Application Notes}

The factorization is obtained by Householder's method. The \(k\)-th transformation matrix, \(Z(k)\), which is used to introduce zeros into the (\(m-k+1\))-th row of \(A\), is given in the form
\[
Z(k)=\left[\begin{array}{cc}
I & 0 \\
0 & T(k)
\end{array}\right]
\]
where
\[
T(k)=\mathrm{I}-t a u^{\star} u(k)^{\star} u(k)^{\prime}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
\]
tau is a scalar and \(z(k)\) is an l-element vector. tau and \(z(k)\) are chosen to annihilate the elements of the \(k\)-th row of \(A 2\).
The scalar tau is returned in the \(k\)-th element of tau and the vector \(u(k)\) in the \(k\)-th row of \(A 2\), such that the elements of \(z(k)\) are in \(a(k, l+1), \ldots, a(k, n)\). The elements of \(R\) are returned in the upper triangular part of \(A 1\).
\(Z\) is given by
\[
Z=Z(1) Z(2) \ldots Z(m) .
\]

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?lauu2}

Computes the product \(U U^{H}\) or \(L^{H} L\), where \(U\) and \(L\) are upper or lower triangular matrices (unblocked algorithm).
```

call slauu2 ( uplo, n, a, lda, info )
call dlauu2 ( uplo, n, a, lda, info )
call clauu2 ( uplo, n, a, lda, info )
call zlauu2 ( uplo, n, a, lda, info )

```

\section*{Discussion}

The routine ? lauu2 computes the product \(U U^{\prime}\) or \(L^{\prime} L\), where the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the array \(a\). If uplo = ' \(u\) ' or ' \(u\) ' , then the upper triangle of the result is stored, overwriting the factor \(U\) in \(a\).
If uplo = 'L' or ' 1 ', then the lower triangle of the result is stored, overwriting the factor \(L\) in a.

This is the unblocked form of the algorithm, calling Level 2 BLAS.

\section*{Input Parameters}
a

CHARACTER*1.
Specifies whether the triangular factor stored in the array a is upper or lower triangular:
= 'u': Upper triangular
= 'L': Lower triangular
INTEGER.
The order of the triangular factor \(U\) or \(L . n \geq 0\).
REAL for slauu2
DOUBLE PRECISION for dlauu2
COMPLEX for clauu2

COMPLEX*16 for zlauu2.
Array, DIMENSION (\(1 d a, n\)).On entry, the triangular factor \(U\) or \(L\).

INTEGER.
The leading dimension of the array \(a . I d a \geq \max (1, n)\).

\section*{Output Parameters}
```

a
On exit, if uplo = 'U', the upper triangle of a is
overwritten with the upper triangle of the product }U\mp@subsup{U}{}{\prime}\mathrm{ ;
if uplo = 'L', the lower triangle of a is overwritten with
the lower triangle of the product L'L.
info INTEGER.
= 0: successful exit
< 0: if info =-k, the k-th argument had an illegal value

```

\section*{?lauum}

Computes the product \(U U^{H}\) or \(L^{H} L\), where \(U\) and \(L\) are upper or lower triangular matrices.
```

call slauum ( uplo, n, a, lda, info )
call dlauum ( uplo, n, a, lda, info )
call clauum ( uplo, n, a, lda, info )
call zlauum ( uplo, n, a, lda, info )

```

\section*{Discussion}

The routine ? lauum computes the product \(U U^{\prime}\) or \(L^{\prime} L\), where the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the array \(a\).

If uplo = ' \(v\) ' or ' \(u\) ' , then the upper triangle of the result is stored, overwriting the factor \(U\) in \(a\).
If uplo = 'L' or ' 1 ' , then the lower triangle of the result is stored, overwriting the factor \(L\) in a.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

This is the blocked form of the algorithm, calling Level 3 BLAS.

\section*{Input Parameters}
```

uplo CHARACTER*1.

```

Specifies whether the triangular factor stored in the array a is upper or lower triangular:
= ' u ': Upper triangular
= 'L': Lower triangular
INTEGER.
The order of the triangular factor \(U\) or \(L . n \geq 0\).
REAL for slaum
DOUBLE PRECISION for dlauum
COMPLEX for clauum
COMPLEX*16 for zlauum.
Array, DIMENSION (\(1 \mathrm{da}, \mathrm{n}\)). On entry, the triangular factor \(U\) or \(L\).

INTEGER.
The leading dimension of the array \(a . I d a \geq \max (1, n)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, if uplo = ' \(u\) ', the upper triangle of \(a\) is overwritten with the upper triangle of the product \(U U^{\prime}\); if uplo = ' L ', the lower triangle of \(a\) is overwritten with the lower triangle of the product \(L^{\prime} L\). \\
\hline info & \begin{tabular}{l}
INTEGER. \\
= 0: successful exit \\
<0: if info \(=-k\), the \(k\)-th argument had an illegal value
\end{tabular} \\
\hline
\end{tabular}

\section*{?org2l/?ung2|}

Generates all or part of the orthogonal/unitary matrix \(Q\) from a \(Q L\) factorization determined by ? geqlf (unblocked algorithm).
```

call sorg2l ( m, n, k, a, lda, tau, work, info )
call dorg2l ( m, n, k, a, lda, tau, work, info )
call cung2l ( m, n, k, a, lda, tau, work, info )
call zung2l ( m, n, k, a, lda, tau, work, info )

```

\section*{Discussion}

The routine ?org2l/?ung2l generates an \(m\)-by- \(n\) real/complex matrix \(Q\) with orthonormal columns, which is defined as the last \(n\) columns of a product of \(k\) elementary reflectors of order \(m\) :
\(Q=H(k) \ldots H(2) H(1)\) as returned by ?geqle.

\section*{Input Parameters}
m INTEGER.
The number of rows of the matrix \(Q . m \geq 0\).
INTEGER.
The number of columns of the matrix \(Q . m \geq n \geq 0\).
INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q . n \geq k \geq 0\).

REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Array, DIMENSION (lda, n).
On entry, the (\(n-k+i\))-th column must contain the vector

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline & which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ?geqle in the last \(k\) columns of its array argument \(a\). \\
\hline \multirow[t]{2}{*}{Ida} & INTEGER. \\
\hline & The first dimension of the array a. Ida \(\geq \max (1, m)\). \\
\hline \multirow[t]{6}{*}{tau} & REAL for sorg2l \\
\hline & DOUBLE PRECISION for dorg2l \\
\hline & COMPLEX for cung2l \\
\hline & COMPLEX*16 for zung21. \\
\hline & Array, DIMENSION (k). \\
\hline & \(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by ? \(e q]\) \\
\hline \multirow[t]{5}{*}{work} & REAL for sorg2l \\
\hline & DOUBLE PRECISION for dorg2l \\
\hline & COMPLEX for cung2l \\
\hline & COMPLEX*16 for zung21. \\
\hline & Workspace array, DIMENSION (n). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & On exit, the m-by-n matrix \(Q\). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & \(=0\) : successful exit \\
\hline & <0: if info \(=-i\), the \(i\)-th argument has an illegal value \\
\hline
\end{tabular}

\section*{?org2r/?ung2r}

Generates all or part of the orthogonal/unitary matrix \(Q\) from a \(Q R\)
factorization determined by ?geqrf (unblocked algorithm).
```

call sorg2r ( m, n, k, a, lda, tau, work, info )
call dorg2r ( m, n, k, a, lda, tau, work, info )

```
```

call cung2r ( m, n, k, a, lda, tau, work, info )
call zung2r ( m, n, k, a, lda, tau, work, info )

```

\section*{Discussion}

The routine ?org2r/?ung2r generates an \(m\)-by- \(n\) real/complex matrix \(Q\) with orthonormal columns, which is defined as the first \(n\) columns of a product of \(k\) elementary reflectors of order \(m\)
\[
Q=H(1) H(2) \ldots H(k)
\]
as returned by ?geqrf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & \\
\hline \(n\) & \begin{tabular}{l}
INTEGER. \\
The number of columns of the matrix \(Q . m \geq_{n} \geq 0\).
\end{tabular} \\
\hline k & \begin{tabular}{l}
INTEGER. \\
The number of elementary reflectors whose product defines the matrix \(Q . n \geq k \geq 0\).
\end{tabular} \\
\hline a & \begin{tabular}{l}
REAL for sorg2r \\
DOUBLE PRECISION for dorg2r \\
COMPLEX for cung2r \\
COMPLEX*16 for zung2r. \\
Array, DIMENSION (\(1 d a, n\)). \\
On entry, the \(i\)-th column must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? geqre in the first \(k\) columns of its array argument \(a\).
\end{tabular} \\
\hline Ida & \begin{tabular}{l}
integer. \\
The first DIMENSION of the array \(a\). \(1 d a \geq \max (1, m)\).
\end{tabular} \\
\hline tau & \begin{tabular}{l}
REAL for sorg2r \\
DOUBLE PRECISION for dorg2r \\
COMPLEX for cung2r \\
COMPLEX*16 for zung2r.
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

Array, DIMENSION (k).
\(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by ?geqre.
work REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
COMPLEX*16 for zung2r.
Workspace array, DIMENSION (n).

\section*{Output Parameters}

\section*{a}
info

On exit, the \(m\)-by- \(n\) matrix \(Q\).
INTEGER.
= 0: successful exit
<0: if info \(=-i\), the \(i\)-th argument has an illegal value

\section*{?orgl2/?ungl2}

Generates all or part of the orthogonal/unitary matrix \(Q\) from an LQ factorization determined by ?gelqf (unblocked algorithm).
```

call sorgl2 ( m, n, k, a, lda, tau, work, info )
call dorgl2 ( m, n, k, a, lda, tau, work, info )
call cungl2 ( m, n, k, a, lda, tau, work, info )
call zungl2 ( m, n, k, a, lda, tau, work, info )

```

\section*{Discussion}

The routine ?orgl2/?ungl2 generates a \(m\)-by- \(n\) real/complex matrix \(Q\) with orthonormal rows, which is defined as the first \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\[
Q=H(k) \ldots H(2) H(1) \text { or } Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}
\]
as returned by ?gelqf.

\section*{Input Parameters}
\(m\) INTEGER
\(n\)
work

The number of rows of the matrix \(Q . m \geq 0\).
INTEGER.
The number of columns of the matrix \(Q . n \geq m\).
INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q . m \geq k \geq 0\).
REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Array, DIMENSION (Ida, n). On entry, the \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? gelqf in the first \(k\) rows of its array argument \(a\).

INTEGER.
The first dimension of the array \(a\). \(1 d a \geq \max (1, m)\).
REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Array, DIMENSION (k).
\(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(\mathrm{H}(i)\), as returned by ?gelqf.

REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Workspace array, DIMENSION (m).

\section*{Output Parameters}

On exit, the \(m\)-by- \(n\) matrix \(Q\).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
info \(\quad\)\begin{tabular}{l}
INTEGER. \\
\(=0\) : successful exit \\
\\
\(<0\) : if info \(=-i\), the \(i\)-th argument has an illegal value.
\end{tabular}

\section*{?orgr2/?ungr2}

Generates all or part of the orthogonal/unitary matrix \(Q\) from an RQfactorization determined by ?gerqf (unblocked algorithm).
```

call sorgr2 ( m, n, k, a, lda, tau, work, info )
call dorgr2 ( m, n, k, a, lda, tau, work, info )
call cungr2 ( m, n, k, a, lda, tau, work, info )
call zungr2 ( m, n, k, a, lda, tau, work, info )

```

\section*{Discussion}

The routine ?orgr2/?ungr2 generates an \(m\)-by-n real matrix \(Q\) with orthonormal rows, which is defined as the last \(m\) rows of a product of \(k\) elementary reflectors of order \(n\) \(Q=H(1) H(2) \ldots H(k)\) or \(Q=H(1)^{\prime} H(2)^{\prime} \ldots H(k)^{\prime}\) as returned by ?gerqf.

\section*{Input Parameters}
m
n
k
a

INTEGER. The number of rows of the matrix \(Q . m \geq 0\).
INTEGER.
The number of columns of the matrix \(Q . n \geq m\).
INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q . m \geq k \geq 0\).

REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2

COMPLEX*16 for zungr2.
Array, DIMENSION (Ida, n).On entry, the (\(m-k+i\))-th row must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? gerqf in the last \(k\) rows of its array argument \(a\).

INTEGER.
The first dimension of the array \(a\). Ida \(\geq \max (1, m)\).
REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
COMPLEX*16 for zungr2.
Array, DIMENSION (\(k\)).tau(\(i\)) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by
?gerqf.
REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
COMPLEX*16 for zungr2.
Workspace array, DIMENSION (\(m\)).

\section*{Output Parameters}
\begin{tabular}{ll}
a & On exit, the \(m\)-by- \(n\) matrix \(Q\). \\
info & INTEGER. \\
& \(=0\) : successful exit \\
& \(<0\) : if info \(=-i\), the \(i\)-th argument has an illegal value
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?orm2l/?unm2|}

Multiplies a general matrix by the orthogonal/unitary matrix from a QL factorization determined by ?geqlf (unblocked algorithm).
```

call sorm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dorm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```

\section*{Discussion}

The routine ?orm2l/?unm2l overwrites the general real/complex m-by-n matrix \(C\) with
\(Q * C\) if side \(=\) 'L' and trans \(=\) ' N ', or
\(Q^{\prime \star} C\) if side = 'L' and trans = 'T' (for real flavors) or trans = 'c' (for complex flavors), or
\(C * Q\) if side \(=\) ' R ' and trans \(=\) ' N ', or
\(C \star Q\) ' if side = 'R' and trans = 'T' (for real flavors) or
trans \(=\) 'C' (for complex flavors)
where \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(k) \ldots H(2) H(1)
\]
as returned by ?geqle. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side = 'R'.

Input Parameters
\begin{tabular}{ll}
side & CHARACTER* 1. \\
& \(=\) 'L': apply \(Q\) or \(Q\) ' from the left \\
& \(=\) 'R': apply \(Q\) or \(Q^{\prime}\) from the right
\end{tabular}
```

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'c': apply Q' (Conjugate transpose, for complex
flavors)
INTEGER.
The number of rows of the matrix C.m\geq0.
INTEGER.
The number of columns of the matrix C.n \geq0.
INTEGER.
The number of elementary reflectors whose product defines the matrix Q .
If side $=$ 'L', $m \geq k \geq 0$; if side = 'R', $n \geq k \geq 0$.
REAL for sorm2l
DOUBLE PRECISION for dorm21
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION ( $I d a, k$ ). The $i$-th column must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?geqlf in the last $k$ columns of its array argument $a$. The array $a$ is modified by the routine but restored on exit.
INTEGER.
The leading dimension of the array $a$.
If side $=$ 'L', $I d a \geq \max (1, m)$;
if side $=$ 'R', $I d a \geq \max (1, n)$.
REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (k). tau( $i$ ) must contain the scalar factor of the elementary reflector $\mathrm{H}(i)$, as returned by ? geqle.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
```

C
ldc
work
REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION ( $1 d c, n$ ).On entry, the $m$-by- $n$ matrix
$C$.
INTEGER.
The leading dimension of the array $C . I d c \geq \max (1, m)$.
work REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Workspace array, DIMENSION:
(n) if side = 'L',
( $m$ ) if side = 'R'.

```

\section*{Output Parameters}
\begin{tabular}{ll}
c & On exit, \(c\) is overwritten by \(Q C\) or \(Q^{\prime} C\) or \(C Q^{\prime}\) or \(C Q\). \\
info & INTEGER. \\
& \(=0\) : successful exit \\
& \(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value
\end{tabular}

\section*{?orm2r/?unm2r}

Multiplies a general matrix by the orthogonal/unitary matrix from a QR factorization determined by ?geqrf (unblocked algorithm).
```

call sorm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dorm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```

\section*{Discussion}

The routine ?orm2r/?unm2r overwrites the general real/complex m-by-n matrix \(C\) with
\[
\begin{aligned}
& Q * C \text { if side = 'L' and trans }=\text { ' } \mathrm{N} \text { ', or } \\
& Q^{\prime *} C \text { if side = 'L' and trans = 'T' (for real flavors) or } \\
& \text { trans = 'C' (for complex flavors), or } \\
& C \star Q \text { if side }=\text { ' } \mathrm{R} \text { ' and trans }=\text { ' } \mathrm{N} \text { ', or } \\
& C * Q \text { ' if side }=\text { ' } \mathrm{R} \text { ' and trans }=\text { ' } \mathrm{T} \text { ' (for real flavors) or } \\
& \text { trans }=\text { 'C' (for complex flavors) }
\end{aligned}
\]
where \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(1) H(2) \ldots H(k)
\]
as returned by ?geqrf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) ' R '.

\section*{Input Parameters}
```

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right
trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
flavors)
m
INTEGER.
The number of rows of the matrix C. m\geq0.
INTEGER.
The number of columns of the matrix C.n \geq0.
INTEGER.
The number of elementary reflectors whose product
defines the matrix Q.
If side ='L', m \geqk\geq0;
if side= 'R', n \geqk \geq0.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{a} & REAL for sorm2r \\
\hline & DOUBLE PRECISION for dorm2r \\
\hline & COMPLEX for cunm2r \\
\hline & COMPLEX*16 for zunm2r. \\
\hline & Array, DIMENSION (Ida,k). The \(i\)-th column must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? geqre in the first \(k\) columns of its array argument \(a\). The array \(a\) is modified by the routine but restored on exit. \\
\hline \multirow[t]{4}{*}{Ida} & INTEGER. \\
\hline & The leading dimension of the array \(a\). \\
\hline & If side \(=\) 'L', Ida \(\geq \max (1, m)\); \\
\hline & if side \(=\) 'R', Ida \(\geq \max (1, n)\). \\
\hline \multirow[t]{6}{*}{tau} & REAL for sorm2r \\
\hline & DOUBLE PRECISION for dorm2r \\
\hline & COMPLEX for cunm2r \\
\hline & COMPLEX*16 for zunm2r. \\
\hline & Array, DIMENSION (k). \\
\hline & tau(i) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by ?geqrf. \\
\hline \multirow[t]{5}{*}{c} & REAL for sorm2r \\
\hline & DOUBLE PRECISION for dorm2r \\
\hline & COMPLEX for cunm2r \\
\hline & COMPLEX*16 for zunm2r. \\
\hline & Array, DIMENSION (\(1 d c, n\)). On entry, the \(m-b y-n\) matrix \(C\). \\
\hline \multirow[t]{2}{*}{\(1 d c\)} & INTEGER. \\
\hline & The leading dimension of the array \(C\). \(1 d c \geq \max (1, m)\). \\
\hline \multirow[t]{7}{*}{work} & REAL for sorm2r \\
\hline & DOUBLE PRECISION for dorm2r \\
\hline & COMPLEX for cunm2r \\
\hline & COMPLEX*16 for zunm2r. \\
\hline & Workspace array, DIMENSION \\
\hline & \((n)\) if side = 'L', \\
\hline & \((m)\) if side \(=\) 'R'. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

c
On exit,c is overwritten by QC or Q'C or CQ' or CQ.
info
INTEGER.
= 0: successful exit
<0: if info =-i, the i-th argument had an illegal value

```

\section*{?orml2/?unml2}

Multiplies a general matrix by the orthogonal/unitary matrix from a \(L Q\) factorization determined by ?gelqf (unblocked algorithm).
```

call sorml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dorml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```

\section*{Discussion}

The routine ?orml2/?unml2 overwrites the general real/complex m-by-n matrix \(C\) with
```

$Q \star C$ if side = 'L' and trans $=$ ' N ', or
$Q$ ' $C$ if side = 'L' and trans = 'T' (for real flavors) or
trans $=$ 'C' (for complex flavors), or
$C \star Q$ if side $=$ ' R ' and trans $=$ ' N ', or
$C \star Q$ ' if side $=$ 'R' and trans $=$ ' T ' (for real flavors) or
trans $=$ ' C ' (for complex flavors)

```
where \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(k) \ldots H(2) H(1) \text { or } Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}
\]
as returned by ?gelqf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) ' R '.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}

CHARACTER*1.
= 'L': apply \(Q\) or \(Q^{\prime}\) from the left
= 'R': apply \(Q\) or \(Q\) ' from the right
CHARACTER*1.
= ' N ': apply \(Q\) (No transpose)
= 'T': apply \(Q^{\prime}\) (Transpose, for real flavors)
= 'C': apply \(Q^{\prime}\) (Conjugate transpose, for complex flavors)

INTEGER.
The number of rows of the matrix \(C . m \geq 0\).
INTEGER.
The number of columns of the matrix \(C . n \geq 0\).
INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q\).
If side \(=\) 'L', \(m \geq k \geq 0\);
if side \(=\) ' \(R\) ', \(n \geq k \geq 0\).
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, Dimension
\((I d a, m)\) if side = 'L',
\((\mathrm{Ida}, \mathrm{n})\) if side \(=\) ' R '
The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? gelqf in the first \(k\) rows of its array argument \(a\). The array \(a\) is modified by the routine but restored on exit.

INTEGER.
The leading dimension of the array \(a . I d a \geq \max (1, k)\).
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
```

Array, DIMENSION (k).
$\operatorname{tau}(i)$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?gelqf.
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION (Idc, n)
On entry, the $m-b y-n$ matrix $C$.
INTEGER.
The leading dimension of the array $c$. $I d c \geq \max (1, m)$.
,
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Workspace array, DIMENSION
(n) if side $=$ 'L',
( $m$ ) if side $=$ ' $\mathrm{R}^{\prime}$

```

\section*{Output Parameters}
\begin{tabular}{ll}
C & On exit, \(c\) is overwritten by \(Q C\) or \(Q^{\prime} C\) or \(C Q^{\prime}\) or \(C Q\). \\
info & INTEGER. \\
& \(=0\) : successful exit \\
& \(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value
\end{tabular}

\section*{?ormr2/?unmr2}

Multiplies a general matrix by the
orthogonal/unitary matrix from a \(R Q\)
factorization determined by ?gerqf
(unblocked algorithm).
```

call sormr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
```

call dormr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunmr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunmr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```

\section*{Discussion}

The routine ?ormr2/?unmr2 overwrites the general real/complex \(m\)-by- \(n\) matrix \(C\) with
\[
\begin{aligned}
& Q^{\star} C \text { if side }=\text { 'L' and trans }=\text { 'N', or } \\
& Q^{\prime} \star C \text { if side }=\text { 'L' and trans }=\text { 'T' (for real flavors) or } \\
& \text { trans }=\text { 'C' (for complex flavors), or } \\
& C \star Q \text { if side }=\text { 'R' and trans }=\text { 'N', or } \\
& C \star Q^{\prime} \text { if side }=\text { ' } R \text { ' and trans }=\text { ' ' (for real flavors) or } \\
& \text { trans }=\text { 'C' (for complex flavors) }
\end{aligned}
\]
where \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(1) H(2) \ldots H(k) \text { or } Q=H(1)^{\prime} H(2)^{\prime} \ldots H(k)^{\prime}
\]
as returned by ?gerqf. \(Q\) is of order \(m\) if side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
```

side
trans
m
n
CHARACTER*1.
$=$ '土': apply $Q$ or $Q$ ' from the left
$=$ 'R': apply $Q$ or $Q$ ' from the right

```
trans
m
n

CHARACTER*1.
= ' N ': apply \(Q\) (No transpose)
= 'T': apply \(Q^{\prime}\) (Transpose, for real flavors)
= 'c': apply \(Q^{\prime}\) (Conjugate transpose, for complex flavors)

INTEGER.
The number of rows of the matrix \(C . m \geq 0\).
INTEGER.
The number of columns of the matrix \(C . n \geq 0\).
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{k} & INTEGER. \\
\hline & \begin{tabular}{l}
The number of elementary reflectors whose product defines the matrix \(Q\). \\
If side \(=\) 'L', \(m \geq k \geq 0\); \\
if side \(=\) ' \(R\) ', \(n \geq k \geq 0\).
\end{tabular} \\
\hline \multirow[t]{8}{*}{a} & REAL for sormr2 \\
\hline & DOUBLE PRECISION for dormr2 \\
\hline & COMPLEX for cunmr2 \\
\hline & COMPLEX*16 for zunmr2. \\
\hline & Array, DIMENSION \\
\hline & \((I d a, m)\) if side = 'L', \\
\hline & \((I d a, n)\) if side = 'R' \\
\hline & The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? gerqf in the last \(k\) rows of its array argument \(a\). The array \(a\) is modified by the routine but restored on exit. \\
\hline \multirow[t]{2}{*}{lda} & INTEGER. \\
\hline & The leading dimension of the array \(a .1 d a \geq \max (1, k)\). \\
\hline \multirow[t]{6}{*}{tau} & REAL for sormr2 \\
\hline & DOUBLE PRECISION for dormr2 \\
\hline & COMPLEX for cunmr2 \\
\hline & COMPLEX*16 for zunmr2. \\
\hline & Array, DIMENSION (\(k\)). \\
\hline & \(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(\mathrm{H}(i)\), as returned by ? gerqf. \\
\hline \multirow[t]{6}{*}{c} & REAL for sormr2 \\
\hline & DOUBLE PRECISION for dormr2 \\
\hline & COMPLEX for cunmr2 \\
\hline & COMPLEX*16 for zunmr2. \\
\hline & Array, DIMENSION (\(1 d c, n\)). \\
\hline & On entry, the \(m\)-by- \(n\) matrix \(C\). \\
\hline \multirow[t]{2}{*}{Idc} & INTEGER. \\
\hline & The leading dimension of the array \(C .1 d c \geq m a x(1, m)\). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
```

work REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'

```

\section*{Output Parameters}
\begin{tabular}{ll}
C & On exit, \(c\) is overwritten by \(Q C\) or \(Q^{\prime} C\) or \(C Q^{\prime}\) or \(C Q\). \\
& INTEGER. \\
& \(=0\) : successful exit \\
& \(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value
\end{tabular}

\section*{?ormr3/?unmr3}

Multiplies a general matrix by the orthogonal/unitary matrix from a \(R Z\) factorization determined by ? tzrzf (unblocked algorithm).
```

call sormr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)
call dormr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)
call cunmr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)
call zunmr3 (side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

```

Discussion
The routine ?ormr3/?unmr3 overwrites the general real/complex m-by-n matrix \(C\) with
```

Q*C if side = 'L' and trans = 'N', or
Q'*C if side = 'L' and trans = 'T' (for real flavors) or
trans = 'c' (for complex flavors), or

```
```

$C^{\star} Q$ if side $=$ ' R ' and trans $=$ ' N ', or
$C * Q$ ' if side $=$ 'R' and trans $=$ ' T ' (for real flavors) or
trans $=$ 'C' (for complex flavors)

```
where \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(1) H(2) \ldots H(k)
\]
as returned by ?tzrzf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) ' R '.

\section*{Input Parameters}
```

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right
trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'c': apply Q' (Conjugate transpose, for complex
flavors)
INTEGER.
The number of rows of the matrix C.m\geq0.
n
k
I
NTEGER.
The number of columns of the matrix C.n \geq0.
EGER.
The number of elementary reflectors whose product defines the matrix $Q$.
If side $=$ 'L', $m \geq k \geq 0$; if side $=$ ' R ', $n \geq k \geq 0$.
INTEGER.
The number of columns of the matrix $A$ containing the meaningful part of the Householder reflectors.
If side $=$ 'L', $m \geq 1 \geq 0$,
if side $=$ ' $R$ ', $n \geq 1 \geq 0$.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{9}{*}{a} & REAL for sormr3 \\
\hline & DOUBLE PRECISION for dormr3 \\
\hline & COMPLEX for cunmr3 \\
\hline & COMPLEX*16 for zunmr3. \\
\hline & Array, DIMENSION \\
\hline & \((I d a, m)\) if side = 'L', \\
\hline & \((I d a, n)\) if side = 'R' \\
\hline & The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by \\
\hline & ?tzrzf in the last \(k\) rows of its array argument \(a\). The array \(a\) is modified by the routine but restored on exit. \\
\hline \multirow[t]{2}{*}{Ida} & INTEGER. \\
\hline & The leading dimension of the array \(a . I d a \geq \max (1, k)\). \\
\hline \multirow[t]{6}{*}{tau} & REAL for sormr3 \\
\hline & DOUBLE PRECISION for dormr3 \\
\hline & COMPLEX for cunmr3 \\
\hline & COMPLEX*16 for zunmr3. \\
\hline & Array, DIMENSION (k). \\
\hline & \(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(\mathrm{H}(i)\), as returned by ?tzrzf. \\
\hline \multirow[t]{6}{*}{C} & REAL for sormr3 \\
\hline & DOUBLE PRECISION for dormr3 \\
\hline & COMPLEX for cunmr3 \\
\hline & COMPLEX*16 for zunmr3. \\
\hline & Array, DIMENSION (Idc, \(n\)). \\
\hline & On entry, the \(m\)-by- \(n\) matrix \(C\). \\
\hline \multirow[t]{2}{*}{\(1 d c\)} & INTEGER. \\
\hline & The leading dimension of the array c. \(1 d c \geq \max (1, m)\). \\
\hline \multirow[t]{7}{*}{work} & REAL for sormr3 \\
\hline & DOUBLE PRECISION for dormr3 \\
\hline & COMPLEX for cunmr3 \\
\hline & COMPLEX*16 for zunmr3. \\
\hline & Workspace array, DIMENSION \\
\hline & \((n)\) if side = 'L', \\
\hline & \((m)\) if side \(=\) 'R'. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

c
On exit,c is overwritten by QC or }\mp@subsup{Q}{}{\prime}C\mathrm{ or }C\mp@subsup{Q}{}{\prime}\mathrm{ or }CQ
info
INTEGER.
= 0: successful exit
<0: if info =-i, the i-th argument had an illegal value

```

\section*{?pbtf2}

Computes the Cholesky factorization of a symmetric/ Hermitian positive definite band matrix (unblocked algorithm).
```

call spbtf2 ( uplo, n, kd, ab, ldab, info )
call dpbtf2 ( uplo, n, kd, ab, ldab, info )
call cpbtf2 ( uplo, n, kd, ab, ldab, info )
call zpbtf2 ( uplo, n, kd, ab, ldab, info )

```

\section*{Discussion}

The routine computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite band matrix \(A\). The factorization has the form
\(A=U\) ' \(U\), if uplo = ' U ', or \(A=L L\) ', if uplo = 'L',
where \(U\) is an upper triangular matrix, \(U^{\prime}\) is the transpose of \(U\), and \(L\) is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.

\section*{Input Parameters}
uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix \(A\) is stored:
\(=\) ' u ': Upper triangular
= 'L': Lower triangular

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
n

\section*{Output Parameters} \(k d \geq 0\).

INTEGER.
The order of the matrix \(A . n \geq 0\).
INTEGER.
The number of super-diagonals of the matrix \(A\) if uplo \(=\) ' U , or the number of sub-diagonals if uplo = 'L'.

REAL for spbt \(f 2\)
DOUBLE PRECISION for dpbtf2
COMPLEX for cpbtf2
COMPLEX*16 for zpbtf2.
Array, DIMENSION (Idab, \(n\)).
On entry, the upper or lower triangle of the symmetric/
Hermitian band matrix \(A\), stored in the first \(k d+1\) rows of the array. The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
if uplo = 'U', \(a b(k d+1+i-j, j)=A(i, j)\) for \(\max (1, j-k d) \leq i \leq j ;\)
if uplo = 'L', ab \((1+i-j, j)=A(i, j)\) for \(j \leq i \leq \min (n, j+k d)\).

INTEGER.
The leading dimension of the array \(a b . ~ I d a b \geq k d+1\).

On exit, if info \(=0\), the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{\prime} U\) or \(A=L L^{\prime}\) of the band matrix \(A\), in the same storage format as \(A\).

INTEGER.
= 0: successful exit
<0: if info \(=-k\), the \(k\)-th argument had an illegal value \(>0\) : if info \(=k\), the leading minor of order \(k\) is not positive definite, and the factorization could not be completed.

\section*{?potf2}

Computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
```

call spotf2 ( uplo, n, a, lda, info )
call dpotf2 ( uplo, n, a, lda, info )
call cpotf2 ( uplo, n, a, lda, info )
call zpotf2 ( uplo, n, a, lda, info )

```

\section*{Discussion}

The routine ?potf2 computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix \(A\). The factorization has the form
\(A=U^{\prime} U\), if uplo = ' \(U\) ', or
\(A=L L\) ', if uplo = 'L',
where \(U\) is an upper triangular matrix and \(L\) is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of
the symmetric/Hermitian matrix A is stored.
= 'u': Upper triangular
= 'L':Lower triangular
INTEGER.
The order of the matrix A. n \geq0.
REAL for spotf2
DOUBLE PRECISION or dpotf2
COMPLEX for cpotf2
COMPLEX*16 for zpotf2.
Array, DIMENSION (Ida, n).
On entry, the symmetric/Hermitian matrix }A\mathrm{ .

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

If uplo = ' U ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.
integer.
The leading dimension of the array \(a\). \(I d a \geq \max (1, n)\).

\section*{Output Parameters}
a
On exit, if info \(=0\), the factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{\prime} U\) or \(A=L L^{\prime}\).
info
INTEGER.
\(=0\) : successful exit
<0: if info \(=-k\), the \(k\)-th argument had an illegal value \(>0\) : if info \(=k\), the leading minor of order \(k\) is not positive definite, and the factorization could not be completed.

\section*{?ptts2}

Solves a tridiagonal system of the form
\(A X=B\) using the \(L D L^{H}\) factorization
computed by ? pttrf.
```

call sptts2 ( n, nrhs, d, e, b, ldb )
call dptts2 ( n, nrhs, d, e, b, ldb )
call cptts2 ( iuplo, n, nrhs, d, e, b, ldb )
call zptts2 ( iuplo, n, nrhs, d, e, b, ldb )

```

\section*{Discussion}

The routine ?ptts2 solves a tridiagonal system of the form \(A X=B\)
Real flavors sptts2/dptts2 use the \(L D L^{\prime}\) factorization of \(A\) computed by spttrf/dpttrf, and complex flavors cptts2/zptts2 use the \(U^{\prime} D U\) or \(L D L^{\prime}\) factorization of \(A\) computed by cpttrf/zpttrf. \(D\) is a diagonal matrix specified in the vector \(d, U(\) or \(L)\) is a unit bidiagonal matrix whose superdiagonal (subdiagonal) is specified in the vector e, and \(X\) and \(B\) are \(n\)-by-nrhs matrices.

\section*{Input Parameters}
```

iuplo INTEGER. Used with complex flavors only.
Specifies the form of the factorization and whether the
vector e is the superdiagonal of the upper bidiagonal
factor U or the subdiagonal of the lower bidiagonal
factor }L\mathrm{ .
= 1:A=U'D U, e is the superdiagonal of U;
= 0:A = LD L', e is the subdiagonal of L
INTEGER.
The order of the tridiagonal matrix A. n \geq0.
INTEGER.
The number of right hand sides, that is, the number of
columns of the matrix B. nrhs \geq0.
REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (n).
The n diagonal elements of the diagonal matrix D from
the factorization of A.
e REAL for sptts2
DOUBLE PRECISION for dptts2
COMPLEX for cptts2
COMPLEX*16 for zptts2.
Array, DIMENSION (n-1).
Contains the ( }n-1\mathrm{ ) subdiagonal elements of the unit
bidiagonal factor }L\mathrm{ from the LDL' factorization of A (for

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
real flavors, or for complex flavors when iuplo \(=0\)). For complex flavors when iuplo \(=1\), e contains the \((n-1)\) superdiagonal elements of the unit bidiagonal factor \(U\) from the factorization \(A=U^{\prime} D U\).
b
REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, dimension (\(1 \mathrm{db}, \mathrm{nrhs}\)).
On entry, the right hand side vectors \(B\) for the system of linear equations.
\(1 d b\)
INTEGER.
The leading dimension of the array \(B\). \(I d b \geq \max (1, n)\).

\section*{Output Parameters}

On exit, the solution vectors, \(X\).

\section*{?rscl}

Multiplies a vector by the reciprocal of a real scalar.
```

call srscl ( n, sa, sx, incx )
call drscl ( n, sa, sx, incx )
call csrscl ( n, sa, sx, incx )
call zdrscl ( n, sa, sx, incx )

```

\section*{Discussion}

The routine ?rscl multiplies an \(n\)-element real/complex vector \(x\) by the real scalar \(1 / a\). This is done without overflow or underflow as long as the final result \(x / a\) does not overflow or underflow.

\section*{Input Parameters}

INTEGER.
The number of components of the vector \(x\).
```

sa REAL for srscl/csrscl
DOUBLE PRECISION for drscl/zdrscl.
The scalar }a\mathrm{ which is used to divide each component of
the vector }x\mathrm{ . sa must be }\geq0\mathrm{ , or the subroutine will
divide by zero.
REAL for srscl
DOUBLE PRECISION for drscl
COMPLEX for csrscl
COMPLEX*16 for zdrscl.
Array, DIMENSION (1+(n-1)*abs(incx)).
The n-element vector }x\mathrm{ .
incx INTEGER.
The increment between successive values of the vector
sx.
If incx > 0, sx(1)=x(1) and
sx(1+(i-1)*incx) = x(i), 1<i\leqn.

```

\section*{Output Parameters}

\section*{SX}

On exit, the result \(x / a\).

\section*{?sygs2/?hegs2}

Reduces a symmetric/Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from ?pot ff (unblocked algorithm).
```

call ssygs2 ( itype, uplo, n, a, lda, b, ldb, info )
call dsygs2 ( itype, uplo, n, a, lda, b, ldb, info )
call chegs2 ( itype, uplo, n, a, lda, b, ldb, info )
call zhegs2 ( itype, uplo, n, a, lda, b, ldb, info )

```

\section*{Discussion}

The routine ?sygs \(2 /\) ?hegs 2 reduces a real symmetric-definite or a complex Hermitian-definite generalized eigenproblem to standard form. If \(i t y p e=1\), the problem is
\[
A x=\lambda B x
\]
and \(A\) is overwritten by \(\operatorname{inv}\left(U^{\prime}\right) \star A \star \operatorname{inv}(U)\) or \(\operatorname{inv}(L) \star A * \operatorname{inv}\left(L^{\prime}\right)\).
If itype \(=2\) or 3 , the problem is
\[
A B x=\lambda x \text { or } B A x=\lambda x,
\]
and \(A\) is overwritten by \(U A U^{\prime}\) or \(L^{\prime} A L\). \(B\) must have been previously factorized as \(U^{\prime} U\) or \(L L^{\prime}\) by ?potrf.

\section*{Input Parameters}

INTEGER.
\(=1\) : compute \(\operatorname{inv}\left(U^{\prime}\right) \star A \star \operatorname{inv}(U)\) or \(\operatorname{inv}(L) \star A * \operatorname{inv}\left(L^{\prime}\right)\);
\(=2\) or 3: compute \(U A U^{\prime}\) or \(L^{\prime} A L\).
CHARACTER
Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix \(A\) is stored, and how \(B\) has been factorized.
= 'u': Upper triangular
= ' L ': Lower triangular
INTEGER.
The order of the matrices \(A\) and \(B . n \geq 0\).
REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs 2
COMPLEX*16 for zhegs2.
Array, DIMENSION (Ida, n).
On entry, the symmetric/Hermitian matrix \(A\).
If uplo = ' U ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo = ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.
```

Ida INTEGER.
The leading dimension of the array a. Ida }\geq\operatorname{max}(1,n)
b REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
COMPLEX*16 for zhegs2.
Array, DIMENSION (ldb, n).
The triangular factor from the Cholesky factorization of
B as returned by ?potrf.
Idb INTEGER.
The leading dimension of the array B. Idb \geq max (1,n).

```

\section*{Output Parameters}
```

a	On exit, if info $=0$, the transformed matrix, stored in the same format as $A$.
info	INTEGER.   = 0: successful exit.   <0: if info $=-i$, the $i$-th argument had an illegal value.

```

\section*{?sytd2/?hetd2}

Reduces a symmetric/Hermitian matrix
to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (unblocked algorithm).
```

call ssytd2 ( uplo, n, a, lda, d, e, tau, info )
call dsytd2 ( uplo, n, a, lda, d, e, tau, info )
call chetd2 ( uplo, n, a, lda, d, e, tau, info )
call zhetd2 ( uplo, n, a, lda, d, e, tau, info )

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Discussion}

The routine ?sytd2/?hetd2 reduces a real symmetric/complex Hermitian matrix \(A\) to real symmetric tridiagonal form \(T\) by an orthogonal/unitary similarity transformation: \(Q^{\prime} A Q=T\).

Input Parameters
uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix \(A\) is stored:
= 'u': Upper triangular
= 'L': Lower triangular
INTEGER.
The order of the matrix \(A . n \geq 0\).
REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
COMPLEX*16 for zhetd2.
Array, DIMENSION (Ida, n).
On entry, the symmetric/Hermitian matrix \(A\).
If uplo = ' u ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo = ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

Ida INTEGER.
The leading dimension of the array \(a . I d a \geq \max (1, n)\).

\section*{Output Parameters}

On exit, if uplo = ' U ', the diagonal and first superdiagonal of a are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors;
if uplo = 'L', the diagonal and first subdiagonal of \(a\) are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors.

REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2. Array, DIMENSION (\(n\)).
The diagonal elements of the tridiagonal matrix \(T\) :
\(a(i)=a(i, i)\).
REAL for ssytd2 / chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (\(n-1\)).
The off-diagonal elements of the tridiagonal matrix \(T\) :
\(e(i)=a(i, i+1)\) if uplo \(=\) ' \(v\) ',
\(e(i)=a(i+1, i)\) if uplo \(=\) ' L '.
REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
COMPLEX*16 for zhetd2.
Array, DIMENSION (\(n-1\)).
The scalar factors of the elementary reflectors .
INTEGER.
\(=0\) : successful exit
<0: if info \(=-i\), the \(i\)-th argument had an illegal value.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?sytf2}

Computes the factorization of a real/complex symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).
```

call ssytf2 ( uplo, n, a, lda, ipiv, info )
call dsytf2 ( uplo, n, a, lda, ipiv, info )
call csytf2 ( uplo, n, a, lda, ipiv, info )
call zsytf2 ( uplo, n, a, lda, ipiv, info )

```

\section*{Discussion}

The routine ?sytf2 computes the factorization of a real/complex symmetric matrix \(A\) using the Bunch-Kaufman diagonal pivoting method:
\[
A=U D U^{\prime} \text { or } A=L D L^{\prime}
\]
where \(U(\) or \(L\)) is a product of permutation and unit upper (lower) triangular matrices, \(U^{\prime}\) is the transpose of \(U\), and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling Level 2 BLAS.

\section*{Input Parameters}
\(n\)
a

CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored
\(=\) 'u': Upper triangular
= 'L': Lower triangular
INTEGER.
The order of the matrix \(A . n \geq 0\).
REAL for ssytf2
DOUBLE PRECISION for dsytf2
COMPLEX for csytf2
COMPLEX*16 for zsytf2.
Array, DIMENSION (Ida, \(n\)).

On entry, the symmetric matrix \(A\).
If uplo \(=\) ' U ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo = ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

INTEGER.
The leading dimension of the array \(a . I d a \geq \max (1, n)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\). \\
\hline \multirow[t]{6}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION (\(n\)). \\
\hline & Details of the interchanges and the block structure of \(D\) \\
\hline & If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and ipiv \((k)\) were interchanged and \(D(k, k)\) is a 1-by-1 diagonal block. \\
\hline & If uplo = 'U' and ipiv \((k)=\operatorname{ipiv}(k-1)<0\), then rows and columns \(k-1\) and -ipiv \((k)\) were interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block. \\
\hline & If uplo \(=\) 'L' and ipiv \((k)=\operatorname{ipiv}(k+1)<0\), then rows and columns \(k+1\) and -ipiv \((k)\) were interchanged and \(D(k: k+1, k: k+1)\) is a 2 -by- 2 diagonal block. \\
\hline \multirow[t]{3}{*}{info} & \begin{tabular}{l}
INTEGER. \\
= 0: successful exit
\end{tabular} \\
\hline & <0: if info \(=-k\), the \(k\)-th argument had an illegal value \(>0\) : if info \(=k, D(k, k)\) is exactly zero. The \\
\hline & factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, and division by zero will occur if it is used to solve a system of equations. \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?hetf2}

Computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm).
```

call chetf2 ( uplo, n, a, lda, ipiv, info )
call zhetf2 ( uplo, n, a, lda, ipiv, info )

```

\section*{Discussion}

The routine computes the factorization of a complex Hermitian matrix \(A\) using the Bunch-Kaufman diagonal pivoting method:
\[
A=U D U^{\prime} \text { or } A=L D L^{\prime}
\]
where \(U(\) or \(L)\) is a product of permutation and unit upper (lower) triangular matrices, \(U^{\prime}\) is the conjugate transpose of \(U\), and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling Level 2 BLAS.

\section*{Input Parameters}
uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored:
= ' u ': Upper triangular
= 'L': Lower triangular
INTEGER.
The order of the matrix \(A . n \geq 0\).
COMPLEX for chetf2
COMPLEX*16 for zhetf2.
Array, DIMENSION (Ida, n).
On entry, the Hermitian matrix \(A\).
If uplo \(=\) ' \(u\) ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.

If uplo = ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

INTEGER.
The leading dimension of the array \(a . I d a \geq \max (1, n)\).

\section*{Output Parameters}

On exit, the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\).
info

INTEGER.

\section*{Array, DIMENSION (n).}

Details of the interchanges and the block structure of \(D\) If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and \(\operatorname{ipiv(~} k\)) were interchanged and \(D(k, k)\) is a 1-by- 1 diagonal block.
If uplo = 'u' and \(\operatorname{ipiv}(k)=\operatorname{ipiv}(k-1)<0\), then rows and columns \(k-1\) and \(-i p i v(k)\) were interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv \((k)=\operatorname{ipiv}(k+1)<0\), then rows and columns \(k+1\) and \(-i p i v(k)\) were interchanged and \(D(k: k+1, k: k+1)\) is a 2 -by- 2 diagonal block.

INTEGER.
= 0: successful exit
< 0 : if info \(=-k\), the \(k\)-th argument had an illegal value \(>0\) : if \(\operatorname{info}=k, D(k, k)\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?tgex2}

Swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal/unitary equivalence transformation.
```

call stgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
ldz, j1, n1, n2, work, lwork, info )
call dtgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
ldz, j1, n1, n2, work, lwork, info )
call ctgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
ldz, j1, info )
call ztgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
ldz, j1, info )

```

\section*{Discussion}

The real routines stgex2/dtgex2 swap adjacent diagonal blocks (A11, \(B 11\)) and (A22, B22) of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair \((A, B)\) by an orthogonal equivalence transformation. \((A, B)\) must be in generalized real Schur canonical form (as returned by sgges /dgges), that is, \(A\) is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. \(B\) is upper triangular.
The complex routines ctgex2/ztgex2 swap adjacent diagonal 1-by-1 blocks \((A 11, B 11)\) and \((A 22, B 22)\) in an upper triangular matrix pair \((A, B)\) by an unitary equivalence transformation. \((A, B)\) must be in generalized Schur canonical form, that is, \(A\) and \(B\) are both upper triangular.
All routines optionally update the matrices \(Q\) and \(Z\) of generalized Schur vectors:
\(Q(\) in \() * A(\) in \() * Z(\) in \() '=Q(\) out \() * A(\) out \() * Z(\text { out })^{\prime}\)
\(Q(\) in \() * B(\) in \() * Z(\) in \() '=Q(\) out \() * B(\) out \() * Z(\) out \(){ }^{\prime}\)

\section*{Input Parameters}
```

wantq LOGICAL.
If wantq = .TRUE. : update the left transformation
matrix Q;
If wantq = .FALSE.: do not update Q.
LOGICAL.
If wantz = .TRUE. : update the right transformation
matrix Z;
If wantz = .FALSE.: do not update Z.
INTEGER.
The order of the matrices A and B.n \geq0.
a, b
Ida
ldb
q, z
ldq
REAL for stgex2
DOUBLE PRECISION for dtgex2
COMPLEX for ctgex2
COMPLEX*16 for ztgex2.
Arrays, DIMENSION (Ida, n) and (ldb, n), respectively.
On entry, the matrices A and B in the pair (A,B).
INTEGER.
The leading dimension of the array a. Ida \geq max (1,n).
INTEGER.
The leading dimension of the array b. Idb \geq max (1,n).
REAL for stgex2
DOUBLE PRECISION for dtgex2
COMPLEX for ctgex2
COMPLEX*16 for ztgex2.
Arrays, DIMENSION (ldq, n) and (ldz, n), respectively.
On entry, if wantq= .TRUE., q contains the
orthogonal/unitary matrix Q, and if wantz = .TRUE.,
z contains the orthogonal/unitary matrix Z.
INTEGER.
The leading dimension of the array q. ldq }\geq1\mathrm{ .
If wantq=.TRUE., ldq\geqn.

```

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\(1 d z\)} & INTEGER. \\
\hline & \begin{tabular}{l}
The leading dimension of the array \(z . ~ I d z \geq 1\). \\
If want \(z=\). TRUE., \(l d z \geq n\).
\end{tabular} \\
\hline \multirow[t]{2}{*}{j1} & INTEGER. \\
\hline & The index to the first block (\(111, B 11\)). \(1 \leq_{j 1} \leq_{n}\). \\
\hline \multirow[t]{2}{*}{n1} & INTEGER. Used with real flavors only. \\
\hline & The order of the first block \((A 11, B 11) . n 1=0,1\) or 2 . \\
\hline \multirow[t]{2}{*}{n2} & INTEGER. Used with real flavors only. \\
\hline & The order of the second block (\(A 22, B 22\)). n \(2=0,1\) or 2 . \\
\hline \multirow[t]{3}{*}{work} & REAL for stgex2 \\
\hline & DOUBLE PRECISION for dtgex2. \\
\hline & Workspace array, DIMENSION (lwork). Used with real flavors only. \\
\hline \multirow[t]{3}{*}{lwork} & INTEGER. \\
\hline & The dimension of the array work. \\
\hline & 1 work \(\geq \max \left(n *(n 2+n 1), 2 *(n 2+n 1)^{2}\right)\) \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, the updated matrix \(A\). \\
\hline \(b\) & On exit, the updated matrix \(B\). \\
\hline q & \begin{tabular}{l}
On exit, the updated matrix \(Q\). \\
Not referenced if want \(q=\). FALSE. .
\end{tabular} \\
\hline \(z\) & \begin{tabular}{l}
On exit, the updated matrix \(Z\). \\
Not referenced if wantz \(=\). FALSE . .
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
=0: Successful exit \\
For stgex2/dtgex2: if info \(=1\), the transformed matrix \((A, B)\) would be too far from generalized Schur form; the blocks are not swapped and \((A, B)\) and \((Q, Z)\) are unchanged. The problem of swapping is too ill-conditioned. If info \(=-16\) : 1 work is too small. Appropriate value for 1 work is returned in work(1).
\end{tabular} \\
\hline
\end{tabular}

For ctgex2/ztgex2: if info \(=1\), the transformed matrix pair \((A, B)\) would be too far from generalized Schur form; the problem is ill-conditioned. \((A, B)\) may have been partially reordered, and ilst points to the first row of the current position of the block being moved.

\section*{?tgsy2}

Solves the generalized Sylvester equation (unblocked algorithm).
```

call stgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc,
d, ldd, e, lde, f, ldf, scale, rdsum, rdscal,
iwork, pq, info )
call dtgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc,
d, ldd, e, lde, f, ldf, scale, rdsum, rdscal,
iwork, pq, info )
call ctgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc,
d, ldd, e, lde, f, ldf, scale, rdsum, rdscal,
info )
call ztgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc,
d, ldd, e, lde, f, ldf, scale, rdsum, rdscal,
info )

```

\section*{Discussion}

The routine ?tgsy2 solves the generalized Sylvester equation:
\[
\begin{gather*}
A R-L B=\operatorname{scale}^{\star} C \tag{1}\\
D R-L E=\text { scale } \star F,
\end{gather*}
\]
using Level 1 and 2 BLAS, where \(R\) and \(L\) are unknown m-by- \(n\) matrices, \((A, D),(B, E)\) and \((C, F)\) are given matrix pairs of size \(m-b y-m, n-b y-n\) and \(m\)-by- \(n\), respectively.
For stgsy2/dtgsy2, pairs \((A, D)\) and \((B, E)\) must be in generalized Schur
canonical form, that is, \(A, B\) are upper quasi triangular and \(D, E\) are upper triangular. For ctgsy \(2 /\) ztgsy 2 , matrices \(A, B, D\) and \(E\) are upper triangular (that is, \((A, D)\) and \((B, E)\) in generalized Schur form).
The solution \((R, L)\) overwrites \((C, F) .0 \leq_{\text {scale }} \leq 1\) is an output scaling factor chosen to avoid overflow.

In matrix notation, solving equation (1) corresponds to solve
\(Z x=\) scale \({ }^{\star} b\),
where \(Z\) is defined as
\[
Z=\left[\begin{array}{ll}
\operatorname{kron}\left(I_{n}, A\right) & -\operatorname{kron}\left(B^{\prime}, I_{m}\right) \tag{2}\\
\operatorname{kron}\left(I_{n}, D\right) & -\operatorname{kron}\left(E^{\prime}, I_{m}\right)
\end{array}\right]
\]

Here \(I_{k}\) is the identity matrix of size \(k\) and \(X^{\prime}\) is the transpose of \(X\). \(\operatorname{kron}(X, Y)\) denotes the Kronecker product between the matrices \(X\) and \(Y\).
If trans \(=\) ' T ', solve the transposed (conjugate transposed) system \(Z y=\) scale \(* b\)
for \(y\), which is equivalent to solve for \(R\) and \(L\) in
\[
\begin{gather*}
A^{\prime} R+D^{\prime} L=\text { scale } \star C \tag{3}\\
R B^{\prime}+L E^{\prime}=\text { scale } \star(-F)
\end{gather*}
\]

This case is used to compute an estimate of \(\operatorname{Dif}[(A, D),(B, E)]=\) \(\operatorname{sigma} \quad \min (Z)\) using reverse communication with ?lacon.
?tgsy2 also (for ijob \(\geq 1\)) contributes to the computation in ?tgsyl of an upper bound on the separation between two matrix pairs. Then the input \((A, D),(B, E)\) are sub-pencils of the matrix pair (two matrix pairs) in ?tgsyl. See ?tgsyl for details.

\section*{Input Parameters}
```

trans CHARACTER
If trans = ' }\textrm{N}\mathrm{ ', solve the generalized Sylvester
equation (1);
If trans = 'T': solve the 'transposed' system (3).
ijob INTEGER.
Specifies what kind of functionality is to be performed.
If i job = 0: solve (1) only.
If i job = 1: a contribution from this subsystem to a

```

Frobenius norm-based estimate of the separation between two matrix pairs is computed (look ahead strategy is used);
If \(i\) job \(=2\) : a contribution from this subsystem to a Frobenius norm-based estimate of the separation between two matrix pairs is computed (?gecon on sub-systems is used). Not referenced if trans \(=\) ' \(T\) '.

On entry, \(m\) specifies the order of \(A\) and \(D\), and the row dimension of \(C, F, R\) and \(L\).

INTEGER.
On entry, \(n\) specifies the order of \(B\) and \(E\), and the column dimension of \(C, F, R\) and \(L\).

REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (\(1 \mathrm{da}, \mathrm{m}\)) and (\(1 \mathrm{db}, n\)), respectively. On entry, a contains an upper (quasi) triangular matrix \(A\) and \(b\) contains an upper (quasi) triangular matrix \(B\).

INTEGER.
The leading dimension of the array \(a . I d a \geq \max (1, m)\).
INTEGER.
The leading dimension of the array b. \(I d b \geq \max (1, n)\).
REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (\(1 d c, n\)) and (\(I d f, n\)), respectively. On entry, \(c\) contains the right-hand-side of the first matrix equation in (1) and \(f\) contains the right-hand-side of the second matrix equation in (1).

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Idc} & INTEGER. \\
\hline & The leading dimension of the array \(c .1 d c \geq \max (1, m)\). \\
\hline \multirow[t]{5}{*}{\(d, e\)} & REAL for stgsy2 \\
\hline & DOUBLE PRECISION for dtgsy2 \\
\hline & COMPLEX for ctgsy2 \\
\hline & COMPLEX*16 for ztgsy2. \\
\hline & Arrays, DIMENSION (\(1 d d, m\)) and (lde, \(n\)), respectively. On entry, \(d\) contains an upper triangular matrix \(D\) and e contains an upper triangular matrix \(E\). \\
\hline \multirow[t]{2}{*}{Idd} & INTEGER. \\
\hline & The leading dimension of the array \(d .1 d d \geq \max (1, m)\). \\
\hline \multirow[t]{2}{*}{Ide} & INTEGER. \\
\hline & The leading dimension of the array e. Ide \(\geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{\(\operatorname{ldf}\)} & INTEGER. \\
\hline & The leading dimension of the array \(f . I d f \geq \max (1, m)\). \\
\hline \multirow[t]{2}{*}{rdsum} & REAL for stgsy2/ctgsy2 \\
\hline & DOUBLE PRECISION for dtgsy2/ztgsy2. \\
\hline
\end{tabular}

On entry, the sum of squares of computed contributions to the Dif-estimate under computation by ?tgsyl, where the scaling factor rdscal has been factored out.
rdscal
iwork

REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, scaling factor used to prevent overflow in rdsum.

INTEGER. Used with real flavors only. Workspace array, DIMENSION (\(m+n+2\)).

\section*{Output Parameters}

On exit, if \(i\) job \(=0, c\) has been overwritten by the solution \(R\).
\(f\)
On exit, if \(i\) job \(=0, f\) has been overwritten by the solution \(L\).
\begin{tabular}{|c|c|}
\hline scale & REAL for stgsy \(2 /\) ctgsy 2 \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dtgsy2/ztgsy2. \\
On exit, \(0 \leq_{\text {scale }} \leq\). If \(0<s_{\text {scale }}<1\), the solutions \(R\) and \(L\) (\(C\) and \(F\) on entry) will hold the solutions to a slightly perturbed system, but the input matrices \(A, B, D\) and \(E\) have not been changed. If scale \(=0, R\) and \(L\) will hold the solutions to the homogeneous system with \(C=\) \(F=0\). Normally scale \(=1\).
\end{tabular} \\
\hline rdsum & \begin{tabular}{l}
On exit, the corresponding sum of squares updated with the contributions from the current sub-system. \\
If trans \(=\) ' \(T\) ', rdsum is not touched. \\
Note that rdsum only makes sense when ?tgsy 2 is called by ?tgsyl.
\end{tabular} \\
\hline rdscal & \begin{tabular}{l}
On exit, rdscal is updated with respect to the current contributions in rdsum. \\
If trans = ' T ', rdscal in not touched. \\
Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyl.
\end{tabular} \\
\hline \(p q\) & \begin{tabular}{l}
INTEGER. Used with real flavors only. \\
On exit, the number of subsystems (of size 2-by-2, 4-by-4 and 8-by-8) solved by the routine stgsy2/dtgsy2.
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
On exit, if info is set to \\
\(=0\) : Successful exit \\
<0: If info \(=-i\), the \(i\)-th argument had an illegal value. \(>0\) : The matrix pairs \((A, D)\) and \((B, E)\) have common or very close eigenvalues.
\end{tabular} \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{?trti2}

Computes the inverse of a triangular matrix (unblocked algorithm).
```

call strti2 ( uplo, diag, n, a, lda, info )
call dtrti2 ( uplo, diag, n, a, lda, info )
call ctrti2 ( uplo, diag, n, a, lda, info )
call ztrti2 ( uplo, diag, n, a, lda, info )

```

\section*{Discussion}

The routine ?trti 2 computes the inverse of a real/complex upper or lower triangular matrix.
This is the Level 2 BLAS version of the algorithm.

\section*{Input Parameters}
n
a

CHARACTER*1.
Specifies whether the matrix \(A\) is upper or lower triangular.
= 'u': Upper triangular
= 'L': Lower triangular
CHARACTER*1.
Specifies whether or not the matrix \(A\) is unit triangular.
= ' N ': Non-unit triangular
= ' u ': Unit triangular
INTEGER.
The order of the matrix \(A . n \geq 0\).
REAL for strti2
DOUBLE PRECISION for dtrti2
COMPLEX for ctrti2
COMPLEX*16 for ztrti2.
Array, DIMENSION (Ida, n).
On entry, the triangular matrix \(A\). If uplo = ' U ', the leading \(n-b y-n\) upper triangular part of the array a
contains the upper triangular matrix, and the strictly lower triangular part of \(a\) is not referenced. If uplo = ' L ', the leading \(n-b y-n\) lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of \(a\) is not referenced. If diag= ' \(u\) ', the diagonal elements of a are also not referenced and are assumed to be 1 .

INTEGER.
The leading dimension of the array \(a . \quad I d a \geq \max (1, n)\).

\section*{Output Parameters}
\begin{tabular}{ll}
a & On exit, the (triangular) inverse of the original matrix, in \\
the same storage format. \\
info & INTEGER. \\
\(=0\) & : successful exit \\
& \(<0\) if info \(=-k\), the \(k\)-th argument had an illegal value
\end{tabular}

\section*{xerbla}

\section*{Error handling routine called by}

LAPACK routines.
```

call xerbla ( srname, info )

```

\section*{Discussion}

The routine xerbla is an error handler for the LAPACK routines. It is called by a LAPACK routine if an input parameter has an invalid value. \(A\) message is printed and execution stops.
Installers may consider modifying the stop statement in order to call system-specific exception-handling facilities.

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Input Parameters}
srname
info

CHARACTER* 6
The name of the routine which called xerbla.
INTEGER.
The position of the invalid parameter in the parameter list of the calling routine.

\section*{Vector Mathematical Functions}

This chapter describes Vector Mathematical Functions Library (VML), which is designed to compute elementary functions on vector arguments. VML is an integral part of the Intel \({ }^{\circledR}\) MKL Kernel Library and the VML terminology is used here for simplicity in discussing this group of functions.
VML includes a set of highly optimized implementations of certain computationally expensive core mathematical functions (power, trigonometric, exponential, hyperbolic etc.) that operate on vectors.
Application programs that might significantly improve performance with VML include nonlinear programming software, integrals computation, and many others.
VML functions are divided into the following groups according to the operations they perform:
- VML Mathematical Functions compute values of elementary functions (such as sine, cosine, exponential, logarithm and so on) on vectors with unit increment indexing.
- VML Pack/Unpack Functions convert to and from vectors with positive increment indexing, vector indexing and mask indexing (see Appendix A for details on vector indexing methods).
- VML Service Functions allow the user to set/get the accuracy mode, and set/get the error code.
VML mathematical functions take an input vector as argument, compute values of the respective elementary function element-wise, and return the results in an output vector.

\section*{Data Types and Accuracy Modes}

Mathematical and pack/unpack vector functions in VML have been implemented for vector arguments of single and double precision real data. Both Fortran- and C-interfaces to all functions, including VML service functions, are provided in the library. The differences in naming and calling the functions for Fortran- and C-interfaces are detailed in the Function Naming Conventions section below.

Each vector function from VML (for each data format) can work in two modes: High Accuracy (HA) and Low Accuracy (LA). For many functions, using the LA version will improve performance at the cost of accuracy. For some cases, the advantage of relaxing the accuracy improves performance very little so the same function is employed for both versions. Error behavior depends not only on whether the HA or LA version is chosen, but also depends on the processor on which the software runs. In addition, special value behavior may differ between the HA and LA versions of the functions. Any information on accuracy behavior can be found in the VML Release Notes.
Switching between the two modes (HA and LA) is accomplished by using vmlSetMode (mode) (see Table 7-11). The function vmlGetMode () will return the currently used mode. The High Accuracy mode is used by default.

\section*{Function Naming Conventions}

Full names of all VML functions include only lowercase letters for Fortran-interface, whereas for C-interface names the lowercase letters are mixed with uppercase..

NOTE. This naming convention is followed in the function descriptions in the manual. Actual function names in the library may differ slightly (with respect to lower- and uppercase usage) and will be sufficient to meet the requirements of the supported compilers.

VML mathematical and pack/unpack function full names have the following structure:
```

v <p> <name> <mod>

```

The initial letter \(v\) is a prefix indicating that a function belongs to VML. The <p> field is a precision prefix that indicates the data type:
s REAL for Fortran-interface, or float for C-interface
d DOUBLE PRECISION for Fortran-interface, or double for C-interface.

The <name> field indicates the function short name, with some of its letters in uppercase for C-interface (see Table 7-2, Table 7-9).
The <mod> field (written in uppercase for C-interface) is present in pack/unpack functions only; it indicates the indexing method used:
i indexing with positive increment
\(v\) indexing with index vector
m indexing with mask vector.
VML service function full names have the following structure:
```

vml <name>

```
where vml is a prefix indicating that a function belongs to VML, and <name> is the function short name, which includes some uppercase letters for C-interface (see Table 7-10).
To call VML functions from an application program, use conventional function calls. For example, the VML exponential function for single precision data can be called as
call vsexp \((n, a, y)\) for Fortran-interface, or \(\operatorname{vsExp}(n, a, y) ; \quad\) for C-interface.

\section*{Functions Interface}

The interface to VML functions includes function full names and the arguments list.
The Fortran- and C-interface descriptions for different groups of VML functions are given below. Note that some functions (Div, Pow, and Atan2) have two input vectors \(a\) and \(b\) as their arguments, while SinCos function has two output vectors \(y\) and \(z\).

\section*{VML Mathematical Functions:}

Fortran:
```

call v<p><name>( n, a, y )
call v<p><name> ( n, a, b, y )
call v<p><name>( n, a, y, z )

```

C:
```

v<p><name>( n, a, y );
v<p><name> ( n, a, b, y );
v<p><name>( n, a, y, z );

```

\section*{Pack Functions:}

Fortran:
```

call v<p>packi( n, a, inca, y )
call v<p>packv( n, a, ia, y )
call v<p>packm( n, a, ma, y )

```

C:
```

v<p>PackI( n, a, inca, y );
v<p>PackV( n, a, ia, y );
v<p>PackM( n, a, ma, y );

```

\section*{Unpack Functions:}

Fortran:
```

call v<p>unpacki( n, a, y, incy )
call v<p>unpackv( n, a, y, iy )
call v<p>unpackm( n, a, y, my )

```
```

v<p>UnpackI( n, a, y, incy );

```
v<p>UnpackI(n, a, y, incy);
v<p>UnpackV(n, a, y, iy);
v<p>UnpackV(n, a, y, iy);
v<p>UnpackM(n, a, y, my);
```

v<p>UnpackM( n, a, y, my );

```

C:

\section*{Service Functions:}

Fortran:
```

Oldmode = vmlsetmode( mode )
mode = vmlgetmode( )
olderr = vmlseterrstatus ( err )
err = vmlgeterrstatus( )
olderr = vmlclearerrstatus( )

```
```

oldcallback = vmlseterrorcallback( callback )
callback = vmlgeterrorcallback( )
oldcallback = vmlclearerrorcallback( )

```

C:
```

oldmode = vmlSetMode( mode );
mode = vmlGetMode( void);
olderr = vmlSetErrStatus ( err );
err = vmlGetErrStatus(void);
olderr = vmlClearErrStatus(void);
oldcallback = vmlSetErrorCallBack(callback );
callback = vmlGetErrorCallBack( void );
oldcallback = vmlClearErrorCallBack(void );

```

\section*{Input Parameters:}
\begin{tabular}{ll}
\(n\) & number of elements to be calculated \\
\(a\) & first input vector \\
\(b\) & second input vector \\
inca & vector increment for the input vector \(a\) \\
ia & index vector for the input vector \(a\) \\
ma & mask vector for the input vector \(a\) \\
incy & vector increment for the output vector \(y\) \\
iy & index vector for the output vector \(y\) \\
my & mask vector for the output vector \(y\) \\
err & error code \\
mode & VML mode \\
callback & address of the callback function
\end{tabular}

\section*{Output Parameters:}
\begin{tabular}{ll}
\(y\) & first output vector \\
\(z\) & second output vector \\
err & error code \\
mode & VML mode \\
olderr & former error code
\end{tabular}
\begin{tabular}{ll}
oldmode & former VML mode \\
oldcallback & address of the former callback function
\end{tabular}

The data types of the parameters used in each function are specified in the respective function description section. All VML mathematical functions can perform in-place operations, which means that the same vector can be used as both input and output parameter. This holds true for functions with two input vectors as well, in which case one of them may be overwritten with the output vector. For functions with two output vectors, one of them may coincide with the input vector.

\section*{Vector Indexing Methods}

Current VML mathematical functions work only with unit increment. Arrays with other increments, or more complicated indexing, can be accommodated by gathering the elements into a contiguous vector and then scattering them after the computation is complete.
Three following indexing methods are used to gather/scatter the vector elements in VML:
- positive increment
- index vector
- mask vector.

The indexing method used in a particular function is indicated by the indexing modifier (see the description of the <mod> field in Function Naming Conventions). For more information on indexing methods see Vector Arguments in VML in Appendix A.

\section*{Error Diagnostics}

The VML library has its own error handler. The only difference for C - and Fortran- interfaces is that the Intel MKL error reporting routine XERBLA can be called after the Fortran- interface VML function encounters an error, and this routine gets information on VML_STATUS_BADSIZE and VML_STATUS_BADMEM input errors (see Table 7-13).

The VML error handler has the following properties:
1) The Error Status (vmlerrstatus) global variable is set after each VML function call. The possible values of this variable are shown in the Table 7-13.
2) Depending on the VML mode, the error handler function invokes:
- errno variable setting. The possible values are shown in the Table 7-1
- writing error text information to the stderr stream
- raising the appropriate exception on error, if necessary
- calling the additional error handler callback function.

Table 7-1 Set Values of the errno Variable
\begin{tabular}{ll}
Value of errno & Description \\
\hline 0 & No errors are detected. \\
EINVAL & The array dimension is not positive. \\
EACCES & NULL pointer is passed. \\
EDOM & \begin{tabular}{l}
At least one of array values is out of a \\
range of definition.
\end{tabular} \\
ERANGE & \begin{tabular}{l}
At least one of array values caused a \\
singularity, overflow or underflow.
\end{tabular} \\
\hline
\end{tabular}

\section*{VML Mathematical Functions}

This section describes VML functions which compute values of elementary mathematical functions on real vector arguments with unit increment. Each function group is introduced by its short name, a brief description of its purpose, and the calling sequence for each type of data both for Fortranand C-interfaces, as well as a description of the input/output arguments.

For all VML mathematical functions, the input range of parameters is equal to the mathematical range of definition in the set of defined values for the respective data type. Several VML functions, specifically Div, Exp, Sinh, Cosh, and Pow, can result in an overflow. For these functions, the respective input threshold values that mark off the precision overflow are specified in the function description section. Note that in these specifications, FLT_MAX denotes the maximum number representable in single precision data type, while DBL_MAX denotes the maximum number representable in double precision data type.
Table 7-2 lists available mathematical functions and data types associated with them.

Table 7-2 VML Mathematical Functions
\begin{tabular}{lll}
\begin{tabular}{l}
Function Short \\
Name
\end{tabular} & \begin{tabular}{c}
Data \\
Types
\end{tabular} & Description \\
\hline \multicolumn{1}{c}{ Power and Root Functions } \\
\(\underline{\text { Inv }}\) & s, d & Inversion of the vector elements \\
\(\underline{\text { Div }}\) & s, d & Divide elements of one vector by elements of second vector \\
\(\underline{\text { Sqrt }}\) & s, d & \begin{tabular}{l}
Square root of vector elements
\end{tabular} \\
\(\underline{\text { InvSqrt }}\) & s, d & Inverse square root of vector elements \\
\(\underline{\text { Cbrt }}\) & s, d & Cube root of vector elements \\
\(\underline{\text { InvCbrt }}\) & s, d & \begin{tabular}{l}
Inverse cube root of vector elements
\end{tabular} \\
\(\underline{\text { Pow }}\) & s, d & Each vector element raised to the specified power \\
\(\underline{\text { Powx }}\) & s, d & Each vector element raised to the constant power
\end{tabular}

\section*{Table 6-2 VML Mathematical Functions (continued) \\ \begin{tabular}{lll}
\hline Function Short & Data & Description \\
Name & Types &
\end{tabular}}

Exponential and Logarithmic Functions
\begin{tabular}{lll}
\(\underline{\operatorname{Exp}}\) & s, d & Exponential of vector elements \\
\(\underline{L n}\) & s, \(d\) & Natural logarithm of vector elements \\
\(\underline{\log 10}\) & s, & d \\
\hline
\end{tabular}

\section*{Trigonometric Functions}
\begin{tabular}{lll}
\(\underline{\operatorname{Cos}}\) & s, d & Cosine of vector elements \\
\(\underline{\text { Sin }}\) & s, d & Sine of vector elements \\
\(\underline{\text { SinCos }}\) & s, d & Sine and cosine of vector elements \\
\(\underline{\text { Tan }}\) & s, d & Tangent of vector elements \\
\(\underline{\text { Acos }}\) & s, d & Inverse cosine of vector elements \\
\(\underline{\text { Asin }}\) & s, d & Inverse sine of vector elements \\
\(\underline{\text { Atan }}\) & s, d & Inverse tangent of vector elements \\
\(\underline{\text { Atan2 }}\) & s, d & Four-quadrant inverse tangent of elements of two vectors
\end{tabular}

Hyperbolic Functions
\begin{tabular}{lll}
\(\underline{\text { Cosh }}\) & s, & d \\
\(\underline{\text { Sinh }}\) & s, & Hyperbolic cosine of vector elements \\
\(\underline{\text { Tanh }}\) & s, & Hyperbolic sine of vector elements \\
\(\underline{\text { Acosh }}\) & s, & Hyperbolic tangent of vector elements \\
\(\underline{\text { Asinh }}\) & s, & Inverse hyperbolic cosine (nonnegative) of vector elements \\
\(\underline{\text { Atanh }}\) & s, & Inverse hyperbolic sine of vector elements \\
\hline
\end{tabular}

Special Functions
\begin{tabular}{lll}
\(\underline{\text { Erf }}\) & s, d & Error function value of vector elements \\
\(\underline{\text { Erfc }}\) & s, d & Complementary error function value of vector elements
\end{tabular}

\section*{Inv}

Performs element by element inversion of the vector.

\section*{Fortran:}
```

call vsinv( n, a, y )
call vdinv( n, a, y )
C:
vsInv( n, a, y );
vdInv( n, a, y );

```

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT (IN) for vsinv DOUBLE PRECISION, INTENT(IN) for vdinv Array, specifies the input vector a.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsInv
const double* for vdInv
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

y REAL forvsinv
DOUBLE PRECISION for vdinv
Array, specifies the output vector y.

```

C:
\(y\) float* for vsInv
double* for vdInv
Pointer to an array that contains the output vector y .

\section*{Div}

Performs element by element division of vector a by vector \(b\).

\section*{Fortran:}
```

call vsdiv( n, a, b, y )
call vddiv( n, a, b, y )

```

C:
vsDiv(\(n, a, b, y)\);
vdDiv(\(n, a, b, y)\);

\section*{Input Parameters}

\section*{Fortran:}
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
\(a, b\) REAL, INTENT(IN) for vsdiv
DOUBLE PRECISION, INTENT(IN) for vddiv
Arrays, specify the input vectors \(a\) and \(b\).
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
\(a, b\) const float* for vsDiv
const double* for vdDiv
Pointers to arrays that contain the input vectors \(a\) and \(b\).

Table 7-3 Precision Overflow Thresholds for Div Function
\begin{tabular}{lc}
Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(\mathrm{abs}(\mathrm{a}[\mathrm{i}])<\operatorname{abs}(\mathrm{b}[\mathrm{i}])\) * FLT_MAX \\
double precision & \(\mathrm{abs}(\mathrm{a}[\mathrm{i}])<\operatorname{abs}(\mathrm{b}[\mathrm{i}])\) * DBL_MAX \\
\hline
\end{tabular}

\section*{Output Parameters}

Fortran:
```

y REAL for vsdiv
DOUBLE PRECISION for vddiv

```
 Array, specifies the output vector y .
\(\mathrm{C}:\)
\(y\) float* for vsDiv
 double* for vdDiv
 Pointer to an array that contains the output vector \(y\).

\section*{Sqrt}

Computes a square root of vector elements.

\section*{Fortran:}
```

call vssqrt( n, a, y )
call vdsqrt( n, a, y )
C:
vsSqrt( n, a,y);
vdSqrt( n, a,y );

```

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT(IN) for vssqrt
DOUBLE PRECISION, INTENT (IN) for vdsqrt
Array, specifies the input vector \(a\).
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsSqrt
const double* for vdSqrt
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

y REAL for vssqrt

```
 DOUBLE PRECISION for vdsqrt
 Array, specifies the output vector y .
C:
\(y\) float* for vsSqrt
double* for vdSqrt

Pointer to an array that contains the output vector \(y\).

\section*{InvSqrt}

Computes an inverse square root
of vector elements.

\section*{Fortran:}
```

call vsinvsqrt( n, a, y )
call vdinvsqrt( n, a, y )

```
```

C:
vsInvSqrt( n, a, y );
vdInvSqrt( n, a, y );

```

\section*{Input Parameters}

\section*{Fortran:}
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vsinvsqrt
DOUBLE PRECISION, INTENT(IN) for vdinvsqrt
Array, specifies the input vector a.
C:
n
a
int. Specifies the number of elements to be calculated.
const float* for vsInvSqrt
const double* for vdInvSqrt
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
\(y \quad\) REAL for vsinvsqrt
DOUBLE PRECISION for vdinvsqrt
Array, specifies the output vector \(y\).
C:
\(y\) float* forvsInvSqrt
double* for vdInvSqrt
Pointer to an array that contains the output vector \(y\).

\section*{Cbrt}

Computes a cube root
of vector elements.

\section*{Fortran:}
```

call vscbrt( n, a, y )
call vdcbrt( n, a, y )
C:

```
```

vsCbrt( n, a, y );

```
vdCbrt (\(n, a, y\));

\section*{Input Parameters}

\section*{Fortran:}
\(n \quad\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT (IN) for vscbrt DOUBLE PRECISION, INTENT(IN) for vdcbrt Array, specifies the input vector a.

C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsCbrt
const double* for vdCbrt
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
y REAL for vscbrt
DOUBLE PRECISION for vdcbrt
Array, specifies the output vector y .
C:
\(y\) float* for vsCbrt
double* for vdCbrt
Pointer to an array that contains the output vector \(y\).

\section*{InvCbrt}

Computes an inverse cube root of vector elements.

\section*{Fortran:}
```

call vsinvcbrt( n, a, y )
call vdinvcbrt( n, a, y )
C:
vsInvCbrt( n, a, y );
vdInvCbrt( n, a, y );

```

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a
REAL, INTENT(IN) for vsinvcbrt DOUBLE PRECISION, INTENT (IN) for vdinvcbrt Array, specifies the input vector a.

C:
n
a
int. Specifies the number of elements to be calculated.
const float* for vsInvCbrt
const double* for vdInvCbrt
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
y REAL for vsinvcbrt
DOUBLE PRECISION for vdinvcbrt
Array, specifies the output vector y .
```

C:
y float* for vsInvCbrt
double* for vdInvCbrt
Pointer to an array that contains the output vector y.

```

\section*{Pow}

Computes a to the power \(b\)
for elements of two vectors.

\section*{Fortran:}
```

call vspow( n, a, b, y )
call vdpow( }n,a,b,y
C:
vsPow ( n, a, b, y );
vdPow ( n, a, b, y );

```

\section*{Input Parameters}

Fortran:
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER, INTENT (IN). Specifies the number of elements to be calculated. \\
\hline \multirow[t]{3}{*}{\(a, b\)} & REAL, INTENT(IN) for vspow \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdpow \\
\hline & Arrays, specify the input vectors a and b. \\
\hline \multicolumn{2}{|l|}{C:} \\
\hline \(n\) & int. Specifies the number of elements to be calculated. \\
\hline \multirow[t]{3}{*}{\(a, b\)} & const float* for vsPow \\
\hline & const double* for vdPow \\
\hline & Pointers to arrays that contain the input vectors \(a\) and b . \\
\hline
\end{tabular}

Table 7-4 Precision Overflow Thresholds for Pow Function
\begin{tabular}{lc}
Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & abs \((a[i])<(\text { FLT_MAX })^{1 / b[i]}\) \\
double precision & \(a b s(a[i])<(\) DBL_MAX \()\) \\
\hline
\end{tabular}

\section*{Output Parameters}

Fortran:
```

y REAL for vspow
DOUBLE PRECISION for vdpow
Array, specifies the output vector y.
C
y float* for vsPow
double* for vdPow
Pointer to an array that contains the output vector y.

```

\section*{Discussion}

The function Pow has certain limitations on the input range of \(a\) and \(b\) parameters. Specifically, if \(a[i]\) is positive, then \(b[i]\) may be arbitrary. For negative or zero \(a[i]\), the value of \(b\) [i] must be integer (either positive or negative).

\section*{Powx}

Raises each element of a vector to the constant power.

\section*{Fortran:}
```

call vspowx( n, a, b, y )
call vdpowx( n, a, b, y )
C:
vsPowx( n, a, b, y );
vdPowx( n, a, b, y );

```

\section*{Input Parameters}

Fortran:
\begin{tabular}{ll}
\(n\) & INTEGER, INTENT (IN). Specifies the number of elements \\
to be calculated. \\
\(a, b\) & REAL, INTENT (IN) for vspowx
\end{tabular}

DOUBLE PRECISION, INTENT(IN) for vdpowx
Array a specifies the input vector;
scalar value \(b\) is the constant power.
C:
n
a
b
int. Specifies the number of elements to be calculated.
const float* for vsPowx
const double* for vdPowx
Pointer to an array that contains the input vector a.
const float for vsPowx
const double for vdPowx
Constant value for power b.

\section*{Table 7-5 Precision Overflow Thresholds for Powx Function}
\begin{tabular}{lc}
Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(\mathrm{abs}(\mathrm{a}[\mathrm{i}])<(\text { FLT_MAX })^{1 / b}\) \\
double precision & \(\mathrm{abs}(a[i])<(\) DBL_MAX \() 1 / b\) \\
\hline
\end{tabular}

\section*{Output Parameters}

Fortran:
\(y\) REAL for vspowx
DOUBLE PRECISION for vdpowx
Array, specifies the output vector \(y\).
C:
\(y\) float* for vsPowx
double* for vdPowx
Pointer to an array that contains the output vector \(y\).

\section*{Discussion}

The function Powx has certain limitations on the input range of \(a\) and \(b\) parameters. Specifically, if \(a\) [i] is positive, then \(b\) may be arbitrary. For negative or zero \(a[i]\), the value of \(b\) must be integer (either positive or negative).

\section*{Exp}

Computes an exponential of vector elements.

\section*{Fortran:}
```

call vsexp( n, a, y )
call vdexp( n, a, y )
C:
vsExp( n, a, y );
vdExp( n, a, y );

```

\section*{Input Parameters}

Fortran:
\(n\) Integer, Intent (IN). Specifies the number of elements to be calculated.
a
REAL, INTENT (IN) for vsexp
DOUBLE PRECISION, INTENT (IN) for vdexp
Array, specifies the input vector a.
C:
n
a
int. Specifies the number of elements to be calculated.
const float* for vsExp
const double* for vdExp
Pointer to an array that contains the input vector a.

\section*{Table 7-6 Precision Overflow Thresholds for Exp Function}
\begin{tabular}{lc}
Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(a[i]<\operatorname{Ln}(\) FLT_MAX) \\
double precision & \(a[i]<\operatorname{Ln}(\) DBL_MAX \()\)
\end{tabular}

\section*{Output Parameters}

Fortran:
```

y REAL for vsexp
DOUBLE PRECISION for vdexp
Array, specifies the output vector }\textrm{y}\mathrm{ .
C:
y float* for vsExp
double* for vdExp

```

Pointer to an array that contains the output vector y .

\section*{Ln}

Computes natural logarithm
of vector elements.

\section*{Fortran:}
```

call vsln( n, a, y )
call vdln( n, a, y )
C:
vsLn( n, a, y );
vdLn( n, a, y );

```

\section*{Input Parameters}
```

Fortran:
$n \quad$ INTEGER, INTENT (IN). Specifies the number of elements
to be calculated.

```

REAL, INTENT (IN) for vsln
DOUBLE PRECISION, INTENT(IN) for vdln
Array, specifies the input vector a.
C:
n
int. Specifies the number of elements to be calculated.
const float* for vsLn
const double* for vdLn
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
y \(\quad\)\begin{tabular}{l}
REAL for vsln \\
DOUBLE PRECISION for vdln \\
\\
Array, specifies the output vector
\end{tabular}

C:
\(y\) float* for vsLn
double* for vdLn
Pointer to an array that contains the output vector y .

\section*{Log10}

Computes denary logarithm
of vector elements.

\section*{Fortran:}
call vslog10 (\(n, a, y\))
call vdlog10 (\(n, ~ a, y)\)
C:
vsLog10 (\(n, ~ a, y) ;\)
vdLog10 (\(n, ~ a, y) ;\)

\section*{Input Parameters}

Fortran:
\(n\)
INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a
```

REAL, INTENT(IN) forvslog10

```
 DOUBLE PRECISION, INTENT(IN) for vdlog10

Array, specifies the input vector a.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
```

const float* for vsLog10

```
const double* for vdLog10

Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

y REAL for vslog10
DOUBLE PRECISION for vdlog10
Array, specifies the output vector y.

```
C:
\(y\) float* for vsLog10
double* for vdLog10

Pointer to an array that contains the output vector \(y\).

\section*{Cos}

Computes cosine of vector elements.

\section*{Fortran:}
```

call vscos( n, a, y )
call vdcos( n, a, y )

```

C:
\(\operatorname{vsCos}(n, a, y)\);
\(\operatorname{vdCos}(n, a, y)\);

\section*{Input Parameters}

Fortran:
n Integer, intent (In). Specifies the number of elements to be calculated.
```

REAL, INTENT(IN) for vscos
DOUBLE PRECISION, INTENT(IN) for vdcos

```

Array, specifies the input vector a.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsCos
const double* for vdCos
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
y REAL for vscos
double precision for vdcos
Array, specifies the output vector y .
C:
\(y\) float* for vsCos
double* for vacos
Pointer to an array that contains the output vector y .

\section*{Sin}

Computes sine of vector elements.

\section*{Fortran:}
```

call vssin( n, a, y )
call vdsin( n, a, y )

```

C:
vsSin(\(n, a, y)\);
vdSin(\(n, a, y)\);

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT(IN) for vssin
DOUBLE PRECISION, INTENT(IN) for vdsin
Array, specifies the input vector \(a\).
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsSin
const double* for vdSin
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

y REAL forvssin

```
 DOUBLE PRECISION for vdsin

Array, specifies the output vector \(y\).
C:
\(y\) float* for vsSin
double* for vdSin
Pointer to an array that contains the output vector y .

\section*{SinCos}

Computes sine and cosine
of vector elements.

\section*{Fortran:}
```

call vssincos( n, a, y, z )
call vdsincos( n, a, y, z )

```
```

C:
vsSinCos( n, a, y, z );
vdSinCos( n, a, y, z );

```

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT(IN). Specifies the number of elements to be calculated.
REAL, INTENT(IN) for vssincos
DOUBLE PRECISION, INTENT(IN) for vdsincos
Array, specifies the input vector a.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a
const float* for vsSinCos
const double* for vdSinCos
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
\begin{tabular}{ll}
\(y, z\) & REAL for vssincos \\
& DOUBLE PRECISION for vdsincos \\
Arrays, specify the output vectors \(y\) (for sine values) \\
and \(z\) (for cosine values). \\
\(y, z\) & \begin{tabular}{l}
float* for vsSinCos \\
double* for vdSinCos \\
Pointers to arrays that contain the output vectors y (for sine \\
values) and \(z\) (for cosine values).
\end{tabular}
\end{tabular}

\section*{Tan}

Computes tangent of vector elements.

\section*{Fortran:}
```

call vstan( n, a, y )
call vdtan( n, a, y )
C:

```
\(\operatorname{vsTan}(n, a, y)\);
\(\operatorname{vdTan}(n, a, y)\);

\section*{Input Parameters}

\section*{Fortran:}
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT(IN) for vstan
DOUBLE PRECISION, INTENT (IN) for vdtan
Array, specifies the input vector a.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsTan
const double* for vdTan
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
\begin{tabular}{ll}
\(y\) & \begin{tabular}{l}
REAL for vstan \\
DOUBLE PRECISION for vdtan \\
Array, specifies the output vector \(y\).
\end{tabular} \\
\(y\) & \begin{tabular}{l}
float* for vsTan \\
double* for vdTan
\end{tabular}
\end{tabular}

Pointer to an array that contains the output vector \(y\).

\section*{Acos \\ Computes inverse cosine of vector elements.}

\section*{Fortran:}
```

call vsacos( n, a, y )
call vdacos( n, a, y )
C:
vsAcos( n, a, y );
vdAcos( n, a, y );

```

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a
REAL, INTENT (IN) for vsacos
DOUBLE PRECISION, INTENT(IN) for vdacos
Array, specifies the input vector a.
C:
n
a
int. Specifies the number of elements to be calculated.
const float* for vsAcos
const double* for vdAcos
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
\(y \quad\) REAL for vsacos
DOUBLE PRECISION for vdacos
Array, specifies the output vector y .
\(\mathrm{C}:\)
\(y\) float* for vsAcos
double* for vdAcos
Pointer to an array that contains the output vector \(y\).

\section*{Asin}

Computes inverse sine of vector elements.

\section*{Fortran:}
```

call vsasin( n, a, y )
call vdasin( n, a, y )

```
C:
vsAsin (\(n, a, y)\);
vdAsin (\(n, a, y\)) ;

\section*{Input Parameters}

\section*{Fortran:}
\(n \quad\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT(IN) for vsasin
DOUBLE PRECISION, INTENT(IN) for vdasin
Array, specifies the input vector \(a\).
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsAsin
const double* for vdAsin
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
y REAL for vsasin
DOUBLE PRECISION for vdasin
Array, specifies the output vector \(y\).
C:

double* for vdAsin
Pointer to an array that contains the output vector \(y\).

\section*{Atan}

Computes inverse tangent of vector elements.

\section*{Fortran:}
```

call vsatan( n, a, y )
call vdatan( n, a, y )
C:
vsAtan( n, a, y );
vdAtan( n, a, y );

```

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a
REAL, INTENT (IN) for vsatan
DOUBLE PRECISION, INTENT(IN) for vdatan
Array, specifies the input vector a.
C :
\(n \quad\) int. Specifies the number of elements to be calculated.
a
const float* for vsAtan
const double* for vdAtan
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

y REAL for vsatan
DOUBLE PRECISION for vdatan
Array, specifies the output vector y.
C:
y float* forvsAtan
double* for vdAtan
Pointer to an array that contains the output vector y.

```

\section*{Atan2}

Computes four-quadrant inverse tangent of elements of two vectors.

\section*{Fortran:}
```

call vsatan2( n, a, b, y )

```
call vdatan2(\(n, a, b, y\))

C:
vsAtan2 (\(n, a, b, y)\);
vdAtan2 (\(n, a, b, y)\);

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
\(a, b \quad\)\begin{tabular}{ll}
REAL, INTENT(IN) for vsatan2 \\
& DOUBLE PRECISION, INTENT(IN) for vdatan2
\end{tabular}

Arrays, specify the input vectors a and b.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
\(a, b \quad\) const float* for vsAtan2
const double* for vdAtan2
Pointers to arrays that contain the input vectors \(a\) and \(b\).

\section*{Output Parameters}

Fortran:
y
REAL for vsatan2
DOUBLE PRECISION for vdatan2
Array, specifies the output vector \(y\).

C:
\(y\) float* for vsAtan2
double* for vdAtan2
Pointer to an array that contains the output vector \(y\).
The elements of the output vector \(y\) are computed as the four-quadrant arctangent of \(a[i] / b[i]\).

\section*{Cosh}

Computes hyperbolic cosine of vector elements.

\section*{Fortran:}
```

call vscosh( n, a, y )
call vdcosh( n, a, y )

```

C:
vsCosh (\(n, ~ a, ~ y)\);
vdCosh (\(n, a, y\));

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vscosh
DOUBLE PRECISION, INTENT(IN) for vdcosh
Array, specifies the input vector a.
C:
int. Specifies the number of elements to be calculated.
a
const float* for vsCosh
const double* for vdCosh
Pointer to an array that contains the input vector a.

\section*{Table 7-7 Precision Overflow Thresholds for Cosh Function}
\begin{tabular}{ll}
Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(-\operatorname{Ln}\left(F L T _M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(F L T _M A X\right)+\operatorname{Ln} 2\) \\
double precision & \(-\operatorname{Ln}\left(D B L _M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(D B L _M A X\right)+\operatorname{Ln} 2\) \\
\hline
\end{tabular}

\section*{Output Parameters}

Fortran:
y REAL for vscosh
DOUBLE PRECISION for vdcosh
Array, specifies the output vector \(y\).
C:
\(y\) float* for vsCosh
double* for vdCosh
Pointer to an array that contains the output vector \(y\).

\section*{Sinh}

Computes hyperbolic sine of vector elements.

\section*{Fortran:}
```

call vssinh( n, a, y )
call vdsinh( n, a, y )
C:
vsSinh( n, a, y );
vdSinh( n, a, y );

```

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vssinh DOUBLE PRECISION, INTENT(IN) for vdsinh Array, specifies the input vector a.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsSinh
const double* for vdSinh
Pointer to an array that contains the input vector a.

Table 7-8 Precision Overflow Thresholds for Sinh Function
\begin{tabular}{lc}
Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(-\operatorname{Ln}\left(F L T _M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(F L T _M A X\right)+\operatorname{Ln} 2\) \\
double precision & \(-\operatorname{Ln}\left(D B L _M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(D B L _M A X\right)+\operatorname{Ln} 2\) \\
\hline
\end{tabular}

\section*{Output Parameters}

Fortran:
\(y \quad\) REAL for vssinh
DOUBLE PRECISION for vdsinh
Array, specifies the output vector \(y\).
C:
\(y\) float* for vsSinh
double* for vdSinh
Pointer to an array that contains the output vector \(y\).

\section*{Tanh}

Computes hyperbolic tangent
of vector elements.

\section*{Fortran:}
```

call vstanh( n, a, y )
call vdtanh( n, a,y)

```

C:
vsTanh (\(n, a, y)\);
\(\operatorname{vdTanh}(n, a, y)\);

\section*{Input Parameters}

Fortran:
\(n \quad\) INTEGER, INTENT (IN). Specifies the number of elements
to be calculated.
a REAL, INTENT (IN) for vstanh
DOUBLE PRECISION, INTENT (IN) for vdtanh
Array, specifies the input vector a.
C:
n
int. Specifies the number of elements to be calculated.
const float* for vsTanh
const double* for vdTanh
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
\(y \quad\)\begin{tabular}{l}
REAL for vstanh \\
DOUBLE PRECISION for vdtanh \\
Array specifies the output vector y
\end{tabular}

C:
\(y\) float* for vsTanh
double* for vdTanh
Pointer to an array that contains the output vector y .

\section*{Acosh}

Computes inverse hyperbolic cosine (nonnegative) of vector elements.

\section*{Fortran:}
```

call vsacosh( n, a, y )

```
call vdacosh(\(n, a, y)\)

C:
vsAcosh (\(n, a, y\));
vdAcosh (\(n, a, y)\);

\section*{Input Parameters}

Fortran:
\(n\)
INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a
REAL, INTENT(IN) for vsacosh DOUBLE PRECISION, INTENT(IN) for vdacosh Array, specifies the input vector a.

C:
\(n \quad\) int. Specifies the number of elements to be calculated.
```

const float* for vsAcosh

```
const double* for vdAcosh

Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

y REAL for vsacosh
DOUBLE PRECISION for vdacosh
Array, specifies the output vector y.

```
C:
\(y\) float* for vsAcosh
double* for vdAcosh

Pointer to an array that contains the output vector \(y\).

\section*{Asinh}

Computes inverse hyperbolic sine of vector elements.

\section*{Fortran:}
```

call vsasinh( n, a, y )
call vdasinh( n, a, y )
C:
vsAsinh( n, a, y );
vdAsinh( n, a, y );

```

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
```

REAL, INTENT(IN) for vsasinh
DOUBLE PRECISION, INTENT(IN) for vdasinh

```

Array, specifies the input vector a.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsAsinh
const double* for vdAsinh
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
\(y\) REAL for vsasinh
double precision for vdasinh
Array, specifies the output vector y .
C:
\(y\) float* for vsAsinh
double* for vdAsinh
Pointer to an array that contains the output vector y .

\section*{Atanh}

Computes inverse hyperbolic tangent of vector elements.

\section*{Fortran:}
```

call vsatanh( n, a, y )
call vdatanh( n, a, y )

```
```

C:
vsAtanh( n, a, y );
vdAtanh( n, a, y );

```

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT (IN) for vsatanh
DOUBLE PRECISION, INTENT (IN) for vdatanh
Array, specifies the input vector a.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsAtanh
const double* for vdAtanh
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

y REAL for vsatanh
DOUBLE PRECISION for vdatanh
Array, specifies the output vector y.
C:
y float* for vsAtanh
double* for vdAtanh
Pointer to an array that contains the output vector y.

```

\section*{Erf}

Computes the error function value of vector elements.

\section*{Fortran:}
```

call vserf( n, a, y )
call vderf( n, a, y )

```
```

C:
vsErf( n, a, y );
vdErf( n, a, y );

```

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vserf
DOUBLE PRECISION, INTENT(IN) for vderf
Array, specifies the input vector a.
C:
n
a
int. Specifies the number of elements to be calculated.
```

const float* for vsErf
const double* for vdErf

```

Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
y REAL for vserf
DOUBLE PRECISION for vderf
Array, specifies the output vector \(y\).
C:
\(y\) float* for vsErf
double* for vdErf
Pointer to an array that contains the output vector \(y\).

\section*{Discussion}

The function Erf computes the error function values for elements of the input vector \(a\) and writes them to the output vector \(y\). The error function is defined as given by:
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0} e^{-t^{2}} d t
\]

\section*{Erfc}

Computes the complementary error function value of vector elements.

\section*{Fortran:}
```

call vserfc( n, a, y )
call vderfc( n, a, y )

```
C:
vsErfc (\(n, a, y)\);
\(\operatorname{vdErfc}(n, a, y)\);

\section*{Input Parameters}

\section*{Fortran:}
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT(IN) for vserfc DOUBLE PRECISION, INTENT(IN) for vderfc Array, specifies the input vector \(a\).

C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsErfc
const double* for vdErfc
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
\(y\) REAL for vserfc
DOUBLE PRECISION for vderfc
Array, specifies the output vector \(y\).
C:

double* for vdErfc
Pointer to an array that contains the output vector y .

\section*{Discussion}

The function Erfc computes the complementary error function values for elements of the input vector \(a\) and writes them to the output vector \(y\).
The complementary error function is defined as given by:
\[
\operatorname{erfc}(x)=1-\operatorname{erf}(x)
\]
or, in other words,
\(\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t\).

\section*{VML Pack/Unpack Functions}

This section describes VML functions which convert vectors with unit increment to and from vectors with positive increment indexing, vector indexing and mask indexing (see Appendix A for details on vector indexing methods).

Table 7-9 lists available VML Pack/Unpack functions, together with data types and indexing methods associated with them.

Table 7-9 VML Pack/Unpack Functions
\begin{tabular}{llll}
\begin{tabular}{l}
Function Short \\
Name
\end{tabular} & \begin{tabular}{l}
Data \\
Types
\end{tabular} & \begin{tabular}{l}
Indexing \\
Methods
\end{tabular} & Description \\
\hline\(\underline{\text { Pack }}\) & s, d & I, V, M & \begin{tabular}{l}
Gathers elements of arrays, indexed by different \\
methods.
\end{tabular} \\
\(\underline{\text { Unpack }}\) & s, d & I,V,M & \begin{tabular}{l}
Scatters vector elements to arrays with different \\
indexing.
\end{tabular} \\
\hline
\end{tabular}

\section*{Pack}

Copies elements of an array
with specified indexing to
a vector with unit increment.

\section*{Fortran:}
```

call vspacki( n, a, inca,y )
call vspackv( n, a, ia, y )
call vspackm( n, a, ma, y )
call vdpacki( n, a, inca, y )
call vdpackv( n, a, ia, y )
call vdpackm( n, a, ma, y )

```
```

C:
vsPackI( n, a, inca, y );
vsPackV( n, a, ia, y );
vsPackM( n, a, ma, y );
vdPackI( n, a, inca, y );
vdPackV( n, a, ia, y );
vdPackM( n, a, ma, y );

```

\section*{Input Parameters}

Fortran:
n
a

C:
n
a

INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vspacki, vspackv, vspackm DOUBLE PRECISION, INTENT(IN) for vdpacki, vdpackv, vdpackm
Array, DIMENSION at least \((1+(n-1)\) *inca) for vspacki, at least max \((n, \max (i a[j])), j=0, \ldots, n-1\), for vspackv, at least \(n\) for vspackm, Specifies the input vector a.

INTEGER, INTENT (IN) for vspacki, vdpacki. Specifies the increment for the elements of \(a\).

INTEGER, INTENT (IN) for vspackv, vdpackv. Array, DIMENSION at least \(n\) Specifies the index vector for the elements of \(a\).

INTEGER, INTENT (IN) for vspackm, vdpackm. Array, DIMENSION at least \(n\) Specifies the mask vector for the elements of \(a\).
int. Specifies the number of elements to be calculated
const float* for vsPackI, vsPackV, vsPackM
const double* for vdPackI, vdPackV, vdPackM
Specifies the pointer to an array that contains the input vector \(a\). Size of the array must be:
```

    at least (1 + (n-1)*inca) for vsPackI,
    at least max( n,max(ia[j]) ),j=0,\ldots,n-1, for vsPackV,
    at least n for vsPackm.
    inca int for vsPackI, vdPackI.
Specifies the increment for the elements of a.
const int* for vsPackV, vdPackv. Specifies the pointer to an array of size at least $n$ that contains the index vector for the elements of $a$.
const int* for vsPackM, vdPackM. Specifies the pointer to an array of size at least $n$ that contains the mask vector for the elements of $a$.

```

\section*{Output Parameters}
```

Fortran:
$y$ REAL for vspacki, vspackv, vspackm
DOUBLE PRECISION for vdpacki, vdpackv, vdpackm Array, DIMENSION at least $n$, specifies the output vector $y$.

```

\section*{C:}
```

$y$ float* for vsPackI, vsPackV, vsPackM
double* for vdPackI, vdPackV, vdPackM
Specifies the pointer to an array of size at least $n$ that contains the output vector $y$.

```

\section*{Unpack}

Copies elements of a vector with unit increment
to an array with specified indexing.

\section*{Fortran:}
```

call vsunpacki( n, a, y, incy )
call vsunpackv( n, a, y, iy )
call vsunpackm( n, a, y, my )

```
```

call vdunpacki( n, a, y, incy )
call vdunpackv( n, a, y, iy )
call vdunpackm( n, a, y, my )
C:
vsUnpackI( n, a, y, incy );
vsUnpackV( n, a, y, iy );
vsUnpackM( n, a, y, my );
vdUnpackI( n, a, y, incy );
vdUnpackV( n, a, y, iy );
vdUnpackM( n, a, y, my );

```

\section*{Input Parameters}

\section*{Fortran:}
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a
incy INTEGER, INTENT(IN) for vsunpacki, vdunpacki. Specifies the increment for the elements of \(y\).
iy INTEGER, INTENT(IN) for vsunpackv, vdunpackv. Array, DIMENSION at least \(n\), specifies the index vector for the elements of \(y\).
my INTEGER, INTENT (IN) for vsunpackm, vdunpackm. Array, dIMENSION at least \(n\), specifies the mask vector for the elements of \(y\).

C:
n
a
REAL, INTENT (IN) for vsunpacki, vsunpackv, vsunpackm DOUBLE PRECISION, INTENT(IN) for vdunpacki, vdunpackv, vdunpackm.
Array, DIMENSION at least \(n\), specifies the input vector a.
int. Specifies the number of elements to be calculated.
const float* for vsUnpackI, vsUnpackV, vsUnpackM const double* for vdUnpackI, vdUnpackV, vdUnpackM Specifies the pointer to an array of size at least \(n\) that contains the input vector \(a\).
incy int for vsUnpackI, vdUnpackI. Specifies the increment for the elements of \(y\).
iy const int* for vsUnpackV, vdUnpackV. Specifies the pointer to an array of size at least \(n\) that contains the index vector for the elements of \(a\).
my const int* for vsUnpackM, vdUnpackM. Specifies the pointer to an array of size at least \(n\) that contains the mask vector for the elements of \(a\).

\section*{Output Parameters}

Fortran:
y
REAL for vsunpacki, vsunpackv, vsunpackm
DOUBLE PRECISION for vdunpacki, vdunpackv, vdunpackm.
Array, DIMENSION
at least (1 \(+(n-1) * i n c y)\) for vsunpacki,
at least max (\(n, \max (i y[j])\)) , \(j=0, \ldots, n-1\), for vsunpackv,
at least \(n\) for vsunpackm
Specifies the output vector \(y\).
C:
\(y\) float* for vsUnpackI, vsUnpackV, vsUnpackM
double* for vdUnpackI, vdUnpackV, vdUnpackM
Specifies the pointer to an array that contains the output vector y . Size of the array must be:
at least (1 + (n-1)*incy) for vsUnPackI, at least max (\(n, \max (i a[j])\)) , \(j=0, \ldots, n-1\), for vsUnPackV, at least \(n\) for vsUnPackM.

\section*{VML Service Functions}

This section describes VML functions which allow the user to set/get the accuracy mode, and set/get the error code. All these functions are available both in Fortran- and C- interfaces.
Table 7-10 lists available VML Service functions and their short description.

\section*{Table 7-10 VML Service Functions}
\begin{tabular}{ll}
Function Short Name & Description \\
\hline\(\underline{\text { SetMode }}\) & \begin{tabular}{l}
Sets the VML mode \\
GetMode
\end{tabular} \\
Gets the VML mode \\
SetErrStatus & Sets the VML error status \\
GetErrStatus & Gets the VML error status \\
\hline ClearErrStatus & Clears the VML error status \\
\hline SetErrorCallBack & Sets the additional error handler callback function \\
GetErrorCallBack & Gets the additional error handler callback function \\
ClearErrorCallBack & Deletes the additional error handler callback function \\
\hline
\end{tabular}

\section*{SetMode}

Sets the new mode for VML functions according to mode parameter and stores the previous VML mode to oldmode.
```

Fortran:
oldmode = vmlsetmode( mode )
C:
oldmode = vmlSetMode( mode );

```

\section*{Input Parameters}

\section*{Fortran:}
\begin{tabular}{ll}
mode & INTEGER, INTENT (IN). Specifies the VML mode to be \\
set. \\
mode & int. Specifies the VML mode to be set.
\end{tabular}

\section*{Output Parameters}

Fortran:
oldmode INTEGER. Specifies the former VML mode.
C:
oldmode int. Specifies the former VML mode.

\section*{Discussion}

The mode parameter is designed to control accuracy, FPU and error handling options. Table 7-11 lists values of the mode parameter. All other possible values of the mode parameter may be obtained from these values by using bitwise OR (\(\mid\)) operation to combine one value for accuracy, one for FPU, and one for error control options. The default value of the mode parameter is vML_HA | VML_ERRMODE_DEFAULT. Thus, the current FPU control word (FPU precision and the rounding method) is used by default.

If any VML mathematical function requires different FPU precision, or rounding method, it changes these options automatically and then restores the former values. The mode parameter enables you to minimize switching the internal FPU mode inside each VML mathematical function that works with similar precision and accuracy settings. To accomplish this, set the mode parameter to VML_FLOAT_CONSISTENT for single precision functions, or to VML_DOUBLE_CONSISTENT for double precision functions. These values of the mode parameter are the optimal choice for the respective function groups, as they are required for most of the VML mathematical functions. After the execution is over, set the mode to VML_RESTORE if you need to restore the previous FPU mode.

Table 7-11 Values of the mode Parameter
\begin{tabular}{ll}
Value of mode & Description \\
\hline \multicolumn{1}{c}{ Accuracy Control } & High accuracy versions of VML functions will be used \\
VML_HA & Low accuracy versions of VML functions will be used \\
VML_LA & \(\begin{array}{l}\text { Additional FPU Mode }\end{array}\) \\
Control \\
TML_FLOAT_CONSISTENT \\
precision functions is set, and the previous FPU \\
mode is saved
\end{tabular}\(]\)\begin{tabular}{l}
The optimal FPU mode (control word) for double \\
precision functions is set, and the previous FPU \\
mode is saved
\end{tabular}

\section*{Examples}

Several examples of calling the function vmlSetMode () with different values of the mode parameter are given below:

Fortran:
oldmode = vmlsetmode(VML_LA)
call vmlsetmode(IOR(VML_LA, IOR(VML_FLOAT_CONSISTENT, VML_ERRMODE_IGNORE)))
call vmlsetmode(VML_RESTORE)

C:
```

vmlSetMode( VML_LA );
vmlSetMode( VML_LA | VML_FLOAT_CONSISTENT | VML_ERRMODE_IGNORE );
vmlSetMode( VML_RESTORE);

```

\section*{GetMode}

Gets the VML mode.

\section*{Fortran:}
```

mod = vmlgetmode()

```

C:
```

mod = vmlGetMode( void );

```

\section*{Output Parameters}

Fortran:
mod INTEGER. Specifies the packed mode parameter.
C:
\(\bmod \quad\) int. Specifies the packed mode parameter.

\section*{Discussion}

The function vmlGetMode () returns the VML mode parameter which controls accuracy, FPU and error handling options. The mod variable value is some combination of the values listed in the Table 7-11. You can obtain some of these values using the respective mask from the Table 7-12, for example:
Fortran:
```

mod = vmlgetmode()
accm = IAND (mod, VML_ACCURACY_MASK)
fpum = IAND (mod, VML_FPUMODE_MASK)
errm = IAND (mod, VML_ERRMODE_MASK)
C:

```
```

accm = vmlGetMode(void )\& VML_ACCURACY_MASK;
fpum = vmlGetMode(void )\& VML_FPUMODE _MASK;
errm = vmlGetMode(void )\& VML_ERRMODE _MASK;

```

Table 7-12 Values of Mask for the mode Parameter
\begin{tabular}{ll}
Value of mask & Description \\
\hline VML_ACCURACY_MASK & Specifies mask for accuracy mode selection. \\
VML_FPUMODE_MASK & Specifies mask for FPU mode selection. \\
VML_ERRMODE_MASK & Specifies mask for error mode selection.
\end{tabular}

\section*{SetErrStatus}

Sets the new VML error status according to err and stores the previous VML error status to olderr.

\section*{Fortran:}
```

olderr = vmlseterrstatus( err )

```

C:
olderr = vmlSetErrStatus(err);

\section*{Input Parameters}

Fortran:
err INTEGER, INTENT (IN). Specifies the VML error status to be set.

C:
err
int. Specifies the VML error status to be set.

\section*{Output Parameters}

Fortran:
olderr INTEGER. Specifies the former VML error status.

C:
olderr int. Specifies the former VML error status.
Table 7-13 lists possible values of the err parameter.

Table 7-13 Values of the VML Error Status
\begin{tabular}{ll}
\multicolumn{1}{c}{ Error Status } & Description \\
\hline VML_STATUS_OK & The execution was completed successfully. \\
VML_STATUS_BADSIZE & The array dimension is not positive. \\
VML_STATUS_BADMEM & NULL pointer is passed. \\
VML_STATUS_ERRDOM & \begin{tabular}{l}
At least one of array values is out of a \\
range of definition.
\end{tabular} \\
VML_STATUS_SING & \begin{tabular}{l}
At least one of array values caused a \\
singularity.
\end{tabular} \\
VML_STATUS_OVERFLOW & \begin{tabular}{l}
An overflow has happened during the \\
calculation process.
\end{tabular} \\
VML_STATUS_UNDERFLOW & \begin{tabular}{l}
An underflow has happened during the \\
calculation process.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples:}
```

vmlSetErrStatus( VML_STATUS_OK );
vmlSetErrStatus( VML_STATUS_ERRDOM );
vmlSetErrStatus( VML_STATUS_UNDERFLOW );

```

\section*{GetErrStatus}

Gets the VML error status.

\section*{Fortran:}
err \(=\) vmlgeterrstatus()
C:
err = vmlGetErrStatus(void);

\section*{Output Parameters}

Fortran:
err INTEGER. Specifies the VML error status.
C:
err int. Specifies the VML error status.

\section*{ClearErrStatus}

Sets the VML error status to vML_STATUS_OK and stores the previous VML error status to olderr.

\section*{Fortran:}
olderr = vmlclearerrstatus()
C:
olderr = vmlClearErrStatus(void);

\section*{Output Parameters}

Fortran:
olderr InTEGER. Specifies the former VML error status.
```

C:
olderr
int. Specifies the former VML error status.

```

\section*{SetErrorCallBack}

Sets the additional error handler
callback function and gets the old callback function.

\section*{Fortran:}
oldcallback = vmlseterrorcallback(callback)
C:
oldcallback = vmlSetErrorCallBack(callback);

\section*{Input Parameters}

Fortran:
callback Address of the callback function.
The callback function has the following format:
```

INTEGER FUNCTION ERRFUNC(par)
TYPE (ERROR_STRUCTURE) par
! ...
! user error processing
! ...
ERRFUNC = 0
! if ERRFUNC = 0 - standard VML error
handler
! is called after the callback
! if ERRFUNC != 0 - standard VML error
handler
! is not called
END

```

The passed error structure is defined as follows:
```

TYPE ERROR_STRUCTURE
SEQUENCE
INTEGER*4 ICODE
INTEGER*4 IINDEX
REAL*8 DBA1
REAL*8 DBA2
REAL*8 DBR1
REAL*8 DBR2
CHARACTER (64) CFUNCNAME
INTEGER*4 IFUNCNAMELEN
END TYPE ERROR_STRUCTURE

```
C:
callback

Pointer to the callback function.
The callback function has the following format:
```

static int __stdcall
MyHandler(DefVmlErrorContext*
pContext)
{
/* Handler body */
};

```

The passed error structure is defined as follows:
```

typedef struct _DefVmlErrorContext
{
int iCode; /* Error status value */
int iIndex; /* Index for bad array
element, or bad array
dimension, or bad
array pointer */
double dbA1; * Error argument 1 */
double dbA2; /* Error argument 2 */
double dbR1; /* Error result 1 */
double dbR2; /* Error result 2 */
char cFuncName[64]; /* Function name */
int iFuncNameLen; /* Length of function
name*/
} DefVmlErrorContext;

```

\section*{Output Parameters}

Fortran:
oldcallback Address of the former callback function.
C:
oldcallback Pointer to the former callback function.

\section*{Discussion}

The callback function is called on each VML mathematical function error if VML_ERRMODE_CALLBACK error mode is set (see Table 7-11).

Use the vmlSetErrorCallBack () function if you need to define your own callback function instead of default empty callback function.
The input structure for a callback function contains the following information about the encountered error:
- the input value which caused an error
- location (array index) of this value
- the computed result value
- error code
- name of the function in which the error occurred.

You can insert your own error processing into the callback function. This may include correcting the passed result values in order to pass them back and resume computation. The standard error handler is called after the callback function only if it returns 0 .

\section*{GetErrorCallBack}

Gets the additional error handler
callback function.

\section*{Fortran:}
fun \(=\) vmlgeterrorcallback()
```

C:
fun = vmlGetErrorCallBack( void );

```

\section*{Output Parameters}
```

Fortran:
fun Address of the callback function.
C:
fun Pointer to the callback function.

```

\section*{ClearErrorCallBack}

Deletes the additional error handler callback function and retrieves the former callback function.

\section*{Fortran:}
oldcallback = vmlclearerrorcallback()
C:
oldcallback = vmlClearErrorCallBack(void);

\section*{Output Parameters}

Fortran:
oldcallback INTEGER. Address of the former callback function.
C:
oldcallback int. Pointer to the former callback function.

\section*{Vector Generators of Statistical Distributions}

This chapter describes the part of Intel \({ }^{\circledR}\) MKL which is known as Vector Statistical Library (VSL) and is designed for the purpose of generating vectors of pseudorandom numbers.
VSL provides a set of pseudorandom number generator subroutines implementing basic continuous and discrete distributions. To speed up performance, all these subroutines were developed using the calls to the highly optimized Basic Random Number Generators (BRNGs) and the library of vector mathematical functions (VML, see chapter 7).
All VSL subroutines can be classified into three major categories:
- Pseudorandom number generators for different types of statistical distributions, for example, uniform, normal (Gaussian), binomial, etc. Detailed description of the generators can be found in Pseudorandom Generators section.
- Basic subroutines to handle random number streams: create, initialize, delete, copy, get the index of a basic generator. The description of these subroutines can be found in Service Subroutines section.
- Registration subroutines for basic pseudorandom generators and subroutines that obtain properties of the registered generators (see Advanced Service Subroutines section).

The last two categories will be referred to as service subroutines.

\section*{Conventions}

In this discussion, a Random Number Generator (RNG) means a number-theoretic deterministic algorithm that generates number sequences, which can be interpreted as random samplings from a universal set with a given probability distribution function. Since random numbers are generated by a deterministic algorithm, they cannot be truly random and should be referred to as pseudorandom. The respective generators should be also called pseudorandom. However, in this chapter no specific differentiation is made between random and pseudorandom numbers, as well as between random and pseudorandom generators unless the context requires otherwise. Likewise, the terms random number and variate, statistical distribution and probability distribution, are not distinguished here either.
The choice of a number-theoretic algorithm \(A\) and initial conditions \(I\) identifies a unique sequence of random numbers, which is called a random stream. The pair \(\langle A, I\rangle\) is referred to as the random stream state. In VSL a stream is identified by a stream descriptor represented as TYPE
(VSL_STREAM_STATE) structure in FORTRAN interface, and VSLStreamStatePtr pointer in C interface.
All generators of nonuniform distributions, both discrete and continuous, are built on the basis of the uniform distribution generators, called Basic Random Number Generators (BRNGs). The pseudorandom numbers with nonuniform distribution are obtained through an appropriate transformation of the uniformly distributed pseudorandom numbers. The most common transformation techniques include the inverse Cumulative Distribution Function (CDF), acceptance/rejection method, and mixtures. For certain types of distribution, several generation methods are implemented.

VSL subroutines for pseudorandom number generation accept the stream descriptor and the distribution parameters as input and write the result in a vector of pseudorandom numbers with a given distribution. For a given statistical distribution, several generation methods can be used, which may differ in efficiency for particular ranges of input parameters. Consequently, the most efficient generators often use different methods for different ranges. To establish the generation method to be used in the subroutine, you
should specify the input parameter called the method number. Description of methods available for each generator can be found in Pseudorandom Generators section.

In the discussion that follow, the terms multiprocessor system, computational node, and processor refer to any configuration of the system with shared or distributed memory, or combination of the two. Specifically, a computational node, or a processor, refers to a computational unit capable of performing independent parallel computations (this may be either a physical processor, a cluster node, or a logical parallel process).

\section*{Mathematical Notation}

The following notation is used throughout the text:
\(N \quad\) The set of natural numbers \(N=\{1,2,3 \ldots\}\).
\(Z \quad\) The set of integers \(Z=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}\).
\(R \quad\) The set of real numbers.
\(\lfloor a\rfloor \quad\) The floor of \(a\) (the largest integer less than or equal to \(a\)).
\(\oplus\) or xor \(\quad\) Bitwise exclusive OR.
\(C_{\alpha}^{k}\) or \(\binom{\alpha}{k} \quad \begin{gathered}\text { Binomial coefficient or combination }(\alpha \in R, \alpha \geq 0 ; \\ k \in N \cup\{0\}) . C_{\alpha}^{0}=1 . \text { For } \alpha \geq k \text { binomial coefficient is } \\ \text { defined as }\end{gathered}\)
\[
C_{\alpha}^{k}=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!} . \text { If } \alpha<k, \text { then } C_{\alpha}^{k}=0
\]
\(\Phi(x) \quad\) Cumulative Gaussian distribution function
\[
\begin{aligned}
& \Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) d y, \text { defined over }-\infty<x<+\infty \\
& \Phi(-\infty)=0, \quad(+\infty)=1
\end{aligned}
\]
\(\operatorname{LCG}(a, c, m) \quad\) Linear Congruential Generator \(x_{n+1}=\left(a x_{n}+c\right) \bmod m\), where \(a\) is called the multiplier, \(c\) is called the increment and \(m\) is called the modulus of the generator.
\[
\begin{array}{ll}
\operatorname{MCG}(a, m) \quad \begin{array}{l}
\text { Multiplicative Congruential Generator } x_{n+1}=\left(a x_{n}\right) \bmod m \text { is a } \\
\text { special case of Linear Congruential Generator, where the increment } c \\
\text { is taken to be } 0 .
\end{array} \\
\operatorname{GFSR}(p, q) & \begin{array}{l}
\text { Generalized Feedback Shift Register Generator }
\end{array} \\
x_{n}=x_{n-p} \oplus x_{n-q} .
\end{array}
\]

\section*{Naming Conventions}

The names of all VSL functions in FORTRAN are lowercase; names in C may contain both lowercase and uppercase letters.

NOTE. This naming convention is followed in the function descriptions in the manual. Actual function names in the library may differ slightly (with respect to lower- and uppercase usage) and will be sufficient to meet the requirements of the supported compilers.

The names of generator subroutines have the following structure:
```

v<type of result>rng<distribution> for FORTRAN-interface
v<type of result>Rng<distribution> for C-interface

```
where v is the prefix of a VSL vector function, and the field <type of result> is either s, d, or i and specifies one of the following types:
```

s REAL for FORTRAN-interface
float for C-interface
DOUBLE PRECISION for FORTRAN-interface
double for C-interface
INTEGER for FORTRAN-interface
int for C-interface

```

Prefixes s and d apply to continuous distributions only, prefix i applies only to discrete case. The prefix rng indicates that the subroutine is a pseudorandom generator, and the <distribution> field specifies the type of statistical distribution.

Names of service subroutines follow the template below:
```

vsl<name>,

```
where vsl is the prefix of a VSL service function. The field <name> contains a short function name. For a more detailed description of service subroutines refer to Service Subroutines and Advanced Service Subroutines sections.

Prototype of each generator subroutine implementing a given type of random number distribution fits the following structure:
```

<function name>( method, stream, n, r, [<distribution
parameters>] ),
where

```
- method is the number specifying the method of generation. A detailed description of this parameter can be found in Pseudorandom Generators section.
- stream defines the random stream descriptor and must have a nonzero value. Random streams and their usage are discussed further in Random Streams and Service Subroutines.
- \(n\) defines the number of pseudorandom values to be generated. If \(n\) is less than or equal to zero, no values are generated. Furthermore, if \(n\) is negative, an error condition is set.
- \(r\) defines the destination array for the generated numbers. The dimension of the array must be large enough to store at least \(n\) pseudorandom numbers.

Additional parameters included into <distribution parameters> field are individual for each generator subroutine and are described in detail in Pseudorandom Generators section.

To invoke a pseudorandom generator, use a call to the respective VSL subroutine. For example, to obtain a vector \(r\), composed of \(n\) independent and identically distributed pseudorandom numbers with normal (Gaussian) distribution, that have the mean value a and standard deviation sigma, write the following:
for FORTRAN-interface
```

call vsrnggaussian( method, stream, n, r, a, sigma )

```
for C -interface
vsRngGaussian(method, stream, n, r, a, sigma)

\section*{Basic Pseudorandom Generators}

Basic Random Number Generators (BRNGs) are the major and widely spread tool to obtain uniformly distributed pseudorandom numbers.

VSL provides a number of basic generators that differ in speed and quality: the 32-bit multiplicative congruential generator \(\operatorname{MCG}\left(1132489760,2^{31}-1\right)\) [L'Ecuyer99], the 32-bit generalized feedback shift register generator \(\operatorname{GFSR}(250,103)\) [Kirkpatrick81], and the combined multiple recursive generator \(M R G\)-32k3a [L'Ecuyer99a], as well as the 59-bit multiplicative congruential generator \(\operatorname{MCG}\left(13^{13}, 2^{59}\right)\) and Wichmann-Hill generator (in fact, this is a set of 273 basic generators) from NAG Numerical Libraries [NAG]. Essentially, applicability of a basic generator to a given computational task is very difficult to estimate. To ensure more reliable results, basic generators are usually tested in a series of statistical tests prior to actual computation. Comparative performance analysis of the generators and testing results can be found in VSLNotes.
Users may want to design and use their own basic generators. VSL provides means of registration of such user-designed generators through the steps described in Advanced Service Subroutines section.
For some basic generators, VSL provides two methods of creating independent random streams in multiprocessor computations, which are the leapfrog method and the block-splitting method. The properties of the generators designed for parallel computations are discussed in detail in [Coddington94].
For a more detailed description of the generator properties and testing results refer to VSLNotes.

\section*{Random Streams}

Several random streams may be used in one application for a number of reasons.
First, it may be necessary to supply random data to different computational nodes of a multiprocessor system. In this case, the following options are available:
- use an individual basic generator for each computational node, so that each random stream is filled from a different basic generator;
- use one basic generator for all computational nodes and generate several independent random streams using the leapfrog method or the block-splitting method;
- use combination of the two approaches, when one basic generator is used to generate independent streams for all nodes and each of the nodes in turn uses its own generator.
Another reason is related to the fact that many Monte Carlo simulations require additional randomization. A simple illustration is the necessity to assign random streams to different elements of the model or to run variance reduction methods [Bratley87].
In either case, the correlation between different random streams can affect reliability of the final result.

\section*{Data Types}

Stream State. Random numbers can be generated by portions using the notion of a stream state, which is a structure created after a call to the stream creating subroutine. A stream state descriptor is used to access the structure:
FORTRAN
```

TYPE VSL_STREAM_STATE
INTEGER*4 descriptor1
INTEGER*4 descriptor2
END TYPE VSL_STREAM_STATE
C
typedef (void*) VSLStreamStatePtr;

```

See Advanced Service Subroutines for the format of the stream state structure for user-designed generators.

\section*{Service Subroutines}

Stream handling comprises subroutines for creating, deleting, or copying the streams and getting the index of a basic generator.

Table 8-1 lists all available service subroutines
Table 8-1 Service Subroutines
\begin{tabular}{|c|c|}
\hline Subroutine & Short Description \\
\hline NewStream & Creates and initializes a random stream. \\
\hline NewStreamEx & Creates and initializes a random stream for the generators with multiple initial conditions. \\
\hline DeleteStream & Deletes previously created stream. \\
\hline CopyStream & Copies a stream to another stream. \\
\hline CopyStreamState & Creates a copy of a random stream state. \\
\hline LeapfrogStream & Initializes the stream of \(k\)-th computational node in a nstreams-node cluster by the leapfrog method. \\
\hline SkipAheadStream & Initializes the stream by the block-splitting method. \\
\hline GetStreamStateBrng & Obtains the index of the basic generator responsible for the generation of a given random stream. \\
\hline GetNumRegBrng & Obtains the number of currently registered basic generators. \\
\hline
\end{tabular}

NOTE. In the above table, the vsl prefix in the function names is omitted. In the function reference this prefix is always used in function prototypes and code examples.

Most of the generator-based work comprises three basic steps:
1. Creating and initializing a stream (NewStream, NewStreamEx, CopyStream, CopyStreamState, LeapfrogStream, SkipAheadStream).
2. Generating pseudorandom numbers with given distribution, see Pseudorandom Generators.
3. Deleting the stream (DeleteStream).

Note that you can concurrently create multiple streams and obtain pseudorandom data from one or several generators by using the stream state. You must use the DeleteSt ream function to delete all the streams afterwards.

\section*{NewStream}

Creates and initializes a random stream.

\section*{Fortran:}
```

call vslnewstream( stream, brng, seed )

```

C:
vslNewStream(stream, brng, seed)

\section*{Discussion}

For a basic generator with number brng, this function creates a new stream and initializes it with a 32-bit seed. The function is also applicable for generators with multiple initial conditions. See VSLNotes for a more detailed description of stream initialization for different basic generators.

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
brng & \begin{tabular}{l}
INTEGER, INTENT (IN). Index of the basic \\
generator to initialize the stream. \\
seed \\
INTEGER, INTENT (IN). Initial condition of \\
the stream.
\end{tabular} \\
C: & \begin{tabular}{l}
int. Index of the basic generator to initialize \\
the stream.
\end{tabular} \\
seed & \begin{tabular}{l}
unsigned int. Initial condition of the \\
stream.
\end{tabular}
\end{tabular}

\section*{Output Parameters}

FORTRAN:
\(\left.\begin{array}{ll}\text { stream } & \text { TYPE (VSL_STREAM_STATE), } \\
\text { INTENT (OUT). Stream state descriptor. }\end{array}\right\}\)\begin{tabular}{ll}
C: & \\
stream & \begin{tabular}{l}
VSLStreamStatePtr*. Pointer to the stream \\
state structure.
\end{tabular}
\end{tabular}

\section*{NewStreamEx}

Creates and initializes a random stream
for generators with multiple initial conditions.

\section*{Fortran:}
```

call vslnewstreamex( stream, brng, n, params )

```

C:
vslNewStreamEx(stream, brng, n, params)

\section*{Discussion}

This function provides an advanced tool to set the initial conditions for a basic generator if its input arguments imply several initialization parameters. This subroutine should not be used unless it is specially necessary. Whenever possible, use vslNewStream, which is analogous to vslNewStreamEx except that it takes only one 32-bit initial condition. In particular, vslNewStreamEx may be used to initialize the seed tables in Generalized Feedback Shift Register Generators (GFSRs). A more detailed description of this issue can be found in VSLNotes.

\section*{Input Parameters}

FORTRAN:
brng
\(n\)
params

C:
brng
\(n\)
params

\section*{Output Parameters}

FORTRAN:

\section*{stream}

\section*{C:}

\section*{stream}

INTEGER, INTENT (IN). Index of the basic generator to initialize the stream.

INTEGER, INTENT (IN). Number of initial conditions contained in params.

INTEGER, INTENT (IN). Array of initial conditions necessary for the basic generator brng to initialize the stream.
int. Index of the basic generator to initialize the stream.
int. Number of initial conditions contained in params.
const unsigned int []. Array of initial conditions necessary for the basic generator brng to initialize the stream.

TYPE (VSL_STREAM_STATE), INTENT (OUT). Stream state descriptor.

VSLStreamStatePtr*. Pointer to the stream state structure.

\section*{DeleteStream}

Deletes a random stream.

\section*{Fortran:}
```

call vsldeletestream( stream )

```

C:
```

vslDeleteStream( stream )

```

\section*{Discussion}

This function deletes the random stream created by one of the initialization functions.

\section*{Input/Output Parameters}

FORTRAN:
stream TYPE(VSL_STREAM_STATE), INTENT (INOUT). Descriptor of the stream to be deleted; must have non-zero value.

C:
stream
VSLStreamStatePtr*. Pointer to the stream state structure; must have non-zero value. After the stream is successfully deleted, the stream pointer is set to NULL.

\section*{CopyStream}

Creates a copy of a random stream.

\section*{Fortran:}
call vslcopystream(newstream, srcstream)
C:
vslCopyStream(newstream, srcstream)

\section*{Discussion}

The function creates an exact copy of srestream and stores its descriptor to newstream.

\section*{Input Parameters}

FORTRAN:
```

scrstream TYPE(VSL_STREAM_STATE), INTENT (IN). Descriptor of the stream to be copied.

```

\section*{C:}

\section*{srcstream}

VSLStreamStatePtr. Pointer to the stream state structure to be copied.

\section*{Output Parameters}

FORTRAN:
\begin{tabular}{ll}
newstream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), \\
INTENT (OUT). Descriptor of the stream copy.
\end{tabular} \\
C: & \\
newstream & \begin{tabular}{l}
VSLStreamStatePtr*. Pointer to the copy \\
of the stream state structure.
\end{tabular}
\end{tabular}

\section*{CopyStreamState}

Creates a copy of a random stream
state.

\section*{Fortran:}
call vslcopystreamstate(deststream, srcstream)
```

C:
vslCopyStreamState( deststream, srcstream )

```

\section*{Discussion}

The function copies a stream state from srcst ream to the existing deststream stream. Both streams should be generated by the same basic generator. En error message is generated when the index of the BRNG that produced deststream stream differs from the index of the BRNG that generated srcstream stream.
Unlike copyStream function, which creates a new stream and copies both the stream state and other data from srcstream, the function CopySt reamState copies only srcstream stream state data to the generated deststream stream.

Input Parameters
FORTRAN:
scrstream TYPE(VSL_STREAM_STATE), intent (IN). Descriptor of the stream with the state to be copied.

C:

VSLStreamStatePtr. Pointer to the stream state structure from which the stream state is copied.

\section*{Output Parameters}

FORTRAN:
TYPE (VSL_STREAM_STATE), INTENT (IN). Descriptor of the destination stream where the state of scrstream stream is copied.

C :
deststream

VSLStreamStatePtr. Pointer to the stream state structure where the stream state is copied.

\section*{LeapfrogStream}

Initializes stream of \(k\)-th computational
node in nstreams-node cluster using the leapfrog method.

\section*{Fortran:}
call vslleapfrogstream (stream, \(k\), nstreams)
C:
vslLeapfrogtream(stream, \(k, n s t r e a m s)\)

\section*{Discussion}

The function uses the leapfrog method (see Figure 8-1) to generate an independent random stream for the computational node \(k, 0 \nless<n s t r e a m s\), where nst reams is the largest number of computational nodes used.

Figure 8-1 Leapfrog Method

The following code examples illustrate the initialization of three independent streams using the leapfrog method:

\section*{Example 8-1 FORTRAN Code for Leapfrog Method}
```

type(VSL_STREAM_STATE) stream1
type(VSL_STREAM_STATE) stream2
type(VSL_STREAM_STATE) stream3
! Creating 3 identical streams
call vslnewstream(stream1, VSL_BRNG_MCG31, 174)
call vslcopystream(stream2, stream1)
call vslcopystream(stream3, stream1)
! Leapfrogging the streams
call vslleapfrogstream(stream1, 0, 3)
call vslleapfrogstream(stream2, 1, 3)
call vslleapfrogstream(stream3, 2, 3)
! Generating random numbers
! Deleting the streams
call vsldeletestream(stream1)
call vsldeletestream(stream2)
call vsldeletestream(stream3)

```
...

\section*{Example 8-2 C Code for Leapfrog Method}
```

VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;
/* Creating 3 identical streams */
vslNewStream(\&stream1, VSL_BRNG_MCG31, 174);
vslCopyStream(\&stream2, stream1);
vslCopyStream(\&stream3, stream1);
/* Leapfrogging the streams */
vslLeapfrogStream(stream1, 0, 3);
vslLeapfrogStream(stream2, 1, 3);
vslLeapfrogStream(stream3, 2, 3);
/* Generating random numbers */
/* Deleting the streams */
vslDeleteStream(\&stream1);
vslDeleteStream(\&stream2);
vslDeleteStream(\&stream3);

```

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
stream & TYPE (VSL_STREAM_STATE), \\
& INTENT (IN). Descriptor of the stream to \\
which the leapfrog method is applied. \\
\(k\) & \begin{tabular}{l}
INTEGER, INTENT (IN). Index of the \\
computational node, or stream number.
\end{tabular} \\
nstreams & \begin{tabular}{l}
INTEGER, INTENT (IN). Largest number of \\
computational nodes, or number of \\
independent streams.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
C: & \\
stream & \begin{tabular}{l}
VSLStreamStatePtr. Pointer to the stream \\
state structure to which the leapfrog method is \\
applied.
\end{tabular} \\
\(k\) & \begin{tabular}{l}
int. Index of the computational node, or \\
stream number.
\end{tabular} \\
nstreams & \begin{tabular}{l}
int. Largest number of computational nodes, \\
or number of independent steams.
\end{tabular}
\end{tabular}

\section*{SkipAheadStream}

Initializes a stream using the block-splitting method.

\section*{Fortran:}
```

call vslskipaheadstream( stream, nskip )

```

C:
vslSkipAheadStream(stream, nskip)

\section*{Discussion}

This function initializes an independent random stream of a given computational node through the block-splitting method (see Figure 8-2). The maximum number of computational nodes is unlimited. The largest number of elements skipped in a given stream is nskip.

Figure 8-2 Block-Splitting Method

The following code examples illustrate how to initialize three independent streams using the SkipAheadStream function:

\section*{Example 8-3 FORTRAN Code for Block-Splitting Method}
```

TYPE(VSL_STREAM_STATE) stream1
TYPE(VSL_STREAM_STATE) stream2
TYPE(VSL_STREAM_STATE) stream3
! Creating the 1st stream
call vslnewstream(stream1, VSL_BRNG_MCG31, 174)
! Skipping ahead by }7\mathrm{ elements the 2nd stream
call vslcopystream(stream2, stream1);
call vslskipaheadstream(stream2, 7);
! Skipping ahead by 7 elements the 3rd stream
call vslcopystream(stream3, stream2);
call vslskipaheadstream(stream3, 7);
! Generating random numbers
! Deleting the streams
call vsldeletestream(stream1)
call vsldeletestream(stream2)
call vsldeletestream(stream3)

```
...

\section*{Example 8-4 C Code for Block-Splitting Method}
```

VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;
/* Creating the lst stream */
vslNewStream(\&stream1, VSL_BRNG_MCG31, 174);
/* Skipping ahead by 7 elements the 2nd stream */
vslCopyStream(\&stream2, stream1);
vslSkipAheadStream(stream2, 7);
/* Skipping ahead by 7 elements the 3rd stream */
vslCopyStream(\&stream3, stream2);
vslSkipAheadStream(stream3, 7);
/* Generating random numbers */
/* Deleting the streams */
vslDeleteStream(\&stream1);
vslDeleteStream(\&stream2);
vslDeleteStream(\&stream3);

```

\section*{Input Parameters}

FORTRAN:
stream
```

nskip

```

C:
stream
nskip

TYPE (VSL_STREAM_STATE), INTENT (IN). Descriptor of the stream to which the block-splitting method is applied. INTEGER, INTENT (IN). Number of skipped elements.

VSLStreamStatePtr. Pointer to the stream state structure to which the block-splitting method is applied.
int. Number of skipped elements.

\section*{GetStreamStateBrng}

Returns index of a basic generator used for generation of a given random stream.

\section*{Fortran:}
brng \(=\) vslgetstreamstatebrng (stream)
C:
brng \(=\) vslGetStreamStateBrng (stream)

\section*{Discussion}

This function retrieves the index of a basic generator used for generation of a given random stream.

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN). \\
Descriptor of the stream state.
\end{tabular} \\
C: & \\
stream & \begin{tabular}{l}
VSLStreamStatePtr. Pointer to the stream \\
state structure.
\end{tabular}
\end{tabular}

\section*{Output Parameters}

FORTRAN:
\begin{tabular}{ll}
brng & INTEGER. Index of the basic generator assigned \\
for the generation of stream; negative in case \\
of an error.
\end{tabular}

C:
int. Index of the basic generator assigned for the generation of stream; negative in case of an error.

\section*{GetNumRegBrng}

Obtains the number of currently registered basic generators.

\section*{Fortran:}
nregbrng \(=\) vslgetnumregbrngs ()
C:
nregbrng = vslGetNumRegBrngs(void)

\section*{Discussion}

This function obtains the number of currently registered basic generators. Whenever the user registers a user-defined basic generator, the number of registered basic generators is incremented. The maximum number of basic generators that can be registered is determined by VSL_MAX_REG_BRNGS parameter.

\section*{Output Parameters}

FORTRAN:
nregbrngs

C:
nregbrngs

INTEGER. The number of basic generators registered at the moment of the function call.
int. The number of basic generators registered at the moment of the function call.

\section*{Pseudorandom Generators}

This section contains description of VSL subroutines for generating random numbers with different types of distribution. Each function group is introduced by the type of underlying distribution and contains a short description of its functionality, as well as specifications of the call sequence for both FORTRAN and C-interface and the explanation of input and output parameters.
Table 8-2 and Table 8-3 list the pseudorandom number generator subroutines, together with used data types and output distributions.

Table 8-2 Continuous Distribution Generators
\begin{tabular}{|c|c|c|}
\hline Type of Distribution & \begin{tabular}{l}
Data \\
Types
\end{tabular} & Description \\
\hline Uniform & s, d & Uniform continuous distribution on the interval (a,b). \\
\hline Gaussian & \(s, d\) & Normal (Gaussian) distribution. \\
\hline Exponential & \(s, d\) & Exponential distribution. \\
\hline Laplace & \(s, d\) & Laplace distribution (double exponential distribution). \\
\hline Weibull & \(s, d\) & Weibull distribution. \\
\hline Cauchy & \(s, d\) & Cauchy distribution. \\
\hline Rayleigh & \(s, d\) & Rayleigh distribution. \\
\hline Lognormal & \(s, d\) & Lognormal distribution. \\
\hline Gumbel & \(s, d\) & Gumbel (extreme value) distribution. \\
\hline
\end{tabular}

Table 8-3 Discrete Distribution Generators
\begin{tabular}{lll}
Type of Distribution & \begin{tabular}{l}
Data \\
Types
\end{tabular} & \begin{tabular}{l}
Description \\
Uniform
\end{tabular} \\
\(\underline{\text { UniformBits }}\) & i & \begin{tabular}{l}
Uniform discrete distribution on the interval \([a, b)\). \\
Generator of integer random values with uniform bit \\
distribution.
\end{tabular} \\
\(\underline{\text { Bernoulli }}\) & i & Bernoulli distribution. \\
\(\underline{\text { Geometric }}\) & i & Geometric distribution. \\
\(\underline{\text { Binomial }}\) & i & Binomial distribution. \\
\(\underline{\text { Hypergeometric }}\) & i & Hypergeometric distribution.
\end{tabular}
\begin{tabular}{lll}
Table 8-3 & Discrete Distribution Generators (continued) \\
\hline & Data & \\
Type of Distribution & Types & Description \\
Poisson & i & Poisson distribution. \\
NegBinomial & i & Negative binomial distribution, or Pascal distribution. \\
\hline
\end{tabular}

\section*{Continuous Distributions}

This section describes routines for generating pseudorandom numbers with continuous distribution.

\section*{Uniform}

Generates pseudorandom numbers with uniform distribution.

\section*{Fortran:}
```

call vsrnguniform( method, stream, n, r, a, b )

```
call vdrnguniform(method, stream, \(n, r, a, b\))

C:
vsRngUniform(method, stream, \(n, r, a, b\))
vdRngUniform(method, stream, \(n, r, a, b\))

\section*{Discussion}

This function generates pseudorandom numbers uniformly distributed over the interval \((a, b)\), where \(a, b\) are the left and right bounds of the interval, respectively, and \(a, b \in R ; a<b\).
The probability density function is given by:
\(f_{a, b}(x)=\left\{\begin{array}{cc}\frac{1}{b-a}, & x \in(a, b) \\ 0, & x \notin(a, b)\end{array},-\infty<x<+\infty\right.\).

The cumulative distribution function is as follows:
\(F_{a, b}(x)=\left\{\begin{array}{rl}0, & x<a \\ \frac{x-a}{b-a}, & a \leq x<b,-\infty<x<+\infty \\ 1, & x \geq b\end{array}\right.\).
Input Parameters
FORTRAN:
\begin{tabular}{|c|c|}
\hline method & INTEGER, INTENT(IN). Generation method; dummy and set to 0 in case of uniform distribution. \\
\hline stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), \\
INTENT (IN). Descriptor of the stream state structure.
\end{tabular} \\
\hline \(n\) & INTEGER, INTENT (IN). Number of random values to be generated. \\
\hline a & REAL, INTENT (IN) for vsrnguniform. DOUBLE PRECISION, INTENT(IN) for vdrnguniform. \\
\hline
\end{tabular}

Left bound \(a\).
REAL, INTENT(IN) for vsrnguniform. DOUBLE PRECISION, INTENT (IN) for vdrnguniform.

Right bound b.

\section*{C:}

\section*{method}
stream
int. Generation method; dummy and set to 0 in case of uniform distribution

VSLStreamStatePtr. Pointer to the stream state structure
\(n\)
\(a\)
b

\section*{Output Parameters}

FORTRAN:
\(r\)
REAL, INTENT(OUT) for vsrnguniform.
DOUBLE PRECISION, INTENT (OUT) for vdrnguniform.

Vector of \(n\) pseudorandom numbers uniformly distributed over the interval \((a, b)\).

C:
r
int. Number of random values to be generated.
float for vsRngUniform.
double for vdRngUniform.
Left bound \(a\).
float for vsRngUniform.
double for vdRngUniform.
Right bound \(b\).

\section*{Gaussian}

Generates normally distributed pseudorandom numbers.

\section*{Fortran:}
```

call vsrnggaussian( method, stream, n, r, a, sigma )

```
```

call vdrnggaussian( method, stream, n, r, a, sigma )

```

\section*{C:}
```

vsRngGaussian( method, stream, n, r, a, sigma )
vdRngGaussian( method, stream, n, r, a, sigma )

```

\section*{Discussion}

This function generates pseudorandom numbers with normal (Gaussian) distribution with mean value \(a\) and standard deviation \(\sigma\), where
\[
a, \sigma \in R ; \sigma>0
\]

The probability density function is given by:
\[
f_{a, \sigma}(x)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right),-\infty<x<+\infty \text {. }
\]

The cumulative distribution function is as follows:
\[
F_{a, \sigma}(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{(y-a)^{2}}{2 \sigma^{2}}\right) d y,-\infty<x<+\infty .
\]

The cumulative distribution function \(F_{a}, \sigma(x)\) can be expressed in terms of standard normal distribution \(\Phi(x)\) as
\[
F_{a, \sigma}(x)=\Phi((x-a) / \sigma) .
\]

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
method & INTEGER, INTENT (IN). Generation \\
stream & method. \\
& TYPE (VSL_STREAM_STATE), \\
& INTENT (IN). Descriptor of the stream state \\
& structure.
\end{tabular}\(\quad\)\begin{tabular}{l}
INTEGER, INTENT (IN). Number of \\
random values to be generated..
\end{tabular}
a
sigma

\section*{C:}
method
stream
n
a
sigma

\section*{Output Parameters}

\section*{FORTRAN:}

\section*{r}

REAL, INTENT (IN) for vsrnggaussian. DOUBLE PRECISION, INTENT (IN) for vdrnggaussian.
Mean value \(a\).
REAL, INTENT (IN) for vsrnggaussian. DOUBLE PRECISION, INTENT (IN) for vdrnggaussian.

Standard deviation \(\sigma\).
int. Generation method.
VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
float for vsRngGaussian.
double for vdRngGaussian.
Mean value a.
float for vsRngGaussian.
double for vdRngGaussian.
Standard deviation \(\sigma\).

REAL, INTENT (OUT) for vsrnggaussian.
DOUBLE PRECISION, INTENT (OUT) for vdrnggaussian.

Vector of \(n\) normally distributed pseudorandom numbers.

C:
\(r\) float* for vsRngGaussian.
double* for vdRngGaussian.
Vector of \(n\) normally distributed pseudorandom numbers.

\section*{Exponential}

Generates exponentially distributed pseudorandom numbers.

\section*{Fortran:}
```

call vsrngexponential( method, stream, n, r, a, beta )
call vdrngexponential( method, stream, n, r, a, beta )

```

C:
vsRngExponential (method, stream, \(n, r, a, b e t a)\)
vdRngExponential(method, stream, \(n, r, a, b e t a)\)

\section*{Discussion}

This function generates pseudorandom numbers with exponential distribution that has the displacement \(a\) and scalefactor \(\beta\), where \(a, \beta \in R ; \beta>0\).
The probability density function is given by:
\[
f_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{1}{\beta} \exp ((-(x-a)) / \beta), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
\]

The cumulative distribution function is as follows:
\[
F_{a, \beta}(x)=\left\{\begin{array}{ll}
1-\exp ((-(x-a)) / \beta), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
\]

```

beta float for vsRngExponential.
double for vdRngExponential.
Scalefactor }\beta\mathrm{ .
Output Parameters
FORTRAN:

```
```

r

```
r
REAL, INTENT(OUT) for
REAL, INTENT(OUT) for
vsrngexponential.
vsrngexponential.
DOUBLE PRECISION, INTENT(OUT) for
DOUBLE PRECISION, INTENT(OUT) for
vdrngexponential.
vdrngexponential.
Vector of \(n\) exponentially distributed pseudorandom numbers.
C:
\(r\) float* for vsRngExponential. double* for vdRngExponential.
Vector of \(n\) exponentially distributed pseudorandom numbers.
```


## Laplace

## Generates pseudorandom numbers with Laplace distribution.

## Fortran:

```
call vsrnglaplace(method, stream, n, r, a, beta)
call vdrnglaplace(method, stream, n, r, a, beta)
```

C:

```
vsRngLaplace(method, stream, n, r, a, beta)
```

vdRngLaplace( method, stream, $n, r, a, b e t a)$

## Discussion

This function generates pseudorandom numbers with Laplace distribution with mean value (or average) a and scalefactor $\beta$, where
$a, \beta \in R ; \beta>0$. The scalefactor value determines the standard deviation as

$$
\sigma=\beta \sqrt{2}
$$

The probability density function is given by:

$$
f_{a, \beta}(x)=\frac{1}{\sqrt{2 \beta}} \exp \left(-\frac{|x-a|}{\beta}\right),-\infty<x<+\infty
$$

The cumulative distribution function is as follows:

$$
F_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{1}{2} \exp \left(-\frac{|x-a|}{\beta}\right), & x<a \\
1-\frac{1}{2} \exp \left(-\frac{|x-a|}{\beta}\right), & x \geq a
\end{array} \quad,-\infty<x<+\infty .\right.
$$

## Input Parameters

FORTRAN:
method
stream
n
a

INTEGER, INTENT(IN). Generation method.
TYPE (VSL_STREAM_STATE), INTENT (IN). Descriptor of the stream state structure.

INTEGER, INTENT (IN) . Number of random values to be generated.

REAL, INTENT (IN) for vsrnglaplace.
DOUBLE PRECISION, INTENT (IN) for vdrnglaplace.
Mean value a.

```
beta REAL, INTENT(IN)for vsrnglaplace.
 DOUBLE PRECISION, INTENT(IN) for vdrnglaplace.
Scalefactor }\beta\mathrm{ .
C:
method
stream
n
a
beta
int. Generation method.
VSLStreamStatePtr. Pointer to the stream
state descriptor.
int. Number of random values to be
generated.
float for vsRngLaplace.
double for vdRngLaplace.
Mean value a.
float for vsRngLaplace.
double for vdRngLaplace.
Scalefactor }\beta\mathrm{ .
```


## Output Parameters

## FORTRAN:

r
REAL, INTENT (OUT) for vsrnglaplace. DOUBLE PRECISION, INTENT (OUT)for vdrnglaplace.

Vector of $n$ Laplace distributed pseudorandom numbers.

C:
r
float* for vsRngLaplace.
double* for vdRngLaplace.
Vector of $n$ Laplace distributed pseudorandom numbers.

## Weibull

Generates Weibull distributed pseudorandom numbers.

## Fortran:

```
call vsrngweibull(method, stream, n, r, alpha, a, beta)
call vdrngweibull(method, stream, n, r, alpha, a, beta)
```

C:

```
vsRngWeibull(method, stream, n, r, alpha, a, beta)
```

```
vdRngWeibull(method, stream, n, r, alpha, a, beta)
```


## Discussion

This function generates Weibull distributed pseudorandom numbers with displacement $a$, scalefactor $\beta$, and shape $\alpha$, where $\alpha, \beta, a \in R$; $\alpha>0 ; \beta>0$.

The probability density function is given by:

$$
f_{a, \alpha, \beta}(x)= \begin{cases}\frac{\alpha}{\beta^{\alpha}}(x-a)^{\alpha-1} \exp \left(-\left(\frac{x-a}{\beta}\right)^{\alpha}\right), & x \geq a \\ 0, & x<a\end{cases}
$$

The cumulative distribution function is as follows:

$$
F_{a, \alpha, \beta}(x)=\left\{\begin{array}{ll}
1-\exp \left(-\left(\frac{x-a}{\beta}\right)^{\alpha}\right), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
$$

## Input Parameters

FORTRAN:

method	INTEGER, INTENT (IN). Generation method.
stream	TYPE (VSL_STREAM_STATE), INTENT (IN) . Descriptor of the stream state structure.
$n$	INTEGER, INTENT (IN). Number of random values to be generated.
alpha	REAL, INTENT(IN) for vsrngweibull. DOUBLE PRECISION, INTENT(IN) for vdrngweibull.   Shape $\alpha$.
$a$	REAL, INTENT(IN) for vsrngweibull. DOUBLE PRECISION, INTENT(IN) for vdrngweibull.   Displacement a.
beta	REAL, INTENT(IN) for vsrngweibull. DOUBLE PRECISION, INTENT(IN) for vdrngweibull.

Scalefactor $\beta$.
C:
method
stream
$n$
alpha
int. Generation method.
VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
float for vsRngWeibull.
double for vdRngWeibull.
Shape $\alpha$.
$a$
beta

FORTRAN:
$r$
REAL, INTENT (OUT) for vsrngweibull. DOUBLE PRECISION, INTENT (OUT) for vdrngweibull.

Vector of $n$ Weibull distributed pseudorandom numbers.

C :
$r$
float for vsRngWeibull.
double for vdRngWeibull.
Displacement a.
float for vsRngWeibull.
double for vdRngWeibull.
Scalefactor $\beta$.

## Output Parameters

float* for vsRngWeibull.
double* for vdRngWeibull.
Vector of $n$ Weibull distributed pseudorandom numbers.

## Cauchy

Generates Cauchy distributed pseudorandom values.

## Fortran:

```
call vsrngcauchy(method, stream, n, r, a, beta)
call vdrngcauchy(method, stream, n, r, a, beta)
```


## C:

vsRngCauchy ( method, stream, $n, r, a$, beta )
vdRngCauchy ( method, stream, $n, r, a$, beta )

## Discussion

This function generates Cauchy distributed pseudorandom numbers with displacement $a$ and scalefactor $\beta$, where $a, \beta \in R ; \beta>0$.

The probability density function is given by:
$f_{a, \beta}(x)=\frac{1}{\pi \beta\left(1+\left(\frac{x-a}{\beta}\right)^{2}\right)},-\infty<x<+\infty$.
The cumulative distribution function is as follows:

$$
F_{a, \beta}(x)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x-a}{\beta}\right),-\infty<x<+\infty .
$$

## Input Parameters

FORTRAN:

method	INTEGER, INTENT (IN). Generation
stream	method.
	TYPE (VSL_STREAM_STATE),
	INTENT (IN). Descriptor of the stream state
$n$	structure.
$a$	INTEGER, INTENT (IN). Number of
	random values to be generated.
	REAL, INTENT (IN) for vsrngcauchy.
	DOUBLE PRECISION, INTENT (IN) for
	vdrngcauchy.

Displacement a.
beta

C:
method
stream
n
$a$
beta

Output Parameters
FORTRAN:
$r$
$\mathrm{C}:$
$r$

REAL, INTENT (IN) for vsrngcauchy. DOUBLE PRECISION, INTENT (IN) for vdrngcauchy.
Scalefactor $\beta$.
int. Generation method.
VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
float for vsRngCauchy.
double for vdRngCauchy.
Displacement $a$.
float for vsRngCauchy.
double for vdRngCauchy.
Scalefactor $\beta$.

REAL, INTENT (OUT) for vsrngcauchy. DOUBLE PRECISION, INTENT (OUT) for vdrngcauchy.

Vector of $n$ Cauchy distributed pseudorandom numbers.

```
float* for vsRngCauchy.
double* for vdRngCauchy.
Vector of \(n\) Cauchy distributed pseudorandom numbers.
```


## Rayleigh

Generates Rayleigh distributed pseudorandom values.

## Fortran:

```
call vsrngrayleigh(method, stream, n, r, a, beta)
call vdrngrayleigh(method, stream, n, r, a, beta)
```

C:

```
vsRngRayleigh(method, stream, n, r, a, beta)
```

vdRngRayleigh( method, stream, $n, r, a, b e t a)$

## Discussion

This function generates Rayleigh distributed pseudorandom numbers with displacement $a$ and scalefactor $\beta$, where $a, \beta \in R ; \beta>0$.

Rayleigh distribution is a special case of Weibull distribution, where the shape parameter $\alpha=2$.
The probability density function is given by:
$f_{a, \beta}(x)=\left\{\begin{array}{ll}\frac{2(x-a)}{\beta^{2}} \exp \left(-\frac{(x-a)^{2}}{\beta^{2}}\right), & x \geq a \\ 0, & x<a\end{array},-\infty<x<+\infty\right.$.

The cumulative distribution function is as follows:
$F_{a, \beta}(x)=\left\{\begin{array}{ll}1-\exp \left(-\frac{(x-a)^{2}}{\beta^{2}}\right), & x \geq a \\ 0, & x<a\end{array},-\infty<x<+\infty\right.$.


## Output Parameters

## FORTRAN:

$r$
REAL, INTENT (OUT) for vsrngrayleigh.
DOUBLE PRECISION, INTENT (OUT) for vdrngrayleigh.

Vector of $n$ Rayleigh distributed pseudorandom numbers.

C:
$r$ float* for vsRngRayleigh.
double* for vdRngRayleigh.
Vector of $n$ Rayleigh distributed pseudorandom numbers.

## Lognormal

Generates lognormally distributed pseudorandom numbers.

## Fortran:

```
call vsrnglognormal(method, stream, n, r, a, sigma, b,
beta)
call vdrnglognormal(method, stream, n, r, a, sigma, b,
beta)
```

C:
vsRngLognormal ( method, stream, $n, r, a, ~ s i g m a, ~ b, ~ b e t a ~) ~$

```
vdRngLognormal(method, stream, n, r, a, sigma, b, beta)
```


## Discussion

This function generates lognormally distributed pseudorandom numbers with average of distribution $a$ and standard deviation $\sigma$ of subject normal distribution, displacement $b$, and scalefactor $\beta$, where

```
a,\sigma,b, \beta\inR;\sigma>0; \beta>0.
```

The probability density function is given by:

$$
f_{a, \sigma, b, \beta}(x)= \begin{cases}\frac{1}{\sigma(x-b) \sqrt{2 \pi}} \exp \left(-\frac{[\ln ((x-b) / \beta)-a]^{2}}{2 \sigma^{2}}\right), & x>b \\ 0, & x \leq b\end{cases}
$$

The cumulative distribution function is as follows:

$$
F_{a, \sigma, b, \beta}(x)= \begin{cases}\Phi((\ln ((x-b) / \beta)-a) / \sigma), & x>b \\ 0, & x \leq b\end{cases}
$$

## Input Parameters

FORTRAN:

method	integer, intent (IN). Generation method.
stream	TYPE (VSL_STREAM_STATE),
	INTENT (IN). Descriptor of the stream state structure.
$n$	INTEGER, INTENT (IN). Number of random values to be generated.
a	REAL, INTENT (IN) for vsrnglognormal.
	DOUBLE PRECISION, INTENT (IN) for vdrnglognormal.

Average $a$ of the subject normal distribution.

sigma	REAL, INTENT(IN) for vsrnglognormal.
	DOUBLE PRECISION, INTENT(IN) for vdrnglognormal.
	Standard deviation $\sigma$ of the subject normal distribution.
b	REAL, INTENT (IN) for vsrnglognormal.
	DOUBLE PRECISION, INTENT (IN) for vdrnglognormal.
	Displacement b.
beta	REAL, INTENT (IN) for vsrnglognormal.
	DOUBLE PRECISION, INTENT (IN) for vdrnglognormal.
	Scalefactor value $\beta$.
C:	
method	int. Generation method.
stream	VSLStreamStatePtr. Pointer to the stream state structure.
$n$	int. Number of random values to be generated.
a	float for vsRngLognormal.
	double for vdRngLognormal.
	Average a of the subject normal distribution.
sigma	float for vsRngLognormal.
	double for vdRngLognormal.
	Standard deviation $\sigma$ of the subject normal distribution.
b	float for vsRngLognormal.
	double for vdRngLognormal.
	Displacement b.



## Gumbel

Generates Gumbel distributed pseudorandom values.

## Fortran:

```
call vsrnggumbel(method, stream, n, r, a, beta)
call vdrnggumbel(method, stream, n, r, a, beta)
```

C:

```
vsRngGumbel(method, stream, n, r, a, beta)
```

vdRngGumbel ( method, stream, $n, r, a$, beta )

## Discussion

This function generates Gumbel distributed pseudorandom numbers with displacement $a$ and scalefactor $\beta$, where $a, \beta \in R ; \beta>0$.

The probability density function is given by:

$$
f_{a, \beta}(x)=\frac{1}{\beta} \exp \left(\frac{x-a}{\beta}\right) \exp (-\exp ((x-a) / \beta)),-\infty<x<+\infty
$$

The cumulative distribution function is as follows:

$$
F_{a, \beta}(x)=1-\exp (-\exp ((x-a) / \beta)),-\infty<x<+\infty
$$

## Input Parameters

FORTRAN:

method	INTEGER, INTENT(IN). Generation method.
stream	TYPE (VSL_STREAM_STATE),
	INTENT (IN) . Descriptor of the stream state structure.
$n$	INTEGER, INTENT (IN). Number of random values to be generated.
a	REAL, INTENT (IN) for vsrnggumbel.
	DOUBLE PRECISION, INTENT(IN)for vdrnggumbel.
	Displacement a.
beta	REAL, INTENT (IN) for vsrnggumbel.
	DOUBLE PRECISION, INTENT(IN)for vdrnggumbel.
	Scalefactor $\beta$.

## C:

[^2]stream
n
a
beta

VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
float for vsRngGumbel.
double for vdRngGumbel.
Displacement $a$.
float for vsRngGumbel.
double for vdRngGumbel.
Scalefactor $\beta$.

## Output Parameters

FORTRAN:
$r$
REAL, INTENT (OUT) for vsrnggumbel.
DOUBLE PRECISION, INTENT (OUT) for vdrnggumbel.
Vector of $n$ pseudorandom values with Gumbel distribution.

C:
$r$
float* for vsRngGumbel.
double* for vdRngGumbel.
Vector of $n$ pseudorandom values with Gumbel distribution.

## Discrete Distributions

This section describes routines for generating pseudorandom numbers with discrete distribution.

## Uniform

Generates pseudorandom numbers
uniformly distributed over the interval $[a, b)$.

## Fortran:

```
call virnguniform(method, stream, n, r, a, b)
```

C:
viRngUniform( method, stream, $n, r, a, b$ )

## Discussion

This function generates pseudorandom numbers uniformly distributed over the interval $[a, b)$, where $a, b$ are the left and right bounds of the interval, respectively, and $a, b \in Z ; a<b$.
The probability distribution is given by:
$P(X=k)=\frac{1}{b-a}, k \in\{a, a+1, \ldots, b-1\}$.

The cumulative distribution function is as follows:
$F_{a, b}(x)=\left\{\begin{array}{cc}0, \quad x<a \\ \frac{\lfloor x-a+1\rfloor}{b-a}, & a \leq x<b, x \in R . \\ 1, \quad x \geq b\end{array}\right.$
Input Parameters
FORTRAN:

method	INTEGER, INTENT (IN). Generation
method.	

## stream

n
a
b

C:

## method

stream
$n$
a
b

## Output Parameters

FORTRAN:
$r$

C:
r

TYPE (VSL_STREAM_STATE), INTENT (IN). Descriptor of the stream state structure.

INTEGER, INTENT (IN) . Number of random values to be generated.

INTEGER, INTENT (IN) . Left interval bound $a$.

INTEGER, INTENT (IN) . Right interval bound $b$.
int. Generation method.
VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
int. Left interval bound $a$.
int. Right interval bound $b$.

INTEGER, INTENT (OUT). Vector of $n$ pseudorandom values uniformly distributed over the interval $[a, b)$.
int*. Vector of $n$ pseudorandom values uniformly distributed over the interval $[a, b)$.

## UniformBits

Generates integer random values with uniform bit distribution.

## Fortran:

```
call virnguniformbits(method, stream, n, r)
```

C:
viRngUniformBits( method, stream, n, r )

## Discussion

This function generates integer random values with uniform bit distribution. The generators of uniformly distributed numbers can be represented as recurrence relations over integer values in modular arithmetic. Apparently, each integer can be treated as a vector of several bits. In a truly random generator, these bits are random, while in pseudorandom generators this randomness can be violated. For example, a well known drawback of linear congruential generators is that lower bits are less random than higher bits (for example, see [Knuth81]). For this reason, care should be taken when using this function. Typically, in a 32-bit $L C G$ only 24 higher bits of an integer value can be considered truly random. See VSLNotes for details.

## Input Parameters

## FORTRAN:

method	INTEGER, INTENT (IN). Generation
	method. A dummy argument in
stream	virnguniformbits. Should be zero.
	TYPE (VSL_STREAM_STATE),
$n$	INTENT (IN). Descriptor of the stream state
	structure.
	INTEGER, INTENT (IN). Number of
	random values to be generated.

C:
method
stream
n

## Output Parameters

## FORTRAN:

## r

int. Generation method. A dummy argument in viRngUniformBits. Should be zero.
vSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.

INTEGER, INTENT (OUT). Vector of $n$ pseudorandom integer numbers. If the stream was generated by a 64 or a 128 -bit generator, each integer value is represented by two or four elements of $r$ respectively. The number of bytes occupied by each integer is contained in the field wordsize of the structure VSL_BRNG_PROPERTIES. The total number of bits that are actually used to store the value are contained in the field nbits of the same structure. See Advanced Service Subroutines for a more detailed discussion of VSL_BRNG_PROPERTIES.

C:
unsigned int*. Vector of $n$ pseudorandom integer numbers. If the stream was generated by a 64 or a 128 -bit generator, each integer value is represented by two or four elements of $r$ respectively. The number of bytes occupied by each integer is contained in the field WordSize of the structure VSLBrngProperties. The total number of bits that are actually used to store the value are contained in the field NBits of the same structure. See Advanced Service Subroutines for a more detailed discussion of VSLBrngProperties.

## Bernoulli

Generates Bernoulli distributed pseudorandom values.

## Fortran:

```
call virngbernoulli(method, stream, n, r, p)
```

C:
viRngBernoulli( method, stream, $n, r, p$ )

## Discussion

This function generates Bernoulli distributed pseudorandom numbers with probability $p$ of a single trial success, where

```
p\inR; 0 \leq p \leq 1 .
```

A variate is called Bernoulli distributed, if after a trial it is equal to 1 with probability of success $p$, and to 0 with probability $1-p$.

The probability distribution is given by:
$P(X=1)=p$,
$P(X=0)=1-p$.
The cumulative distribution function is as follows:
$F_{p}(x)=\left\{\begin{array}{cl}0, & x<0 \\ 1-p, & 0 \leq x<1 \quad, x \in R . \\ 1, & x \geq 1\end{array}\right.$

## Input Parameters

FORTRAN:

method	INTEGER, INTENT(IN). Generation method.
stream	TYPE (VSL_STREAM_STATE),
	INTENT (IN). Descriptor of the stream state structure.
$n$	INTEGER, INTENT (IN) . Number of random values to be generated.
$p$	DOUBLE PRECISION, INTENT(IN). Success probability $p$ of a trial.
C:	
method	int. Generation method.
stream	VSLStreamStatePtr. Pointer to the stream state structure.
$n$	int. Number of random values to be generated.
$p$	double. Success probability $p$ of a trial.

## Output Parameters

FORTRAN:

r	INTEGER, INTENT (OUT). Vector of $n$   Bernoulli distributed pseudorandom values.
$\mathrm{C}:$	
$r$	int*. Vector of $n$ Bernoulli distributed   pseudorandom values.

## Geometric

Generates geometrically distributed pseudorandom values.

## Fortran:

```
call virnggeometric(method, stream, n, r, p)
```

C:
viRngGeometric( method, stream, $n, r, p$ )

## Discussion

This function generates geometrically distributed pseudorandom numbers with probability $p$ of a single trial success, where $p \in R ; 0<p<1$.
A geometrically distributed variate represents the number of independent Bernoulli trials preceding the first success. The probability of a single Bernoulli trial success is $p$.

The probability distribution is given by:

$$
P(X=k)=p \cdot(1-p)^{k}, k \in\{0,1,2, \ldots\}
$$

The cumulative distribution function is as follows:
$F_{p}(x)=\left\{\begin{array}{ll}0, & x<0 \\ 1-(1-p)^{\lfloor x+1\rfloor}, & x \geq 0\end{array} \quad, x \in R\right.$.

## Input Parameters

FORTRAN:

method<br>stream

n
p

C:
method
stream
n
p

## Output Parameters

## FORTRAN:

$r$

C:
$r$

INTEGER, INTENT (IN) . Generation method.

TYPE (VSL_STREAM_STATE), INTENT (IN). Descriptor of the stream state structure.

INTEGER, INTENT (IN) . Number of random values to be generated.

DOUBLE PRECISION, INTENT (IN). Success probability p of a trial.
int. Generation method.
VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
double. Success probability $p$ of a trial.

INTEGER, INTENT (OUT). Vector of $n$ geometrically distributed pseudorandom values.
int*. Vector of $n$ geometrically distributed pseudorandom values.

## Binomial

Generates binomially distributed pseudorandom numbers.

## Fortran:

```
call virngbinomial(method, stream, n, r, ntrial, p)
```

C:
viRngBinomial( method, stream, $n, r, n t r i a l, ~ p)$

## Discussion

This function generates binomially distributed pseudorandom numbers with number of independent Bernoulli trials $m$, and with probability $p$ of a single trial success, where $p \in R ; 0 \leq p \leq 1, m \in N$.
A binomially distributed variate represents the number of successes in $m$ independent Bernoulli trials with probability of a single trial success $p$.
The probability distribution is given by:
$P(X=k)=C_{m}^{k} p^{k}(1-p)^{m-k}, k \in\{0,1, \ldots, m\}$.
The cumulative distribution function is as follows:
$F_{m, p}(x)=\left\{\begin{array}{cl}0, & x<0 \\ \lfloor x\rfloor \\ \sum_{k=0} C_{m}^{k} p^{k}(1-p)^{m-k}, & 0 \leq x<m \quad, x \in R . \\ 1, & x \geq m\end{array}\right.$

## Input Parameters

FORTRAN:

method	INTEGER, INTENT (IN) . Generation
	method.
stream	TYPE (VSL_STREAM_STATE),
	INTENT (IN). Descriptor of the stream state
	structure.

```
n
ntrial
p
C:
method
stream
n
ntrial
p
```


## Output Parameters

FORTRAN:
r

C:
r

INTEGER, INTENT (IN). Number of random values to be generated.

INTEGER, INTENT (IN). Number of independent trials $m$.

DOUBLE PRECISION, INTENT(IN). Success probability p of a single trial.
int. Generation method.
VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
int. Number of independent trials $m$. double. Success probability $p$ of a single trial.

INTEGER, INTENT (OUT). Vector of $n$ binomially distributed pseudorandom values.
int*. Vector of $n$ binomially distributed pseudorandom values.

## Hypergeometric

Generates hypergeometrically<br>distributed pseudorandom values.

## Fortran:

```
call virnghypergeometric(method, stream, n, r, l, s, m)
```


## C:

viRngHypergeometric( method, stream, $n, ~ r, ~ l, ~ s, ~ m ~) ~$

## Discussion

This function generates hypergeometrically distributed pseudorandom values with lot size $l$, size of sampling $s$, and number of marked elements in the lot $m$, where $l, m, s \in N \cup\{0\} ; l \geq \max (s, m)$.
Consider a lot of $I$ elements comprising $m$ "marked" and $I-m$ "unmarked" elements. A trial sampling without replacement of exactly $s$ elements from this lot helps to define the hypergeometric distribution, which is the probability that the group of $s$ elements contains exactly $k$ marked elements.
The probability distribution is given by:

$$
P(X=k)=\frac{C_{m}^{k} C_{l-m}^{s-k}}{C_{l}^{s}}, k \in\{\max (0, s+m-l), \ldots, \min (s, m)\} .
$$

The cumulative distribution function is as follows:

$$
F_{l, s, m}(x)=\left\{\begin{array}{cl}
0, & x<\max (0, s+m-l) \\
\sum_{k=\max (0, s+m-l)} \frac{C_{m}^{k} C_{l-m}^{s-k}}{C_{l}^{s}}, & \max (0, s+m-l) \leq x \leq \min (s, m) \\
1, & x>\min (s, m)
\end{array}\right.
$$

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

Input Parameters	
FORTRAN:	
method	integer, intent (In). Generation method.
stream	TYPE (VSL_STREAM_STATE),   INTENT (IN) . Descriptor of the stream state structure.
$n$	INTEGER, INTENT (IN). Number of random values to be generated.
1	Integer, INTENT (IN). Lot size 1.
$s$	INTEGER, INTENT (IN). Size of sampling without replacement $s$.
m	INTEGER, INTENT (IN) . Number of marked elements $m$.
C:	
method	int. Generation method.
stream	vSLStreamStatePtr. Pointer to the stream state structure.
$n$	int. Number of random values to be generated.
1	int. Lot size 1.
$s$	int. Size of sampling without replacement $s$.
m	int. Number of marked elements $m$.
Output Parameters	
FORTRAN:	
$r$	INTEGER, INTENT (OUT). Vector of $n$ hypergeometrically distributed pseudorandom values.

## C:

r
int*. Vector of $n$ hypergeometrically distributed pseudorandom values.

## Poisson

Generates Poisson distributed pseudorandom values.

## Fortran:

```
call virngpoisson(method, stream, n, r, lambda)
```

C:
viRngPoisson ( method, stream, $n, r, \quad$ lambda )

## Discussion

This function generates Poisson distributed pseudorandom numbers with distribution parameter $\lambda$, where $\lambda \in R ; \lambda>0$.

The probability distribution is given by:

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, k \in\{0,1,2, . .\}
$$

The cumulative distribution function is as follows:

$$
F_{\lambda}(x)=\left\{\begin{array}{lc}
\sum_{k=0}^{\lfloor x\rfloor} \frac{\lambda^{k} e^{-\lambda}}{k!}, & x \geq 0 \\
0, & x<0
\end{array}, x \in R .\right.
$$

Input Parameters
FORTRAN:
method
stream
$n$
lambda

C:
method
stream
n
lambda
Output Parameters

## FORTRAN:

## $r$

C:

## r

INTEGER, INTENT (IN) . Generation method.

TYPE (VSL_STREAM_STATE), Intent (IN) . Descriptor of the stream state structure.

INTEGER, INTENT (IN) . Number of random values to be generated.

DOUBLE PRECISION, INTENT (IN). Distribution parameter $\lambda$.
int. Generation method.
VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
double. Distribution parameter $\lambda$.

INTEGER, INTENT (OUT). Vector of $n$ Poisson distributed pseudorandom values.
int*. Vector of $n$ Poisson distributed values.

## NegBinomial

Generates pseudorandom numbers with negative binomial distribution.

## Fortran:

call virngnegbinomial( method, stream, n, r, a, p )

## C:

```
viRngNegBinomial(method, stream, n, r, a, p)
```


## Discussion

This function generates pseudorandom numbers with negative binomial distribution and distribution parameters $a$ and $p$., where $p, a \in R$; $0<p<1 ; a>0$.
If the first distribution parameter $a \in N$, this distribution is the same as Pascal distribution. If $a \in N$, the distribution can be interpreted as the expected time of $a$-th success in a sequence of Bernoulli trials, when the probability of success is $p$.
The probability distribution is given by:
$P(X=k)=C_{a+k-1}^{k} p^{a}(1-p)^{k}, k \in\{0,1,2, .$.$\} .$
The cumulative distribution function is as follows:
$F_{a, p}(x)=\left\{\begin{array}{ll}\sum_{k=0}^{\lfloor x\rfloor} C_{a+k-1}^{k} p^{a}(1-p)^{k}, & x \geq 0 \\ 0, & x<0\end{array}, x \in R\right.$.

## Input Parameters

FORTRAN:

```
method
stream
```

$n$
a
$p$
C:
method
stream
n
a
p

## Output Parameters

 FORTRAN:r

C:
$r$
integer, intent (In). Generation method.

TYPE (VSL_STREAM_STATE), Intent (IN) . Descriptor of the stream state structure.

INTEGER, INTENT(IN). Number of random values to be generated.
double precision, intent (in). The first distribution parameter $a$.
Double precision, Intent (In). The second distribution parameter $p$.
int. Generation method.
vSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
double. The first distribution parameter $a$.
double. The second distribution parameter $p$.

INTEGER, INTENT (OUT). Vector of $n$ pseudorandom values with negative binomial distribution.
int*. Vector of $n$ pseudorandom values with negative binomial distribution.

## Advanced Service Subroutines

This section describes service subroutines for registering a basic generator and obtaining properties of the previously registered basic generators.

Table 8-4 Advanced Service Subroutines

Subroutine	Short Description
RegisterBrng	Registers a user-designed basic   generator.
GetBrngProperties	Returns the structure with   properties of the basic generator   with a given number.

## Data types

The subroutines of this section refer to a structure defining the properties of the basic generator:

## Example 8-5 Fortran Version

```
 TYPE VSL_BRNG_PROPERTIES
 INTEGER streamstatesize
 INTEGER nseeds
 INTEGER includeszero
 INTEGER wordsize
 INTEGER nbits
 INTEGER initstream
 INTEGER sbrng
 INTEGER dbrng
 INTEGER ibrng
END TYPE VSL_BRNG_PROPERTIES
```


## Example 8-6 C Version

```
\begin{tabular}{cc}
typedef struct _VSLBRngProperties \{ \\
int & StreamStateSize; \\
int & NSeeds; \\
int & IncludesZero; \\
int & WordSize; \\
int & NBits; \\
InitStreamPtr & InitStream; \\
sBRngPtr & sBRng; \\
dBRngPtr & dBRng; \\
iBRngPtr & iBRng; \\
\} VSLBRngProperties; & \\
\hline
\end{tabular}
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Example 8-7 Pointers to Functions

```
typedef int (*InitStreamPtr)(int method, void * stream, int n,
 const unsigned int params[]);
typedef void (*sBRngPtr)(void * stream, int n, float r[],
 float a, float b);
typedef void (*dBRngPtr)(void * stream, int n, double r[],
 double a, double b);
typedef void (*iBRngPtr)(void * stream, int n,
 unsigned int r[]);
```

Table 8-5 Field Descriptions

Field	Short Description
FORTRAN:   streamstatesize   C:   StreamStateSize	The size, in bytes, of the stream state structure for a given basic generator.
FORTRAN:   nseeds   C:   NSeeds	The number of 32 -bit initial conditions (seeds) necessary to initialize the stream state structure for a given basic generator.
FORTRAN:   includeszero   C:   IncludesZero	Flag value indicating whether the generator can produce a pseudorandom $0^{1}$.
FORTRAN:   wordsize   C:   WordSize	Machine word size, in bytes, used in integer-value computations. Possible values: 4, 8 , and 16 for 32,64 , and 128 -bit generators, respectively.
FORTRAN:   nbits   C:   NBits	The number of bits required to represent a pseudorandom value in integer arithmetic. Note that, for instance, 48-bit pseudorandom values are stored to 64-bit (8 byte) memory locations. In this case, WordSize is equal to 8 (number of bytes used to store the pseudorandom value), while NBits contains the actual number of bits occupied by the value (in this example, 48).

Table 8-5 Field Descriptions (continued)

Field	Short Description
FORTRAN:   initstream C:   InitStream	Contains the pointer to the initialization subroutine of a given basic generator.
FORTRAN:   sbrng   C:   sBRng	Contains the pointer to the basic generator of single precision real numbers uniformly distributed over the interval ( $a, b$ ) (REAL in FORTRAN and float in C).
FORTRAN:   dbrng   C:   dBRng	Contains the pointer to the basic generator of double precision real numbers uniformly distributed over the interval ( $a, b$ ) (DOUBLE PRECISION in FORTRAN and double in C).
FORTRAN:   ibrng   C:   iBRng	Contains the pointer to the basic generator of integer numbers with uniform bit distribution ${ }^{2}$ (INTEGER in FORTRAN and unsigned int in C).

1. Certain types of generators, for example, generalized feedback shift registers can potentially generate a pseudorandom 0 . On the other hand, generators like multiplicative congruential generators never generate such a number. In most cases this information is irrelevant because the probability of generating a zero value is extremely small. However, in certain non-uniform distribution generators the possibility for a basic generator to produce a pseudorandom zero may lead to generation of an infinitely large number (overflow). Even though the software handles overflows correctly, so that they may be interpreted as $+\infty$ and $-\infty$, the user has to be careful and verify the final results. If an infinitely large number may affect the computation, the user should either remove such numbers from the generated vector, or use safe generators, which do not produce pseudorandom 0.
2. A specific generator that permits operations over single bits and bit groups of pseudorandom numbers.

## RegisterBrng

## Registers user-defined basic generator.

## Fortran:

```
brng = vslregisterbrng(properties)
```

C:
brng $=$ vslRegisterBrng ( properties )

## Discussion

An example of a registration procedure can be found in the respective directory vsl\examples.

## Input Parameters

## FORTRAN:

properties

C:
properties

TYPE (VSL_BRNG_PROPERTIES), INTENT (IN) . Structure containing properties of the basic generator to be registered.
vSLBrngProperties*. Structure containing properties of the basic generator to be registered.

## Output Parameters

## FORTRAN:

## brng

INTEGER. The number (index) of the registered basic generator; used for identification. Negative values indicate the registration error.

C :
brng
int. The number (index) of the registered basic generator; used for identification. Negative values indicate the registration error.

## GetBrngProperties

Returns structure with properties of a given basic generator.

## Fortran:

```
call vslgetbrngproperties(brng, properties)
```

C:
call vslGetBrngProperties( brng, properties )

## Input Parameters

FORTRAN:

brng	INTEGER, INTENT (IN) . Number   (index) of the registered basic generator.
C:	int. Number (index) of the registered   basic generator.

Output Parameters
FORTRAN:
properties TYPE (VSL_BRNG_PROPERTIES), INTENT (OUT) . Structure containing properties of the generator with number brng.

C:

VSLBrngProperties*. Structure containing properties of the generator with number brng.

## Formats for User-Designed Generators

To register a user-designed basic generator using RegisterBrng function, you need to pass the pointer iBrng to the integer-value implementation of the generator; the pointers $s B r n g$ and $d B r n g$ to the generator implementations for single and double precision values, respectively; and pass the pointer InitStream to the stream initialization subroutine. This section contains recommendations on defining such functions with input and output arguments. An example of the registration procedure for a user-designed generator can be found in the respective directory vsl \examples.

## InitStream

FORTRAN:

```
INTEGER FUNCTION mybrnginitstream(method, stream, n, params)
 INTEGER, INTENT (IN) :: method
 TYPE (MYSTREAM_STATE), INTENT (INOUT):: stream
 INTEGER, INTENT (IN) :: n
 INTEGER, INTENT (IN) :: params
! Initialize the stream
 ...
END SUBROUTINE mybrnginitstream
 C
int MyBrngInitStream(int method, VSLStreamStatePtr stream,
 int n, const unsigned int params[])
{
/* Initialize the stream */
```

```
} /* MyBrngInitStream */
```


## Discussion

The initialization subroutine of a user-designed generator must initialize stream according to the specified initialization method, initial conditions params and the argument $n$. The value of method determines the initialization method to be used.

- If method is equal to 0 , the initialization is by the standard generation method, which must be supported by all basic generators. In this case the function assumes that the stream structure was not previously initialized. The value of $n$ is used as the actual number of 32-bit values passed as initial conditions through params. Note, that the situation when the actual number of initial conditions passed to the function is not sufficient to initialize the generator is not an error. Whenever it occurs, the basic generator must initialize the missing conditions using default settings.
- If method is equal to 1 , the generation is by the leapfrog method, where $n$ specifies the number of computational nodes (independent streams). Here the function assumes that the stream was previously initialized by the standard generation method. In this case params contains only one element, which identifies the computational node. If the generator does not support the leapfrog method, the function must return the error code VSL_ERROR_LEAPFROG_UNSUPPORTED.
- If method is equal to 2, the generation is by the block-splitting method. Same as above, the stream is assumed to be previously initialized by the standard generation method; params is not used, $n$ identifies the number of skipped elements. If the generator does not support the block-splitting method, the function must return the error code VSL_ERROR_SKIPAHEAD_UNSUPPORTED.

For a more detailed description of the leapfrog and the block-splitting methods, refer to the description of LeapfrogStream and SkipAheadStream, respectively.

Stream state structure is individual for every generator. However, each structure has a number of fields that are the same for all the generators:

## FORTRAN:

```
type(mystream_state)
 INTEGER*4 reserved1
 INTEGER*4 reserved2
 INTEGER*4 reserved3
 INTEGER*4 reserved4
 [fields specific for the given generator]
end type mystream_state
C
typedef struct
{
 uint64 Reserved1;
 uint64 Reserved2;
 [fields specific for the given generator]
} MyStreamState
```

The fields Reserved1 and Reserved2 are reserved for private needs only, and must not be modified by the user. When including specific fields into the structure, follow the rules below:

- The fields must fully describe the current state of the generator. For example, the state of a linear congruential generator can be identified by only one initial condition;
- If the generator can use both the leapfrog and the block-splitting methods, additional fields should be introduced to identify the independent streams. For example, in $\operatorname{LCG}(a, c, m)$, apart from the initial conditions, two more fields should be specified: the value of the multiplier $a^{k}$ and the value of the increment $\left(a^{k}-1\right) c /(a-1)$.

For a more detailed discussion, refer to [Knuth81], and [Gentle98]. An example of the registration procedure can be found in the respective directory vsl \examples.

## iBRng

FORTRAN:
SUBROUTINE imybrng ( stream, $n, r$ )

TYPE (MYSTREAM_STATE), INTENT(INOUT) : : stream
INTEGER, INTENT(IN) : : n
INTEGER, DIMENSION(*), INTENT (OUT) : : r
! Generating integer random numbers
! Pay attention to word size needed to
! store one random number
DO $i=1, n$
$R(I)=\ldots$
END DO
! Update stream state
END SUBROUTINE imybrng
C:
void iMyBrng( VSLStreamStatePtr stream, int $n$, unsigned int $r[]$ )
\{
int i; /* Loop variable */
/* Generating integer random numbers */
/* Pay attention to word size needed to store only random number */
for ( $i=0 ; i<n ; i++$ )
\{
$r[i]=\ldots$
\}
/* Update stream state */
...
\} /* iMyBrng */

NOTE. When using 64 and 128-bit generators, consider digit capacity to store the numbers to the pseudorandom vector r correctly. For example, storing one 64-bit value requires two elements of $r$, the first to store the lower 32 bits and the second to store the higher 32 bits. Similarly, use 4 elements of $r$ to store a 128-bit value.

## sBRng

FORTRAN:

```
SUBROUTINE smybrng(stream, n, r, a, b)
 TYPE(MYSTREAM_STATE), INTENT(INOUT) : : stream
 INTEGER, INTENT(IN) :: n
 REAL, DIMENSION(n), INTENT(OUT) :: r
 REAL, INTENT(IN) :: a
 REAL, INTENT(IN) :: b
! Generating real (a,b) random numbers
 DO i = 1, n
 R(I) = ...
 END DO
! Update stream state
END SUBROUTINE smybrng
 C:
void sMyBrng(VSLStreamStatePtr stream, int n, float r[],
 float a, float b)
{
 int i; /* Loop variable */
 /* Generating float (a,b) random numbers */
 for (i = 0; i < n; i++)
 {
 r[i] = ...
 }
 /* Update stream state */
```

```
} /* sMyBrng */
```


## dBRng

## FORTRAN:

SUBROUTINE dmybrng( stream, $n, r, a, b$ )
TYPE (MYSTREAM_STATE), INTENT(INOUT) : : stream
INTEGER, INTENT (IN) : : $n$
DOUBLE PRECISION, DIMENSION $(n)$, INTENT (OUT) : : r
REAL, INTENT(IN) : : a
REAL, INTENT(IN) : : b
! Generating double precision (a,b) random numbers
DO $i=1, n$
$R(I)=\ldots$
END DO
! Update stream state

END SUBROUTINE dmybrng
C:
void dMyBrng( VSLStreamStatePtr stream, int $n$, double r[], double $a$, double b )
\{

```
 int i; /* Loop variable */
```

    /* Generating double ( \(\mathrm{a}, \mathrm{b}\) ) random numbers */
    for ( \(i=0 ; i<n\); \(i++\) )
    \{
        \(r[i]=\ldots\)
    \}
    /* Update stream state */
    \} /* dMyBrng */

## Advanced DFT Functions

The Fast Fourier Transform (FFT) algorithm that calculates the Discrete Fourier Transform (DFT) is an indispensable tool in a vast number of fields. This chapter describes the set of new DFT functions implemented in Intel ${ }^{\circledR}$ MKL, which present a uniform and easy-to-use Applications Programmer Interface (API) providing fast computation of DFT via FFT.

The Discrete Fourier Transform function library of Intel MKL provides one-dimensional, two-dimensional, and multi-dimensional (up to the order of 7) routines.

Both Fortran- and C-interfaces exist for all transform functions.
Although Intel MKL still supports the FFT interface described in chapter 3 of this manual, users are encouraged to migrate to the new advanced DFT functions in their application programs. Unlike the older FFT routines, the DFT routines support transform lengths of other than powers of 2 mixed radix.
The full list of DFT functions implemented in Intel MKL is given in the table below:

Table 9-1 DFT Functions in Intel MKL

| Function Name Operation |
| :---: | :---: |
| Descriptor Manipulation Functions |


DftiCreateDescriptor		Allocates memory for the descriptor data structure and   instantiates it with default configuration settings.
$\underline{\text { DftiCommitDescriptor }}$	Performs all initialization that facilitates the actual DFT   computation.	
$\underline{\text { DftiCopyDescriptor }}$	Copies an existing descriptor.	
$\underline{\text { DftiFreeDescriptor }}$	Frees memory allocated for a descriptor.	

Intel ${ }^{®}$ Math Kernel Library Reference Manual
Table 9-1 DFT Functions in Intel MKL (continued)

Function Name	Operation
DFT Computation Functions	
DftiComputeForward	Computes the forward DFT.
DftiComputeBackward	Computes the backward DFT.

## Descriptor Configuration Functions

DftiSetValue Sets one particular configuration parameter with the specified configuration value.
DftiGetValue Gets the configuration value of one particular configuration parameter.
Status Checking Functions
DftiErrorClass Checks if the status reflects an error of a predefined class.
DftiErrorMessage Generates an error message.

Description of DFT functions is followed by discussion of configuration settings (see Configuration Settings) and various configuration parameters used.

## Computing DFT

DFT functions described later in this chapter are implemented in Fortran and C interface. Fortran stands for Fortran 95. DFT interface relies critically on many modern features offered in Fortran 95 that have no counterpart in Fortran 77

NOTE. Following the explicit function interface in Fortran, data array must be defined as one-dimensional for any transformation type.

The materials presented in this chapter assume the availability of native complex types in C as they are specified in C9X.

Before the presenting every function, a couple of usage examples are given.

For most common situations, we expect a DFT computation can be effected by four function calls. Here are the examples of two one-dimensional computations.

```
Example 9-1 One-dimensional DFT (Fortran-interface)
! Fortran example.
! 1D complex to complex, and real to conjugate even
Use MKL_DFTI
Complex :: X(32)
Real :: Y(34)
type(DFTI_DESCRIPTOR), POINTER : : My_Desc1_Handle, My_Desc2_Handle
Integer :: Status
...put input data into X(1),...,X(32); Y(1),...,Y(32)
! Perform a complex to complex transform
Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 32)
Status = DftiCommitDescriptor(My_Desc1_Handle)
Status = DftiComputeForward(My_Desc1_Handle, X)
Status = DftiFreeDescriptor(My_Desc1_Handle)
! result is given by {X(1),X(2),...,X(32)}
! Perform a real to complex conjugate even transform
Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
 DFTI_REAL, 1, 32)
Status = DftiCommitDescriptor(My_Desc2_Handle)
Status = DftiComputeForward(My_Desc2_Handle, Y)
Status = DftiFreeDescriptor(My_Desc2_Handle)
! result is given by {Y(1)+iY(2), Y(3)+iY(4), ..., Y(33)+iY(34),
! Y(31)-iY(32), Y(29)-iY(30), ..., Y(3)-iY(4).
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Example 9-2 One-dimensional DFT (C-interface)

```
/* C example, float _Complex is defined in C9x */
#include "mkl_dfti.h"
float _Complex x[32];
float y[34];
DFTI_DESCRIPTOR *my_desc1_handle, *my_desc2_handle;
/* or alternatively
DFTI_DESCRIPTOR_HANDLE my_desc1_handle, my_desc2_handle; */
long status;
...put input data into x[0],...,x[31]; y[0],...,y[31]
status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 32);
status = DftiCommitDescriptor(my_desc1_handle);
status = DftiComputeForward(my_desc1_handle, x);
status = DftiFreeDescriptor(&my_desc1_handle);
/* result is x[0], ..., x[31] */
status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,
 DFTI_REAL, 1, 32);
status = DftiCommitDescriptor(my_desc2_handle);
status = DftiComputeForward(my_desc2_handle, y);
status = DftiFreeDescriptor(&my_desc2_handle);
/* y[0]+iy[1], ..., y[32]+iy[33], y[30]-iy[31], ..., y[2]-iy[3] */
```

The following is an example of two simple two-dimensional transforms. Notice that the data and result parameters in computation functions are all declared as assumed-size rank-1 array DIMENSION ( $0: *$ ). Therefore two-dimensional array must be transformed to one-dimensional array by equivalence statement or other facilities of Fortran.

## Example 9-3 Two-dimensional DFT (Fortran-interface)

```
! Fortran example.
! 2D complex to complex, and real to conjugate even
Use MKL_DFTI
Complex :: X_2D(32,100)
Real :: Y_2D(34, 102)
Complex :: X(3200)
Real :: Y(3468)
Equivalence (X_2D, X)
Equivalence (Y_2D, Y)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle
Integer :: Status, L(2)
...put input data into X_2D(j,k), Y_2D(j,k), 1<=j=32,1<=k<=100
...set L(1) = 32, L(2) = 100
...the transform is a 32-by-100
! Perform a complex to complex transform
Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,
 DFTI_COMPLEX, 2, L)
Status = DftiCommitDescriptor(My_Desc1_Handle)
Status = DftiComputeForward(My_Desc1_Handle, X)
Status = DftiFreeDescriptor(My_Desc1_Handle)
! result is given by X_2D(j,k), 1<=j<=32, 1<=k<=100
! Perform a real to complex conjugate even transform
Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
 DFTI_REAL, 2, L)
Status = DftiCommitDescriptor(My_Desc2_Handle)
Status = DftiComputeForward(My_Desc2_Handle, Y)
Status = DftiFreeDescriptor(My_Desc2_Handle)
! result is given by the complex value z(j,k) 1<=j<=32; 1<=k<=100 where
! z(j,k) = Y_2D(2j-1,k) + iY_2D(2j,k) 1<=j<=17; 1<=k<=100
! z(j,k) = Y_2D(2(34-j)-1,k) - iY_2D(2(34-j),k) 18<=j<=32; 1<=k<=100
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

```
Example 9-4 Two-dimensional DFT (C-interface)
/* C example */
#include "mkl_dfti.h"
float _Complex x[32][100];
float y[34][102];
DFTI_DESCRIPTOR_HANDLE my_desc1_handle, my_desc2_handle;
/* or alternatively
DFTI_DESCRIPTOR *my_desc1_handle, *my_desc2_handle; */
long status, l[2];
...put input data into x[j][k] 0<=j<=31, 0<=k<=99
...put input data into y[j][k] 0<=j<=31, 0<=k<=99
l[0] = 32; l[1] = 100;
status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,
 DFTI_COMPLEX, 2, 1);
status = DftiCommitDescriptor(my_desc1_handle);
status = DftiComputeForward(my_desc1_handle, x);
status = DftiFreeDescriptor(&my_desc1_handle);
/* result is the complex value x[j][k], 0<=j<=31, 0<=k<=99 */
status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,
 DFTI_REAL, 2, l);
status = DftiCommitDescriptor(my_desc2_handle);
status = DftiComputeForward(my_desc2_handle, y);
status = DftiFreeDescriptor(&my_desc2_handle);
/* result is the complex value z(j,k) 0<=j<=31; 0<=k<=99
/* z(j,k) = y[2j][k] + iy[2j+1][k] 0<=j<=16; 0<=k<==99 */
/* z(j,k) = y[2(32-j)][k] - iy[2(32-j)+1][k] 17<=j<=31; 1<=k<=100 */
```

The record of type DFTI_DESCRIPTOR, when created, contains information about the length and domain of the DFT to be computed. Moreover, it contains the setting of a rather large number of configuration parameters. The examples above use the default settings for all of these parameters, which include, for example, the following:

- the DFT to be computed does not have a scale factor;
- there is only one set of data to be transformed;
- the data is stored contiguously in memory;
- the forward transform is defined to be the formula using $e^{-i 2 \pi j k / n}$ rather than $e^{+i 2 \pi j k / n}$;
- complex data is stored in the native complex data type;
- the computed result overwrites (in place) the input data; etc.

Should any one of these many default settings be inappropriate, they can be changed one-at-a-time through the function DftiSetValue. For example, to preserve the input data after the DFT computation, the configuration of the F should be changed to "not in place" from the default choice of "in place." The code below illustrates how this can be done:

```
Example 9-5 Changing Default Settings (Fortran)
! Fortran example
! 1D complex to complex, not in place
Use MKL_DFTI
Complex :: X_in(32), X_out(32)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle
Integer :: Status
...put input data into X_in(j), 1<=j<=32
Status = DftiCreateDescriptor(My_Desc_Handle, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 32)
Status = DftiSetValue(My_Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)
Status = DftiCommitDescriptor(My_Desc_Handle)
Status = DftiComputeForward(My_Desc_Handle, X_in, X_out)
Status = DftiFreeDescriptor (My_Desc_Handle)
! result is X_out(1),X_out(2),...,X_out(32)
```


## Example 9-6 Changing Default Settings (C)

```
/* C example */
#include "mkl_dfti.h"
float _Complex x_in[32], x_out[32];
DFTI_DESCRIPTOR_HANDLE my_desc_handle;
/* or alternatively
DFTI_DESCRIPTOR *my_desc_handle; */
long status;
...put input data into x_in[j], 0 <= j < 32
status = DftiCreateDescriptor(&my_desc_handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32);
status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT,
DFTI_NOT_INPLACE);
status = DftiCommitDescriptor(my_desc_handle);
status = DftiComputeForward(my_desc_handle, x_in, x_out);
status = DftiFreeDescriptor(&my_desc_handle);
/* result is x_out[0], x_out[1], ..., x_out[31] */
```

The approach adopted in Intel MKL for DFT computation uses one single data structure, the descriptor, to record flexible configuration whose parameters can be changed independently. This results in enhanced functionality and ease of use.

## DFT Interface

To use the advanced DFT functions, the user needs to access the module MKL_DFTI through the "use" statement in Fortran; or access the header file mkl_dfti.h through "include" in C.
The Fortran interface provides a derived type DFTI_DESCRIPTOR; a number of named constants representing various names of configuration parameters and their possible values; and a number of overloaded functions through the generic functionality of Fortran 95 .
The C interface provides a structure type DFTI_DESCRIPTOR, a macro definition
\#define DFTI_DESCRIPTOR_HANDLE DFTI_DESCRIPTOR *;
a number of named constants of two enumeration types
DFTI_CONFIG_PARAM and DFTI_CONFIG_VALUE; and a number of functions, some of which accept different number of input arguments.

NOTE. Some of the functions and/or functionality described in the subsequent sections of this chapter may not be supported by the currently available implementation of the library. You can find the complete list of the implementation-specific exceptions in the release notes to your version of the library.

There are four main categories of DFT functions in Intel MKL:

1. Descriptor Manipulation. There are four functions in this category. The first one creates a DFT descriptor whose storage is allocated dynamically by the routine. This function configures the descriptor with default settings corresponding to a few input values supplied by the user.
The second "commits" the descriptor to all its setting. In practice, this usually means that all the necessary precomputation will be performed. This may include factorization of the input length and
computation of all the required twiddle factors. The third function makes an extra copy of a descriptor, and the fourth function frees up all the memory allocated for the descriptor information.
2. DFT Computation. There are two functions in this category. The first effects a forward DFT computation, and the second a backward DFT computation.
3. Descriptor configuration. There are two functions in this category. One function sets one specific value to one of the many configuration parameters that are changeable (a few are not); the other gets the current value of any one of these configuration parameters (all are readable). These parameters, though many, are handled one-at-a-time.
4. Status Checking. The functions described in the three categories return an integer value denoting the status of the operation. In particular, a non-zero return value always indicates a problem of some sort. Envisioned to be further enhanced in later releases of Intel MKL, DFT interface at present provides for one logical status class function and a simple status message generation function.

## Status Checking Functions

All of the descriptor manipulation, DFT computation, and descriptor configuration functions return an integer value denoting the status of the operation. Two functions serve to check the status. The first function is a logical function that checks if the status reflects an error of a predefined class, and the second is an error message function that returns a character string.

## ErrorClass

Checks if the status reflects an error of a predefined class.

```
Usage
! Fortran
Predicate = DftiErrorClass(Status, Error_Class)
/* C */
predicate = DftiErrorClass(status, error_class);
```


## Discussion

DFT interface in Intel MKL provides a set of predefined error class listed in Table 9-2. These are named constants and have the type INTEGER in Fortran and long in C.

Table 9-2 Predefined Error Class

Named Constants	Comments
DFTI_NO_ERROR	No error
DFTI_MEMORY_ERROR	Usually associated with memory allocation
DFTI_INVALID_CONFIGURATION	Invalid settings of one or more   configuration parameters
DFTI_INCONSISTENT_CONFIGURATION	Inconsistent configuration or input   parameters
DFTI_MULTITHREADED_ERROR	Usually associated with OMP routine's   error return value
DFTI_BAD_DESCRIPTOR	Descriptor is unusable for computation
DFTI_UNIMPLEMENTED	Unimplemented legitimate settings;
DFTI_MKL_INTERNAL_ERROR	implementation dependent
	Internal library error

Note that the correct usage is to check if the status returns. TRUE. or .FALSE. through the use of DFTI_ERROR_CLASS with a specific error class. Direct comparison of a status with the predefined class is an incorrect usage.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Example 9-7 Using Status Checking Function

```
from C language:
DFTI_DESCRIPTOR__HANDLE desc;
long status, class_error, value;
char* error_message;
. . . descriptor creation and other code
status = DftiGetValue(desc, DFTI_PRECISION, &value); //
//or any DFTI function
class_error = DftiErrorClass(status, DFTI_ERROR_CLASS);
if (! class_error) {
printf ("status is not a member of Predefined Error
Class\n");
} else {
error_message = DftiErrorMessage(status);
printf("error_message = %s \n", error_message);
}
from Fortran:
type(DFTI_DESCRIPTOR), POINTER :: desc
integer value, status
character(DFTI_MAX_MESSAGE_LENGTH) error_message
logical class_error
. . . descriptor creation and other code
status = DftiGetValue(desc, DFTI_PRECISION, value)
class_error = DftiErrorClass(status, DFTI_ERROR_CLASS)
if (.not. class_error) then
print *, 'status is not a member of Predefined Error
Class
else
error_message = DftiErrorMessage(status)
print *, 'error_message = ', error_message
endif
```


## Interface and prototype

//Fortran interface
INTERFACE DftiErrorClass
//Note that the body provided here is to illustrate the different

```
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
 FUNCTION some_actual_function_8(Status, Error_Class)
 LOGICAL some_actual_function_8
 INTEGER, INTENT(IN) :: Status, Error_Class
 END FUNCTION some_actual_function_8
END INTERFACE DftiErrorClass
/* C prototype */
long DftiErrorClass(long , long);
```


## ErrorMessage

Generates an error message.

```
Usage
! Fortran
ERROR_MESSAGE = DftiErrorMessage(Status)
/* C */
error_message = DftiErrorMessage(status);
```


## Discussion

The error message function generates an error message character string. The maximum length of the string in Fortran is given by the named constant DFTI_MAX_MESSAGE_LENGTH. The actual error message is implementation dependent. In Fortran, the user needs to use a character string of length DFTI_MAX_MESSAGE_LENGTH as the target. In C, the function returns a pointer to a character string, that is, a character array with the delimiter ' 0 '. Example 9-7 shows how this function can be implemented.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## Interface and prototype

```
//Fortran interface
INTERFACE DftiErrorMessage
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
 FUNCTION some_actual_function_9(Status, Error_Class)
 CHARACTER(LEN=DFTI_MAX_MESSAGE_LENGTH) some_actual_function_9(Status)
 INTEGER, INTENT(IN) :: Status
 END FUNCTION some_actual_function_9
END INTERFACE DftiErrorMessage
/* C prototype */
char *DftiErrorMessage(long);
```


## Descriptor Manipulation

There are four functions in this category: create a descriptor, commit a descriptor, copy a descriptor, and free a descriptor.

## CreateDescriptor

Allocates memory for the descriptor
data structure and instantiates it with
default configuration settings.

```
Usage
! Fortran
Status = DftiCreateDescriptor(Desc_Handle, &
 Precision, &
 Forward_Domain, &
 Dimension, &
 Length)
/* C */
status = DftiCreateDescriptor(&desc_handle,
 precision,
 forward_domain,
 dimension,
 length);
```


## Discussion

This function allocates memory for the descriptor data structure and instantiates it with all the default configuration settings with respect to the precision, domain, dimension, and length of the desired transform. The domain is understood to be the domain of the forward transform. Since memory is allocated dynamically, the result is actually a pointer to the created descriptor. This function is slightly different from the "initialization" routine in more traditional software packages or libraries used for computing DFT. In all likelihood, this function will not perform
any significant computation work such as twiddle factors computation, as the default configuration settings can still be changed upon user's request through the value setting function DftiSetValue.
The precision and (forward) domain are specified through named constants provided in DFT interface for the configuration values. The choices for precision are DFTI_SINGLE and DFTI_DOUBLE; and the choices for (forward) domain are DFTI_COMPLEX, DFTI_REAL, and DFTI_CONJUGATE_EVEN. See Table 9-5 for the complete table of named constants for configuration values.

Dimension is a simple positive integer indicating the dimension of the transform. Length is either a simple positive integer for one-dimensional transform, or an integer array (pointer in C) containing the positive integers corresponding to the lengths dimensions for multi-dimensional transform.

The function returns DFTI_NO_ERROR when completes successfully. See "Status Checking Functions" for more information on returned status.

## Interface and prototype

!Fortran interface.
INTERFACE DftiCreateDescriptor
! Note that the body provided here is to illustrate the different
!argument list and types of dummy arguments. The interface
!does not guarantee what the actual function names are.
!Users can only rely on the function name following the
! keyword INTERFACE
FUNCTION some_actual_function_1D( Desc_Handle, Prec, Dom, Dim, Length )
INTEGER : : some_actual_function_1D
TYPE (DFTI_DESCRIPTOR), POINTER : : Desc_Handle
INTEGER, INTENT (IN) : : Prec, Dom
INTEGER, INTENT (IN) : : Dim, Length
END FUNCTION some_actual_function_1D

FUNCTION some_actual_function_HIGHD ( Desc_Handle, Prec, Dom, Dim, Length )
INTEGER : : some_actual_function_HIGHD
TYPE (DFTI_DESCRIPTOR), POINTER : : Desc_Handle
INTEGER, INTENT (IN) : : Prec, Dom
INTEGER, INTENT(IN) : : Dim, Length(*)

```
 END FUNCTION some_actual_function_HIGHD
END INTERFACE DftiCreateDescriptor
```

Note that the function is overloaded as the actual argument for Length can be a scalar or a a rank-one array.

```
/* C prototype */
long DftiCreateDescriptor(DFTI_DESCRIPTOR_HANDLE *,
 DFTI_CONFIG_PARAM ,
 DFTI_CONFIG_PARAM ,
 long ,
 ...);
```

The variable arguments facility is used to cope with the argument for lengths that can be a scalar (long), or an array (long *).

## CommitDescriptor

Performs all initialization that<br>facilitates the actual DFT computation.

```
Usage
! Fortran
Status = DftiCommitDescriptor(Desc_Handle)
/* C */
status = DftiCommitDescriptor(desc_handle);
```


## Discussion

The interface requires a function that commits a previously created descriptor be invoked before the descriptor can be used for DFT computations. Typically, this committal performs all initialization that facilitates the actual DFT computation. For a modern implementation, it may involve exploring many different factorizations of the input length to search for highly efficient computation method.

Any changes of configuration parameters of a committed descriptor via the set value function (see "Descriptor Configuration") requires a re-committal of the descriptor before a computation function can be invoked. Typically, this committal function call is immediately followed by a computation function call (see "DFT Computation").

The function returns DFTI_NO_ERROR when completes successfully. See "Status Checking Functions" for more information on returned status.

## Interface and prototype

```
! Fortran interface
INTERFACE DftiCommitDescriptor
!Note that the body provided here is to illustrate the different
!argument list and types of dummy arguments. The interface
!does not guarantee what the actual function names are.
!Users can only rely on the function name following the
!keyword INTERFACE
 FUNCTION some_actual function_1 (Desc_Handle)
 INTEGER :: some_actual function_1
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 END FUNCTION some_actual function_1
END INTERFACE DftiCommitDescriptor
/* C prototype */
long DftiCommitDescriptor(DFTI_DESCRIPTOR_HANDLE);
```


## CopyDescriptor

Copies an existing descriptor.

Usage<br>! Fortran

```
Status = DftiCopyDescriptor(Desc_Handle_Original,
 Desc_Handle_Copy)
/* C */
status = DftiCopyDescriptor(desc_handle_original,
 &desc_handle_copy);
```


## Discussion

This function makes a copy of an existing descriptor and provides a pointer to it. The purpose is that all information of the original descriptor will be maintained even if the original is destroyed via the free descriptor function DftiFreeDescriptor.

The function returns DFTI_NO_ERROR when completes successfully. See "Status Checking Functions" for more information on returned status.

## Interface and prototype

```
! Fortran interface
INTERFACE DftiCopyDescriptor
! Note that the body provided here is to illustrate the different
!argument list and types of dummy arguments. The interface
!does not guarantee what the actual function names are.
!Users can only rely on the function name following the
! keyword INTERFACE
 FUNCTION some_actual_function_2(Desc_Handle_Original,
 Desc_Handle_Copy)
 INTEGER :: some_actual_function_2
 TYPE (DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Original, Desc_Handle_Copy
 END FUNCTION some_actual_function_2
END INTERFACE DftiCopyDescriptor
/* C prototype */
long DftiCopyDescriptor(DFTI_DESCRIPTOR_HANLDE, DFTI_DESCRIPTOR_HANDLE *);
```


## FreeDescriptor

Frees memory allocated for a descriptor.

```
Usage
! Fortran
Status = DftiFreeDescriptor(Desc_Handle)
/* C */
status = DftiFreeDescriptor(&desc_handle);
```


## Discussion

This function frees up all memory space allocated for a descriptor.
The function returns DFTI_NO_ERROR when completes successfully. See "Status Checking Functions" for more information on returned status.

## Interface and prototype

```
! Fortran interface
INTERFACE DftiFreeDescriptor
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
 FUNCTION some_actual_function_3(Desc_Handle)
 INTEGER : : some_actual_function_3
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 END FUNCTION some_actual_function_3
END INTERFACE DftiFreeDescriptor
/* C prototype */
long DftiFreeDescriptor(DFTI_DESCRIPTOR_HANDLE *);
```


## DFT Computation

There are two functions in this category: compute the forward transform, and compute the backward transform.

## ComputeForward

Computes the forward DFT.

## Usage

! Fortran
Status = DftiComputeForward( Desc_Handle, X_inout )

```
Status = DftiComputeForward(Desc_Handle, X_in, X_out)
```

Status = DftiComputeForward( Desc_Handle, X_inout, Y_inout )
Status = DftiComputeForward ( Desc_Handle, X_in, Y_in, X_out, Y_out )
/* C */
status = DftiComputeForward ( desc_handle, x_inout );
status $=$ DftiComputeForward( desc_handle, x_in, x_out );
status = DftiComputeForward( desc_handle, x_inout, y_inout );
status = DftiComputeForward( desc_handle, x_in, y_in, x_out, y_out );

## Discussion

As soon as a descriptor is configured and committed successfully, actual computation of DFT can be performed. The DftiComputeForward function computes the forward DFT. By default, this is the transform using the factor $e^{-i 2 \pi / n}$ (instead of the one with a positive sign). Because of the flexibility in configuration, input data can be represented in various ways as well as output result can be placed differently. Consequently, the number of input parameters as well as their type vary. This variation is accommodated by the generic function facility of Fortran 95. Data and result parameters are all declared as assumed-size rank-1 array DIMENSION ( $0: *$ ).
The function returns DFTI_NO_ERROR when completes successfully. See

## "Status Checking Functions" for more information on returned status.

## Interface and prototype

```
//Fortran interface.
INTERFACE DftiComputeFoward
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
 // One argument single precision complex
 FUNCTION some_actual_function_4_C(Desc_Handle, X)
 INTEGER :: some_actual_function_4_C
 TYPE (DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 COMPLEX, INTENT(INOUT) :: X(*)
 END FUNCTION some_actual_function_4_C
 // One argument double precision complex
 FUNCTION some_actual_function_4_Z(Desc_Handle, X)
 INTEGER :: some_actual_function_4_Z
 TYPE (DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 COMPLEX (Kind((ODO,ODO))), INTENT(INOUT) :: X(*)
 END FUNCTION some_actual_function_4_Z
 // One argument single precision real
 FUNCTION some_actual_function_4_R(Desc_Handle, X)
 INTEGER :: some_actual_function_4_R
 TYPE (DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 REAL, INTENT(INOUT) :: X(*)
 END FUNCTION some_actual_function_4_R
 // One argument double precision real
 // Two argument single precision complex
 ...
 ...
 // Four argument double precision real
 FUNCTION some_actual_function_4_DDDD(Desc_Handle, X1_In, X2_In,
 Y1_Out, Y2_Out)
```

```
 INTEGER :: some_actual_function_4_DDDD
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 REAL (Kind(ODO)), INTENT(IN) :: X1_In(*), X2_In(*)
 REAL (Kind(ODO)), INTENT (OUT) : : Y1_Out(*), Y2_Out(*)
END FUNCTION some_actual_function_4_DDDD
END INTERFACE DftiComputeFoward
/* C prototype */
long DftiComputeForward(DFTI_DESCRIPTOR_HANDLE,
 void *,
 ...);
```

The implementations of DFT interface expect the data be treated as data stored linearly in memory with a regular "stride" pattern (discussed more fully in "Strides", see also [3]). The function expects the starting address of the first element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly how many arguments and of what type should be present. The implementation could use this information to check against possible input inconsistency.

## ComputeBackward

Computes the backward DFT.

```
 Usage
! Fortran
Status = DftiComputeBackward(Desc_Handle, X_inout)
Status = DftiComputeBackward(Desc_Handle, X_in, X_out)
Status = DftiComputeBackward(Desc_Handle, X_inout, Y_inout)
Status = DftiComputeBackward(Desc_Handle, X_in, Y_in, X_out, Y_out)
/* C */
status = DftiComputeBackward(desc_handle, x_inout);
status = DftiComputeBackward(desc_handle, x_in, x_out);
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

```
status = DftiComputeBackward(desc_handle, x_inout, y_inout);
status = DftiComputeBackward(desc_handle, x_in, y_in, x_out, y_out);
```


## Discussion

As soon as a descriptor is configured and committed successfully, actual computation of DFT can be performed. The DftiComputeBackward function computes the backward DFT. By default, this is the transform using the factor $e^{i 2 \pi / n}$ (instead of the one with a negative sign). Because of the flexibility in configuration, input data can be represented in various ways as well as output result can be placed differently. Consequently, the number of input parameters as well as their type vary. This variation is accommodated by the generic function facility of Fortran 95. Data and result parameters are all declared as assumed-size rank-1 array DIMENSION (0:*).

The function returns DFTI_NO_ERROR when completes successfully. See "Status Checking Functions" for more information on returned status.

## Interface and prototype

```
//Fortran interface.
INTERFACE DftiComputeBackward
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
 // One argument single precision complex
 FUNCTION some_actual_function_5_C(Desc_Handle, X)
 INTEGER :: some_actual_function_5_C
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 COMPLEX, INTENT(INOUT) : : X(*)
 END FUNCTION some_actual_function_5_C
 // One argument double precision complex
 FUNCTION some_actual_function_5_Z(Desc_Handle, X)
 INTEGER :: some_actual_function_5_Z
 TYPE (DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 COMPLEX (Kind((ODO,ODO))), INTENT(INOUT) :: X(*)
```

```
END FUNCTION some_actual_function_5_Z
// One argument single precision real
FUNCTION some_actual_function_5_R(Desc_Handle, X)
 INTEGER :: some_actual_function_5_R
 TYPE (DFTI_DESCRIPTOR), POINTER : : Desc_Handle
 REAL, INTENT(INOUT) :: X(*)
END FUNCTION some_actual_function_5_R
// One argument double precision real
// Two argument single precision complex
// Four argument double precision real
FUNCTION some_actual_function_5_DDDD(Desc_Handle, X1_In, X2_In,
 Y1_Out, Y2_Out)
 INTEGER :: some_actual_function_5_DDDD
 TYPE (DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 REAL (Kind(ODO)), INTENT(IN) :: X1_In(*), X2_In(*)
 REAL (Kind(ODO)), INTENT(OUT) :: Y1_Out(*), Y2_Out(*)
END FUNCTION some_actual_function_5_DDDD
END INTERFACE DftiComputeBackward
```

```
/* C prototype */
long DftiComputeBackward(DFTI_DESCRIPTOR_HANDLE,
 void *,
 ...);
```

The implementations of DFT interface expect the data be treated as data stored linearly in memory with a regular "stride" pattern (discussed more fully in "Strides", see also [3]). The function expects the starting address of the first element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly how many arguments and of what type should be present. The implementation could use this information to check against possible input inconsistency.

## Descriptor Configuration

There are two functions in this category: the value setting function DftiSetValue sets one particular configuration parameter to an appropriate value, and the value getting function $D f t i G e t V a l u e ~ r e a d s ~ t h e ~$ values of one particular configuration parameter. While all configuration parameters are readable, a few of them cannot be set by user. Some of these contain fixed information of a particular implementation such as version number, or dynamic information, but nevertheless are derived by the implementation during execution of one of the functions.

Table 9-3 Settable Configuration Parameters
Named Constants $\quad$ Value Type $\quad$ Comments

Most common configurations, no default, must be set explicitly

DFTI_PRECISION	Named constant	Precision of computation
DFTI_FORWARD_DOMAIN	Named constant	Domain for the forward transform
DFTI_DIMENSION	Integer scalar	Dimension of the transform
DFTI_LENGTHS	Integer scalar/array	Lengths of each dimension

Common configurations including multiple transform and data representation

DFTI_NUMBER_OF_TRANSFORMS	Integer scalar	For multiple number of transforms
DFTI_FORWARD_SIGN	Named constant	The definition for forward transform
DFTI_FORWARD_SCALE	Floating-point scalar	Scale factor for forward transform
DFTI_BACKWARD_SCALE	Floating-point scalar	Scale factor for backward transform
DFTI_PLACEMENT	Named constant	Placement of the computation result
DFTI_COMPLEX_STORAGE	Named constant	Storage method, complex domain   data
DFTI_REAL_STORAGE	Named constant	Storage method, real domain data   Storage method, conjugate even   domain data
DFTI_DESCRIPTOR_NAME	Character string	No longer than   DFTI_MAX_NAME_LENGTH
DFTI_PACKED_FORMAT	Named constant	Packed format, real domain data

Table 9-3 Settable Configuration Parameters (continued)

Named Constants	Value Type	Comments
Configurations regarding stride of data	Integer scalar	Multiple transforms, distance of first   elements   Multiple transforms, distance of first   elements
DFTI_OUTPUT_DISTANCE	Integer scalar	Stride information of input data
DFTI_INPUT_STRIDES	Integer array	Integer array

Each of these configuration parameters is identified by a named constant in the MKL_DFTI module. In C, these named constants have the enumeration type DFTI_CONFIG_PARAM. The list of configuration parameters whose values can be set by user is given in Table 9-3; the list of configuration parameters that are read-only is given in Table 9-4. All parameters are readable. Most of these parameters are self-explanatory, while some others are discussed more fully in the description of the relevant functions.

Table 9-4	Read-Only Configuration Parameters	
Named Constants	Value Type	Comments
DFTI_COMMIT_STATUS	Name constant	Whether descriptor has been committed
DFTI_VERSION	String	Intel MKL library version number
DFTI_FORWARD_ORDERING	Integer pointer	Pointer to an integer array (see "Ordering")
DFTI_BACKWARD_ORDERING	Integer pointer	Pointer to an integer array (see "Ordering")

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

The configuration parameters are set by various values. Some of these values are specified by native data types such as an integer value (for example, number of simultaneous transforms requested), or a single-precision number (for example, the scale factor one would like to apply on a forward transform).
Other configuration values are discrete in nature (for example, the domain of the forward transform) and are thus provided in the DFTI module as named constants. In C, these named constants have the enumeration type DFTI_CONFIG_VALUE. The complete list of named constants used for this kind of configuration values is given in Table 9-5.

Table 9-5 Named Constant Configuration Values

Named Constant	Comments
DFTI_SINGLE	Single precision
DFTI_DOUBLE	Double precision
DFTI_COMPLEX	Complex domain
DFTI_REAL	Real domain
DFTI_CONJUGATE_EVEN	Conjugate even domain
DFTI_NEGATIVE	Sign used to define the forward transform
DFTI_POSITIVE	Sign used to define the forward transform
DFTI_INPLACE	Output overwrites input
DFTI_NOT_INPLACE	Output does not overwrite input
DFTI_COMPLEX_COMPLEX	Storage method (see "'Storage schemes")
DFTI_REAL_REAL	Storage method (see "Storage schemes")
DFTI_COMPLEX_REAL	Storage method (see "Storage schemes")
DFTI_REAL_COMPLEX	Storage method (see "Storage schemes")
DFTI_HIGH	A high setting, related to initialization effort
DFTI_MEDIUM	A medium setting, related to initialization effort
DFTI_LOW	A low setting, related to initialization effort
DFTI_COMMITTED	Committal status of a descriptor
DFTI_UNCOMMITTED	Committal status of a descriptor
DFTI_ORDERED	Data ordered in both forward and backward domains
DFTI_BACKWARD_SCRAMBLED	Data scrambled in backward domain (by forward transform)

Table 9-5 Named Constant Configuration Values (continued)

Named Constant	Comments
DFTI_FORWARD_SCRAMBLED	Data scrambled in forward domain (by backward transform)
DFTI_ALLOW	Allow certain request or usage if useful
DFTI_AVOID	Avoid certain request or usage if practical
DFTI_NONE	Used to specify no transposition
DFTI_CCS_FORMAT	Packed format, real data (see "Packed formats")
DFTI_PACK_FORMAT	Packed format, real data (see "Packed formats")
DFTI_PERM_FORMAT	Packed format, real data (see "Packed formats")
DFTI_VERSION_LENGTH	Number of characters for library version length
DFTI_MAX_NAME_LENGTH	Maximum descriptor name length
DFTI_MAX_MESSAGE_LENGTH	Maximum status message length

Table 9-6 lists the possible values for those configuration parameters that are discrete in nature.

Table 9-6 Settings for Discrete Configuration Parameters	
Named Constant	Possible Values
DFTI_PRECISION	DFTI_SINGLE, or
DFTI_FORWARD_DOMAIN	DFTI_DOUBLE (no default)
	DFTI_COMPLEX, or
	DFTI_REAL, or
	DFTI_CONJUGATE_EVEN (no default)
DFTI_FORWARD_SIGN	DFTI_NEGATIVE (default), or
	DFTI_POSITIVE
DFTI_PLACEMENT	DFTI_INPLACE (default), or
	DFTI_NOT_INPLACE
DFTI_COMPLEX_STORAGE	DFTI_COMPLEX_COMPLEX (default), or
	DFTI_COMPLEX REAL, or
	DFTI_REAL_REAL
DFTI_REAL_STORAGE	DFTI_REAL_REAL (default), or
	DFTI_REAL_COMPLEX
DFTI_CONJUGATE_EVEN_STORAGE	DFTI_COMPLEX_COMPLEX, or

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual
Table 9-6 Settings for Discrete Configuration Parameters (continued)

Named Constant	Possible Values
	DFTI_COMPLEX_REAL (default), or
DFTI_PACKED_FORMAT	DFTI_REAL_REAL (1-D transform only)
	DFTI_CCS_FORMAT (default) or,
	DFTI_PACK_FORMAT or,
	DFTI_PERM_FORMAT

Table 9-7 lists the default values of the settable configuration parameters.

Table 9-7 $\quad$ Default Configuration Values of Settable Parameters	
Named Constants	Default Value
DFTI_NUMBER_OF_TRANSFORMS	1
DFTI_FORWARD_SIGN	DFTI_NEGATIVE
DFTI_FORWARD_SCALE	1.0
DFTI_BACKWARD_SCALE	1.0
DFTI_PLACEMENT	DFTI_INPLACE
DFTI_COMPLEX_STORAGE	DFTI_COMPLEX_COMPLEX
DFTI_REAL_STORAGE	DFTI_REAL_REAL
DFTI_CONJUGATE_EVEN_STORAGE	DFTI_COMPLEX_REAL
DFTI_PACKED_FORMAT	DFTI_CCS_FORMAT
DFTI_DESCRIPTOR_NAME	no name, string of zero length
DFTI_INPUT_DISTANCE	0
DFTI_OUTPUT_DISTANCE	0
DFTI_INPUT_STRIDES	Tightly packed according to dimension, lengths, and
	storage
DFTI_OUTPUT_STRIDES	Same as above. See "Strides" for details
DFTI_INITIALIZATION_EFFORT	DFTI_MEDIUM
DFTI_ORDERING	DFTI_ORDERED
DFTI_WORKSPACE	DFTI_ALLOW
DFTI_TRANSPOSE	DFTI_NONE

## SetValue

## Sets one particular configuration <br> parameter with the specified configuration <br> value.

```
Usage
! Fortran
Status = DftiSetValue(Desc_Handle, &
 Config_Param, &
 Config_Val)
/* C */
status = DftiSetValue(desc_handle,
 config_param,
 config_val);
```


## Discussion

This function sets one particular configuration parameter with the specified configuration value. The configuration parameter is one of the named constants listed in Table 9-3, and the configuration value is the corresponding appropriate type, which can be a named constant or a native type. See "Configuration Settings" for details of the meaning of the setting.

The function returns DFTI_NO_ERROR when completes successfully. See "Status Checking Functions" for more information on returned status.

## Interface and prototype

```
! Fortran interface
INTERFACE DftiSetValue
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
```

Inte ${ }^{\circledR}$ Math Kernel Library Reference Manual

```
//keyword INTERFACE
 FUNCTION some_actual_function_6_INTVAL(Desc_Handle, Config_Param,
INTVAL)
 INTEGER :: some_actual_function_6_INTVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 INTEGER, INTENT(IN) :: INTVAL
 END FUNCTION some_actual_function_6_INTVAL
 FUNCTION some_actual_function_6_SGLVAL(Desc_Handle, Config_Param,
SGLVAL)
 INTEGER :: some_actual__function_6_SGLVAL
 Type(DFTI_DESCRIPTOR), POINTER : : Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 REAL, INTENT(IN) :: SGLVAL
 END FUNCTION some_actual_function_6_SGLVAL
 FUNCTION some_actual_function_6_DBLVAL(Desc_Handle, Config_Param,
DBLVAL)
 INTEGER :: some_actual_function_6_DBLVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 REAL (KIND(ODO)), INTENT(IN) : : DBLVAL
 END FUNCTION some_actual_function_6_DBLVAL
 FUNCTION some_actual_function_6_INTVEC(Desc_Handle, Config_Param,
INTVEC)
 INTEGER :: some_actual_function_6_INTVEC
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 INTEGER, INTENT(IN) :: INTVEC(*)
 END FUNCTION some_actual_function_6_INTVEC
 FUNCTION some_actual_function_6_CHARS(Desc_Handle, Config_Param,
CHARS)
 INTEGER :: some_actual_function_6_CHARS
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
```

```
 INTEGER, INTENT(IN) :: Config_Param
 CHARCTER(*), INTENT(IN) : : CHARS
 END FUNCTION some_actual_function_6_CHARS
END INTERFACE DftiSetValue
/* C prototype */
long DftiSetValue(DFTI_DESCRIPTOR_HANDLE,
 DFTI_CONFIG_PARAM ,
 ...);
```


## GetValue

Gets the configuration value of one particular configuration parameter.

## Usage

```
! Fortran
Status = DftiGetValue(Desc_Handle, &
 Config_Param, &
 Config_Val)
/* C */
status = DftiGetValue(desc_handle,
 config_param,
 &config_val);
```


## Discussion

This function gets the configuration value of one particular configuration parameter. The configuration parameter is one of the named constants listed in Table 9-3 and Table 9-4, and the configuration value is the corresponding appropriate type, which can be a named constant or a native type.
The function returns DFTI_NO_ERROR when completes successfully. See "Status Checking Functions" for more information on returned status.

Intel ${ }^{®}$ Math Kernel Library Reference Manual

## Interface and prototype

! Fortran interface
INTERFACE DftiGetValue
//Note that the body provided here is to illustrate the different //argument list and types of dummy arguments. The interface //does not guarantee what the actual function names are. //Users can only rely on the function name following the //keyword Interface
FUNCTION some_actual_function_7_INTVAL( Desc_Handle, Config_Param, INTVAL )

INTEGER :: some_actual_function_7_INTVAL
Type (DFTI_DESCRIPTOR), POINTER :: Desc_Handle
INTEGER, INTENT(IN) :: Config_Param
INTEGER, INTENT (OUT) :: INTVAL
END FUNCTION DFTI_GET_VALUE_INTVAL
FUNCTION some_actual_function_7_SGLVAL( Desc_Handle, Config_Param, SGLVAL )

INTEGER :: some_actual_function_7_SGLVAL
Type (DFTI_DESCRIPTOR), POINTER :: Desc_Handle
INTEGER, INTENT(IN) :: Config_Param
REAL, INTENT (OUT) :: SGLVAL
END FUNCTION some_actual_function_7_SGLVAL
FUNCTION some_actual_function_7_DBLVAL( Desc_Handle, Config_Param, DBLVAL )

INTEGER :: some_actual_function_7_DBLVAL
Type (DFTI_DESCRIPTOR), POINTER :: Desc_Handle
INTEGER, INTENT(IN) :: Config_Param
REAL (KIND (ODO)), INTENT (OUT) :: DBLVAL
END FUNCTION some_actual_function_7_DBLVAL
FUNCTION some_actual_function_7_INTVEC( Desc_Handle, Config_Param, INTVEC )

INTEGER :: some_actual_function_7_INTVEC
Type (DFTI_DESCRIPTOR), POINTER :: Desc_Handle
INTEGER, INTENT(IN) :: Config_Param

```
 INTEGER, INTENT(OUT) : : INTVEC(*)
END FUNCTION some_actual_function_7_INTVEC
 FUNCTION some_actual_function_7_INTPNT(Desc_Handle, Config_Param,
INTPNT)
 INTEGER : : some_actual_function_7_INTPNT
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 INTEGER, DIMENSION(*), POINTER :: INTPNT
END FUNCTION some_actual_function_7_INTPNT
 FUNCTION some_actual_function_7_CHARS(Desc_Handle, Config_Param,
CHARS)
 INTEGER :: some_actual_function_7_CHARS
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 CHARCTER(*), INTENT (OUT) : : CHARS
 END FUNCTION some_actual_function_7_CHARS
END INTERFACE DftiGetValue
/* C prototype */
long DftiGetValue(DFTI_DESCRIPTOR_HANDLE,
 DFTI_CONFIG_PARAM ,
 ...);
```


## Configuration Settings

## Precision of transform

The configuration parameter DFTI_PRECISION denotes the floating-point precision in which the transform is to be carried out. A setting of DFTI_SINGLE stands for single precision, and a setting of DFTI_DOUBLE stands for double precision. The data is meant to be presented in this precision; the computation will be carried out in this precision; and the result will be delivered in this precision. This is one of the four settable configuration parameters that do not have default values. The user must set them explicitly, most conveniently at the call to descriptor creation function DftiCreateDescriptor.

Intel ${ }^{®}$ Math Kernel Library Reference Manual

## Forward domain of transform

The general form of the discrete Fourier transform is

$$
\begin{equation*}
z_{k_{1}, k_{2}, \ldots, k_{d}}=\sigma \times \sum_{j_{d}=0}^{n_{d}-1} \ldots \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{1}=0}^{n_{1}-1} w_{j_{1}}, j_{2}, \ldots, j_{d} \exp \left(\delta i 2 \pi \sum_{l=1}^{d} j_{I} k_{l} / n_{l}\right) \tag{7.1}
\end{equation*}
$$

for $k_{1}=0, \pm 1, \pm 2, \ldots$, where $\sigma$ is an arbitrary real-valued scale factor and $\delta= \pm 1$. By default, the forward transform is defined by $\sigma=1$ and $\delta=-1$. In most common situations, the domain of the forward transform, that is, the set where the input (periodic) sequence $\left\{W_{j_{1}}, j_{2}, \ldots, j_{d}\right\}$ belongs, can be either the set of complex-valued sequences, real-valued sequences, and complex-valued conjugate even sequences. The configuration parameter DFTI_FORWARD_DOMAIN indicates the domain for the forward transform. Note that this implicitly specifies the domain for the backward transform because of mathematical property of the DFT. See Table $9-8$ for details.

Table 9-8 Correspondence of Forward and Backward Domain

	Forward Domain	Implied Backward Domain
Complex	(DFTI_COMPLEX)	Complex
Real	(DFTI_REAL)	Conjugate Even
Conjugate Even	(DFTI_CONJUGATE_EVEN)	Real

On transforms in the real domain, some software packages only offer one "real-to-complex" transform. This in essence omits the conjugate even domain for the forward transform. The forward domain configuration parameter DFTI_FORWARD_DOMAIN is the second of four configuration parameters without default value.

## Transform dimension and lengths

The dimension of the transform is a positive integer value represented in an integer scalar of type Integer. For one-dimensional transform, the transform length is specified by a positive integer value represented in an integer scalar of type Integer. For multi-dimensional ( $\geq 2$ ) transform, the
lengths of each of the dimension is supplied in an integer array. DFTI_DIMENSION and DFTI_LENGTHS are the remaining two of four configuration parameters without default.

As mentioned, these four configuration parameters do not have default value. They are most conveniently set at the descriptor creation function. For dimension and length configuration, they can only be set in the descriptor creation function, and not by the function DftiSetValue. The other two configuration values can be changed through the function DftiSetValue, although this is not deemed common.

CAUTION. Changing the dimension and length would likely render the stride value inappropriate. Unless certain of otherwise, the user is advised to reconfigure the stride (see "Strides").

## Number of transforms

In some situations, the user may need to perform a number of DFT transforms of the same dimension and lengths. The most common situation would be to transform a number of one-dimensional data of the same length. This parameter has the default value of 1, and can be set to positive integer value by an Integer data type in Fortran and long data type in C. Data sets have no common elements. The distance parameter is obligatory if multiple number is more than one.

## Sign and scale

The general form of the discrete Fourier transform is given by (7.1), for $k_{1}=0, \pm 1, \pm 2, .$. where $\sigma$ is an arbitrary real-valued scale factor and $\delta= \pm 1$. By default, the forward transform is defined by $\sigma=1$ and $\delta=-1$, and the backward transform is defined by $\sigma=1$ and $\delta=1$. The user can change the definition of forward transform via setting the sign $\delta$ to be DFTI_NEGATIVE (default) or DFTI_POSITIVE. The sign of the backward transform is implicitly defined to be the negative of the sign for the forward transform.

Intel ${ }^{®}$ Math Kernel Library Reference Manual

The forward transform and backward transform are each associated with a scale factor $\sigma$ of its own with default value of 1 . The user can set one or both of them via the two configuration parameters DFTI_FORWARD_SCALE and DFTI_BACKWARD_SCALE. For example, for a one-dimensional transform of length $n$, one can use the default scale of 1 for the forward transform while setting the scale factor for backward transform to be $1 / n$, making the backward transform the inverse of the forward transform.

The scale factor configuration parameter should be set by a real floating-point data type of the same precision as the value for DFTI_PRECISION.

NOTE. The sign configuration is not supported. The forward transform is defined as $\delta=-1$.

## Placement of result

By default, the computational functions overwrite the input data with the output result. That is, the default setting of the configuration parameter DFTI_PLACEMENT is DFTI_INPLACE. The user can change that by setting it to DFTI_NOT_INPLACE.

## Packed formats

The result of the forward transform (i.e. in the frequency-domain) of real data is represented in several possible packed formats: Pack, Perm, or CCS. The data can be packed due to the symmetry property of the DFT transform of a real data.

The cCS format stores the values of the first half of the output complex signal resulted from the forward DFT. Note that the signal stored in CCS format is one complex element longer. In CCS format, the output samples of the DFT are arranged as shown in Table 9-9.

The Pack format is a compact representation of a complex conjugate-symmetric sequence. The disadvantage of this format is that it is not the natural format used by the real DFT algorithms ("natural" in the sense that array is natural for complex DFTs). In Pack format, the output samples of the DFT are arranged as shown in Table 9-9.

The Perm format is an arbitrary permutation of the Pack format for even lengths and one is the same as the Pack format for odd lengths. In Perm format, the output samples of the DFT are arranged as shown in Table 9-9.

Table 9-9 Packed Format Output Samples

For ( $\mathrm{N}=\mathrm{S}^{*}$ )										
DFT Real		0	1	2	3	...	N-2	$\mathrm{N}-1$	N	N+1
		0	1					(2S-1)	2 S	(2S+1)
CCS		$\mathrm{R}_{0}$	0	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	...	$\mathrm{R}_{\mathrm{N} / 2-1}$	$\mathrm{I}_{\mathrm{N} / 2-1}$	$\mathrm{R}_{\mathrm{N} / 2}$	0
Pack		$\mathrm{R}_{0}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	$\mathrm{R}_{2}$	...	$\mathrm{I}_{\mathrm{N} 2-1}$	$\mathrm{R}_{\mathrm{N} / 2}$		
Perm		$\mathrm{R}_{0}$	$\mathrm{R}_{\mathrm{n} / 2}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	...	$\mathrm{R}_{\mathrm{N} / 2-1}$	$\mathrm{I}_{\mathrm{N} / 2-1}$		
For ( $\mathrm{N}=\mathrm{S}^{*} 2+1$ )										
DFT   Real	0	1	2	3	...	N-4	N-3	N-2	N-1	$\mathrm{N} \quad \mathrm{N}+1$
	0	1								(2S+1)
CCS	$\mathrm{R}_{0}$	0	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	...	$\mathrm{I}_{\mathrm{S} 2}$	$\mathrm{R}_{\mathrm{S}-1}$	$\mathrm{IS}_{\mathrm{L}}$	$\mathrm{R}_{\mathrm{S}}$	Is
Pack	$\mathrm{R}_{0}$	$\mathrm{R}_{1}$	$\mathrm{l}_{1}$	$\mathrm{R}_{2}$	$\ldots$	$\mathrm{R}_{\mathrm{S}-1}$	$\mathrm{IS}_{\text {_ } 1}$	$\mathrm{R}_{\mathrm{S}-1}$	$\mathrm{I}_{\text {s }}$	
Perm	$\mathrm{R}_{0}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	$\mathrm{R}_{2}$	...	$\mathrm{R}_{\mathrm{S}-1}$	$\mathrm{Is}_{\text {_ } 1}$	$\mathrm{R}_{\mathrm{S}-1}$	$I_{s}$	

See also Table 9-10 and Table 9-11.

## Storage schemes

For each of the three domains DFTI_COMPLEX, DFTI_REAL, and DFTI_CONJUGATE_EVEN (for the forward as well as the backward operator), a subset of the four storage schemes DFTI_COMPLEX_COMPLEX, DFTI_COMPLEX_REAL, DFTI_REAL_COMPLEX, and DFTI_REAL_REAL. Specific examples are presented here to illustrate the storage schemes. See the document [3] for the rationale behind this definition of the storage schemes.

NOTE. The data is stored in the Fortran style only, that is, the real and imaginary parts are stored side by side.

## Storage scheme for complex domain

This setting is recorded in the configuration parameter dfil_complex_Storage. The three values that can be set are DFTI_COMPLEX_COMPLEX, DFTI_COMPLEX_REAL, and DFTI_REAL_REAL. Consider a one-dimensional $n$-length transform of the form

$$
z_{k}=\sum_{j=0}^{n-1} w_{j} e^{-i 2 \pi j k / n}, \quad w_{j}, z_{k} \in \mathrm{C} .
$$

Assume the stride has default value (unit stride) and DFTI_PLACEMENT has the default in-place setting.

1. DFTI_COMPLEX_COMPLEX storage scheme. A typical usage will be as follows.
```
COMPLEX :: X(0:n-1)
...some other code...
Status = DftiComputeForward(Desc_Handle, X)
```

On input,
$\mathrm{X}(j)=w_{j}, j=0,1, \ldots, \mathrm{n}-1$.
On output,
$\mathrm{x}(\mathrm{k})=z_{k}, k=0,1, \ldots, \mathrm{n}-1$.
2. DFTI_COMPLEX_REAL storage scheme. A typical usage will be as follows.

```
REAL :: X(0:2*n-1)
...some other code...
Status = DftiComputeForward(Desc_Handle, X)
```

On input,

$$
x\left(2^{*} j\right)=\operatorname{Re}\left(w_{j}\right), x\left(2^{*} j+1\right)=\operatorname{Im}\left(w_{j}\right), j=0,1, \ldots, n-1 .
$$

On output,
$\mathrm{X}(2 * k)=\operatorname{Re}\left(z_{k}\right), \mathrm{X}\left(2^{*} k+1\right)=\operatorname{Im}\left(z_{k}\right), k=0,1, \ldots, \mathrm{n}-1$.
The notations $\operatorname{Re}\left(w_{j}\right)$ and $\operatorname{Im}\left(w_{j}\right)$ are the real and imaginary parts of the complex number $w_{j}$.
3. DFTI_REAL_REAL storage scheme. A typical usage will be as follows.

```
REAL :: X(0:n-1), Y(0:n-1)
...some other code...
Status = DftiComputeForward(Desc_Handle, X, Y)
```

On input,

```
\(X(j)=\operatorname{Re}\left(w_{j}\right), Y(j)=\operatorname{Im}\left(w_{j}\right), j=0,1, \ldots, n-1\).
```

On output,
$X(k)=\operatorname{Re}\left(z_{k}\right), Y(k)=\operatorname{Im}\left(z_{k}\right), k=0,1, \ldots, n-1$.

## Storage scheme for the real and conjugate even domains

This setting for the storage schemes for these domains are recorded in the configuration parameters DFTI_REAL_STORAGE and DFTI_CONJUGATE_EVEN. Since a forward real domain corresponds to a conjugate even backward domain, they are considered together. The example uses a one-dimensional real to conjugate even transform. In-place computation is assumed whenever possible (that is, when the input data type matches with the output data type).
Consider a one-dimensional $n$-length transform of the form

$$
z_{k}=\sum_{j=0} w_{j} e^{-i 2 \pi j k / n}, \quad w_{j} \in \mathbf{R}, \quad z_{k} \in \mathbf{C}
$$

There is a symmetry:
For even $n: z(n / 2+i)=\operatorname{conjg}(z(n / 2-i)), \quad 1 \leq i \leq n / 2-1$, and moreover $z(0)$ and $z(n / 2)$ are real values.

For odd $\mathrm{n}: \mathrm{z}(\mathrm{m}+\mathrm{i})=\operatorname{conjg}(\mathrm{z}(\mathrm{m}-\mathrm{i}+1)), \quad 1 \leq i \leq m$, and moreover $\mathrm{z}(0)$ is real value.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

$$
m=\text { floor }(n / 2) .
$$

Table 9-10 Comparison of the Storage Effects of Complex-to-Complex and Real-to-Complex DFTs for Forward Transform	Comparison of the Storage Effects of Complex-to-Complex and Real-to-Complex DFTs for Forward Transform						
$\mathrm{N}=8$							
Input Vectors			Output Vectors				
Complex DFT		Real DFT	complex DFT		real DFT		
Complex Data		Real Data	Complex Data		Real Data		
Real	Imaginary		Real	Imaginary	CCS	Pack	Perm
w0	0.000000	w0	z0	0.000000	z0	z0	z0
w1	0.000000	w1	$\operatorname{Re}(z 1)$	Im(z1)	0.000000	$\operatorname{Re}(\mathrm{z} 1)$	z4
w2	0.000000	w2	$\operatorname{Re}(z 2)$	$\operatorname{lm}(\mathrm{z2})$	$\operatorname{Re}(\mathrm{z} 1)$	$\operatorname{lm}(\mathrm{z1})$	$\operatorname{Re}(\mathrm{z} 1)$
w3	0.000000	w3	$\operatorname{Re}(z 3)$	Im(z3)	$\operatorname{lm}(z 1)$	$\operatorname{Re}(\mathrm{z} 2)$	$\operatorname{lm}(z 1)$
w4	0.000000	w4	z4	0.000000	$\operatorname{Re}(\mathrm{z2})$	Im(z2)	$\operatorname{Re}(\mathrm{z} 2)$
w5	0.000000	w5	$\operatorname{Re}(z 3)$	-Im(z3)	Im(z2)	$\operatorname{Re}(\mathrm{z} 3)$	Im(z2)
w6	0.000000	w6	$\operatorname{Re}(z 2)$	-Im(z2)	$\mathrm{Re}(\mathrm{z3})$	Im(z3)	$\operatorname{Re}(\mathrm{z3})$
w7	0.000000	w7	$\operatorname{Re}(z 1)$	-Im(z1)	$\operatorname{lm}(\mathrm{z} 3)$	z4	$\operatorname{lm}(\mathrm{z} 3)$
					z4		
					0.000000		


$\mathrm{N}=7$							
Input Vectors			Output Vectors				
Com	lex DFT	Real DFT	com	ex DFT		eal DF	
	ex Data	Real Data	Co	ex Data		eal Data	
Real	Imaginary		Real	Imaginary	CCS	Pack	Perm
w0	0.000000	w0	z0	0.000000	z0	z0	z0
w1	0.000000	w1	$\operatorname{Re}(\mathrm{z} 1)$	Im(z1)	0.000000	$\operatorname{Re}(\mathrm{z} 1)$	$\operatorname{Re}(z 1)$
w2	0.000000	w2	$\operatorname{Re}(\mathrm{z} 2)$	$\operatorname{lm}(\mathrm{z} 2)$	$\operatorname{Re}(\mathrm{z} 1)$	$\operatorname{lm}(\mathrm{z} 1)$	$\operatorname{lm}(\mathrm{z} 1)$



Intel ${ }^{®}$ Math Kernel Library Reference Manual

## Table 9-11 Comparison of the Storage Effects of Complex-to-Complex and Complex-to-Real DFTs for Backward Transform

$\mathrm{N}=8$							
Output Vectors			Input Vectors				
Com	lex DFT	Real DFT	complex DFT				
Com	lex Data	Real Data	Complex Data				
Real	Imaginary		Real	Imaginary	CCS	Pack	Perm
w0	0.000000	w0	z0	0.000000	z0	z0	z0
w1	0.000000	w1	$\operatorname{Re}(\mathrm{z} 1)$	$\operatorname{lm}(z 1)$	0.000000	$\operatorname{Re}(\mathrm{z} 1)$	z4
w2	0.000000	w2	$\operatorname{Re}(\mathrm{z} 2)$	$\operatorname{lm}(\mathrm{z} 2)$	$\operatorname{Re}(\mathrm{z} 1)$	$\operatorname{lm}(\mathrm{z1})$	$\operatorname{Re}(z 1)$
w3	0.000000	w3	$\operatorname{Re}(\mathrm{z} 3)$	$\operatorname{lm}(\mathrm{z} 3)$	$\operatorname{lm}(z 1)$	$\operatorname{Re}(\mathrm{z} 2)$	$\operatorname{lm}(z 1)$
w4	0.000000	w4	z4		$\operatorname{Re}(\mathrm{z} 2)$	Im(z2)	$\operatorname{Re}(\mathrm{z} 2)$
w5	0.000000	w5	$\operatorname{Re}(\mathrm{z} 3)$	$-\operatorname{lm}(\mathrm{z} 3)$	$\operatorname{lm}(\mathrm{z} 2)$	$\operatorname{Re}(\mathrm{z} 3)$	$\operatorname{lm}(\mathrm{z} 2)$
w6	0.000000	w6	$\operatorname{Re}(\mathrm{z} 2)$	$-\operatorname{lm}(\mathrm{z2})$	$\operatorname{Re}(\mathrm{z} 3)$	$\operatorname{lm}(\mathrm{z} 3)$	$\operatorname{Re}(\mathrm{z} 3)$
w7	0.00000	w7	$\operatorname{Re}(\mathrm{z} 1)$	$-\operatorname{lm}(\mathrm{z} 1)$	$\operatorname{lm}(\mathrm{z} 3)$	z4	$\operatorname{lm}(\mathrm{z} 3)$
					z4		
					0.000000		


N=7							
Output Vectors			Input Vectors				
Comp	lex DFT	Real DFT	com	ex DFT		al DFT	
Com	x Data	Real Data		lex Data		eal Data	
Real	Imaginary		Real	Imaginary	CCS	Pack	Perm
w0	0.000000	w0	z0	0.000000	z0	z0	z0
w1	0.000000	w1	$\operatorname{Re}(z 1)$	$\operatorname{lm}(z 1)$	0.000000	$\operatorname{Re}(z 1)$	$\operatorname{Re}(\mathrm{z} 1)$
w2	0.000000	w2	$\operatorname{Re}(z 2)$	$\operatorname{Im}(\mathrm{z} 2)$	$\mathrm{Re}(\mathrm{z} 1)$	$\operatorname{Im}(\mathrm{z} 1)$	$\operatorname{lm}(\mathrm{z} 1)$
w3	0.000000	w3	$\operatorname{Re}(z 3)$	$\operatorname{Im}(\mathrm{z3})$	$\operatorname{Im}(\mathrm{z1})$	$\operatorname{Re}(\mathrm{z} 2)$	$\operatorname{Re}(\mathrm{z} 2)$
w4	0.000000	w4	$\operatorname{Re}(z 3)$	-Im(z3)	$\mathrm{Re}(\mathrm{z} 2)$	$\operatorname{Im}(\mathrm{z} 2)$	$\operatorname{lm}(\mathrm{z} 2)$
w5	0.000000	w5	$\operatorname{Re}(z 2)$	-Im(z2)	$\operatorname{lm}(z 2)$	$\operatorname{Re}(\mathrm{z} 3)$	$\operatorname{Re}(\mathrm{z} 3)$



Assume that the stride has the default value (unit stride).
This complex conjugate-symmetric vector can be stored in the complex array of size $m+1$ or in the real array of size $2 m+2$ or $2 m$ depending on packed format.

1. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_COMPLEX for conjugate even domain. A typical usage will be as follows.
```
// m = floor(n/2)
REAL :: X(0:n-1)
COMPLEX :: Y(0:m)
...some other code...
...out of place transform...
Status = DftiComputeForward(Desc_Handle, X, Y)
On input,
\(x(j)=w_{j}, j=0,1, \ldots, n-1\).
```

On output,
$Y(k)=z_{k}, k=0,1, \ldots, m$.
2. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REAL for conjugate even domain. A typical usage will be as follows.

```
// m = floor(n/2)
REAL :: X(0:2*m+1)
...some other code...
...assuming inplace...
Status = DftiComputeForward(Desc_Handle, X)
```

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

On input,
$x(j)=w_{j}, j=0,1, \ldots, n-1$.
On output,
Output data stored in one of formats: Pack, Perm or CCS (see "Packed formats").
CCS format: $\mathrm{x}(2 * \mathrm{k})=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{x}(2 * \mathrm{k}+1)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=0,1, \ldots, \mathrm{~m}$.
Pack format: even $\mathrm{n}: \mathrm{x}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{x}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{x}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right)$, $\mathrm{k}=1, \ldots, \mathrm{~m}-1$, and $\mathrm{x}(\mathrm{n}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right)$
odd $\mathrm{n}: \mathrm{x}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{x}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{x}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$
Perm format: even $\mathrm{n}: \mathrm{x}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{x}(1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right), \mathrm{x}(2 * \mathrm{k})=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right)$, $x(2 * k+1)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}-1$,
odd $\mathrm{n}: \mathrm{x}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{x}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{x}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$.
3. DFTI_REAL_REAL for real domain, DFTI_REAL_REAL for conjugate even domain. This storage scheme for conjugate even domain is applicable for one-dimensional transform only. A typical usage will be as follows.

```
// m = floor(n/2)
REAL :: X(0:n-1)
...some other code...
...assuming inplace...
Status = DftiComputeForward(Desc_Handle, X)
```

On input,
$X(j)=w_{j}, j=0,1, \ldots, n-1$.
On output,
$x(k)=\operatorname{Re}\left(z_{k}\right), k=0,1, \ldots, m$.
and
$\mathrm{x}(n-k)=\operatorname{Im}\left(z_{k}\right), k=1,2, \ldots, m-1$.
4. DFTI_REAL_COMPLEX for real domain, DFTI_COMPLEX_COMPLEX for conjugate even domain. A typical usage will be as follows.

```
// m = floor(n/2)
COMPLEX :: X(0:n-1)
...some other code...
...inplace transform...
```

Status = DftiComputeForward( Desc_Handle, X )
On input,
$x(j)=w_{j}, j=0,1, \ldots, n-1$.
That is, the imaginary parts of $X(j)$ are zero. On output,
$\mathrm{Y}(\mathrm{k})=z_{k}, k=0,1, \ldots, \mathrm{~m}$.
where m is $\lfloor n / 2\rfloor$.
5. DFTTI_REAL_COMPLEX for real domain, DFTI_COMPLEX_REAL for conjugate even domain. A typical usage will be as follows.

```
// m = floor(n/2)
COMPLEX :: X(0:n-1)
REAL :: Y(0:2*m+1)
...some other code...
...not inplace...
Status = DftiComputeForward(Desc_Handle, X, Y)
```

On input,

```
X(j) = wj, j= 0,1,\ldots,n-1.
```

On output,
Output data stored in one of formats: Pack, Perm or CCS (see "Packed formats").
CCS format: $\mathrm{Y}(2 * \mathrm{k})=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{Y}(2 * \mathrm{k}+1)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=0,1, \ldots, \mathrm{~m}$.
Pack format: even $\mathrm{n}: \mathrm{Y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{Y}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{Y}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right)$, $\mathrm{k}=1, \ldots, \mathrm{~m}-1$, and $\mathrm{Y}(\mathrm{n}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right)$
odd $\mathrm{n}: ~ \mathrm{Y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{Y}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{Y}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$
Perm format: even $n: ~ y(0)=\operatorname{Re}\left(z_{0}\right), y(1)=\operatorname{Re}\left(z_{m}\right), y(2 * k)=\operatorname{Re}\left(z_{k}\right)$, $Y(2 * k+1)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}-1$,
odd $\mathrm{n}: \mathrm{Y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{Y}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{Y}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$.
6. DFTI_REAL_COMPLEX for real domain, DFTI_REAL_REAL for
conjugate even domain. This storage scheme for conjugate even domain is applicable for one-dimensional transform only. A typical usage will be as follows.

```
// m = floor(n/2)
COMPLEX :: X(0:n-1)
```

Inte ${ }^{\circledR}$ Math Kernel Library Reference Manual

```
REAL :: Y(0:n-1)
...some other code...
...not inplace...
Status = DftiComputeForward(Desc_Handle, X, Y)
On input,
X(j) = wi,j j=0,1,\ldots,n-1 .
On output,
Y(k) = Re(zk}),k=0,1,\ldots,m
and
Y(n-k)=\operatorname{Im}(\mp@subsup{z}{k}{}),k=1,2,\ldots,m-1.
```


## Input and output distances

DFT interface in Intel MKL allows the computation of multiple number of transforms. Consequently, the user needs to be able to specify the data distribution of these multiple sets of data. This is accomplished by the distance between the first data element of the consecutive data sets. This parameter is obligatory if multiple number is more than one. Data sets don't have any common elements. The following example illustrates the specification. Consider computing the forward DFT on three 32-length complex sequences stored in $X(0: 31,1), X(0: 31,2)$, and $X(0: 31,3)$. Suppose the results are to be stored in the locations $Y(0: 31, k), k=1,2$, 3 , of the array $Y(0: 63,3)$. Thus the input distance is 32 , while the output distance is 64 . Notice that the data and result parameters in computation functions are all declared as assumed-size rank-1 array DIMENSION ( $0: *$ ). Therefore two-dimensional array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities of Fortran. Here is the code fragment:

```
Complex :: X_2D(0:31,3), Y_2D (0:63, 3)
Complex :: X(96), Y(192)
Equivalence (X_2D, X)
Equivalence (Y_2D, Y)
Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 32)
Status = DftiSetValue(Desc_Handle, DFTI_NUMBER_OF_TRANSFORM, 3)
```

```
Status = DftiSetValue(Desc_Handle, DFTI_INPUT_DISTANCE, 32)
Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_DISTANCE, 64)
Status = DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)
Status = DftiCommitDescriptor(Desc_Handle)
Status = DftiComputeForward(Desc_Handle, X, Y)
Status = DftiFreeDescriptor(Desc_Handle)
```


## Strides

In addition to supporting transforms of multiple number of datasets, DFT interface supports non-unit stride distribution of data within each data set. Consider the following situation where a 32-length DFT is to be computed on the sequence $x_{j}, 0 \leq j<32$. The actual location of these values are in $X(5), X(7), \ldots, X(67)$ of an array $X(1: 68)$. The stride accommodated by DFT interface consists of a displacement from the first element of the data array $L_{0}$, (4 in this case), and a constant distance of consecutive elements $L_{1}$ ( 2 in this case). Thus for the Fortran array x
$x_{j}=\mathrm{x}\left(1+L_{0}+L_{1} * j\right)=\mathrm{x}\left(5+L_{1} * j\right)$.
This stride vector $(4,2)$ is provided by a length -2 rank-1 integer array:

```
COMPLEX :: X(68)
INTEGER :: Stride(2)
Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 32)
Stride = (/ 4, 2 /)
Status = DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDE, Stride)
Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDE, Stride)
Status = DftiCommitDescriptor(Desc_Handle)
Status = DftiComputeForward(Desc_Handle, X)
Status = DftiFreeDescriptor(Desc_Handle)
```

In general, for a $d$-dimensional transform, the stride is provided by a $d+1$-length integer vector $\left(L_{0}, L_{1}, L_{2}, \ldots, L_{d}\right)$ with the meaning:
$L_{0}=$ displacement from the first array element
$L_{l}=$ distance between consecutive data elements in the first dimension
$L_{2}=$ distance between consecutive data elements in the second dimension

Intel ${ }^{®}$ Math Kernel Library Reference Manual

```
... = ...
L
A d}d\mathrm{ -dimensional data sequence
x (j, j}\mp@subsup{j}{2}{},\ldots,\mp@subsup{j}{d}{},\quad0\leq\mp@subsup{j}{i}{}<\mp@subsup{J}{i}{},\quad1\leqi\leq
will be stored in the rank-1 array x by the mapping
```



```
For multiple transforms, the value L}\mp@subsup{L}{0}{}\mathrm{ applies to the first data sequence, and
Lj},j=1,2,\ldots.,d\mathrm{ apply to all the data sequences.
In the case of a single one-dimensional sequence, }\mp@subsup{L}{l}{}\mathrm{ is simply the usual
stride. The default setting of strides in the general multi-dimensional
situation corresponds to the case where the sequences are distributed tightly
into the array:
 d-1
L
Both the input data and output data have a stride associated with it. The default is set in accordance with the data to be stored contiguously in memory in a way that is natural to the language.
Finally, consider a contrived example where a 20 -by- 40 two-dimensional DFT is computed explicitly using one-dimensional transforms. Notice that the data and result parameters in computation functions are all declared as assumed-size rank- 1 array DIMENSION (\(0: *\)). Therefore two-dimensional array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities of Fortran.
```

```
! Fortran
```

! Fortran
Complex :: X_2D(20,40),
Complex :: X_2D(20,40),
Complex :: X(800)
Complex :: X(800)
Equivalence (X_2D, X)
Equivalence (X_2D, X)
INTEGER :: STRIDE(2)
INTEGER :: STRIDE(2)
type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim1
type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim1
type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim2
type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim2
Status = DftiCreateDescriptor( Desc_Handle_Dim1, DFTI_SINGLE,
Status = DftiCreateDescriptor( Desc_Handle_Dim1, DFTI_SINGLE,
DFTI_COMPLEX, 1, 20 )

```
 DFTI_COMPLEX, 1, 20)
```

```
Status = DftiCreateDescriptor(Desc_Handle_Dim2, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 40)
! perform 40 one-dimensional transforms along lst dimension
Status = DftiSetValue(Desc_Handle_Dim1, DFTI_NUMBER_OF_TRANSFORMS, 40)
Status = DftiSetValue(Desc_Handle_Dim1, DFTI_INPUT_DISTANCE, 20)
Status = DftiSetValue(Desc_Handle_Dim1, DFTI_OUTPUT_DISTANCE, 20)
Status = DftiCommitDescriptor(Desc_Handle_Dim1)
Status = DftiComputeForward(Desc_Handle_Dim1, X)
! perform 20 one-dimensional transforms along 2nd dimension
Stride(1) = 0; Stride(2) = 20
Status = DftiSetValue(Desc_Handle_Dim2, DFTI_NUMBER_OF_TRANSFORMS, 20)
Status = DftiSetValue(Desc_Handle_Dim2, DFTI_INPUT_DISTANCE, 1)
Status = DftiSetValue(Desc_Handle_Dim2, DFTI_OUTPUT_DISTANCE, 1)
Status = DftiSetValue(Desc_Handle_Dim2, DFTI_INPUT_STRIDES, Stride)
Status = DftiSetValue(Desc_Handle_Dim2, DFTI_OUTPUT_STRIDES, Stride)
Status = DftiCommitDescriptor(Desc_Handle_Dim2)
Status = DftiComputeForward(Desc_Handle_Dim2, X)
Status = DftiFreeDescriptor(Desc_Handle_Dim1)
Status = DftiFreeDescriptor(Desc_Handle_Dim2)
/* C */
float _Complex x[20][40];
long stride[2];
DFTI_DESCRIPTOR_HANDLE Desc_Handle_Dim1;
DFTI_DESCRIPTOR_HANDLE Desc_Handle_Dim2;
...
status = DftiCreateDescriptor(&desc_handle_dim1, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 20);
status = DftiCreateDescriptor(&desc_handle_dim2, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 40);
/* perform 40 one-dimensional transforms along lst dimension */
/* note that the 1st dimension data are not unit-stride */
stride[0] = 0; stride[1] = 40;
status = DftiSetValue(desc_handle_dim1, DFTI_NUMBER_OF_TRANSFORMS, 40);
```

```
status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_DISTANCE, 1);
status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_DISTANCE, 1);
status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_STRIDES, stride);
status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_STRIDES, stride);
status = DftiCommitDescriptor(desc_handle_dim1);
status = DftiComputeForward(desc_handle_dim1, x);
/* perform 20 one-dimensional transforms along 2nd dimension */
/* note that the 2nd dimension is unit stride */
status = DftiSetValue(desc_handle_dim2, DFTI_NUMBER_OF_TRANSFORMS, 20);
status = DftiSetValue(desc_handle_dim2, DFTI_INPUT_DISTANCE, 40);
status = DftiSetValue(desc_handle_dim2, DFTI_OUTPUT_DISTANCE, 40);
status = DftiCommitDescriptor(desc_handle_dim2);
status = DftiComputeForward(desc_handle_dim2, x);
status = DftiFreeDescriptor(&Desc_Handle_Dim1);
status = DftiFreeDescriptor(&Desc_Handle_Dim2);
```


## Initialization Effort

In modern approaches to constructing fast algorithms (FFT) for DFT computations, one often has a flexibility of spending more effort in initializing (preparing for) an FFT algorithm to buy higher efficiency in the computation on actual data to follow. Advanced DFT functions in Intel MKL accommodate this situation through the configuration parameter DFTI_INITIALIZATION_EFFORT. The three configuration values are DFTI_LOW, DFTI_MEDIUM (default), and DFTI_HIGH. Note that specific implementations of DFT interface may or may not make use of this setting (see MKL Release Notes for implementation details).

## Ordering

It is well known that a number of FFT algorithms apply an explicit permutation stage that is time consuming [4]. The exclusion of this step is similar to applying DFT to input data whose order is scrambled, or allowing a scrambled order of the DFT results. In applications such as convolution and power spectrum calculation, the order of result or data is unimportant and thus permission of scrambled order is attractive if it leads to higher performance. Three following options are available in Intel MKL:

1. DFTI_ORDERED: Forward transform data ordered, backward transform data ordered (default option).
2. DFTI_BACKWARD_SCRAMBLED: Forward transform data ordered, backward transform data scrambled.
3. DFTI_FORWARD_SCRAMBLED: Forward transform data scrambled, backward transform data ordered.
Table 9-12 tabulates the effect on this configuration setting.

## Table 9-12 Scrambled Order Transform

	DftiComputeForward	DftiComputeBackward
DFTI_ORDERING	Input $\rightarrow$ Output	Input $\rightarrow$ Output
DFTI_ORDERED	ordered $\rightarrow$ ordered	ordered $\rightarrow$ ordered
DFTI_BACKWARD_SCRAMBLED	ordered $\rightarrow$ scrambled	scrambled $\rightarrow$ ordered
DFTI_FORWARD_SCRAMBLED	scrambled $\rightarrow$ ordered	ordered $\rightarrow$ scrambled

Note that meaning of the latter two options are "allow scrambled order if practical." There are situations where in fact allowing out of order data gives no performance advantage, and thus an implementation may choose to ignore the suggestion. Strictly speaking, the normal order is also a scrambled order, the trivial one.

When the ordering setting is other than the default DFTI_ORDERED, the user may need to know the actual ordering of the input and output data. The ordering of the data in the forward domain is obtained through reading (getting) the configuration parameter DFTI_FORWARD_ORDERING; and the ordering of the data in the reverse domain is obtained through reading (getting) the configuration parameter DFTI_BACKWARD_ORDERING. The configuration values are integer vectors, thus provided by pointer to any integer array. We now describe how these integer values specify the actual scrambling of data.
All scramblings involved are digit reversal along one single dimension. Precisely, a length $J$ is factored into $K$ ordered factors $D_{1}, D_{2}, \ldots, D_{K}$. Any index $i, 0 \leq i<n$, can be expressed uniquely as $K$ digits $i_{1}, i_{2}, \ldots, i_{K}$ where $0 \leq i_{l}<D_{l}$ and
$i=i_{1}+i_{2} D_{1}+i_{3} D_{1} D_{2}+\ldots+i_{K} D_{1} D_{2} \ldots D_{K-1}$.

A digit reversal permutation $\operatorname{scram}(i)$ is given by
$\operatorname{scram}(i)=i_{K}+i_{K-1} D_{K}+i_{K-2} D_{K} D_{K-1}+\ldots+i_{1} D_{K} D_{K-1} \ldots D_{2}$
Factoring $J$ into one factor $J$ leads to no scrambling at all, that is, $\operatorname{scram}(i)=i$. Note that the factoring does not need to correspond exactly to the number of "butterfly" stages to be carried out. In fact, the computation routine in its initialization stage determines if a scrambled order in some or all of the dimensions can result in performance gain. The digits of the digit reversal are recorded and stored in the descriptor. These digits can be obtained by calling a corresponding inquiry routine that returns a pointer to an integer array. The first element is $K^{(1)}$, which is the number of digits for the first dimension, followed by $K^{(1)}$ values of the corresponding digits. If the dimension is higher than one, the next integer value is $K^{(2)}$, etc.
Simple permutation such as mod- $p$ sort [4] is a special case of digit reversal. Hence this option could be useful for high-performance implementation of one-dimensional DFT via a "six-step" or "four-step" framework [4].
The user can check the scrambling setting on the forward data and reverse data. This information is returned as an integer vector containing a number of sequence ( $K, D_{1}, D_{2}, \ldots, D_{K}$ ), one for each dimension. Thus the first element indicates how many $D$ 's will follow. The inquiry routine allocates memory, fills it will this information, and returns a pointer to the memory location.

## Workspace

Some FFT algorithms do not require a scratch space for permutation purposes. The user can choose between the setting of DFTI_ALLOW (default) and DFTI_AVOID for the option DFTI_WORKSPACE. Note that the setting DFTI_AVOID is meant to be "avoid if practical," hence allowing the implementation the flexibility to use workspace regardless of the setting.

## Transposition

This is an option that allows for the result of a high-dimensional transform to be presented in a transposed manner. The default setting is DFTI_NONE and can be set to DFTI_ALLOW. Similar to that of scrambled order, sometimes in higher dimension transform, performance can be gained if the
result is delivered in a transposed manner. DFT interface offers an option for the output be returned in a transposed form if performance gain is possible. Since the generic stride specification is naturally suited for representation of transposition, this option allows the strides for the output to be possibly different from those originally specified by the user. Consider an example where a two-dimensional result $y_{j_{1}}, j_{2}, 0 \leq j_{i}<n_{i}$, is expected. Originally the user specified that the result be distributed in the (flat) array $Y$ in with generic strides $L_{1}=1$ and $L_{2}=n_{1}$. With the transposition option, the computation may actually return the result into $Y$ with stride $L_{1}=n_{2}$ and $L_{2}=1$. These strides can be obtained from an appropriate inquiry function. Note also that in dimension 3 and above, transposition means an arbitrary permutation of the dimension.

## Routine and Function Arguments

The major arguments in the BLAS routines are vector and matrix, whereas VML functions work on vector arguments only.
The sections that follow discuss each of these arguments and provide examples.

## Vector Arguments in BLAS

Vector arguments are passed in one-dimensional arrays. The array dimension (length) and vector increment are passed as integer variables. The length determines the number of elements in the vector. The increment (also called stride) determines the spacing between vector elements and the order of the elements in the array in which the vector is passed.

A vector of length $n$ and increment incx is passed in a one-dimensional array $x$ whose values are defined as

```
x(1), x(1+|incx|), ..., x(1+(n-1)* |incx|)
```

If incx is positive, then the elements in array $x$ are stored in increasing order. If incx is negative, the elements in array $x$ are stored in decreasing order with the first element defined as $x(1+(n-1) *|i n c x|)$. If incx is zero, then all elements of the vector have the same value, $x(1)$. The dimension of the one-dimensional array that stores the vector must always be at least

```
idimx = 1 + (n-1)* | incx |
```


## Example A-1 One-dimensional Real Array

Let $x(1: 7)$ be the one-dimensional real array
$x=(1.0,3.0,5.0,7.0,9.0,11.0,13.0)$.
If incx $=2$ and $n=3$, then the vector argument with elements in order from first to last is (1.0, 5.0, 9.0).
If incx $=-2$ and $n=4$, then the vector elements in order from first to last is $(13.0,9.0,5.0,1.0)$.
If incx $=0$ and $n=4$, then the vector elements in order from first to last is (1.0, 1.0, 1.0, 1.0).

One-dimensional substructures of a matrix, such as the rows, columns, and diagonals, can be passed as vector arguments with the starting address and increment specified. In Fortran, storing the $m$ by $n$ matrix is based on column-major ordering where the increment between elements in the same column is 1 , the increment between elements in the same row is $m$, and the increment between elements on the same diagonal is $m+1$.

## Example A-2 Two-dimensional Real Matrix

Let a be the real $5 \times 4$ matrix declared as REAL A $(5,4)$.
To scale the third column of a by 2.0 , use the BLAS routine sscal with the following calling sequence:
call sscal (5, 2.0, a(1,3), 1).
To scale the second row, use the statement:
call sscal $(4,2.0, a(2,1), 5)$.
To scale the main diagonal of A by 2.0 , use the statement:
call sscal (5, 2.0, a(1,1), 6).

NOTE. The default vector argument is assumed to be 1 .

## Vector Arguments in VML

Vector arguments of VML mathematical functions are passed in one-dimensional arrays with unit vector increment. It means that a vector of length $n$ is passed contiguously in an array a whose values are defined as $a[0], a[1], \ldots, a[n-1]$ (for C-interface).
To accommodate for arrays with other increments, or more complicated indexing, VML contains auxiliary pack/unpack functions that gather the array elements into a contiguous vector and then scatter them after the computation is complete.

Generally, if the vector elements are stored in a one-dimensional array as

```
a[m}\mp@subsup{m}{0}{}],a[\mp@subsup{m}{1}{}],\ldots,a[\mp@subsup{m}{n-1}{}
```

and need to be regrouped into an array $y$ as
$y\left[k_{0}\right], y\left[k_{1}\right], \ldots, y\left[k_{n-1}\right]$,
VML pack/unpack functions can use one of the following indexing methods:

## Positive Increment Indexing

```
kj = incy * j, mj = inca * j, j = 0 ,.., n-1
```

Constraint: incy > 0 and inca > 0 .
For example, setting incy $=1$ specifies gathering array elements into a contiguous vector.

This method is similar to that used in BLAS, with the exception that negative and zero increments are not permitted.

## Index Vector Indexing

$k_{j}=i y[j], m_{j}=i a[j], j=0, \ldots, n-1$,
where ia and iy are arrays of length $n$ that contain index vectors for the input and output arrays a and $y$, respectively.

## Mask Vector Indexing

Indices $k_{j}, m_{j}$ are such that:
$m y\left[k_{j}\right] \neq 0, \operatorname{ma}\left[m_{j}\right] \neq 0, j=0, \ldots, n-1$,
where ma and my are arrays that contain mask vectors for the input and output arrays a and y , respectively.

## Matrix Arguments

Matrix arguments of the Intel ${ }^{\circledR}$ Math Kernel Library routines can be stored in either one- or two-dimensional arrays, using the following storage schemes:

- conventional full storage (in a two-dimensional array)
- packed storage for Hermitian, symmetric, or triangular matrices (in a one-dimensional array)
- band storage for band matrices (in a two-dimensional array).

Full storage is the following obvious scheme: a matrix $A$ is stored in a two-dimensional array $a$, with the matrix element $a_{i j}$ stored in the array element $a(i, j)$.
If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the relevant triangle are stored; the remaining elements of the array need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle of the matrix to be stored in the corresponding elements of the array:

$$
\begin{array}{ll}
\text { if uplo ='U', } & \begin{array}{l}
a_{i j} \text { is stored in } a(i, j) \text { for } i \leq j, \\
\text { other elements of } a \text { need not be set. }
\end{array} \\
\text { if uplo='L', } & \begin{array}{l}
a_{i j} \text { is stored in } a(i, j) \text { for } j \leq i, \\
\text { other elements of } a \text { need not be set. }
\end{array}
\end{array}
$$

Packed storage allows you to store symmetric, Hermitian, or triangular matrices more compactly: the relevant triangle (again, as specified by the argument uplo) is packed by columns in a one-dimensional array ap:
if uplo $=$ 'U', $a_{i j}$ is stored in $a p(i+j(j-1) / 2)$ for $i \leq j$
if uplo ='L', $a_{i j}$ is stored in $a p(i+(2 * n-j) *(j-1) / 2)$ for $j \leq i$.
In descriptions of LAPACK routines, arrays with packed matrices have names ending in $p$.
Band storage is as follows: an $m$ by $n$ band matrix with $k I$ non-zero sub-diagonals and $k u$ non-zero super-diagonals is stored compactly in a two-dimensional array $a b$ with $k l+k u+1$ rows and $n$ columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array. Thus,
$a_{i j}$ is stored in $a b(k l+k u+1+i-j, j)$ for $\max (n, j-k u) \leq i \leq \min (n, j+k l)$.
Use the band storage scheme only when $k I$ and $k u$ are much less than the matrix size $n$. (Although the routines work correctly for all values of $k l$ and $k u$, it's inefficient to use the band storage if your matrices are not really banded).

When a general band matrix is supplied for $L U$ factorization, space must be allowed to store kl additional super-diagonals generated by fill-in as a result of row interchanges. This means that the matrix is stored according to the above scheme, but with $k I+k u$ super-diagonals.

The band storage scheme is illustrated by the following example, when $m=n=6, k l=2, k u=1$ :

Banded matrix A Band storage of A

$$
\left[\begin{array}{cccccc}
a_{11} & a_{12} & 0 & 0 & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 & 0 & 0 \\
a_{31} & a_{32} & a_{33} & a_{34} & 0 & 0 \\
0 & a_{42} & a_{43} & a_{44} & a_{45} & 0 \\
0 & 0 & a_{53} & a_{54} & a_{55} & a_{56} \\
0 & 0 & 0 & a_{64} & a_{65} & a_{66}
\end{array}\right] \quad \begin{array}{cccccc}
* & * & * & + & + & + \\
* & * & + & + & + & + \\
* & a_{12} & a_{23} & a_{34} & a_{45} & a_{56} \\
a_{11} & a_{22} & a_{33} & a_{44} & a_{55} & a_{66} \\
a_{21} & a_{32} & a_{43} & a_{54} & a_{65} & * \\
a_{31} & a_{42} & a_{53} & a_{64} & * & *
\end{array}
$$

Array elements marked * are not used by the routines; elements marked + need not be set on entry, but are required by the LU factorization routines to store the results. The input array will be overwritten on exit by the details of the LU factorization as follows:

$$
\begin{array}{cccccc}
* & * & * & u_{14} & u_{25} & u_{36} \\
* & * & u_{13} & u_{24} & u_{35} & u_{46} \\
* & u_{12} & u_{23} & u_{34} & u_{45} & u_{56} \\
u_{11} & u_{22} & u_{33} & u_{44} & u_{55} & u_{66} \\
m_{21} & m_{32} & m_{43} & m_{54} & m_{65} & * \\
m_{31} & m_{42} & m_{53} & m_{64} & * & *
\end{array}
$$

where $u_{i j}$ are the elements of the upper triangular matrix $U$, and $m_{i j}$ are the multipliers used during factorization.

Triangular band matrices are stored in the same format, with either $k l=0$ if upper triangular, or $k u=0$ if lower triangular. For symmetric or Hermitian band matrices with $k$ sub-diagonals or super-diagonals, you need to store only the upper or lower triangle, as specified by the argument uplo:
if uplo ='U', $a_{i j}$ is stored in ab $(k+1+i-j, j)$ for $\max (1, j-k) \leq i \leq j$ if uplo='L', $a_{i j}$ is stored in $a b(1+i-j, j)$ for $j \leq i \leq \min (n, j+k)$.
In descriptions of LAPACK routines, arrays that hold matrices in band storage have names ending in $b$.

In Fortran, column-major ordering of storage is assumed. This means that elements of the same column occupy successive storage locations.

Three quantities are usually associated with a two-dimensional array argument: its leading dimension, which specifies the number of storage locations between elements in the same row, its number of rows, and its number of columns. For a matrix in full storage, the leading dimension of the array must be at least as large as the number of rows in the matrix.
A character transposition parameter is often passed to indicate whether the matrix argument is to be used in normal or transposed form or, for a complex matrix, if the conjugate transpose of the matrix is to be used. The values of the transposition parameter for these three cases are the following:

'N' or 'n'	normal (no conjugation, no transposition)
'T' or 't'	transpose
'C' or 'c'	conjugate transpose.

## Example A-3 Two-Dimensional Complex Array

Suppose $A(1: 5,1: 4)$ is the complex two-dimensional array presented by matrix

```
(1.1, 0.11) (1.2, 0.12) (1.3, 0.13) (1.4, 0.14)
(2.1, 0.21) (2.2, 0.22) (2.3, 0.23) (2.4, 0.24)
(3.1, 0.31) (3.2, 0.32) (3.3, 0.33) (3.4, 0.34)
(4.1, 0.41) (4.2, 0.42) (4.3, 0.43) (4.4, 0.44)
(5.1, 0.51) (5.2, 0.52) (5.3, 0.53) (5.4, 0.54)
```

Let transa be the transposition parameter, $m$ be the number of rows, $n$ be the number of columns, and Ida be the leading dimension. Then if transa $=$ 'N', $m=4, n=2$, and Ida $=5$, the matrix argument would be

```
(1.1, 0.11) (1.2, 0.12)
(2.1, 0.21) (2.2, 0.22)
(3.1, 0.31) (3.2, 0.32)
(4.1, 0.41) (4.2, 0.42)
```

If transa $=$ 'T', $m=4, n=2$, and lda $=5$,
the matrix argument would be
$\left[\begin{array}{llll}(1.1, & 0.11)(2.1, & 0.21)(3.1, & 0.31)(4.1, \\ (1.2, & 0.12)(2.21) \\ (2.22)(3.2, & 0.32)(4.2, & 0.42)\end{array}\right]$
If transa $=$ ' C', $m=4, n=2$, and lda $=5$,
the matrix argument would be
$\left[\begin{array}{l}(1.1,-0.11)(2.1,-0.21)(3.1,-0.31)(4.1,-0.41) \\ (1.2,-0.12)(2.2,-0.22)(3.2,-0.32)(4.2,-0.42)\end{array}\right]$

Note that care should be taken when using a leading dimension value which is different from the number of rows specified in the declaration of the two-dimensional array. For example, suppose the array $A$ above is declared as COMPLEX A $(5,4)$.

Then if transa $={ }^{\prime} N^{\prime}, m=3, n=4$, and $I d a=4$, the matrix argument will be
$[(1.1,0.11)(5.1,0.51)(4.2,0.42)(3.3,0.33)]$
$(2.1,0.21)(1.2,0.12)(5.2,0.52)(4.3,0.43)$
$(3.1,0.31)(2.2,0.22)(1.3,0.13)(5.3,0.53)]$

## Code Examples

This appendix presents code examples of using BLAS routines and functions.

## Example B-1 Using BLAS Level 1 Function


?dot
description

The following example illustrates a call to the BLAS Level 1 function sdot. This function performs a vector-vector operation of computing a scalar product of two single-precision real vectors $x$ and $y$.

## Parameters

```
n Specifies the order of vectors }x\mathrm{ and y.
program dot_main
real x(10), y(10), sdot, res
integer n, incx, incy, i
external sdot
n = 5
incx = 2
incy = 1
do i = 1, 10
 x(i) = 2.0e0
 y(i) = 1.0e0
end do
```

incx Specifies the increment for the elements of $x$.
incy Specifies the increment for the elements of $y$.

## Example B-1 Using BLAS Level 1 Function (continued)

```
res = sdot (n, x, incx, y, incy)
print*, `SDOT = `, res
end
```

As a result of this program execution, the following line is printed:
SDOT $=10.000$

## Example B-2 Using BLAS Level 1 Routine

The following example illustrates a call to the BLAS Level 1 routine scopy. This routine performs a vector-vector operation of copying a single-precision real vector $x$ to a vector $y$.

## Parameters

$n$	Specifies the order of vectors $x$ and $y$.
incx	Specifies the increment for the elements of $x$.
incy	Specifies the increment for the elements of $y$.

```
program copy_main
real x(10), y(10)
integer n, incx, incy, i
n = 3
incx = 3
incy = 1
do i = 1, 10
 x(i) = i
end do
call scopy (n, x, incx, y, incy)
print*, `Y = `, (y(i), i = 1, n)
end
```

As a result of this program execution, the following line is printed:
$\mathrm{Y}=1.000004 .000007 .00000$

## Example B-3 Using BLAS Level 2 Routine

The following example illustrates a call to the BLAS Level 2 routine sger. This routine performs a matrix-vector operation
? ger description

```
a := alpha*\mp@subsup{x}{}{*}\mp@subsup{y}{}{\prime}+a.
```


## Parameters

alpha	Specifies a scalar alpha.
$x$	m-element vector.
$y$	n-element vector.
$a$	$m$ by $n$ matrix.

```
program ger_main
real a(5,3), x(10), y(10), alpha
integer m, n, incx, incy, i, j, lda
m = 2
n = 3
lda = 5
incx = 2
incy = 1
alpha = 0.5
do i = 1, 10
 x(i) = 1.0
 y(i) = 1.0
end do
do i = 1, m
 do j = 1, n
 a(i,j) = j
 end do
end do
call sger (m, n, alpha, x, incx, y, incy, a, lda)
print*, `Matrix A: `
do i = 1, m
 print*, (a(i,j), j = 1, n)
end do
end
```


## Example B-3 Using BLAS Level 2 Routine (continued)

As a result of this program execution, matrix $a$ is printed as follows:
Matrix A:
1.500002 .500003 .50000
1.500002 .500003 .50000

## Example B-4 Using BLAS Level 3 Routine


?symm description

The following example illustrates a call to the BLAS Level 3 routine ssymm. This routine performs a matrix-matrix operation

```
c := alpha*a*b' + beta*c.
```

Parameters

```
alpha Specifies a scalar alpha.
beta Specifies a scalar beta.
a Symmetric matrix.
b mby n matrix.
c mby n matrix.
program symm_main
real a(3,3), b(3,2), c(3,3), alpha, beta
integer m, n, lda, ldb, ldc, i, j
character uplo, side
uplo = 'u'
side = 'l'
m = 3
n = 2
lda = 3
ldb = 3
ldc = 3
alpha = 0.5
beta = 2.0
```

continued *

## Example B-4 Using BLAS Level 3 Routine (continued)

```
do i = 1, m
 do j = 1, m
 a(i,j) = 1.0
 end do
end do
do i = 1, m
 do j = 1, n
 c(i,j) = 1.0
 b(i,j) = 2.0
 end do
end do
call ssymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)
print*, `Matrix C: `
do i = 1, m
 print*, (c(i,j), j = 1, n)
end do
end
```

As a result of this program execution, matrix $c$ is printed as follows:

## Matrix C:

5.000005 .00000
5.000005 .00000
5.000005 .00000

## Example B-5 Calling a Complex BLAS Level 1 Function from C

The following example illustrates a call from a C program to the complex BLAS Level 1 function $z \operatorname{dotc}()$. This function computes the dot product of two double-precision complex vectors.

In this example, the complex dot product is returned in the structure $c$.

```
#define N 5
void main()
{
 int n, inca = 1, incb = 1, i;
 typedef struct{ double re; double im; } complex16;
 complex16 a[N], b[N], c;
 void zdotc();
 n = N;
 for(i = 0; i < n; i++) {
 a[i].re = (double)i; a[i].im = (double)i * 2.0;
 b[i].re = (double) (n - i); b[i].im = (double)i * 2.0;
 }
 zdotc(&c, &n, a, &inca, b, &incb);
 printf("The complex dot product is: (%6.2f, %6.2f
)\n", c.re, c.im);
}
```

NOTE. Instead of calling BLAS directly from C programs, you might wish to use the CBLAS interface; this is the supported way of calling BLAS from C. For more information about CBLAS, see Appendix C, "CBLAS Interface to the BLAS".

## CBLAS Interface to the BLAS



This appendix presents CBLAS, the C interface to the Basic Linear Algebra Subprograms (BLAS) implemented in Intel ${ }^{\circledR}$ MKL.
Similar to BLAS, the CBLAS interface includes the following levels of functions:

- Level 1 CBLAS (vector-vector operations)
- Level 2 CBLAS (matrix-vector operations)
- Level 3 CBLAS (matrix-matrix operations).
- Sparse CBLAS (operations on sparse vectors).

To obtain the C interface, the Fortran routine names are prefixed with cblas_(for example, dasum becomes cblas_dasum). Names of all CBLAS functions are in lowercase letters.
Complex functions ?dotc and ?dotu become CBLAS subroutines (void functions); they return the complex result via a void pointer, added as the last parameter. CBLAS names of these functions are suffixed with _sub. For example, the BLAS function cdotc corresponds to cblas_cdotc_sub.

## CBLAS Arguments

The arguments of CBLAS functions obey the following rules:

- Input arguments are declared with the const modifier.
- Non-complex scalar input arguments are passed by value.
- Complex scalar input arguments are passed as void pointers.
- Array arguments are passed by address.
- Output scalar arguments are passed by address.
- BLAS character arguments are replaced by the appropriate enumerated type.
- Level 2 and Level 3 routines acquire an additional parameter of type CBLAS_ORDER as their first argument. This parameter specifies whether two-dimensional arrays are row-major (CblasRowMa jor) or column-major (CblasColMajor).


## Enumerated Types

The CBLAS interface uses the following enumerated types:

```
enum CBLAS_ORDER {
 CblasRowMajor=101, /* row-major arrays */
 CblasColMajor=102}; /* column-major arrays */
enum CBLAS_TRANSPOSE {
 CblasNoTrans=111, /* trans='N' */
 CblasTrans=112, /* trans='T' */
 CblasConjTrans=113}; /* trans='C' */
enum CBLAS_UPLO {
 CblasUpper=121, /* uplo ='U' */
 CblasLower=122}; /* uplo ='L' */
enum CBLAS_DIAG {
 CblasNonUnit=131, /* diag ='N' */
 CblasUnit=132}; /* diag ='U' */
enum CBLAS_SIDE {
 CblasLeft=141, /* side ='L' */
 CblasRight=142}; /* side ='R' */
```


## Level 1 CBLAS

## This is an interface to BLAS Level 1 Routines and Functions, which perform basic vector-vector operations.

## ? asum

```
float cblas_sasum(const int N, const float *X, const int incX);
double cblas_dasum(const int N, const double *X, const int
incX);
float cblas_scasum(const int N, const void *X, const int incX);
double cblas_dzasum(const int N, const void *X, const int
incX);
```


## ? ${ }^{2 x p y}$

void cblas_saxpy (const int $N$, const float alpha, const float
*X, const int incX, float *Y, const int incY);
void cblas_daxpy (const int $N$, const double alpha, const double
*X, const int incX, double *Y, const int incY);
void cblas_caxpy (const int $N$, const void *alpha, const void *X,
const int incX, void *Y, const int incy);
void cblas_zaxpy (const int $N$, const void *alpha, const void *X,
const int incX, void $* Y$, const int incY);

## ?copy

```
void cblas_scopy(const int N, const float *X, const int incX,
float *Y, const int incY);
void cblas_dcopy(const int N, const double *X, const int incX,
double *Y, const int incY);
void cblas_ccopy(const int N, const void *X, const int incX,
void *Y, const int incY);
void cblas_zcopy(const int N, const void *X, const int incX,
void *Y, const int incY);
```

?dot
float cblas_sdot (const int $N$, const float $* X$, const int incX,
const float *Y, const int incy);
double cblas_ddot (const int $N$, const double *X, const int incX,
const double *Y, const int incY);

## ?sdot

```
float cblas_sdsdot(const int N, const float *SB, const float
*SX, const int incX, const float *SY, const int incY);
```

double cblas_dsdot (const int $N$, const float *SX, const int incX, const float *SY, const int incy);

## ?dote

```
void cblas_cdotc_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotc);
void cblas_zdotc_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotc);
```


## ?dotu

```
void cblas_cdotu_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotu);
void cblas_zdotu_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotu);
?nrm2
float cblas_snrm2(const int N, const float *X, const int incX);
double cblas_dnrm2(const int N, const double *X, const int
incX);
float cblas_scnrm2(const int N, const void *X, const int incX);
double cblas_dznrm2(const int N, const void *X, const int
incX);
```


## ?rot

void cblas_srot(const int $N$, float $* X$, const int incX, float
*Y, const int incY, const float c, const float s);
void cblas_drot (const int $N$, double *X, const int incX, double
*Y,const int incy, const double c, const double s);

## ?rotg

```
void cblas_srotg(float *a, float *b, float *c, float *s);
```

void cblas_drotg(double *a, double *b, double *c, double *s);

## ?rotm

void cblas_srotm(const int $N$, float *X, const int incX, float
*Y, const int incy, const float *P);
void cblas_drotm(const int $N$, double *X, const int incX, double
*Y, const int incy, const double *P);

## ?rotmg

```
void cblas_srotmg(float *d1, float *d2, float *b1, const float
b2, float *P);
void cblas_drotmg(double *d1, double *d2, double *b1, const
double b2, double *P);
```


## ?scal

```
void cblas_sscal(const int N, const float alpha, float *X,
const int incX);
void cblas_dscal(const int N, const double alpha, double *X,
const int incX);
void cblas_cscal(const int N, const void *alpha, void *X, const
int incX);
void cblas_zscal(const int N, const void *alpha, void *X, const
int incX);
void cblas_csscal(const int N, const float alpha, void *X,
const int incX);
void cblas_zdscal(const int N, const double alpha, void *X,
const int incX);
```


## ?swap

```
void cblas_sswap (const int \(N\), float \(* X\), const int incX, float
*Y, const int incY);
void cblas_dswap(const int N, double *X, const int incX, double
*Y, const int incY);
void cblas_cswap(const int N, void *X, const int incX, void *Y,
const int incY);
void cblas_zswap(const int N, void *X, const int incX, void *Y,
const int incY);
```


## i?amax

CBLAS_INDEX cblas_isamax(const int $N$, const float $\star \mathrm{X}$, const int incX) ;
CBLAS_INDEX cblas_idamax(const int $N$, const double $* X$, const int incX);

CBLAS_INDEX cblas_icamax(const int $N$, const void $* X$, const int incX);

CBLAS_INDEX cblas_izamax (const int $N$, const void *X, const int incX) ;

## i?amin

CBLAS_INDEX cblas_isamin(const int $N$, const float *X, const int incX);

CBLAS_INDEX cblas_idamin(const int $N$, const double *X, const
int incX);
CBLAS_INDEX cblas_icamin(const int N, const void *X, const int incX);

CBLAS_INDEX cblas_izamin(const int $N$, const void $* X$, const int incX);

## Level 2 CBLAS

This is an interface to BLAS Level 2 Routines, which perform basic matrix-vector operations. Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first argument) that determines whether the two-dimensional arrays use column-major or row-major storage.

```
?gbmv
void cblas_sgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const float alpha, const float *A, const int lda,
const float *X, const int incX, const float beta, float *Y,
const int incY);
void cblas_dgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const double alpha, const double *A, const int
lda, const double *x, const int incx, const double beta, double
*Y, const int incY);
void cblas_cgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const void *alpha, const void *A, const int lda,
const void *x, const int incX, const void *beta, void *Y, const
int incY);
void cblas_zgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const void *alpha, const void *A, const int lda,
const void *x, const int incx, const void *beta, void *y, const
int incY);
```

? gemv
void cblas_sgemv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int $M$, const int $N$, const float alpha, const float *A, const int lda, const float *X, const int incx, const float beta, float *y, const int incy);
void cblas_dgemv (const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int $M$, const int $N$, const double
alpha, const double ${ }^{A}$, const int lda, const double *X, const
int incX, const double beta, double *y, const int incy);
void cblas_cgemv (const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M , const int N , const void
$*_{\text {alpha, }}$ const void $*_{A}$, const int lda, const void ${ }^{\text {X }}$, const int
incX, const void *beta, void *y, const int incy);
void cblas_zgemv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int $M$, const int $N$, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *y, const int incy);

## ? ger

void cblas_sger (const enum CBLAS_ORDER order, const int $M$, const int $N$, const float alpha, const float *X, const int incX, const float *Y, const int incy, float *A, const int lda); void cblas_dger (const enum CBLAS_ORDER order, const int $M$, const int $N$, const double alpha, const double $* X$, const int incX, const double *Y, const int incY, double *A, const int lda);

## ? gerc

void cblas_cgerc(const enum CBLAS_ORDER order, const int $M$, const int $N$, const void *alpha, const void *X, const int incX, const void *Y, const int incy, void *A, const int lda); void cblas_zgerc(const enum CBLAS_ORDER order, const int $M$, const int $N$, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda);

## ?geru

void cblas_cgeru(const enum CBLAS_ORDER order, const int $M$, const int $N$, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda); void cblas_zgeru(const enum CBLAS_ORDER order, const int $M$, const int $N$, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda);

## ?hbmv

void cblas_chbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const int $K$, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incy);
void cblas_zhbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const int K , const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *y, const int incy);

## ?hemv

void cblas_chemv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *y, const int incy);
void cblas_zhemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incy);

## ?her

void cblas_cher (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const float alpha, const void *X, const int incX, void *A, const int lda);
void cblas_zher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const double alpha, const void *X, const int incX, void *A, const int lda);

## ?her2

void cblas_cher2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda);
void cblas_zher2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda);

## ?hpmv

void cblas_chpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *Ap, const void *X, const int incX, const void *beta, void *Y, const int incy);
void cblas_zhpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const void *alpha, const void *Ap, const void *X, const int incX, const void *beta, void *y, const int incy);

## ?hpr

void cblas_chpr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const void *X, const int incX, void *A);
void cblas_zhpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const double alpha, const void *X, const int incX, void *A);

## ?hpr2

void cblas_chpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *Ap);

```
void cblas_zhpr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X,
const int incX, const void *Y, const int incY, void *Ap);
```


## ?sbmv

void cblas_ssbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const int $K$, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY); void cblas_dsbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const int $K$, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY);

## ?spmv

void cblas_sspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const float alpha, const float *Ap, const float *X, const int incX, const float beta, float *Y, const int incY); void cblas_dspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *Ap, const double *X, const int incX, const double beta, double *Y, const int incY);

## ?spr

void cblas_sspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, float *Ap);
void cblas_dspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const double alpha, const double *X, const int incX, double *Ap);

## ?spr2

void cblas_sspr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const float alpha, const float *X, const int incX, const float *Y, const int incY, float *A); void cblas_dspr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const double alpha, const double *X, const int incX, const double *Y, const int incY, double *A) ;

## ?symv

void cblas_ssymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incy);
void cblas_dsymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const double alpha, const double *A, const int lda, const double $* X$, const int incX, const double beta, double *Y, const int incy);

## ?syr

void cblas_ssyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const float alpha, const float *X, const int incX, float ${ }^{\text {A }}$, const int lda);
void cblas_dsyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const double alpha, const double *X, const int incX, double *A, const int lda);

## ?syr2

void cblas_ssyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const float alpha, const float *X, const int incX, const float *Y, const int incy, float *A, const int lda);
void cblas_dsyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int $N$, const double alpha, const double *X, const int incX, const double *Y, const int incy, double *A, const int lda);

## ?tbmv

void cblas_stbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const int $K$, const float *A, const int lda, float *X, const int incX);
void cblas_dtbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const int $K$, const double *A, const int lda, double $* X$, const int incX);
void cblas_ctbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const int $K$, const void *A, const int lda, void *X, const int incX);
void cblas_ztbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const int $K$, const void *A, const int lda, void *X, const int incX);

## ?tbsv

void cblas_stbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const int $K$, const float *A, const int lda, float *X, const int incX);
void cblas_dtbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const int $K$, const double *A, const int lda, double *X, const int incX);
void cblas_ctbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const int $K$, const void *A, const int lda, void *X, const int incX);
void cblas_ztbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const int $K$, const void *A, const int lda, void *X, const int incX);

## ?tpmv

void cblas_stpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const float *Ap, float *X, const int incX);
void cblas_dtpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const double *Ap, double *X, const int incX);
void cblas_ctpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const void *Ap, void *X, const int incX);
void cblas_ztpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const void *Ap, void *X, const int incX);

## ?tpsv

void cblas_stpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const float *Ap, float *X, const int incX);
void cblas_dtpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const double *Ap, double *X, const int incX);
void cblas_ctpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const void *Ap, void *X, const int incX);
void cblas_ztpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const void *Ap, void *X, const int incX);

## ?trmv

void cblas_strmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const float *A, const int lda, float *X, const int incX);
void cblas_dtrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const double *A, const int lda, double *X, const int incX);
void cblas_ctrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const void *A, const int lda, void *X, const int incX);
void cblas_ztrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const void *A, const int lda, void *X, const int incX);

## ?trsv

void cblas_strsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int $N$, const float *A, const int lda, float *X, const int incX);

```
void cblas_dtrsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const double *A, const int lda,
double *X, const int incX);
void cblas_ctrsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const void *A, const int lda, void
*X, const int incX);
void cblas_ztrsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const void *A, const int lda, void
*X, const int incX);
```


## Level 3 CBLAS

This is an interface to BLAS Level 3 Routines, which perform basic matrix-matrix operations. Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first argument) that determines whether the two-dimensional arrays use column-major or row-major storage.

## ?gemm

```
void cblas_sgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const float alpha, const
float *A, const int lda, const float *B, const int ldb, const
float beta, float *C, const int ldc);
void cblas_dgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const double alpha,
const double *A, const int lda, const double *B, const int ldb,
const double beta, double *C, const int ldc);
void cblas_cgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);
void cblas_zgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);
```


## ?hemm

```
void cblas_chemm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const void *alpha, const void *A, const int lda, const
void *B, const int ldb, const void *beta, void *C, const int
ldc);
void cblas_zhemm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const void *alpha, const void *A, const int lda, const
void *B, const int ldb, const void *beta, void *C, const int
ldc);
```


## ?herk

void cblas_cherk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int $K$, const float alpha, const void *A, const int lda, const float beta, void *C, const int ldc);
void cblas_zherk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int $K$, const double alpha, const void *A, const int lda, const double beta, void *C, const int ldc);

## ?her2k

void cblas_cher2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const float beta, void *C, const int ldc);
void cblas_zher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int $K$, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const double beta, void *C, const int ldc);

## ?symm

void cblas_ssymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int $N$, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc) ;
void cblas_dsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int $N$, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc);
void cblas_csymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int $N$, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc);
void cblas_zsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int $N$, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc);

## ?syrk

void cblas_ssyrk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int $K$, const float alpha, const float *A, const int lda, const float beta, float *C, const int ldc);
void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int $K$, const double alpha, const double *A, const int lda, const double beta, double *C, const int ldc);
void cblas_csyrk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int $K$, const void *alpha, const void *A, const int lda, const void *beta, void *C, const int ldc);
void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int $K$, const void *alpha, const void *A, const int lda, const void *beta, void *C, const int ldc);

## ?syr2k

void cblas_ssyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int $K$, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc);
void cblas_dsyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int $N$, const int $K$, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double ${ }^{*} \mathrm{C}$, const int ldc);
void cblas_csyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSP SE Trans, const int N, const int $K$, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc);
void cblas_zsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int $K$, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc);

```
?trmm
void cblas_strmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int \(N\), const float alpha, const float *A, const int lda, float *B, const int ldb);
void cblas_dtrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int \(N\), const double alpha, const double *A, const int lda, double *B, const int ldb);
void cblas_ctrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int \(N\), const void *alpha, const void *A, const int lda, void *B, const int ldb);
void cblas_ztrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int \(N\), const void *alpha, const void *A, const int lda, void *B, const int ldb);
```


## ?trsm

```
void cblas_strsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int \(N\), const float alpha, const float \(\star A\), const int lda, float *B, const int ldb);
void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int \(N\), const double alpha, const double *A, const int lda, double *B, const int ldb);
void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int \(N\), const void *alpha, const void *A, const int lda, void *B, const int ldb);
void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int \(N\), const void *alpha, const void *A, const int lda, void *B, const int ldb);
```


## Sparse CBLAS

This is an interface to Sparse BLAS Routines and Functions, which perform a number of common vector operations on sparse vectors stored in compressed form.

Note that all index parameters, indx, are in C-type notation and vary in the range [0.. $N-1$ ].

```
?axpyi
void cblas_saxpyi(const int N, const float alpha,
const float *X, const int *indx, float *Y);
void cblas_daxpyi(const int N, const double alpha,
const double *x, const int *indx, double *Y);
void cblas_caxpyi(const int N, const void *alpha,
const void *x, const int *indx, void *Y);
void cblas_zaxpyi(const int N, const void *alpha,
const void *x, const int *indx, void *Y);
?doti
float cblas_sdoti(const int N, const float *X,
const int *indx, const float *Y);
double cblas_ddoti(const int N, const double *X,
const int *indx, const double *Y);
```


## ?dotci

```
void cblas_cdotci_sub(const int N, const void *x, const int
```

*indx, const void *y, void *dotui);
void cblas_zdotci_sub(const int $N$, const void *X, const int
*indx, const void *y, void *dotui);

## ?dotui

```
void cblas_cdotui_sub(const int N, const void *X, const int
*indx, const void *Y, void *dotui);
void cblas_zdotui_sub(const int N, const void *X, const int
*indx, const void *y, void *dotui);
```

?gthr
void cblas_sgthr (const int $N$, const float *Y, float *X,
const int *indx);
void cblas_dgthr (const int $N$, const double *y, double *x,
const int *indx);

```
void cblas_cgthr(const int N, const void *Y, void *X,
const int *indx);
void cblas_zgthr(const int N, const void *Y, void *X,
const int *indx);
```


## ?gthrz

```
void cblas_sgthrz(const int N, float *Y, float *X,
const int *indx);
void cblas_dgthrz(const int N, double *Y, double *X,
const int *indx);
void cblas_cgthrz(const int N, void *Y, void *X,
const int *indx);
void cblas_zgthrz(const int N, void *Y, void *X,
const int *indx);
```


## ?roti

```
void cblas_sroti(const int N, float *X, const int *indx,
float *Y, const float c, const float s);
void cblas_droti(const int N, double *X, const int *indx,
double *Y, const double c, const double s);
```

?sctr
void cblas_ssctr(const int $N$, const float *X, const int *indx,
float *Y);
void cblas_dsctr(const int $N$, const double *X, const int *indx,
double *Y);
void cblas_csctr(const int $N$, const void *X, const int *indx,
void *Y);
void cblas_zsctr(const int $N$, const void *X, const int *indx,
void *Y);

## Glossary

$\left.\begin{array}{ll}A^{H} & \begin{array}{l}\text { Denotes the conjugate of a general matrix } A . \\ \text { See also conjugate matrix. }\end{array} \\ A^{T} & \begin{array}{l}\text { Denotes the transpose of a general matrix } A . \\ \text { See also transpose. }\end{array} \\ \text { band matrix } \\ \text { band storage } & \begin{array}{l}\text { A general } m \text { by } n \text { matrix } A \text { such that } a_{i j}=0 \text { for } \\ |i-j|>l, \text { where } 1<l<\min (m, n) \text {. For example, any } \\ \text { tridiagonal matrix is a band matrix. }\end{array} \\ & \text { A special storage scheme for band matrices. } \\ \text { A matrix is stored in a two-dimensional array: } \\ \text { columns of the matrix are stored in the } \\ \text { corresponding columns of the array, and diagonals } \\ \text { of the matrix are stored in rows of the array. }\end{array}\right\}$

c	When found as the first letter of routine names, c indicates the usage of single-precision complex data type.			
CBLAS	C interface to the BLAS. See BLAS.			
Cholesky factorization	Representation of a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix $A$ in the form $A=U^{H} U$ or $A=L L^{H}$, where $L$ is a lower triangular matrix and $U$ is an upper triangular matrix.			
condition number	The number $\kappa(A)$ defined for a given square matrix $A$ as follows: $\kappa(A)=\\|A\| \|\\| A^{-1} \\|$.			
conjugate matrix	The matrix $A^{H}$ defined for a given general matrix $A$ as follows: $\left(A^{H}\right)_{i j}=\left(a_{j i}\right)^{*}$.			
conjugate number	The conjugate of a complex number $z=a+b i$ is $z^{*}=a-b i$.			
d	When found as the first letter of routine names, d indicates the usage of double-precision real data type.			
dot product	The number denoted $x \cdot y$ and defined for given vectors $x$ and $y$ as follows: $x \cdot y=\Sigma_{i} x_{i} y_{i}$. Here $x_{i}$ and $y_{i}$ stand for the $i$ th elements of $x$ and $y$, respectively.			
double precision	A floating-point data type. On Intel ${ }^{\circledR}$ processors, this data type allows you to store real numbers $x$ such that $2.23 * 10^{-308}<\|x\|<1.79 * 10^{308}$. For this data type, the machine precision $\varepsilon$ is approximately $10^{-15}$, which means that double-precision numbers usually contain no more than 15 significant decimal digits.   For more information, refer to Pentium ${ }^{\circledR}$ Processor Family Developer's Manual, Volume 3: Architecture and Programming Manual.			
eigenvalue	See eigenvalue problem.			


eigenvalue problem	A problem of finding non-zero vectors $x$ and numbers $\lambda$ (for a given square matrix $A$ ) such that $A x$ $=\lambda x$. Here the numbers $\lambda$ are called the eigenvalues of the matrix $A$ and the vectors $x$ are called the eigenvectors of the matrix $A$.
eigenvector	See eigenvalue problem.
elementary reflector   (Householder matrix)	Matrix of a general form $H=I-\tau \nu v^{T}$, where $v$ is a column vector and $\tau$ is a scalar.   In LAPACK elementary reflectors are used, for example, to represent the matrix $Q$ in the $Q R$ factorization (the matrix $Q$ is represented as a product of elementary reflectors).
factorization	Representation of a matrix as a product of matrices. See also Bunch-Kaufman factorization, Cholesky factorization, $L U$ factorization, $L Q$ factorization, $Q R$ factorization, Schur factorization.
FFTs	Abbreviation for Fast Fourier Transforms. See Chapter 3 of this book.
full storage	A storage scheme allowing you to store matrices of any kind. A matrix $A$ is stored in a two-dimensional array $a$, with the matrix element $a_{i j}$ stored in the array element $a(i, j)$.
Hermitian matrix	A square matrix $A$ that is equal to its conjugate matrix $A^{H}$. The conjugate $A^{H}$ is defined as follows: $\left(A^{H}\right)_{i j}=\left(a_{j i}\right)^{*}$.
I	See identity matrix.
identity matrix	A square matrix $I$ whose diagonal elements are 1 , and off-diagonal elements are 0 . For any matrix $A$, $A I=A$ and $I A=A$.
in-place	Qualifier of an operation. A function that performs its operation in-place takes its input from an array and returns its output to the same array.


inverse matrix	The matrix denoted as $A^{4}$ and defined for a given square matrix $A$ as follows: $A A^{-1}=A^{-1} A=I$. $A^{4}$ does not exist for singular matrices $A$.
$L Q$ factorization	Representation of an $m$ by $n$ matrix $A$ as $A=L Q$ or $A=(L 0) Q$. Here $Q$ is an $n$ by $n$ orthogonal (unitary) matrix. For $m \leq n, L$ is an $m$ by $m$ lower triangular matrix with real diagonal elements; for $m>n$, $L=\left[\begin{array}{l} L_{1} \\ L_{2} \end{array}\right]$
	where $L_{1}$ is an $n$ by $n$ lower triangular matrix, and $L_{2}$ is a rectangular matrix.
$L U$ factorization	Representation of a general $m$ by $n$ matrix $A$ as $A=P L U$, where $P$ is a permutation matrix, $L$ is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$ ) and $U$ is upper triangular (upper trapezoidal if $m<n$ ).
machine precision	The number $\varepsilon$ determining the precision of the machine representation of real numbers. For Intel ${ }^{\circledR}$ architecture, the machine precision is approximately $10^{-7}$ for single-precision data, and approximately $10^{-15}$ for double-precision data. The precision also determines the number of significant decimal digits in the machine representation of real numbers. See also double precision and single precision.
MKL	Abbreviation for Math Kernel Library.
orthogonal matrix	A real square matrix $A$ whose transpose and inverse are equal, that is, $A^{T}=A^{-1}$, and therefore $A A^{T}=A^{T} A=I$. All eigenvalues of an orthogonal matrix have the absolute value 1 .
packed storage	A storage scheme allowing you to store symmetric, Hermitian, or triangular matrices more compactly. The upper or lower triangle of a matrix is packed by columns in a one-dimensional array.

$\left.\begin{array}{ll}\text { positive-definite } \\ \text { matrix } \\ Q R \text { factorization } & \begin{array}{l}\text { A square matrix } A \text { such that } A x \cdot x>0 \text { for any } \\ \text { non-zero vector } x . \text { Here } \cdot \operatorname{denotes~the~dot~product.~} \\ \text { Representation of an } m \text { by } n \text { matrix } A \text { as } A=Q R, \\ \text { where } Q \text { is an } m \text { by } m \text { orthogonal (unitary) matrix, } \\ \text { and } R \text { is } n \text { by } n \text { upper triangular with real diagonal } \\ \text { elements (if } m \geq n \text { ) or trapezoidal (if } m<n \text { ) matrix. }\end{array} \\ & \text { When found as the first letter of routine names, } \\ \text { s indicates the usage of single-precision real data } \\ \text { type. }\end{array}\right\}$

sparse BLAS	Routines performing basic vector operations on sparse vectors. Sparse BLAS routines take advantage of vectors' sparsity: they allow you to store only non-zero elements of vectors. See BLAS.
sparse vectors	Vectors in which most of the components are zeros.
storage scheme	The way of storing matrices. See full storage, packed storage, and band storage.
SVD	Abbreviation for Singular Value Decomposition. See also Singular value decomposition section in Chapter 5.
symmetric matrix	A square matrix $A$ such that $a_{i j}=a_{j i}$.
transpose	The transpose of a given matrix $A$ is a matrix $A^{T}$ such that $\left(A^{T}\right)_{i j}=a_{j i}$ (rows of $A$ become columns of $A^{T}$, and columns of $A$ become rows of $A^{T}$ ).
trapezoidal matrix	A matrix $A$ such that $A=\left(A_{1} A_{2}\right)$, where $A_{1}$ is an upper triangular matrix, $A_{2}$ is a rectangular matrix.
triangular matrix	A matrix $A$ is called an upper (lower) triangular matrix if all its subdiagonal elements (superdiagonal elements) are zeros. Thus, for an upper triangular matrix $a_{i j}=0$ when $i>j$; for a lower triangular matrix $a_{i j}=0$ when $i<j$.
tridiagonal matrix	A matrix whose non-zero elements are in three diagonals only: the leading diagonal, the first subdiagonal, and the first super-diagonal.
unitary matrix	A complex square matrix $A$ whose conjugate and inverse are equal, that is, that is, $A^{H}=A^{-1}$, and therefore $A A^{H}=A^{H} A=I$. All eigenvalues of a unitary matrix have the absolute value 1.
VML	Abbreviation for Vector Mathematical Library. See Chapter 6 of this book.
Z	When found as the first letter of routine names, $z$ indicates the usage of double-precision complex data type.

## Index

## Routines

?asum, 2-5
? ахру, 2-6
?axpyi, 2-116
?bdsqr, 5-94, 5-98
?copy, 2-7
?dot, 2-8
?dotc, 2-9
?dotci, 2-119
?doti, 2-118
?dotu, 2-10
?dotui, 2-120
?fft1d, 3-4, 3-8
?fft1dc, 3-5, 3-10, 3-15
?fft2d, 3-19, 3-22, 3-28
?fft2dc, 3-20, 3-24, 3-29
?gbbrd, 5-79
?gbcon, 4-65
? gbmv, 2-24
?gbrfs, 4-95
?gbtf2, 6-21
?gbtrf, 4-10
?gbtrs, 4-36
?gebak, 5-193
?gebal, 5-190
?gebd2, 6-23
?gebrd, 5-76
? gecon, 4-63
?gees, 5-379
?geesx, 5-384
?geev, 5-390
?geevx, 5-394
?gehd2, 6-26
?gehrd, 5-178
?gelq2, 6-29
?gelqf, 5-25, 5-36
?gels, 5-279
?gelsd, 5-289
?gelss, 5-286
?gelsy, 5-282
?gemm, 2-83
?gemv, 2-27
?geq12, 6-31
?geqpf, 5-11, 5-14
?geqr2, 6-33
?geqrf, 5-8, 5-48, 5-60, 5-68, 5-71
?ger, 2-30
?gerc, 2-31
?gerfs, 4-92, 4-98
?gerq2, 6-35
?geru, 2-33
?gesc2, 6-37
?gesdd, 5-405
?gesvd, 5-400
?getc2, 6-39
?getf2, 6-40
?getrf, 4-7
?getri, 4-133
?getrs, 4-34
?ggbak, 5-233
?ggbal, 5-230
?gges, 5-482
?ggesx, 5-489
?ggev, 5-497
?ggevx, 5-502
?ggglm, 5-296
?gghrd, 5-226
?gglse, 5-293
?ggsvd, 5-409
?ggsvp, 5-267
?gtcon, 4-67
?gthr, 2-121
?gthrz, 2-122
?gttrf, 4-12
?gttrs, 4-38, 6-42
?hbev, 5-348
?hbevd, 5-353
?hbevx, 5-361
?hbgst, 5-169
?hbgv, 5-463
?hbgvd, 5-469
?hbgvx, 5-477
?hbtrd, 5-130
?hecon, 4-80
?heev, 5-301
?heevd, 5-306
?heevr, 5-322
?heevx, 5-313
?hegst, 5-160
?hegv, 5-419
?hegvd, 5-425
?hegvx, 5-434
?hemm, 2-86
?hemv, 2-38
?her, 2-40
?her2, 2-42
?her2k, 2-92
?herfs, 4-116
?herk, 2-89
?hetrd, 5-111
?hetrf, 4-25
?hetri, 4-141
?hetrs, 4-51
?hgeqz, 5-235
?hpcon, 4-84
?hpev, 5-329
?hpevd, 5-334
?hpevx, 5-342
?hpgst, 5-164
?hpgv, 5-442
?hpgvd, 5-448
?hpgvx, 5-456
?hpmv, 2-44
?hpr, 2-47
?hpr2, 2-49
?hprfs, 4-122
?hptrd, 5-122
?hptrf, 4-31
?hptri, 4-145
?hptrs, 4-55
?hsein, 5-199
?hseqr, 5-195
?labrd, 6-45
?lacgv, 6-1
?lacon, 6-48
?lacpy, 6-50
?lacrm, 6-2
?lacrt, 6-3
?ladiv, 6-51
?lae2, 6-52
?laebz, 6-54
?laed0, 6-60
?laed1, 6-64
?laed2, 6-67
?laed3, 6-70
?laed4, 6-73
?laed5, 6-74
?laed6, 6-75
?laed7, 6-78
?laed8, 6-83
?laed9, 6-87
?laeda, 6-89
?laein, 6-92
?laesy, 6-4
?laev2, 6-95
?laexc, 6-98
?lag2, 6-100
?lags2, 6-103
?lagtf, 6-105
?lagtm, 6-108
?lagts, 6-110
?lagv2, 6-113
?lahqr, 6-115
?lahrd, 6-118
?laic1, 6-121
?laln2, 6-124
?lals0, 6-127
?lalsa, 6-132
?lalsd, 6-136
?lamc 1, 6-140
?lamc2, 6-141
?lamc3, 6-142
?lamc4, 6-143
?lamc5, 6-144
?lamch, 6-139
?lamrg, 6-145
?langb, 6-146
?lange, 6-148
?langt, 6-149
?lanhb, 6-154
?lanhe, 6-163
?lanhp, 6-158
?lanhs, 6-151
?lansb, 6-152
?lansp, 6-156
?lanst/?lanht, 6-159
?lansy, 6-161
?lantb, 6-164
?lantp, 6-167
?lantr, 6-169
?lanv2, 6-171
?lapll, 6-172
?lapmt, 6-174
?lapy2, 6-175
?lapy3, 6-176
?laqgb, 6-176
?laqge, 6-179
?laqp2, 6-181
?laqps, 6-183
?laqsb, 6-185
?laqsp, 6-187
?laqsy, 6-189
?laqtr, 6-191
?lar1v, 6-194
?lar2v, 6-196
?larf, 6-198
?larfb, 6-200
?larfg, 6-202
?larft, 6-204
?larfx, 6-207
?largv, 6-208
?larnv, 6-210
?larrb, 6-212
?larre, 6-214
?larrf, 6-216
?larrv, 6-218
?lartg, 6-221
?lartv, 6-223
?laruv, 6-224
?larz, 6-225
?larzb, 6-227
?larzt, 6-230
?las2, 6-233
?lascl, 6-234
?lasd0, 6-236
?lasd1, 6-238
?lasd2, 6-241
?lasd3, 6-246
?lasd4, 6-249
?lasd5, 6-251
?lasd6, 6-252
?lasd7, 6-257
?nrm2, 2-11
?opgtr, 5-119
?opmtr, 5-120
?orgbr, 5-82
?orghr, 5-180
?orglq, 5-28, 5-38, 5-40
?orgqr, 5-17, 5-50, 5-52
?orgtr, 5-107
?ormbr, 5-85
?ormhr, 5-182
?ormlq, 5-30, 5-42, 5-45, 5-54, 5-57, 5-62, 5-65
?ormqr, 5-19
?ormtr, 5-109
?pbcon, 4-74
?pbrfs, 4-107
?pbstf, 5-172
?pbtrf, 4-18
?pbtrs, 4-45
?pocon, 4-70
?porfs, 4-101, 4-110
?potrf, 4-14
?potri, 4-135
?potrs, 4-41
?ppcon, 4-72
?pprfs, 4-104
?pptrf, 4-16
?pptri, 4-137
?pptrs, 4-43
?ptcon, 4-76
?pteqr, 5-146
?pttrf, 4-20
?pttrs, 4-47
?rot, 2-12
?rot (complex), 6-6
?rotg, 2-14
?roti, 2-123
?rotm, 2-15
?rotmg, 2-17
?sbev, 5-346
?sbevd, 5-350
?sbevx, 5-357
?sbgst, 5-166
?sbgv, 5-460
?sbgvd, 5-466
?sbgvx, 5-473
?sbmv, 2-51
?sbtrd, 5-128
?scal, 2-18
?sctr, 2-124
?spcon, 4-82
?spev, 5-327
?spevd, 5-331
?spevx, 5-338
?spgst, 5-162
?spgv, 5-439
?spgvd, 5-445
?spgvx, 5-452
?spmv, 2-54, 6-7
?spr, 2-56, 6-9
?spr2, 2-58
?sprfs, 4-119
?sptrd, 5-117
?sptrf, 4-28
?sptri, 4-143
?sptrs, 4-53
?stebz, 5-141, 5-149
?stein, 5-152
?steqr, 5-134, 5-137
?sterf, 5-132
?stev, 5-365
?stevd, 5-367
?stevr, 5-374
?stevx, 5-370
?sum1, 6-20
?swap, 2-20
?sycon, 4-78, 5-154
?syev, 5-299
?syevd, 5-303
?syevr, 5-317
?syevx, 5-309
?sygst, 5-158
?sygv, 5-416
?sygvd, 5-422
?sygvx, 5-429
?symm, 2-96
?symv, 2-60
?symv (complex), 6-11
?syr, 2-62
?syr (complex), 6-13
?syr2, 2-64
?syr2k, 2-103
?syrfs, 4-113
?syrk, 2-100
?sytrd, 5-105
?sytrf, 4-22
?sytri, 4-139
?sytrs, 4-49
?tbcon, 4-90
?tbmv, 2-66
?tbsv, 2-69
?tbtrs, 4-61
?tgevc, 5-242
?tgexc, 5-247
?tgsen, 5-250
?tgsja, 5-271
?tgsna, 5-261
?tgsyl, 5-256
?tpcon, 4-88
?tpmv, 2-72
?tprfs, 4-127
?tpsv, 2-75
?tptri, 4-148
?tptrs, 4-59
?trcon, 4-86
?trevc, 5-205
?trexc, 5-215
?trmm, 2-107
?trmv, 2-77
?trrfs, 4-124
?trsen, 5-217
?trsm, 2-110
?trsna, 5-210
?trsv, 2-79
?trsyl, 5-222
?trtri, 4-147
?trtrs, 4-57
?ungbr, 5-88
?unghr, 5-185
?unglq, 5-32
?ungqr, 5-21
?ungtr, 5-113
?unmbr, 5-91
?unmhr, 5-187
?unmlq, 5-34
?unmqr, 5-23
?unmtr, 5-115
?upgtr, 5-124
?upmtr, 5-125

## A

absolute value of a vector element
largest, 2-21
smallest, 2-22
accuracy modes, in VML, 7-2
adding magnitudes of the vector elements, 2-5
arguments
matrix, A-4
sparse vector, 2-114
vector, $\mathrm{A}-1$

## B

balancing a matrix, 5-190
band storage scheme, A-4
Bernoulli, 8-48
bidiagonal matrix, 5-74
Binomial, 8-52
BLAS Level 1 functions
?asum, 2-4, 2-5
?dot, 2-4, 2-8
?dotc, 2-4, 2-9
?dotu, 2-4, 2-10
?nrm2, 2-4, 2-11
code example, B-1, B-2
i?amax, 2-4, 2-21
i?amin, 2-4, 2-22
BLAS Level 1 routines
? axpy, 2-4, 2-6
?copy, 2-4, 2-7
?rot, 2-4, 2-12
?rotg, 2-4, 2-14
?rotm, 2-15
?rotmg, 2-17
?scal, 2-4, 2-18
?swap, 2-4, 2-20
code example, B-2
BLAS Level 2 routines
?gbmv, 2-23, 2-24
?gemv, 2-23, 2-27
?ger, 2-23, 2-30
?gerc, 2-23, 2-31
?geru, 2-23, 2-33
?hbmv, 2-23, 2-35
?hemv, 2-23, 2-38
?her, 2-23, 2-40
?her2, 2-23, 2-42
?hpmv, 2-23, 2-44
?hpr, 2-23, 2-47
?hpr2, 2-23, 2-49
?sbmv, 2-23, 2-51
?spmv, 2-23, 2-54
?spr, 2-23, 2-56
?spr2, 2-23, 2-58
?symv, 2-23, 2-60
?syr, 2-23, 2-62
?syr2, 2-23, 2-64
?tbmv, 2-24, 2-66
?tbsv, 2-24, 2-69
?tpmv, 2-24, 2-72
?tpsv, 2-24, 2-75
?trmv, 2-24, 2-77
?trsv, 2-24, 2-79
code example, B-3, B-4
BLAS Level 3 routines
?gemm, 2-82, 2-83
?hemm, 2-82, 2-86
?her2k, 2-82, 2-92
?herk, 2-82, 2-89
?symm, 2-82, 2-96
?syr2k, 2-82, 2-103
?syrk, 2-82, 2-100
?trmm, 2-82, 2-107
?trsm, 2-82, 2-110
code example, B-4, B-5
BLAS routines
matrix arguments, A-4
routine groups, 1-6, 2-1
vector arguments, A-1
block-splitting method, 8-6
Bunch-Kaufman factorization, 4-7
Hermitian matrix, 4-25
packed storage, 4-31
symmetric matrix, 4-22 packed storage, 4-28

## C

C interface, 3-3
Cauchy, 8-33
CBLAS, 1
arguments, 1
level 1 (vector operations), 3
level 2 (matrix-vector operations), 6
level 3 (matrix-matrix operations), 14
sparse BLAS, 18
Cholesky factorization
Hermitian positive-definite matrix, 4-14
band storage, 4-18
packed storage, 4-16
symmetric positive-definite matrix, 4-14
band storage, 4-18
packed storage, 4-16
code examples
BLAS Level 1 function, B-1
BLAS Level 1 routine, B-2
BLAS Level 2 routine, B-3
BLAS Level 3 routine, B-4
CommitDescriptor, 9-17
complex-to-complex one-dimensional FFTs, 3-3
complex-to-complex two-dimensional FFTs,

3-18
complex-to-real one-dimensional FFTs, 3-12
complex-to-real two-dimensional FFTs, 3-27
Computational Routines, 5-6
ComputeBackward, 9-23
ComputeForward, 9-21
condition number
band matrix, 4-65
general matrix, 4-63
Hermitian matrix, 4-80
packed storage, 4-84
Hermitian positive-definite matrix, 4-70
band storage, 4-74
packed storage, 4-72
tridiagonal, 4-76
symmetric matrix, 4-78, 5-154
packed storage, 4-82
symmetric positive-definite matrix, 4-70
band storage, 4-74
packed storage, 4-72
tridiagonal, 4-76
triangular matrix, 4-86
band storage, 4-90
packed storage, 4-88
tridiagonal matrix, 4-67
configuration parameters, in DFTI, 9-6
Continuous Distribution Generators, 8-20
converting a sparse vector into compressed
storage form, 2-121
and writing zeros to the original vector, 2-122
converting compressed sparse vectors into full storage form, 2-124
CopyDescriptor, 9-18
copying vectors, 2-7
CopyStream, 8-12
CreateDescriptor, 9-15

## D

data structure requirements for FFTs, 3-3
data type
in VML, 7-2
shorthand, 1-8
DeleteStream, 8-11
Descriptor configuration, in DFTI, 9-10
Descriptor Manipulation, in DFTI, 9-9
DFT computation, 9-10
DFT routines
descriptor configuration
GetValue, 9-33
SetValue, 9-31
descriptor manipulation
CommitDescriptor, 9-17
CopyDescriptor, 9-18
CreateDescriptor, 9-15
FreeDescriptor, 9-20
DFT computation
ComputeBackward, 9-23
ComputeForward, 9-21
status checking
ErrorClass, 9-11
ErrorMessage, 9-13
dimension, A-1
Discrete Distribution Generators, 8-20
Discrete Fourier Transform
CommitDescriptor, 9-17
ComputeBackward, 9-23
ComputeForward, 9-21
CopyDescriptor, 9-18
CreateDescriptor, 9-15
ErrorClass, 9-11
ErrorMessage, 9-13
FreeDescriptor, 9-20
GetValue, 9-33
SetValue, 9-31
dot product
complex vectors, conjugated, 2-9
complex vectors, unconjugated, 2-10
real vectors, 2-8
sparse complex vectors, 2-120
sparse complex vectors, conjugated, 2-119
sparse real vectors, 2-118

Driver Routines, 5-278

## E

eigenvalue problems
general matrix, 5-174, 5-225
generalized form, 5-157
Hermitian matrix, 5-101
symmetric matrix, 5-101
eigenvalues. See eigenvalue problems
eigenvectors. See eigenvalue problems
error diagnostics, in VML, 7-6
Error reporting routine, XERBLA, 2-1
ErrorClass, 9-11
ErrorMessage, 9-13
errors in solutions of linear equations
general matrix, 4-92, 4-98
band storage, 4-95
Hermitian matrix, 4-116 packed storage, 4-122
Hermitian positive-definite matrix, 4-101, 4-110
band storage, 4-107
packed storage, 4-104
symmetric matrix, 4-113
packed storage, 4-119
symmetric positive-definite matrix, 4-101,

## 4-110

band storage, 4-107
packed storage, 4-104
triangular matrix, 4-124
band storage, 4-130
packed storage, 4-127
Euclidean norm
of a vector, 2-11
Exponential, 8-26

## F

factorization
See also triangular factorization
Bunch-Kaufman, 4-7

Cholesky, 4-7
LU, 4-7
orthogonal (LQ, QR), 5-7
fast Fourier transforms, 1-3, 9-1
C interface, 3-3
data storage types, 3-2
data structure requirements, 3-3
routines
?fft1d, 3-4, 3-8, 3-13
?fft1dc, 3-5, 3-10, 3-15
?fft2d, 3-19, 3-22, 3-28
?fft2dc, 3-20, 3-24, 3-29
FFT. See fast Fourier transforms
finding
element of a vector with the largest absolute value, 2-21
element of a vector with the smallest
absolute value, 2-22
font conventions, 1-8
forward or inverse FFTs, 3-4, 3-5, 3-19, 3-20
Fourier transforms
mixed radix, 9-1
multi-dimensional, 9-1
FreeDescriptor, 9-20
full storage scheme, A-4
function name conventions, in VML, 7-2

## G

gathering sparse vector's elements into
compressed form, 2-121
and writing zeros to these elements, 2-122
Gaussian, 8-23
general matrix
eigenvalue problems, 5-174, 5-225
estimating the condition number, 4-63
band storage, 4-65
inverting the matrix, 4-133
LQ factorization, 5-25, 5-36
LU factorization, 4-7
band storage, 4-10
matrix-vector product, 2-27
band storage, 2-24
QR factorization, 5-8, 5-48, 5-60, 5-68, 5-71
with pivoting, 5-11, 5-14
rank-1 update, 2-30
rank-l update, conjugated, 2-31
rank-l update, unconjugated, 2-33
scalar-matrix-matrix product, 2-83
solving systems of linear equations, 4-34
band storage, 4-36
generalized eigenvalue problems, 5-157
See also LAPACK routines, generalized eigenvalue problems
complex Hermitian-definite problem, 5-160
band storage, 5-169
packed storage, 5-164
real symmetric-definite problem, 5-158
band storage, 5-166
packed storage, 5-162
Geometric, 8-50
GetBrngProperties, 8-63
GetStreamStateBrng, 8-19
GetValue, 9-33
GFSR, 8-4
Givens rotation
modified Givens transformation parameters, 2-17
of sparse vectors, 2-123
parameters, 2-14
Gumbel, 8-41

## H

Hermitian matrix, 5-101, 5-157
Bunch-Kaufman factorization, 4-25
packed storage, 4-31
estimating the condition number, 4-80 packed storage, 4-84
generalized eigenvalue problems, 5-157
inverting the matrix, 4-141
packed storage, 4-145
matrix-vector product, 2-38
band storage, 2-35
packed storage, 2-44
rank-1 update, 2-40
packed storage, 2-47
rank-2 update, 2-42
packed storage, 2-49
rank-2k update, 2-92
rank-n update, 2-89
scalar-matrix-matrix product, 2-86
solving systems of linear equations, 4-51
packed storage, 4-55
Hermitian positive-definite matrix
Cholesky factorization, 4-14
band storage, 4-18
packed storage, 4-16
estimating the condition number, 4-70
band storage, 4-74
packed storage, 4-72
inverting the matrix, 4-135
packed storage, 4-137
solving systems of linear equations, 4-41
band storage, 4-45
packed storage, 4-43
Hypergeometric, 8-54

## I

i?amax, 2-21
i?amin, 2-22
i?max 1, 6-15
ilaenv, 6-16
increment, A-1
inverse matrix. See inverting a matrix
inverting a matrix
general matrix, 4-133
Hermitian matrix, 4-141
packed storage, 4-145
Hermitian positive-definite matrix, 4-135
packed storage, 4-137
symmetric matrix, 4-139
packed storage, 4-143
symmetric positive-definite matrix, 4-135
packed storage, 4-137
triangular matrix, 4-147
packed storage, 4-148

L

LAPACK routines
condition number estimation
?gbcon, 4-65
?gecon, 4-63
?gtcon, 4-67
?hecon, 4-80
?hpcon, 4-84
?pbcon, 4-74
?pocon, 4-70
?ppcon, 4-72
?ptcon, 4-76
?spcon, 4-82
?sycon, 4-78, 5-154
?tbcon, 4-90
?tpcon, 4-88
?trcon, 4-86
generalized eigenvalue problems
?hbgst, 5-169
?hegst, 5-160
?hpgst, 5-164
?pbstf, 5-172
?sbgst, 5-166
?spgst, 5-162
?sygst, 5-158
LQ factorization
?gelqf, 5-25, 5-36
?orglq, 5-28, 5-38, 5-40
?ormlq, 5-30, 5-42, 5-45, 5-54, 5-57, 5-62, 5-65
?unglq, 5-32
?unmlq, 5-34
matrix inversion
?getri, 4-133
?hetri, 4-141
?hptri, 4-145
?potri, 4-135
?pptri, 4-137
?sptri, 4-143
?sytri, 4-139
?tptri, 4-148
?trtri, 4-147
nonsymmetric eigenvalue problems
?gebak, 5-193
?gebal, 5-190
?gehrd, 5-178
?hsein, 5-199
?hseqr, 5-195
?orghr, 5-180
?ormhr, 5-182
?trevc, 5-205
?trexc, 5-215
?trsen, 5-217
?trsna, 5-210
?unghr, 5-185
?unmhr, 5-187
QR factorization
?geqpf, 5-11, 5-14
?geqrf, 5-8, 5-48, 5-60, 5-68, 5-71
?orgqr, 5-17, 5-50, 5-52
?ormqr, 5-19
?ungqr, 5-21
?unmqr, 5-23
singular value decomposition
?bdsqr, 5-94, 5-98
?gbbrd, 5-79
?gebrd, 5-76
? orgbr, 5-82
? ormbr, 5-85
?ungbr, 5-88
?unmbr, 5-91
solution refinement and error estimation
?gbrfs, 4-95
?gerfs, 4-92, 4-98
?herfs, 4-116
?hprfs, 4-122
?pbrfs, 4-107
?porfs, 4-101, 4-110
?pprfs, 4-104
?sprfs, 4-119
?syrfs, 4-113
?tbrfs, 4-130
?tprfs, 4-127
?trrfs, 4-124
solving linear equations
?gbtrs, 4-36
?getrs, 4-34
?gttrs, 4-38, 6-42
?hetrs, 4-51
?hptrs, 4-55
?pbtrs, 4-45
?potrs, 4-41
?pptrs, 4-43
?pttrs, 4-47
?sptrs, 4-53
?sytrs, 4-49
?tbtrs, 4-61
?tptrs, 4-59
?trtrs, 4-57
Sylvester's equation
?trsyl, 5-222
symmetric eigenvalue problems
?hbevd, 5-353
?hbtrd, 5-130
?heevd, 5-306
?hetrd, 5-111
?hpevd, 5-334
?hptrd, 5-122
?opgtr, 5-119
?opmtr, 5-120
?orgtr, 5-107
?ormtr, 5-109
?pteqr, 5-146
?sbevd, 5-350
?sbtrd, 5-128
?spevd, 5-331
?sptrd, 5-117
?stebz, 5-141, 5-149
?stein, 5-152
?steqr, 5-134, 5-137
?sterf, 5-132
?stevd, 5-367
?syevd, 5-303
?sytrd, 5-105
?ungtr, 5-113
? unmtr, 5-115
?upgtr, 5-124
?upmtr, 5-125
triangular factorization
?gbtrf, 4-10
?getrf, 4-7
?gttrf, 4-12
?hetrf, 4-25
?hptrf, 4-31
?pbtrf, 4-18
?potrf, 4-14
?pptrf, 4-16
?pttrf, 4-20
?sptrf, 4-28
?sytrf, 4-22
Laplace, 8-28
leading dimension, A-6
leapfrog method, 8-6
LeapfrogStream, 8-13
length. See dimension
linear combination of vectors, 2-6
Linear Congruential Generator, 8-3
linear equations, solving
general matrix, 4-34
band storage, 4-36
Hermitian matrix, 4-51
packed storage, 4-55
Hermitian positive-definite matrix, 4-41
band storage, 4-45
packed storage, 4-43
symmetric matrix, 4-49
packed storage, 4-53
symmetric positive-definite matrix, 4-41
band storage, 4-45
packed storage, 4-43
triangular matrix, 4-57
band storage, 4-61
packed storage, 4-59
tridiagonal matrix, 4-38, 4-47, 6-42
Lognormal, 8-38
LQ factorization, 5-6
computing the elements of orthogonal matrix Q, 5-28, 5-38, 5-40
unitary matrix $\mathrm{Q}, 5-32$
1same, 6-18

1samen, 6-19
LU factorization, 4-7
band matrix, 4-10
tridiagonal matrix, 4-12

M
matrix arguments, A-4
column-major ordering, A-2, A-6
example, A-7
leading dimension, A-6
number of columns, A-6
number of rows, A-6
transposition parameter, A-6
matrix equation
$A X=B, 2-110,4-5,4-33$
matrix one-dimensional substructures, A-2
matrix-matrix operation
product
general matrix, 2-83
rank-2k update
Hermitian matrix, 2-92
symmetric matrix, 2-103
rank-n update
Hermitian matrix, 2-89
symmetric matrix, 2-100
scalar-matrix-matrix product
Hermitian matrix, 2-86
symmetric matrix, 2-96
triangular matrix, 2-107
matrix-vector operation
product, 2-24, 2-27
Hermitian matrix, 2-38
band storage, 2-35
packed storage, 2-44
symmetric matrix, 2-60
band storage, 2-51
packed storage, 2-54
triangular matrix, 2-77
band storage, 2-66
packed storage, 2-72
rank-1 update, 2-30, 2-31, 2-33
Hermitian matrix, 2-40 packed storage, 2-47
symmetric matrix, 2-62
packed storage, 2-56
rank-2 update
Hermitian matrix, 2-42
packed storage, 2-49
symmetric matrix, 2-64
packed storage, 2-58
mixed radix Fourier transforms, 9-1
multi-dimensional Fourier transforms, 9-1
Multiplicative Congruential Generator, 8-4

## N

naming conventions, 1-8
BLAS, 2-2
LAPACK, 4-2, 5-4
Sparse BLAS, 2-115
VML, 7-2
NegBinomial, 8-57
NewStream, 8-9
NewStreamEx, 8-10

## 0

one-dimensional FFTs, 3-1
complex sequence, 3-10, 3-11, 3-14, 3-16
complex-to-complex, 3-3
complex-to-real, 3-12
computing a forward FFT, real input data, 3-8, 3-10
computing a forward or inverse FFT of a complex vector, 3-4, 3-5
groups, 3-2
performing an inverse FFT, complex input data, 3-13, 3-15
real-to-complex, 3-7
storage effects, 3-8, 3-13, 9-42, 9-44
orthogonal matrix, 5-74, 5-101, 5-174, 5-225

## P

Packed formats, 9-38
packed storage scheme, A-4
parameters
for a Givens rotation, 2-14
modified Givens transformation, 2-17
platforms supported, 1-5
points
rotation in the modified plane, 2-15
rotation in the plane, 2-12
Poisson, 8-56
positive-definite matrix
generalized eigenvalue problems, 5-158
product
See also dot product
matrix-vector
general matrix, 2-27
band storage, 2-24
Hermitian matrix, 2-38
band storage, 2-35
packed storage, 2-44
symmetric matrix, 2-60
band storage, 2-51
packed storage, 2-54
triangular matrix, 2-77
band storage, 2-66
packed storage, 2-72
scalar-matrix
general matrix, 2-83
Hermitian matrix, 2-86
scalar-matrix-matrix
general matrix, 2-83
Hermitian matrix, 2-86
symmetric matrix, 2-96
triangular matrix, 2-107
vector-scalar, 2-18
pseudorandom numbers, 8-1

## Q

QR factorization, 5-6
computing the elements of
orthogonal matrix $\mathrm{Q}, 5-17,5-50,5-52$
unitary matrix $\mathrm{Q}, 5-21$
with pivoting, 5-11, 5-14
quasi-triangular matrix, 5-174, 5-225

## R

Random Number Generators, 8-1
random stream, 8-2
rank-1 update
conjugated, general matrix, 2-31
general matrix, 2-30
Hermitian matrix, 2-40
packed storage, 2-47
symmetric matrix, 2-62
packed storage, 2-56
unconjugated, general matrix, 2-33
rank-2 update
Hermitian matrix, 2-42
packed storage, 2-49
symmetric matrix, 2-64
packed storage, 2-58
rank-2k update
Hermitian matrix, 2-92
symmetric matrix, 2-103
rank-n update
Hermitian matrix, 2-89
symmetric matrix, 2-100
Rayleigh, 8-36
real-to-complex one-dimensional FFTs, 3-7, 9-21
real-to-complex two-dimensional FFTs, 3-21, 9-21
reducing generalized eigenvalue problems, 5-158
refining solutions of linear equations
band matrix, 4-95
general matrix, 4-92, 4-98
Hermitian matrix, 4-116
packed storage, 4-122
Hermitian positive-definite matrix, 4-101, 4-110
band storage, 4-107
packed storage, 4-104
symmetric matrix, 4-113
packed storage, 4-119
symmetric positive-definite matrix, 4-101, 4-110
band storage, 4-107
packed storage, 4-104
RegisterBrng, 8-62
registering a basic generator, 8-59
rotation
of points in the modified plane, 2-15
of points in the plane, 2-12
of sparse vectors, 2-123
parameters for a Givens rotation, 2-14
parameters of modified Givens
transformation, 2-17
routine name conventions
BLAS, 2-2
Sparse BLAS, 2-115

## S

scalar-matrix product, 2-83, 2-86, 2-96
scalar-matrix-matrix product, 2-86
general matrix, 2-83
symmetric matrix, 2-96
triangular matrix, 2-107
scattering compressed sparse vector's elements into full storage form, 2-124
SetValue, 9-31
singular value decomposition, 5-74
See also LAPACK routines, singular value decomposition
SkipAheadStream, 8-16
smallest absolute value of a vector element, 2-22
solving linear equations. See linear equations
Sparse BLAS, 2-114
data types, 2-115
naming conventions, 2-115
Sparse BLAS routines and functions, 2-115
?axpyi, 2-116
?dotci, 2-119
?doti, 2-118
?dotui, 2-120
?gthr, 2-121
?gthrz, 2-122
?roti, 2-123
?sctr, 2-124
sparse vectors, 2-114
adding and scaling, 2-116
complex dot product, conjugated, 2-119
complex dot product, unconjugated, 2-120
compressed form, 2-114
converting to compressed form, 2-121, 2-122
converting to full-storage form, 2-124
full-storage form, 2-114
Givens rotation, 2-123
norm, 2-116
passed to BLAS level 1 routines, 2-116
real dot product, 2-118
scaling, 2-116
split Cholesky factorization (band matrices), 5-172
Status Checking, in DFTI, 9-10
stream descriptor, 8-2
stream state, 8-7
stride. See increment
sum
of magnitudes of the vector elements, 2-5
of sparse vector and full-storage vector, 2-116
of vectors, 2-6
SVD (singular value decomposition), 5-74
swapping vectors, 2-20
Sylvester's equation, 5-222
symmetric matrix, 5-101, 5-157
Bunch-Kaufman factorization, 4-22
packed storage, 4-28
estimating the condition number, 4-78, 5-154
packed storage, 4-82
generalized eigenvalue problems, 5-157
inverting the matrix, 4-139
packed storage, 4-143
matrix-vector product, 2-60
band storage, 2-51
packed storage, 2-54
rank-1 update, 2-62
packed storage, 2-56
rank-2 update, 2-64
packed storage, 2-58
rank-2k update, 2-103
rank-n update, 2-100
scalar-matrix-matrix product, 2-96
solving systems of linear equations, 4-49 packed storage, 4-53
symmetric positive-definite matrix
Cholesky factorization, 4-14
band storage, 4-18
packed storage, 4-16
estimating the condition number, 4-70
band storage, 4-74
packed storage, 4-72
tridiagonal matrix, 4-76
inverting the matrix, 4-135 packed storage, 4-137
solving systems of linear equations, 4-41
band storage, 4-45
packed storage, 4-43
system of linear equations
with a triangular matrix, 2-79
band storage, 2-69
packed storage, 2-75
systems of linear equations. See linear equations

## T

transforms, Fourier (advanced), 9-1
transposition parameter, A-6
triangular factorization
band matrix, 4-10
general matrix, 4-7
Hermitian matrix, 4-25
packed storage, 4-31
Hermitian positive-definite matrix, 4-14
band storage, 4-18
packed storage, 4-16
tridiagonal matrix, 4-20
symmetric matrix, 4-22
packed storage, 4-28
symmetric positive-definite matrix, 4-14
band storage, 4-18
packed storage, 4-16
tridiagonal matrix, 4-20
tridiagonal matrix, 4-12
triangular matrix, 5-174, 5-225
estimating the condition number, 4-86
band storage, 4-90
packed storage, 4-88
inverting the matrix, 4-147
packed storage, 4-148
matrix-vector product, 2-77
band storage, 2-66
packed storage, 2-72
scalar-matrix-matrix product, 2-107
solving systems of linear equations, 2-79, 4-57
band storage, 2-69, 4-61
packed storage, 2-75, 4-59
tridiagonal matrix, 5-101
estimating the condition number, 4-67
solving systems of linear equations, 4-38, 4-47, 6-42
two-dimensional FFTs, 3-17, 9-21
complex-to-complex, 3-18
complex-to-real, 3-27
computing a forward FFT, real input data, 3-22, 3-24
computing a forward or inverse FFT, 3-19, 3-20
computing an inverse FFT, complex input data, 3-28, 3-29
data storage types, 3-18
data structure requirements, 3-18
equations, 3-18
groups, 3-17
real-to-complex, 3-21

## U

Uniform (continuous), 8-21
Uniform (discrete), 8-44
UniformBits, 8-46
unitary matrix, 5-74, 5-101, 5-174, 5-225
updating
rank-1
general matrix, 2-30
Hermitian matrix, 2-40
packed storage, 2-47
symmetric matrix, 2-62 packed storage, 2-56
rank-1, conjugated
general matrix, 2-31
rank-1, unconjugated
general matrix, 2-33
rank-2
Hermitian matrix, 2-42
packed storage, 2-49
symmetric matrix, 2-64 packed storage, 2-58
rank-2k
Hermitian matrix, 2-92
symmetric matrix, 2-103
rank-n
Hermitian matrix, 2-89
symmetric matrix, 2-100
upper Hessenberg matrix, 5-174, 5-225

## V

vector arguments, A-1
array dimension, A-1
default, A-2
examples, A-2
increment, A-1
length, A-1
matrix one-dimensional substructures, A-2
sparse vector, 2-114
vector indexing, 7-6
vector mathematical functions, 7-8
cosine, 7-23
cube root, 7-15
denary logarithm, 7-22
division, 7-11
error function value, 7-40
exponential, 7-20
four-quadrant arctangent, 7-31
hyperbolic cosine, 7-32
hyperbolic sine, 7-34
hyperbolic tangent, 7-35
inverse cosine, 7-28
inverse cube root, 7-16
inverse hyperbolic cosine, 7-36
inverse hyperbolic sine, 7-37
inverse hyperbolic tangent, 7-39
inverse sine, 7-29
inverse square root, 7-13
inverse tangent, 7-30
inversion, 7-10
natural logarithm, 7-21
power, 7-17
power (constant), 7-18
sine, 7-24
sine and cosine, 7-25
square root, 7-12
tangent, 7-27
vector pack function, 7-42
vector statistics functions
Bernoulli, 8-48
Binomial, 8-52
Cauchy, 8-33
CopyStream, 8-12
DeleteStream, 8-11
Exponential, 8-26
Gaussian, 8-23
Geometric, 8-50
GetBrngProperties, 8-63
GetStreamStateBrng, 8-19
Gumbel, 8-41
Hypergeometric, 8-54
Laplace, 8-28
LeapfrogStream, 8-13
Lognormal, 8-38

NegBinomial, 8-57
NewStream, 8-9
NewStreamEx, 8-10
Poisson, 8-56
Rayleigh, 8-36
RegisterBrng, 8-62
SkipAheadStream, 8-16
Uniform (continuous), 8-21
Uniform (discrete), 8-44
UniformBits, 8-46
Weibull, 8-31
vector unpack function, 7-44
vectors
adding magnitudes of vector elements, 2-5
copying, 2-7
dot product
complex vectors, 2-10
complex vectors, conjugated, 2-9
real vectors, 2-8
element with the largest absolute value, 2-21
element with the smallest absolute value, 2-22
Euclidean norm, 2-11
Givens rotation, 2-14
linear combination of vectors, 2-6
modified Givens transformation parameters, 2-17
rotation of points, 2-12
rotation of points in the modified plane, 2-15
sparse vectors, 2-115
sum of vectors, 2-6
swapping, 2-20
vector-scalar product, 2-18
vector-scalar product, 2-18
sparse vectors, 2-116
VML, 7-1
VML functions
mathematical functions
Acos, 7-28
Acosh, 7-36
Asin, 7-29
Asinh, 7-37
Atan, 7-30

Atan2, 7-31
Atanh, 7-39
Cbrt, 7-15
Cos, 7-23
Cosh, 7-32
Div, 7-11
Erf, 7-40
Exp, 7-20
Inv, 7-10
InvCbrt, 7-16
InvSqrt, 7-13
Ln, 7-21
Log 10, 7-22
Pow, 7-17
Powx, 7-18
Sin, 7-24
SinCos, 7-25
Sinh, 7-34
Sqrt, 7-12
Tan, 7-27
Tanh, 7-35
pack/unpack functions
Pack, 7-42
Unpack, 7-44
service functions
ClearErrorCallBack, 7-58
ClearErrStatus, 7-54
GetErrorCallBack, 7-57
GetErrStatus, 7-53
GetMode, 7-50
SetErrorCallBack, 7-55
SetErrStatus, 7-51
SetMode, 7-47
VSL functions
advanced service subroutines
GetBrngProperties, 8-63
RegisterBrng, 8-62
generator subroutines
, 8-57
Bernoulli, 8-48
Binomial, 8-52
Cauchy, 8-33
Exponential, 8-26
Gaussian, 8-23

Geometric, 8-50
Gumbel, 8-41
Hypergeometric, 8-54
Laplace, 8-28
Lognormal, 8-38
Poisson, 8-56
Rayleigh, 8-36
Uniform (continuous), 8-21
Uniform (discrete), 8-44
UniformBits, 8-46
Weibull, 8-31
sevice subroutines
CopyStream, 8-12
DeleteStream, 8-11
GetStreamStateBrng, 8-19
LeapfrogStream, 8-13
NewStream, 8-9
NewStreamEx, 8-10
SkipAheadStream, 8-16

Weibull, 8-31

## X

XERBLA, error reporting routine, 2-1


[^0]:    n
    INTEGER. Specifies the order of the matrix $a$. The value of $n$ must be at least zero.
    $k$ INTEGER. Specifies the number of super-diagonals of the matrix $a$. The value of $k$ must satisfy $0 \leq k$.

[^1]:    ap
    With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
    With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.
    The imaginary parts of the diagonal elements are set to zero.

[^2]:    method

