
Vampirtrace MIPS-IRI-65
PRODUCT.4.0.0.0

User’s Guide PRODUCT.4.0.0.0

PALLAS GmbH
Hermülheimer Straße 10
D–50321 Brühl, Germany

This product includes software developed by the University of California, Berkley and its contribu-
tors, and software derived from the Xerox Secure Hash Function.

2

CONTENTS

Contents

Contents I

1 Introduction 1

1.1 What is Vampirtrace? . 1

1.2 System Requirements and Supported Features . 1

1.3 Multithreading . 2

1.4 About this Manual . 3

2 Installation 5

3 How to Use Vampirtrace 7

3.1 Tracing MPI Applications . 7

3.2 Single-process Tracing . 9

3.3 Recording Statistical Information . 9

3.4 Recording Source Location Information . 10

3.5 Tracing Application Subroutines . 11

3.6 Recording Hardware Performance Information . 11

3.7 Using the Dummy Libraries . 13

4 Structured Tracefile Format 15

4.1 Introduction . 15

4.2 STF Components . 16

4.3 Single-File STF . 17

4.4 Configuring STF . 17

5 User-level Instrumentation with the API 23

5.1 The Vampirtrace API . 23

5.2 Initialization, Termination and Control . 24

5.3 Defining and Recording Source Locations . 26

5.4 Defining and Recording Functions or Regions . 27

I

CONTENTS

5.5 Defining and Recording Overlapping Scopes . 32

5.6 Defining Groups of Processes . 33

5.7 Defining and Recording Counters . 34

5.8 Defining Frames . 37

5.9 C++ API . 39

6 Vampirtrace Configuration 47

6.1 Configuring Vampirtrace . 47

6.2 Specifying a Configuration File . 47

6.3 Configuration Format . 47

6.4 Syntax of Parameters . 48

6.5 Supported Directives . 48

6.6 How to Use the Filtering Facility . 58

6.7 The Protocol File . 60

7 How to Create an Error Report 63

7.1 Vampirtrace Problem Report Form and Instructions 63

7.2 How to Prepare and Send Your Example . 64

A FAQ - Frequently asked questions 65

A.1 General questions . 65

A.2 Platfrom specific questions . 70

II

Chapter 1

Introduction

1.1 What is Vampirtrace?

The Vampirtrace profiling tool for MPI applications produces tracefiles that can be analyzed with
the Vampir performance analysis tool.

It records all calls to the MPI library and all transmitted messages, and allows arbitrary user
defined events to be recorded. Instrumentation can be switched on or off at runtime, and a
powerful filtering mechanism helps to limit the amount of the generated trace data.

Vampirtrace is an add-on for existing MPI implementations; using it merely requires relinking the
application with the Vampirtrace profiling library (see section 3.1.1). This will enable the tracing
of all calls to MPI routines, as well as all explicit message-passing. On some platforms, calls to
user-level subroutines and functions will also be recorded.

To define and trace user-defined events, or to use the profiling control functions, calls to the
Vampirtrace API (see section 5) have to be inserted into the application’s source code. This
implies a recompilation of all affected source modules.

A special “dummy” version of the profiling libraries containing empty definitions for all Vampirtrace
API routines can be used to “switch off” tracing just by relinking (see section 3.1.3).

1.2 System Requirements and Supported Features

This version of Vampirtrace was compiled for: MIPS Irix 6.5 MPI 3.3.0.6 (MPT 1.5.3)

It is compatible with all other MPI implementations that use the same binary interface. If
in doubt, please lookup your hardware platform and MPI in the Vampirtrace platform list
at http://www.pallas.com/e/products/pdf/Vampirtrace-Platforms.pdf . If your
combination is not listed, you can check compatibility yourself by compiling and running the
examples/mpiconstants.c program with your MPI. If any value of the constants in the
output differs from the ones given below, then this version of Vampirtrace will not work:

1

http://www.pallas.com/e/products/pdf/Vampirtrace-Platforms.pdf

CHAPTER 1. INTRODUCTION

Datatypes:

sizeof(MPI_Datatype): 4
sizeof(MPI_Comm) : 4
sizeof(MPI_Request) : 4

C constants:

MPI_CHAR : 1
MPI_BYTE : 27
MPI_SHORT : 2
MPI_INT : 3
MPI_FLOAT : 9
MPI_DOUBLE : 10
MPI_COMM_WORLD : 1
MPI_COMM_SELF : 2

MPI_Status structure and byte offsets of members:

MPI_STATUS_SIZE : 6
MPI_SOURCE : 0
MPI_TAG : 4
MPI_ERROR : 8

This output is also found in examples/mpiconstants.out .

The following features are supported:
Feature Description

Thread-safety supported, see 1.3
MPI tracing 3.1
• MPI-IO not supported
• MPI One-Sided Communication not supported
• MPI-2 not supported
Single-process tracing 3.2
Subroutine tracing 3.5
Counter tracing API in 5.7
Automatically Recording Source Location Information 3.4 (requires compiler support)
Manually Recording Source Location Information API in 5.3
Recording Statistical Information 3.3
Folding Complex Call Trees 6.6
Nonblocking Flushing MEM-FLUSHBLOCKS

1.3 Multithreading

This version of the Vampirtrace library is thread-safe in the sense that all of their API functions
can be called by several threads at the same time. Some API functions can really be executed
concurrently, others protect global data with POSIX mutices.

2

1.4. ABOUT THIS MANUAL

1.4 About this Manual

This manual describes how to use Vampirtrace. Some of the text is also provided as man pages
for easier reading in a shell, e.g. the Vampirtrace API calls (man VT enter) and the Vampirtrace
configuration (man VT CONFIG). To access the man pages you must follow the instructions in the
next chapter.

In the PDF version of the manual all special Vampirtrace terms and names are hyperlinks that
take you to the definition of the word. The documentation is platform-specific, i.e. the text and
even whole sections depend on which features are available or how they work on this platform. If
you move between different platforms and something does not work as expected, please ensure
that you consult the correct documentation.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Installation

After unpacking the Vampirtrace archive in a directory of your choice you need to enter this direc-
tory and execute the “install-Vampirtrace” located there.

After asking about the desired read and write permissions this script sets the permissions of the
Vampirtrace files and directories accordingly. It also creates “sourceme.sh” (for shells with Bourne
syntax) and “sourceme.csh” (for shells with csh syntax). Sourcing the correct file in a shell (with
“. sourceme.sh” resp. “source sourceme.csh”) will set all of the required environment variables.

It is possible to install different versions of Vampirtrace by using different directories. Overwriting
an old installation with a new one is not recommended, because this will not ensure that obsolete
old files are removed.

In order to use Vampirtrace on a system, you must have a license key from Pallas. The license
keys for Pallas products are stored in a plain ASCII file where each line may contain a separate
license key. Lines starting with a hash character # are interpreted as comments. The pathname
must be made known to Vampirtrace by setting at least one of three environment variables:

VT ROOT points to the root of the Vampirtrace installation. It is used to find the Vampirtrace
include and library files when compiling programs in the example makefile. A license file will
be found if placed in $(VT ROOT)/etc/license.dat. This variable is automatically set by the
sourceme scripts, so this is the easiest place to put the license file.

PAL LICENSEFILE specifies the complete pathname of the license key file. A relative pathname
is interpreted starting from the user’s home directory. Both Vampir and Vampirtrace will find
their license in this file, so this works well if both are installed on the same machine or the
installations and licenses need to be updated seperately.

PAL ROOT points to the root of the Vampir installation. As Vampirtrace can share a license file
with Vampir it will also search $(PAL ROOT)/etc/license.dat for a valid license.

If called without a valid license, or with invalid settings of the above environment variables, Vam-
pirtrace aborts with an error message like the following one:

Vampirtrace: Could not access license file.
Vampirtrace: Need license for product VT30.
Vampirtrace: platform IA32-LIN, license class Q,
Vampirtrace: hostid 0xa8c02003, network address 192.168.3.32, userid 41D
Vampirtrace: Built for MPICH 1.2.3.
Vampirtrace: Environment variable PAL ROOTnot set.

5

CHAPTER 2. INSTALLATION

Vampirtrace: Environment variable VT ROOTnot set.
Vampirtrace: Environment variable PAL LICENSEFILE not set.

In this case, make sure that the environment variables mentioned above are correctly set and
that the files they point to are readable. To acquire a demo license, please visit http://www.
pallas.com/e/products/vampir/download.htm . For a permanent license, please com-
pile and run the vtlcheck executable in the examples directory on every need that you want a
license for. Then contact support@pallas.com and include the output that vtlcheck printed to
stderr.

6

http://www.pallas.com/e/products/vampir/download.htm
http://www.pallas.com/e/products/vampir/download.htm

Chapter 3

How to Use Vampirtrace

3.1 Tracing MPI Applications

Using Vampirtrace for MPI is straightforward: relink your MPI application with the appropriate
profiling library and execute it following the usual procedures of your system. This will generate
a tracefile suitable for use with Vampir, including records of all calls to MPI routines as well as all
point-to-point and collective communication operations performed by the application.

If you wish to get more detailed information about your application, you can instrument the ap-
plication source code with calls to the Vampirtrace API (see section 5) and recompile. This will
allow arbitrary user-defined events to be traced; in practice, it is often very useful to record your
applications entry and exit to/from subroutines or regions within large subroutines.

The following sections explain how to compile, link and execute MPI applications with Vampirtrace;
if your MPI is different from the one Vampirtrace was compiled for, or is setup differently, then the
paths and options may vary. These sections assume that you know how to compile and run MPI
applications on your system, so before trying to follow the instructions below you should have read
the relevant system documentation.

3.1.1 Compiling MPI Programs with Vampirtrace

Source files without calls to the Vampirtrace API can be compiled with the usual methods and
without any special precautions.

Source files that do contain calls to the Vampirtrace API must include the appropriate header files:
VT.h for C and C++ and VT.inc for Fortran.

To compile these source files, the path to the Vampirtrace header files must be passed to the
compiler. On most systems, this is done with the -I flag, e.g. -I$(VT ROOT)/include.

3.1.2 Linking MPI Programs with Vampirtrace

The Vampirtrace library libVT.a contains entry points for all MPI routines. They must be linked
against your application object files before your system’s MPI library, which is achieved as follows:

cc -n32 -mips3 -U INLINE INTRINSICS ctest.o -L$(VT ROOT)/lib32
-lVT -lmpi -lexc -ldwarf -lnsl -lm -lelf -lpthread -o ctest

7

CHAPTER 3. HOW TO USE VAMPIRTRACE

f77 -n32 -mips3 -U INLINE INTRINSICS ftest.o -L$(VT ROOT)/lib32
-lVT -lmpi -lexc -ldwarf -lnsl -lm -lelf -lpthread -o ftest

If your MPI installation is different, then the command may differ and/or you might have to add
further libraries manually. In this case it is important that the Vampirtrace library is listed on the
command line in front of the MPI libraries, and the binary interface of the MPI libraries must match
the one used by Vampirtrace (see section 1.2 and http://www.pallas.com/e/products/
pdf/Vampirtrace-Platforms.pdf for details).

3.1.3 Running MPI Programs with Vampirtrace

MPI programs linked with Vampirtrace as described in the previous sections can be started in
the same way as conventional MPI applications. Vampirtrace reads two environment variables to
access the values of runtime options:

VT CONFIG contains the pathname of a Vampirtrace configuration file to be read at MPI initial-
ization time. A relative path is interpreted starting from the working directory of the MPI
process specified with VT CONFIG RANK.

VT CONFIG RANK contains the rank (in MPI COMM WORLD) of the MPI process that reads
the Vampirtrace configuration file. The default value is 0. Setting a different value has no
effects unless the MPI processes don’t share the same filesystem.

The trace data is stored in memory during the program execution, and written to disk at MPI
finalization time. The name of the resulting tracefile depends on the format: the base name
<trace> is the same as the path name of the executable image, unless a different name has
been specified in the configuration file. Then different suffices are used depending on the file
format:

Structured Trace Format (STF, the default) <trace>.stf

single-file STF format <trace>.stf.single

old-style binary Vampir format <trace>.bvt

old-style ASCII Vampir format <trace>.avt

A directive in the configuration file (see section Configuration File Format) can influence which
MPI process actually writes the tracefile; by default, it is the same MPI process that reads the
configuration file.

If relative path names are used it can be hard to find out where exactly the tracefile was written.
Therefore Vampirtrace prints an informational message to stderr with the file name and the current
working directory as soon as writing starts.

3.1.4 Examples

The examples in the ./examples directory show how to instrument C and Fortran code to collect
information about application subroutines. They come with a GNUmakefile that works for the MPI
this Vampirtrace package was compiled for. If you use a different MPI, then you might have to edit
this GNUmakefile. Unless Vampirtrace was installed in a private directory, the examples directory
needs to be copied because compiling and running the examples requires write permissions.

8

http://www.pallas.com/e/products/pdf/Vampirtrace-Platforms.pdf
http://www.pallas.com/e/products/pdf/Vampirtrace-Platforms.pdf

3.2. SINGLE-PROCESS TRACING

3.1.5 Trouble Shooting

If generating a trace fails, please check first that you can run MPI applications that were linked
without Vampirtrace. Then ensure that your MPI is indeed compatible with the one this package
was compiled for, as described under section 1.2.

The FAQ in the appendix A may have further information. The most up-to-date version of the FAQ
is found at http://www.pallas.com/e/products/pdf/Vampirtrace-FAQ.pdf .

If this still does not help, the please refer to the chapter 7 “How to Create an Error Report” and
send the information mentioned there to support@pallas.com.

3.2 Single-process Tracing

Traces of just one process can be generated with the libVTsp.a library, which allows the generation
of executables that work without MPI.

Linking is accomplished by adding libVTsp.a and the libraries it needs to the link line:

-lVTsp -lexc -ldwarf -lnsl -lm -lelf -lpthread

The application must call VT initialize() and VT finalize() to generate a trace. Subroutine trac-
ing (3.5) can be used with and without further Vampirtrace API (see chapter 5) calls to actually
generate trace events.

3.3 Recording Statistical Information

Vampirtrace is able to gather and store statistics about the following items:

• function calls

• sent messages

• collective operations

These statistics are gathered even if no trace data is collected, therefore it is a good starting point
for trying to understand an unknown application that might produce an unmanagable trace. To
run an application in this mode one can either set the environment variables VT STATISTICS and
VT PROCESS or point with VT CONFIG to a file like this:

enable statistics gathering
STATISTICS ON

no need to gather trace data
PROCESS0:N OFF

The statistics are written into the trace in a machine-readable format, but also into the protocol
(.prot) file in ASCII format. If the protocol file should ever get lost, then the stftool (see section
4.4.1) can convert from the machine-readable format to ASCII text with the same format as in the
protocol file with --print-statistics.

This format was chosen so that text processing programs and scripts such as awk, perl, and
Excel can read it. For each type of statistic, the data for each process resp. pair of processes

9

http://www.pallas.com/e/products/pdf/Vampirtrace-FAQ.pdf

CHAPTER 3. HOW TO USE VAMPIRTRACE

(for messages) is contained in a consecutive block of lines. Beware that Vampirtrace is not able
to gather statistics by thread: if the application is multithreaded, statistics are still aggregated by
process.

A distinctive tag starts each one. The following table describes the data in the protocol file:
Type Tag Organization Available data

Routines ACTSTATS By process Number of calls
Minimum execution time (exclusive/inclusive)
Maximum execution time (exclusive/inclusive)
Total execution time (exclusive/inclusive)

Messages MSGSTATS By sending/receiving process Number of messages
Total number of bytes
Minimum and maximum size

Within each line, colons separate fields (:). For the three types of statistics, the format is as
follows:

Type Format

Routines <act>:<sym>:<pid>:<count>:
<minexcl>:<maxexcl>:<totalexcl>:
<minincl>:<maxincl>:<totalincl>

Messages <source>:<target>:<count>:<minsize>:<maxsize>:<totalsize>

The fields above have the following definitions:
Field Description Type Units

<act> Activity name String
<sym> Symbol name String
<pid> MPI task rank Integer
<count> Number of invocations/messages Integer
<min/max/totalexcl> Minimum, maximum, total execution time Floating Point Seconds

excluding called routines
<min/max/totalincl> Minimum, maximum, total execution time Floating Point Seconds

including called routines
<minsize>, <maxsize> Minimum, maximum message size Integer Bytes
<totalsize> Sum of message sizes Integer Bytes
<mintime>, <maxtime> Minimum, maximum execution time Floating Point Seconds
<totaltime> Total execution time Floating Point Seconds

Filter utilities, such as awk and perl, and plotting/spreadsheet packages, like Excel, can process
the statistical data easily. In the examples directory an awk script called convert-stats is provided
that illustrates how the values in the protocol file might be processed: it extracts the total times
and transposes the output so that each line has information about one function and all processes
instead of one function and process as in the protocol file. It also summarizes the time for all
processes. For messages the total message length is printed in a matrix with one row per sender
and one column per receiver.

3.4 Recording Source Location Information

To record the locations of subroutine calls in the source code automatically, the relevant applica-
tion modules must be compiled with support for debugging. To do this, use these compiler flags
that enable the generation of debug information for Vampirtrace:

cc -n32 -mips3 -U INLINE INTRINSICS -g -c ctest.c
f77 -n32 -mips3 -U INLINE INTRINSICS -g -c ftest.c

10

3.5. TRACING APPLICATION SUBROUTINES

If your compiler does not support a flag, then search for a similar one.

At runtime Program Counter (PC) tracing must be enabled, either by setting the environment
variable VT PCTRACE to e.g. 5 or by setting VT CONFIG to the name of a configuration file
specifying e.g.:

trace 4 call levels whenever MPI is used
ACTIVITY MPI 4

trace one call level in all routines not mentioned
explicitly; could also be e.g. PCTRACE5
PCTRACEON

PCTRACE sets the number of call levels for all subroutines that do not have their own setting.
Because unwinding the call stack each time a function is called can be very costly and cause
considerable runtime overhead, PCTRACE is disabled by default and should be handled with
care. It is useful to get an initial understanding of an application which then is followed by a
performance analysis without automatic source code locations.

Manual instrumentation of the source code with the Vampirtrace API can provide similar informa-
tion but without the performance overhead (see VT scldef()/VT thisloc() in section 5.3 for more
information). Automatically recording the locations of subroutine calls in the source code is not
supported on this platform. Manual instrumentation of the source code with the Vampirtrace API
can provide similar information (see VT scldef()/VT thisloc() in section 5.3 for more information).

3.5 Tracing Application Subroutines

Function tracing is always possible when using the GNU Compiler suite version 2.95.2 or later.
For that the object files that contain functions that are to be traced must be compiled with
“-finstrument-function” and VT must be able to obtain output about functions in the executable.
By default this is done by starting the shell program “nm -P”, which can be changed with the
NMCMD config option.

Function tracing can easily generate large amounts of trace data, especially for object oriented
programs. Folding function calls at run-time can help here, as described in section 6.6.

3.6 Recording Hardware Performance Information

Vampirtrace can sample Operating System values for each process with the getrusage() system
call and hardware counters with the Performace Application Programming Interface (PAPI). Be-
cause PAPI and getrusage() might not be available on a system, support for both is provided as
an additional layer on top of the normal Vampirtrace.

This layer is implemented in the VT sample.c source file. It was not possible to provide a pre-
compiled object file, because PAPI was either not available or not installed when this package
was prepared. The VT sample.o file can be rebuilt by entering the Vampirtrace lib directory,
editing the provided Makefile to match the local setup and then typing “make VT sample.o ”. It
is possible to compile VT sample.o without PAPI by removing the line with HAVEPAPI in the
provided Makefile. This results in a VT sample.o that only samples getrusage() counters, which
is probably not as useful as PAPI support.

The VT sample.o object file must be added to the link line in front of the Vampirtrace library. With
the symbolic link from libVTsample.a to VT sample.o that is already set in the lib directory

11

CHAPTER 3. HOW TO USE VAMPIRTRACE

it is possible to use -lVTsample and the normal linker search rules to include this object file. If
it includes PAPI support, then -lpapi must also be added, together with all libraries PAPI itself
needs—please refer to the PAPI documentation for details, which also describes all other aspects
of using PAPI. The link line might look like the following one:

cc -n32 -mips3 -U INLINE INTRINSICS ctest.o <search path for
PAPI> -L$(VT ROOT)/lib32 -lVTsample -lVT -lpapi -lmpi -lexc
-ldwarf -lnsl -lm -lelf -lpthread <libs required by PAPI> -o
ctest

Then the application must be run with configuration options that enable the counters of interest.
Because Vampirtrace cannot tell which ones are interesting, all of them are disabled by default.
The configuration option “COUNTER <counter name> ON” enables the counter and accepts
wildcards, so that e.g. “COUNTER PAPI * ON” enables all PAPI counters at once. Section 6
describes how to use configuration options.

However, enabling all counters at once is usually a bad idea because logging counters not re-
quired for the analysis just increases the amount of trace data. Even worse is that many PAPI
implementations fail completely with an error in PAPI start counters() when too many counters
are enabled because some of the selected counters are mutually exclusive due to restrictions in
the underlying hardware (see PAPI and/or hardware documentation for details).

PAPI counters are sampled at runtime each time a function entry or exit is logged. If this is not
sufficient f.i. because a function runs for a very long time, then Vampirtrace must be given a
chance to log data. This is done by inserting calls to VT wakeup() into the source code.

The following Operating System counters are always available, but might not be filled with useful
information if the operating system does not maintain them. They are not sampled as often as
PAPI counters, because they are unlikely to change as often. Vampirtrace only looks at them if
0.1 seconds have passed since last sampling them. This delay is specified in the VT sample.c
source code and can be changed by recompiling it. The man page of getrusage() or the system
manual should be consulted to learn more about these counters:

Counter Class: OS

Counter Name Unit Comment
RUUTIME s user time used
RUSTIME s system time used
RUMAXRSS bytes maximum resident set size
RUIXRSS bytes integral shared memory size
RUIDRSS bytes integral unshared data size
RUISRSS bytes integral unshared stack size
RUMINFLT # page reclaims—total vmfaults
RUMAJFLT # page faults
RUNSWAP # swaps
RUINBLOCK # block input operations
RUOUBLOCK # block output operations
RUMSGSND # messages sent
RUMSGRCV # messages received
RUNSIGNALS # signals received
RUNVCSW # voluntary context switches
RUNIVCSW # involuntary context switches

The number of PAPI counters is even larger and not listed here. They depend on the version of
PAPI and the CPU. A list of available counters including a short description is usually produced
with the command:

12

3.7. USING THE DUMMY LIBRARIES

<PAPI root >/ctests/avail -a

3.7 Using the Dummy Libraries

Programs containing calls to the Vampirtrace API (see section 5) can be linked with a “dummy”
version of the profiling libraries to create an executable that will not generate traces and incur a
much smaller profiling overhead. This library is called libVTnull.a and resides in the Vampirtrace
library directory. Here’s how a C MPI-application would be linked:

cc -n32 -mips3 -U INLINE INTRINSICS ctest.o -L$(VT ROOT)/lib32
-lVTnull -lmpi -o ctest

13

CHAPTER 3. HOW TO USE VAMPIRTRACE

14

Chapter 4

Structured Tracefile Format

4.1 Introduction

The Structured Trace File Format (STF) is a format that stores data in several physical files by
default. This chapter explains the motivation for this change and provides the technical back-
ground to configure and work with the new format. It is safe to skip over this chapter because all
configuration options that control writing of STF have reasonable default values.

The development of STF was motivated by the observation that the conventional approach of
handling trace data in a single trace file is not suitable for large applications or systems, where
the trace file can quickly grow into the tens of Gigabytes range. On the display side, such huge
amounts of data cannot be squeezed into one display at once. Mechanisms must be provided to
start at a coarser level of display and then resolve the display into more detailed information.

A coarse view of the data will be represented by frames, which cover different parts of the trace
data and provide previews for these parts, the so called thumbnails. Usually several frames exist
in one trace and the user will be able to navigate through the frames and select one or more to
request additional detailed information. The subdivision of a trace into frames can occur along
three principal dimensions:

along the time axis different frames represent different time intervals.

along the task/thread axis different frames represent different threads or processes

along the kind of trace data a frame can contain any combination of the following categories
of data: state changes, collective operations, point-to-point messages, counter values, and
finally file I/O data (for MPI-I/O, if supported).

For any application, the subdivision of trace data into frames can be defined at runtime by com-
piling calls to the frame definition routines in the Vampirtrace API (see section 5.8) into the ex-
ecutable, or before starting the application by specifying the configuration options discussed in
section 6. It is important to point out that frames are independent of the physical storing of data
in files, which is controlled by another set of configuration options.

These requirements necessitate a more powerful data organization than the previous Vampir
tracefile format can provide. In response to this, the Structured Tracefile Format (STF) has been
developed. The aim of the STF is to provide a file format which:

• can arbitrarily be partitioned into several files, each one containing a specific subset of the
data

15

CHAPTER 4. STRUCTURED TRACEFILE FORMAT

• allows fast random access and easy extraction of data

• provides precalculated thumbnails of the data that can be displayed without having to load
all of the data itself

• is extensible, portable, and upward compatible

• is clearly defined and structured

• can efficiently exploit parallelism for reading and writing

• is as compact as possible

The traditional tracefile format is only suitable for small applications, and cannot efficiently be
written in parallel. Also, it was designed for reading the entire file at once, rather than for extracting
arbitrary data. The structured tracefile implements these new requirements, with the ability to
store large amounts of data in a more compact form.

4.2 STF Components

A structured tracefile actually consists of a number of files as shown in the figure 4.1. Depending
on the number of frames and their distribution to actual files, the following component files will be
written, with <trace> being the tracefile name that can be automatically determined or set by the
LOGFILE-NAME directive:

• one index file with the name <trace>.stf

• one record declaration file with the name <trace>.stf.dcl

• one frame file with the name <trace>.stf.frm

• one statistics file with the name <trace>.stf.sts

• one message file with the name <trace>.stf.msg

• one global operation file with the name <trace>.stf.gop

• one or more process files with the name <trace>.stf.pr.<index>

• for the above three kinds of files, one anchor file each with the added extension .anc

The records for routine entry/exit and counters are contained in the process files. The anchor
files are used by Vampir to “fast-forward” within the record files; they can be deleted, but that may
result in slower operation of Vampir.

Please make sure that you use different names for traces from different runs; otherwise you will
experience difficulties in identifying which process files belong to an index file, and which ones
are left over from a previous run. To catch all component files, use the stftool with the --remove
option to delete a STF file, or put the files into single-file STF format for transmission or archival
with the stftool --convert option (see section 4.4.1).

The number of actual process files will depend on the setting of the STF-USE-HW-STRUCTURE
and STF-PROCS-PER-FILE configuration options described below.

16

4.3. SINGLE-FILE STF

Definitions
Declaration file
Frame file
Data/Anchor files
Statistics fileFunction declarations

Region declarations
SCL declarations
Counter declarations
...

Frame 1
Thumbnail 1
Thumbnail 2
Frame 2
...

Enter/Exit records Enter/exit anchors Function statistics
Message statistics
...

Message records Message anchors

... ...

Index file

Declaration file

Data files Anchor files Statistics file

Frame file

Figure 4.1: STF components

4.3 Single-File STF

As a new option in Vampirtrace, the trace data can be saved in the single-file STF format. This
format is selected by specifying the LOGFILE-FORMAT STFSINGLE configuration directive, and
it causes all the component files of an STF trace to be combined into one file with the extension
.stf.single. The logical frame structure is preserved, as are the precomputed thumbnails. The
drawback of the single-file STF format is that no I/O parallelism can be exploited when writing the
tracefile.

Reading it for analysis with Vampir is only marginally slower than the normal STF format, unless
the operating system imposes a performance penality on parallel read accesses to the same file.

4.4 Configuring STF

The two main aspects of the STF behavior that can be configured using directives in the Vampir-
trace configuration file or the equivalent environment variables as described in section 6 are:

Frame definition: frames can be defined by a regular subdivision of the process and execution
time space, and also depend on the hardware structure of the machine (where all of the
processes are running on the same node in one frame).

Mapping to files: frames are just a logical concept, and need not coincide with the set of files
actually written. Vampirtrace allows the event data to be partitioned in the process files by
blocking, or coinciding with the hardware structure, such that events from processes running
on the same node end up in one file.

The most important mechanisms for defining frames supported in Vampirtrace are:

17

CHAPTER 4. STRUCTURED TRACEFILE FORMAT

FRAME-USE-HW-STRUCTURE combines all processes running on the same node into the
same frame

PROCS-PER-FRAME <number> limits the number of processes that can be put in a frame

SECONDS-PER-FRAME <timespec > divides frames by time so that no frame corresponds to
more than <timespec> of execution

FRAMES-PER-RUNTIME <num > it adapts the duration so that the given number of frames is
achieved.

DATA-PER-FRAME <sizespec > divides frames in time whenever the data collected by all pro-
cesses exceeds the given freshold

To determine the file layout, the following options can be used:

STF-USE-HW-STRUCTURE will save the local events for all processes running on the same
node into one process file

STF-PROCS-PER-FILE <number > limits the number of processes whose events can be written
in a single process file

STF-CHUNKSIZE <bytes > determines at which intervals the anchors are set

All of these options are explained in more detail in the VT CONFIG chapter.

4.4.1 Structured Trace File Manipulation

Synopsis

stftool <input file> <config options>
--help
--version

Description

The stftool utility program reads a structured trace file (STF) in normal or single-file format. It
can perform various operations with this file:

• extract all or a subset of the trace data (default)
• convert the file format without modifying the content (--convert)
• list the components of the file (--print-files)
• remove all components (--remove)
• rename or move the file (--move)
• manipulate frames in the file (--redo-frames)
• list frames, thumbnails, statistics (--print-frames, --print-thumbnails, --print-statistics)

The output and behaviour of stftool is configured similarly to Vampirtrace: with a config file,
environment variables and command line options. The environment variable VT CONFIG
can be set to the name of a Vampirtrace configuration file. If the file exists and is readable,
then it is parsed first. Its settings are overriden with environment variables, which in turn are
overridden by config options on the command line.

All config options can be specified on the command line by adding the prefix ”--” and listing
its arguments after the keyword. The output format is derived automatically from the suffix of
the output file. You can write to stdout by using ”-” as filename; this defaults to writing ASCII
VTF.

18

4.4. CONFIGURING STF

These are examples of converting the entire file into different formats:
stfttool example.stf --convert example.avt # ASCII
stfttool example.stf --convert - # ASCII to stdout
stfttool example.stf --convert - --logfile-format STFSINGLE |

gzip -c >example.stf.single.gz # gzipped single-file STF

Without the --convert switch one can extract certain parts, but only write VTF:
stfttool example.stf --frames 1

--logfile-name example_frame1.avt # extract frame #1 as ASCII
stfttool example.stf --request 1s:5s

--logfile-name example_1s5s.bvt # extract interval as binary

All options can be given as environment variables. The format of the config file and environ-
ment variables are described in more detail in the documentation for VT CONFIG.

Supported Directives

--convert
Syntax : [<filename>]
Default : off
Converts the entire file into the file format specified with --logfile-format or the filename
suffix. Options that normally select a subset of the trace data are ignored when this
low-level conversion is done. Without this flag writing is restricted to ASCII and BINARY
format, while this flag can also be used to copy any kind of STF trace.

--move
Syntax : [<file/dirname>]
Default : off
Moves the given file without otherwise changing it. The target can be a directory.

--remove
Syntax :
Default : off
Removes the given file and all of its components.

--print-files
Syntax :
Default : off
List all components that are part of the given STF file, including their size. This is similiar
to ”ls -l”, but also works with single-file STF.

--print-statistics
Syntax :
Default : off
Prints the precomputed statistics of the input file to stdout.

--print-frames
Syntax :
Default : off
Prints a list of all frames in the input file to stdout.

--print-thumbnails
Syntax :
Default : off
Prints the precomputed thumbnails of each frame in the input file to stdout. Implies
PRINT-FRAMES.

--print-threads
Syntax :
Default : off
Prints information about each native thread that was encountered by Vampirtrace when
generating the trace.

19

CHAPTER 4. STRUCTURED TRACEFILE FORMAT

--redo-frames
Syntax :
Default : off
Modifies the frames of the STF file without copying it. By default it will keep all frames in
the file, but recalculate their thumbnails. You can control which frames are kept with the
FRAMES filter options and add new ones with FRAME.

--dump
Syntax :
Default : off
This is a shortcut for ”--log-filename -” and ”--log-fileformat ASCII”, i.e. it prints the trace
data to stdout.

--frames
Syntax : <triplets> | <pattern> [on|off]
Default : 0:N = all
With this option you can extract some of the predefined frames from the input file. By
default all frames are enabled, but if you use this option then only those listed explicitly
are extracted. The first form enables frames by their number, while the second one
matches against either the type or label of a frame. The second form overrides the first,
and a filter that matches the label of a frame overrides a filter that matches the type.
If the stftool is used to recalculate frames, then this option specifies which frames are
preserved.

--request
Syntax : ”<type>”, <thread triplets>, <categories>, <duration>, <window>

This option has the same arguments as the --frame option below, but in contrast to
defining a new frame, it restricts the data that is written into the new trace to that which
matches the arguments. This option can be used more than once and then data match-
ing any request is written.

--logfile-name
Syntax : <file name>

Specifies the name for the tracefile containing all the trace data. Can be an absolute or
relative pathname; in the latter case, it is interpreted relative to the log prefix (if set) or
the current working directory of the process writing it.
If unspecified, then the name is the name of the program plus ”.bvt” for binary, ”.avt” for
ASCII, ”.stf” for STF and ”.stf.single” for single STF tracefiles. If one of these suffices is
used, then they also determine the logfile format, unless the format is specified explicitly.
In the stftool the name must be specified explicitly, either by using this option or as
argument of the --convert or --move switch.

--logfile-format
Syntax : [ASCII|BINARY|STF|STFSINGLE]
Specifies the format of the tracefile. ASCII and BINARY are the traditional Vampir file
formats where all trace data is written into one file. ASCII is human-readable, whereas
BINARY is a more compact machine-readable format.
The Structured Trace File (STF) is a binary format which supports storage of trace data
in several files and allows Vampir to analyse the data without loading all of it, so it is more
scalable. Writing it is only supported by Vampirtrace at the moment.
One trace in STF format consists of several different files which are referenced by one
index file (.stf). The advantage is that different processes can write their data in paral-
lel (see STF-PROCS-PER-FILE, STF-USE-HW-STRUCTURE). STFSINGLE rolls all of
these files into one (.stf.single), which can be read without unpacking them again. How-
ever, this format does not support distributed writing, so for large program runs with many
processes the generic STF format is better.

--extended-vtf
Syntax :

20

4.4. CONFIGURING STF

Default : off in VT, on in stftool

Several events can only be stored in STF, but not in VTF. Vampirtrace libraries default
to writing valid VTF trace files and thus skip these events. This option enables writing
of non-standard VTF records in ASCII mode that Vampir would complain about. In the
stftool the default is to write these extended records, because the output is more likely to
be parsed by scripts rather than Vampir.

--matched-vtf
Syntax :

Default : off

When converting from STF to ASCII-VTF communication records are usually split up into
conventional VTF records. If this option is enabled, an extended format is written, which
puts all information about the communication into a single line.

--verbose
Syntax : [on|off|<level>]

Default : on

Enables or disables additional output on stderr. <level> is a positive number, with larger
numbers enabling more output:

• 0 (= off) disables all output
• 1 (= on) enables only one message when trace file writing starts
• 2 enables general progress reports by the main process
• 3 enables detailed progress reports by the main process
• 4 the same, but for all processes

Levels larger than 2 may contain output that only makes sense for the developers of VT.
--frame

Syntax : ”<type>”, <thread triplets>, <categories>, <duration>, <window>

This option defines a new frame for certain categories and threads. The <duration> cor-
responds to SECONDS-PER-FRAME, but the value is valid for this frame type alone. If a
window is given (in the form <timespec>:<timespec> with at least one unit descriptor),
frames are created only inside this time interval. It has the usual format of a time value,
with one exception: the unit for seconds ”s” is not optional to distinguish it from a thread
triplet, i.e. use ”10s” instead of just ”10”. The <type> can be any kind of string in single or
double quotation marks, but it should uniquely identify the kind of data combined into this
frame. Valid <categories> are FUNCTIONS, SCOPES, OPENMP, FILEIO, COUNTERS,
MESSAGES, COLLOPS.

All of the arguments are optional and default to ”unnamed frame”, all threads, all cate-
gories and the whole time interval. They can be separated by commas or spaces and it
is possible to mix them as desired.

--thumbnail
Syntax : <pattern> [on|off]

Default : on

Enables or disables those thumbnails whose name matches the pattern.
--message-thumb-size

Syntax : <size>

Default : 32

This option limits the size of the ”Sent Message Statistics” thumbnail in the x and y di-
rections. Without this limit the thumbnail would require space proportional to the number
of processes squared, which does not scale for large number of processes.

SEE ALSO

VT CONFIG(3)

21

CHAPTER 4. STRUCTURED TRACEFILE FORMAT

4.4.2 Expanded ASCII output of STF files

Synopsis

xstftool <STF file> [stftool options]

Valid options are those that work together with ”stftool --dump”, the most important ones
being:

• --request: extract a subset of the data
• --frames: extract trace data of certain frames
• --matched-vtf: put information about complex events like messages and collective oper-

ations into one line

Description

The xstftool is a simple wrapper around the stftool and the expandvtlog.pl Perl script which
tells the the stftool to dump a given Structured Trace Format (STF) file in ASCII format and
uses the script as a filter to make the output more readable.

It is intended to be used for doing custom analysis of trace data with scripts that parse the
output to extract information not provided by the existing tools, or for situations where a few
shell commands provide the desired information more quickly than a graphical analysis tool.

Output

The output has the format of the ASCII Vampir Trace Format (VTF), but entities like function
names are not represented by integer numbers that cannot be understood without remem-
bering their definitions, but rather inserted into each record. The CPU numbers that encode
process and thread ranks resp. groups are also expanded.

Examples

The following examples compare the output of ”stftool --dump” with the expanded output of
”xstftool”:

• definition of a group
DEFGROUP 2147942402 "All_Processes" NMEMBS 2 2147483649 2147483650
DEFGROUP All_Processes NMEMBS 2 "Process_0" "Process_2"

• a counter sample on thread 2 of the first process
8629175798 SAMP CPU 131074 DEF 6 UINT 8 3897889661
8629175798 SAMP CPU 2:1 DEF "PERF_DATA:PAPI_TOT_INS" UINT 8 3897889661

22

Chapter 5

User-level Instrumentation with the
API

5.1 The Vampirtrace API

The Vampirtrace library provides the user with a number of routines that control the profiling li-
brary and record user-defined activities, define groups of processes, define performance counters
and record their values, and finally define and create frames. Header files with the necessary pa-
rameter, macro and function declarations are provided in the include directory: VT.h for ANSI C
and C++ and VT.inc for Fortran 77 and Fortran 90. It is strongly recommended to include these
header files if any Vampirtrace API routines are to be called.

#define VT VERSION
API version constant.
It is incremented each time the API changes, even if the change does not
break compatibility with the existing API. Therefore you should check against
VT VERSION COMPATIBILITY to determine whether your program is compatible with
this version of the VT library.

#define VT VERSION COMPATIBILITY
Oldest API definition which is still compatible with the current one.
This is set to the current version each time an API change can break programs written
for the previous API. For example, a program written for VT VERSION 2090 will work
with API 3000 if VT VERSION COMPATIBILITY remained at 2090. It may even work
without modifications when VT VERSION COMPATIBILITY was increased to 3000,
but this should be checked.

Suppose you instrumented your C source code for the API with VT VERSION equal to 3100.
Then you could add the following code fragment to detect incompatible changes in the API:
#include <VT.h>
#if VT VERSIONCOMPATIBILITY > 3100
error Vampirtrace API is no longer compatible with our calls
#endif

Of course, breaking compatibility that way will be avoided at all costs. Beware that you must
compare against a fixed number and not VT VERSION, because VT VERSION will always be

23

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

greater or equal VT VERSION COMPATIBILITY.

To make the instrumentation work again after such a change, one can either just update the
instrumentation to accommodate for the change or even provide different instrumentation that is
chosen by the C preprocessor based on the value of VT VERSION.

5.2 Initialization, Termination and Control

Vampirtrace is automatically initialized within the execution of the MPI Init() routine. During
the execution of the MPI Finalize() routine, the trace data collected in memory or in temporary
files is consolidated and written into the permanent trace file(s), and Vampirtrace is terminated.
Thus, it is an error to call Vampirtrace API functions before MPI Init() has been executed or after
MPI Finalize() has returned.

In non-MPI applications it may be necessary to start and stop Vampirtrace explicitly. These calls
also help to write programs and libraries that use VT without depending on MPI.

int VT initialize (int ∗ argc , char ∗∗∗ argv)
Initialize VT and underlying communication.
VT initialize(), VT getrank(), VT finalize() can be used to write applications or libraries
which work both with and without MPI, depending on whether they are linked with
libVT.a plus MPI or with libVTsp.a (single process VT) and no MPI.
If the MPI that VT was compiled for provides MPI Init thread(), then VT init() will call
MPI Init thread() with the parameter required set to MPI THREAD FUNNELED. This
is sufficient to initialize multithreaded applications where only the main thread calls
MPI. If your application requires a higher thread level, then either use MPI Init thread()
instead of VT init() or (if VT init() is called e.g. by your runtime environment) set the
environment variable VT THREAD LEVEL to a value of 0 till 3 to choose thread levels
MPI THREAD SINGLE till MPI THREAD MULTIPLE.
It is not an error to call VT initialize() twice or after a MPI Init().

Fortran
VTINIT(ierr)

Returns:
error code

int VT finalize (void)
Finalize VT and underlying communication.
It is not an error to call VT finalize() twice or after a MPI Finalize().

Fortran
VTFINI(ierr)

Returns:
error code

int VT getrank (int ∗ rank)
Get process index (same as MPI rank within MPI COMM WORLD).

Fortran
VTGETRANK(rank, ierr)

Return values:
rank process index is stored here

Returns:
error code

24

5.2. INITIALIZATION, TERMINATION AND CONTROL

The recording of performance data can be controlled on a per-process basis by calls to the
VT traceon() and VT traceoff() routines: a thread calling VT traceoff() will no longer record any
state changes, MPI communication or counter events. Tracing can be re-enabled by calling the
VT traceon() routine. The collection of statistics data is not affected by calls to these routines.
With the API routine VT tracestate() a process can query whether events are currently being
recorded.

void VT traceoff (void)
Turn tracing off for thread if it was enabled, does nothing otherwise.

Fortran
VTTRACEOFF()

void VT traceon (void)
Turn tracing on for thread if it was disabled, otherwise do nothing.
Cannot enable tracing if ”PROCESS/CLUSTER NO” was applied to the process in the
configuration.

Fortran
VTTRACEON()

int VT tracestate (int ∗ state)
Get logging state of current thread.
Set by config options PROCESS/CLUSTER, modified by VT traceon/off().
There are three states:

• 0 = thread is logging
• 1 = thread is currently not logging
• 2 = logging has been turned off completely

Note that different threads within one process may be in state 0 and 1 at the same
time because VT traceon/off() sets the state of the calling thread, but not for the whole
process.
State 2 is set via config option ”PROCESS/CLUSTER NO” for the whole process and
cannot be changed.

Fortran
VTTRACESTATE(state, ierr)

Return values:
state is set to current state

Returns:
error code

With the Vampirtrace configuration mechanisms described in chapter VT CONFIG, the record-
ing of state changes can be controlled per symbol or activity. For any defined symbol, the
VT symstate() routine returns whether data recording for that symbol has been disabled.

25

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

int VT symstate (int statehandle , int ∗ on)
Get filter state of one state.
Set by config options SYMBOL, ACTIVITY.
Note that a state may be active even if the thread’s logging state is ”off”.

Fortran
VTSYMSTATE(statehandle, on, ierr)

Parameters:
statehandle result of VT funcdef() or VT symdef()

Return values:
on set to 1 if symbol is active

Returns:
error code

Vampirtrace minimizes the instrumentation overhead by first storing the recorded trace data locally
in each processor’s memory and saving it to disk only when the memory buffers are filled up.
Calling the VT flush() routine forces a process to save the in-memory trace data to disk, and mark
the duration of this in the trace. After returning, Vampirtrace continues normally.

int VT flush (void)
Flushes all trace records from memory into the flush file.
The location of the flush file is controlled by options in the config file. Flushing will be
recorded in the trace file as entering and leaving the state VT API:TRACE FLUSH with
time stamps that indicate the duration of the flushing. Automatic flushing is recorded
as VT API:AUTO FLUSH.

Fortran
VTFLUSH(ierr)

Returns:
error code

Please refer to section 6 to learn about the MEM-BLOCKSIZE and MEM-MAXBLOCKS configu-
ration directives that control Vampirtrace’s memory usage.

Vampirtrace makes its internal clock available to applications, which can be useful to write instru-
mentation code that works with MPI and non-MPI applications:

double VT timestamp (void)
Returns monotonously increasing time stamps that measure seconds, or
VT ERR NOTINITIALIZED.
Time stamps are not guaranteed to be synchronized between processes. Within each
process they are always larger than the value returned by VT timestart().

Fortran
DOUBLE PRECISION VTSTAMP()

double VT timestart (void)
Returns point in time when process started, or VT ERR NOTINITIALIZED.

Fortran
DOUBLE PRECISION VTTIMESTART()

5.3 Defining and Recording Source Locations

Source locations can be specified and recorded in two different contexts:

26

5.4. DEFINING AND RECORDING FUNCTIONS OR REGIONS

State changes, associating a source location with the state change. This is useful to record
where a routine has been called, or where a code region begins and ends.

Communication events, associating a source location with calls to MPI routines, e.g. calls to
the send/receive or collective communication and I/O routines.

To minimize instrumentation overhead, locations for the state changes and communication events
are referred to by integer location handles that can be defined by calling the new API routine
VT scldef(), which will automatically assign a handle. The old API routine VT locdef() which
required the user to assign a handle value has been removed. A source location is a pair of a
filename and a line number within that file.

int VT scldef (const char ∗ file , int line nr , int ∗ sclhandle)
Allocates a handle for a source code location (SCL).

Fortran
VTSCLDEF(file, line nr, sclhandle, ierr)

Parameters:
file file name

line nr line number in this file, counting from 1
Return values:

sclhandle the int it points to is set by VT
Returns:

error code

Some functions require a location handle, but they all accept VT NOSCL instead of a real handle:

#define VT NOSCL
special SCL handle: no location available.

Vampirtrace automatically records all available information about MPI calls. On some systems,
the source location of these calls is automatically recorded. On the remaining systems, the source
location of MPI calls can be recorded by calling the VT thisloc() routine immediately before the
call to the MPI routine, with no intervening MPI or Vampirtrace API calls.

int VT thisloc (int sclhandle)
Set source code location for next activity that is logged by VT.
After being logged it is reset to the default behaviour again: automatic PC tracing if
enabled in the config file and supported or no SCL otherwise.

Fortran
VTTHISL(sclhandle, ierr)

Parameters:
sclhandle handle defined either with VT scldef()

Returns:
error code

5.4 Defining and Recording Functions or Regions

Vampir can display and analyze general (properly nested) state changes, relating to subroutine
calls, entry/exit to/from code regions and other activities occurring in a process. Vampir imple-
ments a two-level model of states: a state is referred to by an activity name that identifies a group

27

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

of states, and the state (or symbol) name that references a particular state in that group. For
instance, all MPI routines are part of the activity MPI, and each one is identified by its routine
name, e.g. MPI Send for C and MPI SEND for Fortran.

The Vampirtrace API allows the user to define arbitrary activities and symbols and to record entry
and exit to/from them. In order to reduce the instrumentation overhead, symbols are referred to by
integer handles that can be managed automatically (using the VT funcdef() interface) or assigned
by the user (using the old VT symdef() routine). All activities and symbols must be defined by
each process that uses them, but it is no longer necessary to define them consistently on all
processes (see UNIFY-SYMBOLS).

Optionally, information about source locations can be recorded for state enter and exit events by
passing a non-null location handle to the VT enter()/VT leave() or VT beginl()/VT endl() routines.

5.4.1 New Interface

To simplify the use of user-defined states, a new interface has been introduced for Vampirtrace.
It manages the symbol handles automatically, freeing the user from the task of assigning and
keeping track of symbol handles, and has a reduced number of arguments. Furthermore, the
performance of the new routines has been optimized, reducing the overhead of recording state
changes.

To define a new symbol, first the respective activity needs to have been created by a call to the
VT classdef() routine. A handle for that activity is returned, and with it the symbol can be defined
by calling VT funcdef(). The returned symbol handle is passed f.i. to VT enter() to record a state
entry event.

int VT classdef (const char ∗ classname , int ∗ classhandle)
Allocates a handle for a class name.

Fortran
VTCLASSDEF(classname, classhandle, ierr)

Parameters:
classname name of the class

Return values:
classhandle the int it points to is set by VT

Returns:
error code

int VT funcdef (const char ∗ symname , int classhandle , int ∗ statehandle)
Allocates a handle for a state.
This is a replacement for VT symdef() which doesn’t require the application to provide
a unique numeric handle.

Fortran
VTFUNCDEF(symname, classhandle, statehandle, ierr)

Parameters:
symname name of the symbol

classhandle handle for the class this symbol belongs to, created with
VT classdef(), or VT NOCLASS, which is the same as ”Application”

Return values:
statehandle the int it points to is set by VT

Returns:
error code

28

5.4. DEFINING AND RECORDING FUNCTIONS OR REGIONS

#define VT NOCLASS
special value for VT funcdef(): put function into the default class ”Application”.

5.4.2 Old Interface

To define a new symbol, first determine which value should be used for the symbol handle, and
then call the VT symdef() routine, passing the symbol and activity names, plus the handle value.
It is not necessary to define the activity itself. Care must be taken to avoid using the same handle
value for different symbols.

int VT symdef (int statehandle , const char ∗ symname , const char ∗ activity)
Defines the numeric statehandle as shortcut for a state.
This function will become obsolete and should not be used for new code.

Fortran
VTSYMDEF(code, symname, activity, ierr)

Parameters:
statehandle numeric value chosen by the application

symname name of the symbol

activity name of activity this symbol belongs to
Returns:

error code

5.4.3 State Changes

The following routines take a state handle defined with either the new or old interface. Handles
defined with the old interface incur a higher overhead in these functions, because they must be
mapped to the real internal handles. Therefore it is better to use the new interface, so that support
for the old interface may eventually be removed.

Vampirtrace distinguishes between code regions (marked with VT begin()/VT end()) and func-
tions (marked with VT enter()/VT leave()). The difference is only relevant when passing source
code locations:

29

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

int VT begin (int statehandle)
Marks the beginning of a region with the name that was assigned to the symbol.
Regions should be used to subdivide a function into different parts or to mark the
location where a function is called.

Notes:
If automatic tracing of source code locations (aka PC tracing) is supported, then
VT will log the location where VT begin() is called as source code location for this
region and the location where VT end() is called as SCL for the next part of the
calling symbol (which may be a function or another, larger region).

If a SCL has been set with VT thisloc(), then this SCL will be used even if PC tracing
is supported.
The functions VT enter() and VT leave() have been added that can be used to mark
the beginning and end of a function call within the function itself. The difference is that
a manual source code location which is given to VT leave() cannot specify where the
function call took place, but rather were the function is left. So currently it has to be
ignored until the trace file format can store this additional information.
If PC tracing is enabled, then the VT leave routine stores the SCL where the in-
strumented function was called as SCL for the next part of the calling symbol. In
other words, it skips the location where the function is left, which would be recorded if
VT end() were used instead.
VT begin() adds an entry to a stack which can be removed with (and only with)
VT end().

Fortran
VTBEGIN(statehandle, ierr)

Parameters:
statehandle handle defined either with VT symdef() or VT funcdef()

Returns:
error code

int VT beginl (int statehandle , int sclhandle)
Shortcut for VT thisloc(sclhandle); VT begin(statehandle).

Fortran
VTBEGINL(statehandle, sclhandle, ierr)

int VT end (int statehandle)
Marks the end of a region.
Has to match a VT begin(). The parameter was used to check this, but this is no longer
done to simplify instrumentation; now it is safe to pass a 0 instead of the original state
handle.

Fortran
VTEND(statehandle, ierr)

Parameters:
statehandle obsolete, pass anything you want

Returns:
error code

int VT endl (int statehandle , int sclhandle)
Shortcut for VT thisloc(sclhandle); VT end(statehandle).

Fortran
VTENDL(statehandle, sclhandle, ierr)

30

5.4. DEFINING AND RECORDING FUNCTIONS OR REGIONS

int VT enter (int statehandle , int sclhandle)
Mark the beginning of a function.
Usage similar to VT beginl(). See also VT begin().

Fortran
VTENTER(statehandle, sclhandle, ierr)

Parameters:
statehandle handle defined either with VT symdef() or VT funcdef()

sclhandle handle, defined by VT scldef. Use VT NOSCL if you don’t have a
specific value.

Returns:
error code

int VT leave (int sclhandle)
Mark the end of a function.
See also VT begin().

Fortran
VTLEAVE(sclhandle, ierr)

Parameters:
sclhandle handle, defined by VT scldef. Currently ignored, but is meant to spec-

ify the location of exactly where the function was left in the future. Use
VT NOSCL if you don’t have a specific value.

Returns:
error code

int VT wakeup (void)
Triggers the same additional actions as logging a function call does.
When Vampirtrace logs a function entry or exit it might also execute other actions,
like sampling and logging counter data. If a function runs for a very long time, then
Vampirtrace has no chance to execute these actions. To avoid that, the programmer
can insert calls to this function into the source code of the long-running function.

Fortran
VTWAKEUP(ierr)

Returns:
error code

31

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

5.5 Defining and Recording Overlapping Scopes

int VT scopedef (const char ∗ scopename , int classhandle , int scl1 , int scl2 , int ∗
scopehandle)
In contrast to a state, which is entered and left with VT begin/VT end() respectively
VT enter/VT leave(), a scope does not follow a stack based approach.
It is possible to start a scope ”a”, then start scope ”b” and stop ”a” before ”b”:

|---- a -----|
|------ b -----|

A scope is identified by its name and class, just like functions. The source code
locations that can be associated with it are just additional and optional attributes; they
could be used to mark a static start and end of the scope in the source.

Fortran
VTSCOPEDEF(scopename, classhandle, scl1, scl2, scopehandle, ierr)

Parameters:
scopename the name of the scope

classhandle the class this scope belongs to (defined with VT classdef())

scl1 any kind of SCL as defined with VT scldef(), or VT NOSCL

scl2 any kind of SCL as defined with VT scldef(), or VT NOSCL
Return values:

scopehandle set to a numeric handle for the scope, needed by VT scopebegin()
Returns:

error code

int VT scopebegin (int scopehandle , int scl , int ∗ seqnr)
Starts a new instance of the scope previously defined with VT scopedef().
There can be more than one instance of a scope at the same time. In order to have
the flexibility to stop an arbitrary instance, VT assigns an intermediate identifier to it
which can (but does not have to) be passed to VT scopeend(). If the application does
not need this flexibility, then it can simply pass 0 to VT scopeend().

Fortran
VTSCOPEBEGIN(scopehandle, scl, seqnr, ierr)

Parameters:
scopehandle the scope as defined by VT scopedef()

scl in contrast to the static SCL given in the scope definition this one can vary
with each instance; pass VT NOSCL if not needed

Return values:
seqnr is set to a number that together with the handle identifies the scope in-

stance; pointer may be NULL
Returns:

error code

32

5.6. DEFINING GROUPS OF PROCESSES

int VT scopeend (int scopehandle , int seqnr , int scl)
Stops a scope that was previously started with VT scopebegin().

Fortran
VTSCOPEEND(scopehandle, seqnr, scl)

Parameters:
scopehandle identifies the scope that is to be terminated

seqnr 0 terminates the most recent scope with the given handle, passing the
seqnr returned from VT scopebegin() terminates exactly that instance

scl a dynamic SCL for leaving the scope

5.6 Defining Groups of Processes

Vampirtrace makes it possible to define an arbitrary, recursive group structure over the processes
of an MPI application, and Vampir is able to display profiling and communication statistics for these
groups. Thus, a user can start with the top-level groups and walk down the hierarchy, “unfolding”
interesting groups into ever more detail until he arrives at the level of processes or threads.

Groups are defined recursively with a simple bottom-up scheme: the VT groupdef() routine builds
a new group from a list of already defined groups or processes, returning an integer group handle
to identify the newly defined group. The following handles are predefined:

enum VT Group
Enumeration values:

VT ME the calling thread/process.

VT GROUP THREAD Group of all threads.

VT GROUP PROCESS Group of all processes.

VT GROUP CLUSTER Group of all clusters.

To refer to non-local processes, the lookup routine VT getprocid() translates between ranks in
MPI COMM WORLD and handles that can be used for VT groupdef():

int VT getprocid (int procindex , int ∗ procid)
Get global id for process which is identified by process index.
If threads are supported, then this id refers to the group of all threads within the pro-
cess, otherwise the result is identical to VT getthreadid(procindex, 0, procid).

Fortran
VTGETPROCID(procindex, procid, ierr)

Parameters:
procindex index of process (0 <= procindex < N)

Return values:
procidpointer to mem place where id is written to

Returns:
error code

The same works for threads:

33

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

int VT getthreadid (int procindex , int thindex , int ∗ threadid)
Get global id for the thread which is identified by the pair of process and thread index.

Fortran
VTGETTHREADID(procindex, thindex, threadid, ierr)

Parameters:
procindex index of process (0 <= procindex < N)

thindex index of thread
Return values:

threadid pointer to mem place where id is written to
Returns:

error code

int VT groupdef (const char ∗ name , int n members , int ∗ ids , int ∗ grouphandle)
Defines a new group and returns a handle for it.
Groups are distinguished by their name and their members. The order of group mem-
bers is preserved, which can lead to groups with the same name and same set of
members, but different order of these members.

Fortran
VTGROUPDEF(name, n members, ids[], grouphandle, ierr)

Parameters:
name the name of the group

n members number of entries in the ids array

ids array where each entry is either:

• VT ME
• VT GROUP THREAD
• VT GROUP PROCESS
• VT GROUP CLUSTER
• result of VT getthreadid(), VT getprocid() or VT groupdef()

Return values:
grouphandle handle for the new group, or old handle if the group was defined

already
Returns:

error code

To generate a new group that includes the processes with even ranks in MPI COMM WORLD,
one can code:
int *IDS = malloc(sizeof(*IDS)*(number_procs/2));
int i, even_group;
for(i = 0; i < number_procs; i += 2)

VT getprocid (i, IDS + i/2);
VT groupdef (‘‘Even Group’’, number_procs/2, IDS, &even_group);

5.7 Defining and Recording Counters

Vampirtrace introduces the concept of counters to model numeric performance data that changes
over the execution time. Counters can be used to capture the values of hardware performance
counters, or of program variables (iteration counts, convergence rate, . . .) or any other numerical
quantity. A Vampirtrace counter is identified by its name, the counter class it belongs to (similar
to the two-level symbol naming), and the type of its values (integer or floating-point) and the units
that the values are quoted in (e.g. MFlop/sec). Furthermore, the upper and lower bounds can be
set to assist Vampir in scaling its displays.

34

5.7. DEFINING AND RECORDING COUNTERS

A counter can be attached to MPI processes to record process-local data, or to arbitrary groups.
When using a group, then each member of the group will have its own instance of the counter
and when a process logs a value it will only update the counter value of the instance the process
belongs to.

Similar to other Vampirtrace objects, counters are referred to by integer counter handles that are
managed automatically by the library.

To define a counter, the class it belongs to must have been defined by calling VT classdef(). Then,
call VT countdef(), and pass the following information:

• the counter name

• the data type

enum VT CountData
Enumeration values:

VT COUNT INTEGER Counter measures 64 bit integer value, passed to
VT API as a pair of high and low 32 bit integers.

VT COUNT FLOAT Counter measures 64 bit floating point value (native
format).

VT COUNT INTEGER64 Counter measures 64 bit integer value (native
format).

VT COUNT DATA mask to extract the data format.

• the kind of data

enum VT CountDisplay
Enumeration values:

VT COUNT ABSVAL counter shall be displayed with absolute values.

VT COUNT RATE first derivative of counter values shall be displayed.

VT COUNT DISPLAY mask to extract the display type.

• the semantic associated with a sample value

enum VT CountScope
Enumeration values:

VT COUNT VALID BEFORE the value is valid until and at the current
time.

VT COUNT VALID POINT the value is valid exactly at the current time,
and no value is available before or or after it.

VT COUNT VALID AFTER the value is valid at and after the current time.

VT COUNT VALID SAMPLE the value is valid at the current time and
samples a curve, so e.g.
linear interpolation between sample values is possible

VT COUNT SCOPE mask to extract the scope.

• the counter’s target, that is the process or group of processes it belongs to
(VT GROUP THREAD for a thread-local counter, VT GROUP PROCESS for a process-
local counter, or an arbitrary previously defined group handle)

35

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

• the lower and upper bounds

• the counter’s unit (an arbitrary string like FLOP, Mbytes)

int VT countdef (const char ∗ name , int classhandle , int genre , int target , const
void ∗ bounds , const char ∗ unit , int ∗ counterhandle)
Define a counter and get handle for it.
Counters are identified by their name (string) alone.

Fortran
VTCOUNTDEF(name, classhandle, genre, target, bounds[], unit, counterhandle,
ierr)

Parameters:
name string identifying the counter

classhandle class to group counters, handle must have been retrieved by
VT classdef

genre bitwise or of one value from VT CountScope, VT CountDisplay and VT -
CountData

target target which the counter refers to (VT ME, VT GROUP THREAD,
VT GROUP PROCESS, VT GROUP CLUSTER or thread/process-id or
user-defined group handle).

bounds array of lower and upper bounds (2x 64 bit float, 2x2 32 bit integer, 2x
64 bit integer -> 16 byte)

unit string identifying the unit for the counter (like Volt, pints etc.)
Return values:

counterhandle handle identifying the defined counter
Returns:

error code

The integer counters have 64-bit integer values, while the floating-point counters have
a value domain of 64-bit IEEE floating point numbers. On systems that have no
64-bit int type in C, and for Fortran, the 64-bit values are specified using two 32-
bit integers. Integers and floats are passed in the native byte order, but for
VT COUNT INTEGER the integer with the higher 32 bits must be given first on all platforms:

VT COUNT INTEGER 32 bit integer (high) 32 bit integer (low)

VT COUNT INTEGER64 64 bit integer

VT COUNT FLOAT 64 bit float

At any time during execution, a process can record a new value for any of the defined counters
by calling one of the Vampirtrace API routines described below. To minimize the overhead, it is
possible to set the values of several counters with one call by passing an integer array of counter
handles and a corresponding array of values. In C, it is possible to mix 64-bit integers and 64-bit
floating point values in one value array; in Fortran, the language requires that the value array
contains either all integer or all floating point values.

36

5.8. DEFINING FRAMES

int VT countval (int ncounters , int ∗ handles , void ∗ values)
Record counter values.
Values are expected as two 4-byte integers, one 8-byte integer or one 8-byte double,
according to the counter it refers to.

Fortran
VTCOUNTVAL(ncounters, handles[], values[], ierr)

Parameters:
ncounters number of counters to be recorded

handles array of ncounters many handles (previously defined by VT countdef)

values array of ncounters many values, value[i] corresponds to handles[i].
Returns:

error code

The examples directory contains counterscopec.c , which demonstrates all of these facilities.

5.8 Defining Frames

Frames are a new concept implemented in the structured tracefile format (STF) as supported by
Vampirtrace (see section 4 for details about STF). A frame is a subset of a trace file, identified by
any combination of the following

• a time interval (start and end time), defined by calling VT framebegin() resp. VT frameend()

• a subset of threads, defined by who calls VT framedef()

• a subset of data categories:

enum VT Categories
Enumeration values:

VT CAT ANY DATA special value that matches everything.

VT CAT FUNCTIONS function entry/exits (strictly stack oriented).

VT CAT SCOPES scope start/ends (may overlap).

VT CAT OPENMP OpenMP support.

VT CAT FILEIO MPI-IO.

VT CAT COUNTERS counter values.

VT CAT MESSAGES one-to-one communication.

VT CAT COLLOPS communication among more than two threads.

Vampirtrace can automatically define frames controlled by the configuration mechanisms de-
scribed in chapter 6; it is, however, also possible to define frames and create instances of them
with API calls. For most applications, this will not be necessary—please use the configuration
mechanisms since the proper use of the frame API is quite complex.

A frame set is identified by its name and either belongs to (and contains) all threads of a process
or just those threads that define it:

37

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

enum VT FrameScope
Enumeration values:

VT FRAME PROCESS register all threads of process.

VT FRAME THREAD register calling thread only.

Vampirtrace automatically assigns a frame handle for future reference to the newly defined frame
set. After definition, the processes can now create frames belonging to the frame set by starting
data collection into the frame and ending it later. Since a frame cannot contain disjoint time
intervals for any of its processes, starting to collect data into a frame creates a new instance of
it, which will be completed when the process ends data collection. Each frame is identified by a
label string passed with the frame start call.

The frame definition is handled by the VT framedef() routine:

int VT framedef (const char ∗ type , int categories , int target , int ∗ frame handle)
Define a frame.

Fortran
VTFRAMEDEF(type, categories, target, frame handle, ierr)

Parameters:
type string which uniquely identifies frame (must not be NULL)

categories Ored values representing categories (enum VT Categories) to be
held in frame

target VT FRAME PROCESS for registering all threads in a process at once;
subsequent calls to VT framebegin/end must be done only once per frame
instance (the entry- and exit-points must be indicated by one thread only).
VT FRAME THREAD for registering each thread individualy; subsequent
calls to VT framebegin/end must be done by each thread.

Return values:
frame handle handle is stored here

Returns:
error code

To start collecting data into a frame (and thus create a new frame instance), call the
VT framebegin() routine, passing a label to identify the newly created frame instance. To end
an active frame instance, call the VT frameend() routine. Please note that all processes in a
frame have to call VT framebegin() and VT frameend() in a loosely synchronous way to create
a new instance - Vampirtrace will match up the first calls to VT framebegin() to start the first in-
stance, then the first calls to VT frameend() to stop that instance, starting over with the second
calls to VT framebegin() etc. It is possible to have arbitrary overlaps between frames with different
frame handles. If the frame set was defined with VT FRAME THREAD, then every thread in each
participating process must call these functions.

38

5.9. C++ API

int VT framebegin (const char ∗ label , int frame handle)
Let a given frame begin for calling thread (VT FRAME THREAD) or the whole process
(VT FRAME PROCESS).
For all threads in the frame this function must be called in the same order and equally
often.

Fortran
VTFRAMEBEGIN(label, framehandle, ierr)

Parameters:
label string which identifies frame instance (may be empty)

frame handle handle identifying frame (from VT framedef)
Returns:

error code

int VT frameend (int frame handle)
Let a given frame end for calling thread (VT FRAME THREAD) or the whole process
(VT FRAME PROCESS).
For all threads in frame this function must be called in the same order and equally
often and must follow a VT framebegin.

Fortran
VTFRAMEEND(frame handle, ierr)

Parameters:
frame handle handle identifying frame (from VT framedef)

Returns:
error code

5.9 C++ API

These are wrappers around the C API calls which simplify instrumentation of C++ source code
and ensure correct tracing if exceptions are used. Because all the member functions are provided
as inline functions it is sufficient to include VT.h to use these classes with every C++ compiler.

Here are some examples how the C++ API can be used. nohandles() uses the simpler interface
without storing handles, while handles() saves these handles in static instances of the definition
classes for later reuse when the function is called again:

39

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

void nohandles()
{

VT_Function func("nohandles", "C++ API", __FILE__, __LINE__);
}
void handles()
{

static VT_SclDef scldef(__FILE__, __LINE__);
// VT SCL DEF CXX(scldef) could be used instead

static VT_FuncDef funcdef("handles", "C++ API");
VT_Function func(funcdef, scldef);

}
int main(int argc, char **argv)
{

VT_Region region("call nohandles()", "main");
nohandles();
region.end();
handles();
handles();
return 0;

}

5.9.1 VT FuncDef Class Reference

Defines a function on request and then remembers the handle.

Public Methods

• VT FuncDef (const char ∗symname, const char ∗classname)

• int GetHandle ()

5.9.1.1 Detailed Description

Defines a function on request and then remembers the handle.

Can be used to avoid the overhead of defining the function several times in VT Function.

5.9.1.2 Constructor & Destructor Documentation

5.9.1.3 VT FuncDef::VT FuncDef (const char ∗ symname , const char ∗ classname)

5.9.1.4 Member Function Documentation

5.9.1.5 int VT FuncDef::GetHandle ()

Checks whether the function is defined already or not.

Returns handle as soon as it is available, else 0. Defining the function may be impossible e.g.
because VT was not initialized or ran out of memory.

40

5.9. C++ API

5.9.2 VT SclDef Class Reference

Defines a source code location on request and then remembers the handle.

Public Methods

• VT SclDef (const char ∗file, int line)
• int GetHandle ()

5.9.2.1 Detailed Description

Defines a source code location on request and then remembers the handle.

Can be used to avoid the overhead of defining the location several times in VT Function. Best
used together with the define VT SCL DEF CXX().

5.9.2.2 Constructor & Destructor Documentation

5.9.2.3 VT SclDef::VT SclDef (const char ∗ file , int line)

5.9.2.4 Member Function Documentation

5.9.2.5 int VT SclDef::GetHandle ()

Checks whether the scl is defined already or not.

Returns handle as soon as it is available, else 0. Defining the function may be impossible e.g.
because VT was not initialized or ran out of memory.

#define VT SCL DEF CXX(sclvar)
This preprocessor macro creates a static source code location definition for the current
file and line in C++.

Parameters:
sclvar name of the static variable which is created

5.9.3 VT Function Class Reference

In C++ an instance of this class should be created at the beginning of a function.

Public Methods

• VT Function (const char ∗symname, const char ∗classname)
• VT Function (const char ∗symname, const char ∗classname, const char ∗file, int line)
• VT Function (VT FuncDef &funcdef)
• VT Function (VT FuncDef &funcdef, VT SclDef &scldef)
• ∼VT Function ()

41

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

5.9.3.1 Detailed Description

In C++ an instance of this class should be created at the beginning of a function.

The constructor will then log the function entry, and the destructor the function exit.

Providing a source code location for the function exit manually is not supported, because this
source code location would have to define where the function returns to. This cannot be deter-
mined at compile time.

5.9.3.2 Constructor & Destructor Documentation

5.9.3.3 VT Function::VT Function (const char ∗ symname , const char ∗ classname)

Defines the function with VT classdef() and VT funcdef(), then enters it.

This is less efficient than defining the function once and then reusing the handle. Silently ignores
errors, like e.g. uninitialized VT.

Parameters:
symname the name of the function

classname the class this function belongs to

5.9.3.4 VT Function::VT Function (const char ∗ symname , const char ∗ classname , const
char ∗ file , int line)

Same as previous constructor, but also stores information about where the function is located in
the source code.

Parameters:
symname the name of the function

classname the class this function belongs to

file name of source file, may but does not have to include path

line line in this file where function starts

5.9.3.5 VT Function::VT Function (VT FuncDef & funcdef)

This is a more efficient version which supports defining the function only once.
Parameters:

funcdef this is a reference to the (usually static) instance that defines and remembers the
function handle

5.9.3.6 VT Function::VT Function (VT FuncDef & funcdef , VT SclDef & scldef)

This is a more efficient version which supports defining the function and source code location only
once.

Parameters:
funcdef this is a reference to the (usually static) instance that defines and remembers the

function handle

scldef this is a reference to the (usually static) instance that defines and remembers the scl
handle

5.9.3.7 VT Function:: ∼VT Function ()

the destructor marks the function exit.

42

5.9. C++ API

5.9.4 VT Region Class Reference

This is similar to VT Function, but should be used to mark regions within a function.

Public Methods

• void begin (const char ∗symname, const char ∗classname)
• void begin (const char ∗symname, const char ∗classname, const char ∗file, int line)
• void begin (VT FuncDef &funcdef)
• void begin (VT FuncDef &funcdef, VT SclDef &scldef)
• void end ()
• void end (const char ∗file, int line)
• void end (VT SclDef &scldef)
• VT Region ()
• VT Region (const char ∗symname, const char ∗classname)
• VT Region (const char ∗symname, const char ∗classname, const char ∗file, int line)
• VT Region (VT FuncDef &funcdef)
• VT Region (VT FuncDef &funcdef, VT SclDef &scldef)
• ∼VT Region ()

5.9.4.1 Detailed Description

This is similar to VT Function, but should be used to mark regions within a function.

The difference is that source code locations can be provided for the beginning and end of the
region, and one instance of this class can be used to mark several regions in one function.

5.9.4.2 Constructor & Destructor Documentation

5.9.4.3 VT Region::VT Region ()

The default constructor does not start the region yet.

5.9.4.4 VT Region::VT Region (const char ∗ symname , const char ∗ classname)

Enter region when it is created.

5.9.4.5 VT Region::VT Region (const char ∗ symname , const char ∗ classname , const
char ∗ file , int line)

Same as previous constructor, but also stores information about where the region is located in the
source code.

5.9.4.6 VT Region::VT Region (VT FuncDef & funcdef)

This is a more efficient version which supports defining the region only once.

43

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

5.9.4.7 VT Region::VT Region (VT FuncDef & funcdef , VT SclDef & scldef)

This is a more efficient version which supports defining the region and source code location only
once.

5.9.4.8 VT Region:: ∼VT Region ()

the destructor marks the region exit.

5.9.4.9 Member Function Documentation

5.9.4.10 void VT Region::begin (const char ∗ symname , const char ∗ classname)

Defines the region with VT classdef() and VT funcdef(), then enters it.

This is less efficient than defining the region once and then reusing the handle. Silently ignores
errors, like e.g. uninitialized VT.

Parameters:
symname the name of the region

classname the class this region belongs to

5.9.4.11 void VT Region::begin (const char ∗ symname , const char ∗ classname , const
char ∗ file , int line)

Same as previous begin(), but also stores information about where the region is located in the
source code.

Parameters:
symname the name of the region

classname the class this region belongs to

file name of source file, may but does not have to include path

line line in this file where region starts

5.9.4.12 void VT Region::begin (VT FuncDef & funcdef)

This is a more efficient version which supports defining the region only once.
Parameters:

funcdef this is a reference to the (usually static) instance that defines and remembers the
region handle

5.9.4.13 void VT Region::begin (VT FuncDef & funcdef , VT SclDef & scldef)

This is a more efficient version which supports defining the region and source code location only
once.

Parameters:
funcdef this is a reference to the (usually static) instance that defines and remembers the

region handle

scldef this is a reference to the (usually static) instance that defines and remembers the scl
handle

44

5.9. C++ API

5.9.4.14 void VT Region::end ()

Leaves the region.

5.9.4.15 void VT Region::end (const char ∗ file , int line)

Same as previous end(), but also stores information about where the region ends in the source
code.

Parameters:
file name of source file, may but does not have to include path

line line in this file where region starts

5.9.4.16 void VT Region::end (VT SclDef & scldef)

This is a more efficient version which supports defining the source code location only once.
Parameters:

scldef this is a reference to the (usually static) instance that defines and remembers the scl
handle

45

CHAPTER 5. USER-LEVEL INSTRUMENTATION WITH THE API

46

Chapter 6

Vampirtrace Configuration

6.1 Configuring Vampirtrace

With a configuration file, the user can customize various aspects of Vampirtrace’s operation and
define trace data filters.

6.2 Specifying a Configuration File

The environment variable VT CONFIG can be set to the name of a Vampirtrace configuration file.
If this file exists, it is read and parsed by the process specified with VT CONFIG RANK (or 0 as
default). The values of VT CONFIG must be consistent over all processes, although it need not
be set for all of them. A relative path is interpreted as starting from the current working directory;
an absolute path is safer, because mpirun may start your processes in a different directory than
you’d expect!

6.3 Configuration Format

The configuration file is a plain ASCII file containing a number of directives, one per line; any line
starting with the # character is ignored. Within a line, whitespace separates fields, and double
quotation marks must be used to quote fields containing whitespace. Each directive consists of
an identifier followed by arguments. With the exception of filenames, all text is case-insensitive. In
the following discussion, items within angle brackets (< and >) denote arbitrary case-insensitive
field values, and alternatives are put within square brackets ([and]) and separated by a vertical
bar |.

Default values are given in round brackets after the argument template, unless the default is too
complex to be given in a few words. In this case the text explains the default value. In general
the default values are chosen so that features that increase the amount of trace data have to be
enabled explicitly. Memory handling options default to keeping all trace records in memory until
the application is finalized.

In addition to specifying these options in a config file, all options have an equivalent environment
variable. These variables are checked by the process that reads the config file after it has parsed
the file, so the variables override the config file options. Some options like ”SYMBOL” may appear
several times in the config file. A variable may contain line breaks to achieve the same effect.

47

CHAPTER 6. VAMPIRTRACE CONFIGURATION

The environment variable names are listed below in square brackets [] in front of the config option.
Their names are always the same as the options, but with the prefix ”VT ” and hyphens replaced
with underscores.

6.4 Syntax of Parameters

6.4.1 Time Value

Time values are usually specified as a pair of one floating point value and one character that
represents the unit: c for microseconds, l for milliseconds, s for seconds, m for minutes, h for
hours, d for days and w for weeks. These elementary times are added with a + sign. For instance,
the string 1m+30s refers to one minute and 30 seconds of execution time.

6.4.2 Boolean Value

Boolean values are set to ”on/true” to turn something on and ”off/false” to turn it off. Just using
the name of the option without the ”on/off” argument is the same as ”on”.

6.4.3 Number of Bytes

The amount of bytes can be specified with optional suffices B/KB/MB/GB, which multiply the
amount in front of them with 1/1024/1024∧2/1024∧3. If no suffix is given the number specifies
bytes.

6.5 Supported Directives

LOGFILE-NAME
Syntax : <file name>

Variable : VT LOGFILE NAME

Specifies the name for the tracefile containing all the trace data. Can be an absolute or
relative pathname; in the latter case, it is interpreted relative to the log prefix (if set) or the
current working directory of the process writing it.

If unspecified, then the name is the name of the program plus ”.bvt” for binary, ”.avt” for ASCII,
”.stf” for STF and ”.stf.single” for single STF tracefiles. If one of these suffices is used, then
they also determine the logfile format, unless the format is specified explicitly.

In the stftool the name must be specified explicitly, either by using this option or as argument
of the --convert or --move switch.

PROGNAME
Syntax : <file name>

Variable : VT PROGNAME

This option can be used to provide a fallback for the executable name in case of VT not being
able to determine this name from the program arguments. It is also the base name for the
trace file.

In Fortran it may be technically impossible to determine the name of the executable automat-
ically and Vampirtrace may need to read the executable to find source code information (see

48

6.5. SUPPORTED DIRECTIVES

PCTRACE config option). ”UNKNOWN” is used if the file name is unknown and not specified
explicitly.

LOGFILE-FORMAT
Syntax : [ASCII|BINARY|STF|STFSINGLE]

Variable : VT LOGFILE FORMAT

Specifies the format of the tracefile. ASCII and BINARY are the traditional Vampir file formats
where all trace data is written into one file. ASCII is human-readable, whereas BINARY is a
more compact machine-readable format.

The Structured Trace File (STF) is a binary format which supports storage of trace data in
several files and allows Vampir to analyse the data without loading all of it, so it is more
scalable. Writing it is only supported by Vampirtrace at the moment.

One trace in STF format consists of several different files which are referenced by one index
file (.stf). The advantage is that different processes can write their data in parallel (see STF-
PROCS-PER-FILE, STF-USE-HW-STRUCTURE). STFSINGLE rolls all of these files into one
(.stf.single), which can be read without unpacking them again. However, this format does not
support distributed writing, so for large program runs with many processes the generic STF
format is better.

EXTENDED-VTF
Syntax :

Variable : VT EXTENDED VTF

Default : off in VT, on in stftool

Several events can only be stored in STF, but not in VTF. Vampirtrace libraries default to
writing valid VTF trace files and thus skip these events. This option enables writing of non-
standard VTF records in ASCII mode that Vampir would complain about. In the stftool the
default is to write these extended records, because the output is more likely to be parsed by
scripts rather than Vampir.

PROTOFILE-NAME
Syntax : <file name>

Variable : VT PROTOFILE NAME

Specifies the name for the protocol file containing the config options and (optionally) summary
statistics for a program run. Can be an absolute or relative pathname; in the latter case, it is
interpreted relative to the current working directory of the process writing it.

If unspecified, then the name is the name of the tracefile with the suffix ”.prot”.
LOGFILE-PREFIX

Syntax : <directory name>

Variable : VT LOGFILE PREFIX

Specifies the directory of the tracefile. Can be an absolute or relative pathname; in the latter
case, it is interpreted relative to the current working directory of the process writing it.

CURRENT-DIR
Syntax : <directory name>

Variable : VT CURRENT DIR

VT will use the current working directory of the process that reads the configuration on all
processes to resolve relative path names. You can override the current working directory
with this option.

VERBOSE
Syntax : [on|off|<level>]

Variable : VT VERBOSE

Default : on

Enables or disables additional output on stderr. <level> is a positive number, with larger
numbers enabling more output:

49

CHAPTER 6. VAMPIRTRACE CONFIGURATION

• 0 (= off) disables all output
• 1 (= on) enables only one message when trace file writing starts
• 2 enables general progress reports by the main process
• 3 enables detailed progress reports by the main process
• 4 the same, but for all processes

Levels larger than 2 may contain output that only makes sense for the developers of VT.
LOGFILE-RANK

Syntax : <rank>

Variable : VT LOGFILE RANK

Determines which process creates and writes the tracefile in MPI Finalize(). Default value is
the process reading the configuration file, or the process with rank 0 in MPI COMM WORLD.

SYMBOL
Syntax : <pattern> <filter body>

Variable : VT SYMBOL

Default : on

Defines a filter for any symbol that matches the pattern. Patterns are ordinary strings and
may contain the wild-card character ∗ that matches any number of characters.

The body of the filter may specify the logging state with the same options as PCTRACE. On
some platforms further options are supported, as described below.

ACTIVITY
Syntax : <pattern> <filter body>

Variable : VT ACTIVITY

Default : on

Defines a filter for any symbol within the activity that is matched by the pattern.
COUNTER

Syntax : <pattern> [on|off]

Variable : VT COUNTER

Enables or disables a counter whose name matches the pattern. By default all counters de-
fined manually are enabled, whereas counters defined and sampled automatically by Vam-
pirtrace are disabled. Those automatic counters are not supported for every platform.

PCTRACE
Syntax : [on|off|<trace levels>|<skip levels>:<trace levels>]

Variable : VT PCTRACE

Default : off

Some platforms support the automatic stack sampling for MPI calls and user-defined events.
Vampirtrace then remembers the Program Counter (PC) values on the call stack and trans-
lates them to source code locations based on debug information in the executable. It can
sample a certain number of levels (<trace levels>) and skip the initial levels (<skip levels>).
Skipping levels is useful when a function is called from within another library and the source
code locations within this library shall be ignored. ON is equivalent to 0:1 (no skip levels, one
trace level).

The value specified with PCTRACE applies to all symbols that are not matched by any filter
rule or where the relevant filter rules sets the logging state to ON. In other words, an explicit
logging state in a filter rule overrides the value given with PCTRACE.

PROCESS
Syntax : <triplets> [on|off|no|discard]

Variable : VT PROCESS

Default : 0:N on

50

6.5. SUPPORTED DIRECTIVES

Specifies for which processes tracing is to be enabled. This option accepts a comma sep-
arated list of triplets, each of the form <start>:<stop>:<incr> specifying the minimum and
maximum rank and the increment to determine a set of processes (similar to the Fortran 90
notation). Ranks are interpreted relative to MPI COMM WORLD, i.e. start with 0. The letter
N can be used as maximum rank and is replaced by the current number of processes. F.i.
to enable tracing only on odd process ranks, specify ”PROCESS 0:N OFF” and ”PROCESS
1:N:2 ON”.

A process that is turned off can later turn logging on by calling VT traceon() (and vice versa).
Using ”no” disables Vampirtrace for a process completely to reduce the overhead even fur-
ther, but also so that even VT traceon() cannot enable tracing.

”discard” is the same as ”on”, so data is collected and thumbnails and statistics will be cal-
culated, but the collected data is not actually written into the trace file. This mode is useful
if looking at frames and the statistics contained in their thumbnails is sufficient: in this case
there is no need to write the trace data.

CLUSTER
Syntax : <triplets> [on|off|no|discard]

Variable : VT CLUSTER

Same as PROCESS, but filters based on the host number of each process. Hosts are distin-
guished by their name as returned by MPI Get hostname() and enumerated according to the
lowest rank of the MPI processes running on them.

MEM-BLOCKSIZE
Syntax : <number of bytes>

Variable : VT MEM BLOCKSIZE

Default : 64KB

Vampirtrace keeps trace data in chunks of main memory that have this size.
MEM-MAXBLOCKS

Syntax : <maximum number of blocks>

Variable : VT MEM MAXBLOCKS

Default : 0

Vampirtrace will never allocate more than this number of blocks in main memory. 0 is the
default and allows an unlimited number of blocks. If the maximum number of blocks is filled
or allocating new blocks fails, then Vampirtrace will either flush some of them onto disk (AUT-
OFLUSH), overwrite the oldest blocks (MEM-OVERWRITE) or stop recording further trace
data.

MEM-MINBLOCKS
Syntax : <minimum number of blocks after flush>

Variable : VT MEM MINBLOCKS

Default : 0

When Vampirtrace starts to flush some blocks automatically, then it can flush all (the de-
fault) or keep some in memory. The latter may be useful to avoid long delays or to avoid
unnecessary disk activity.

MEM-INFO
Syntax : <threshold in bytes>

Variable : VT MEM INFO

Default : 500MB

If larger than zero, than Vampirtrace will print a message to stderr each time more than this
amount of new data has been recorded. These messages tell how much data was stored
in RAM and in the flush file, and (with the default setting) can serve as a warning when too
much data is recorded.

51

CHAPTER 6. VAMPIRTRACE CONFIGURATION

AUTOFLUSH
Syntax : [on|off]

Variable : VT AUTOFLUSH

Default : on

If enabled (which it is by default), then Vampirtrace will append blocks that are currently in
main memory to one flush file per process. During trace file generation this data is taken from
the flush file, so no data is lost. The number of blocks remaining in memory can be controlled
with MEM-MINBLOCKS.

MEM-FLUSHBLOCKS
Syntax : <number of blocks>

Variable : VT MEM FLUSHBLOCKS

Default : max. int

By default the thread that triggers the flushing does this work itself and thus is blocked while
the data is written. Setting this option enables flushing in the background. It has no effect
if AUTOFLUSH is disabled. Flushing is started whenever the number of blocks in memory
exceeds this threshold or when a thread needs a new block, but cannot get it without flushing.

MEM-OVERWRITE
Syntax : [on|off]

Variable : VT MEM OVERWRITE

Default : off

If auto flushing is disabled, then enabling this lets Vampirtrace overwrite the oldest blocks of
trace data with more recent data.

FLUSH-PREFIX
Syntax : <directory name>

Variable : VT FLUSH PREFIX

Default : content of env variables or ”/tmp”

Specifies the directory of the flush file. Can be an absolute or relative pathname; in the latter
case, it is interpreted relative to the current working directory of the process writing it. The
file name there is ”VT-flush-<program name> <rank>-<pid>.dat”, with rank being the rank
of the process in MPI COMM WORLD and <pid> the Unix process id.

The default is the value of the first, non-empty environment variable in this list that points to a
directory, or ”/tmp”:

• BIGTEMP
• FASTTEMP
• TMPDIR
• TMP
• TMPVAR

FLUSH-PID
Syntax : [on|off]

Variable : VT FLUSH PID

Default : on

The ”-<pid>” part in the flush file name is optional and can be disabled with ”FLUSH-PID
off”.

ENVIRONMENT
Syntax : [on|off]

Variable : VT ENVIRONMENT

Default : on

Enables or disables logging of atttributes of the runtime environment.

52

6.5. SUPPORTED DIRECTIVES

STATISTICS
Syntax : [on|off]

Variable : VT STATISTICS

Default : off

Enables or disables statistics about messages, OpenMP regions and symbols. These statis-
tics are gathered by Vampirtrace independently from logging them and written to the protocol
file, so you can get statistics in a machine-readable ASCII format without generating or load-
ing the complete trace file.

DYNAMIC-STATS
Syntax : <filename> [<triplet>]

Variable : VT DYNAMIC STATS

This option is only available if STATISTICS was enabled in the initial VT configuration file.

Each time VT confsync() is called, the current statistics can be written into a separate file.
The number of times that VT confsync() is called are counted by VT (starting with 1) and if
the filename contains one or more ”d”, then they are replaced by this counter value.

It is not necessary to make the filename unique like that, though: VT will remove the file
before writing into it, so one can read old statistics while the application is running without
getting parts of the file overwritten with new statistics (on Unix an application like ”more” may
have the old file open, while VT is writing into another file with the same name).

The optional triplet specifies which instances of VT confsync() will create this statistics file.
It is always counting from the current instance forward, so 1:1:1 refers to the next (and only
the next) instance of VT confsync(). If you omit this parameter, then the statistics file will be
written each time VT confsync() is called.

VT confsync() will generate the statistics file at the beginning and at the end, so if you set
your breakpoint into VT confbreak(), the statistic file will be up-to-date if it was enabled for
the current instance of VT confsync(), and if it was disabled and is enabled by changing the
configuration the file will have been updated when VT confsync() completes.

STF-USE-HW-STRUCTURE
Syntax : [on|off]

Variable : VT STF USE HW STRUCTURE

Default : usually on

If the STF format is used, then trace information can be stored in different files. If this option
is enabled, then trace data of processes running on the same node are combined in one file
for that node. This is enabled by default on most machines because it both reduces inter-
node communication during trace file generation and resembles the access pattern during
analysis. It is not enabled if each process is running on its own node.

This option can be combined with STF-PROCS-PER-FILE to reduce the number of processes
whose data is writen into the same file even further.

STF-PROCS-PER-FILE
Syntax : <number of processes>

Variable : VT STF PROCS PER FILE

Default : 16

In addition to or instead of combining trace data per node, the number of processes per file
can be limited. This helps to restrict the amount of data that has to be loaded when analysing
a sub-set of the processes.

If STF-USE-HW-STRUCTURE is enabled, then STF-PROCS-PER-FILE has no effect unless
it is set to a value smaller than the number of processes running on a node. To get files that
each contain exactly the data of <n> processes, set STF-USE-HW-STRUCTURE to OFF
and STF-PROCS-PER-FILE to <n>.

53

CHAPTER 6. VAMPIRTRACE CONFIGURATION

STF-CHUNKSIZE
Syntax : <number of bytes>

Variable : VT STF CHUNKSIZE

Default : 64KB

VT uses so called anchors to navigate in STF files. This value determines how many bytes
of trace data are written into a file before setting the next anchor. Using a low number allows
more accurate access during analysis, but increases the overhead for storing and handling
anchors.

FRAME-USE-HW-STRUCTURE
Syntax : [on|off]

Variable : VT FRAME USE HW STRUCTURE

Default : usually on

When writing STF, then frames provide precalculated thumbnails of trace data. One frame
covers a time interval and a set of processes. You can configure frames independently from
the physical layout of the data, but the config options to do that are very similar. This config
options corresponds to STF-USE-HW-STRUCTURE.

This option can be combined with PROCS-PER-FRAME.
FRAME-GROUP

Syntax : <group name>

Variable : VT FRAME GROUP

This option overrides FRAME-USE-HW-STRUCTURE: instead of using the hardware struc-
ture, a group is taken and for each of its members a set of frames is generated. For example,
if group ”odd even” contains groups ”odd” with all processes having an odd process rank and
”even” with the other processes, the FRAME-GROUP ”odd even” will create frames labeled
”odd” and ”even” covering the two set of processes.

The group may have been defined with the GROUP configuration option, with the API call
VT groupdef() or be one of the predefined groups. However, no distinction is made between
threads and processes in these groups: if a thread is listed, then the whole process is inside
the corresponding frame.

This option can be combined with PROCS-PER-FRAME.
PROCS-PER-FRAME

Syntax : <number of processes>

Variable : VT PROCS PER FRAME

Default : 16

In addition or instead of calculating frames per node, the number of processes per frame can
be limited. Setting it to 0 is the same as setting it to unlimited.

ALL-PROCS-FRAME
Syntax : [on|off]

Variable : VT ALL PROCS FRAME

Default : on

By default one frame called ”all processes” will be created, covering all processes with du-
ration divided exactly like the others, thus giving an overview of the whole machine at each
time and simplifying the task of selecting all processes. If this and the ”all” frame mentioned
below both cover the whole program run, then only the ”all” frame is generated.

ALL-FRAME
Syntax : [on|off]

Variable : VT ALL FRAME

Default : on

54

6.5. SUPPORTED DIRECTIVES

By default one frame called ”all” will be created, covering the whole program run and without
division in time. Its thumbnails serve as an overview of the the whole program.

SECONDS-PER-FRAME
Syntax : <duration>

Variable : VT SECONDS PER FRAME

Default : 10 minutes

Most frames that are created with config options are divided into parts no longer than this
time limit; only the ”all” frame always covers the whole program run, and frames created via
the VT API at runtime are not modified either. <duration> has the usual format for a time
value.

FRAMES-PER-RUNTIME
Syntax : <number>

Variable : VT FRAMES PER RUNTIME

Default : 1

Both SECONDS-PER-FRAME and FRAMES-PER-RUNTIME divide the whole program run
into frames of equal length. While SECONDS-PER-FRAME results in frames of equal dura-
tion, FRAMES-PER-RUNTIME produces the same, fixed number of frames for each program
run. VT will look at both options and pick the larger number of frames, so the default of 1 for
FRAMES-PER-RUNTIME basically disables this feature.

Even with SECONDS-PER-FRAME larger than the program’s runtime and FRAMES-PER-
RUNTIME set to 1 there may be more than one frame if FRAME-USE-HW-STRUCTURE or
PROCS-PER-FRAME produce frames for specific processes.

DATA-PER-FRAME
Syntax : <number of bytes>

Variable : VT DATA PER FRAME

Default : 80MB

One advantage of frames is that they allow selective loading of trace data, but this only works
well if frames don’t include too much trace data. Having frames that include equal amounts
of data (and thus events) also helps to zoom into regions of high activity.

This option sets an upper limit for the amount of data in main memory that is stored in (and
thus needs to be loaded from) frames with the same time intervals. For applications which log
many events the default values usually lead to shorter frames than specified in SECONDS-
PER-FRAME. Setting SECONDS-PER-FRAME to an even higher value leads to frames that
are generated by their amount of data as the only criterion.

Note that the data is stored more efficiently in STF files, so the resulting number of frames
will be higher than the final trace file size divided by the specified amount of data per frame.

The advantages of looking at data in memory are that communication between processes
during trace file writing can be avoided and that the resulting frames are tailored for tools that
may have to load them completely for analysis.

FRAMES-MAXNUM
Syntax : <number>

Variable : VT FRAMES MAXNUM

Default : 500

This option sets an upper limit for the total number of frames generated by VT. It is a safe-
guard against using config options that lead to an unexpectedly high (and thus unmanagable)
number of frames, which can happen e.g. with a low value for SECONDS-PER-FRAME and
a long program run. It has no effect on frames created via the VT API.

55

CHAPTER 6. VAMPIRTRACE CONFIGURATION

FRAME
Syntax : ”<type>”, <thread triplets>, <categories>, <duration>, <window>

Variable : VT FRAME

This option defines a new frame for certain categories and threads. The <duration> cor-
responds to SECONDS-PER-FRAME, but the value is valid for this frame type alone. If
a window is given (in the form <timespec>:<timespec> with at least one unit descriptor),
frames are created only inside this time interval. It has the usual format of a time value, with
one exception: the unit for seconds ”s” is not optional to distinguish it from a thread triplet, i.e.
use ”10s” instead of just ”10”. The <type> can be any kind of string in single or double quo-
tation marks, but it should uniquely identify the kind of data combined into this frame. Valid
<categories> are FUNCTIONS, SCOPES, OPENMP, FILEIO, COUNTERS, MESSAGES,
COLLOPS.

All of the arguments are optional and default to ”unnamed frame”, all threads, all categories
and the whole time interval. They can be separated by commas or spaces and it is possible
to mix them as desired.

GROUP
Syntax : <name> <name>|<triplet>[, ...]

Variable : VT GROUP

This option defines a new group. The members of the group can be other groups or pro-
cesses enumerated with triplets. Groups are identified by their name. It is possible to refer to
automatically generated groups (e.g. those for the nodes in the machine), however, groups
generated with API functions must be defined on the process which reads the config to be
usable in config groups.

Example:
GROUPodd 1:N:2
GROUPeven 0:N:2
GROUP"odd even" odd,even

THUMBNAIL
Syntax : <pattern> [on|off]

Variable : VT THUMBNAIL

Default : on

Enables or disables those thumbnails whose name matches the pattern.
MESSAGE-THUMB-SIZE

Syntax : <size>

Variable : VT MESSAGE THUMB SIZE

Default : 32

This option limits the size of the ”Sent Message Statistics” thumbnail in the x and y directions.
Without this limit the thumbnail would require space proportional to the number of processes
squared, which does not scale for large number of processes.

SYNC-DURATION
Syntax : <duration>

Variable : VT SYNC DURATION

Default : -1 for MPI applications unless mpich is used, 2 seconds otherwise

Vampirtrace usually uses a barrier at the beginning and the end of the program run to take
synchronized time stamps on processes. This method may fail if a barrier does not synchro-
nize the processes well enough. In this case an advanced algorithm based on statistical anal-
ysis of message round-trip times might yield better results. It also requires several seconds
of message exchanges at the beginning and the end of the program run, though. <duration>
has the usual format of time values in VT.

56

6.5. SUPPORTED DIRECTIVES

This options enables this algorithm by setting the number of seconds that Vampirtrace ex-
changes messages among processes. A value less or equal zero disables the statistical
algorithm. A good number of seconds to start with is 10.

SYNCED-CLUSTER
Syntax : [on|off]

Variable : VT SYNCED CLUSTER

If enabled, then Vampirtrace assumes that processes running on any host use the same clock
and does no clock synchronization itself, unless you explicitly enable the statistical sampling
algorithm by setting SYNC-DURATION.

The default value of this option is taken from the MPI attribute MPI WTIME IS GLOBAL if
Vampirtrace uses MPI Wtime() as clock.

SYNCED-HOST
Syntax : [on|off]

Variable : VT SYNCED HOST

Default : on

If enabled, then Vampirtrace assumes that processes running on the same host use the same
clock and only synchronizes the clocks of different hosts. Because clock synchronization
cannot achieve perfect results avoiding it whenever possible is desirable.

Currently this option is enabled by default on all platforms. If the MPI attribute MPI WTIME -
IS GLOBAL is set to true, then this config option is irrelevant and the result of MPI Wtime()
is taken as it is without any clock correction.

NMCMD
Syntax : <command + args> ”nm -P”

Variable : VT NMCMD

If function tracing with GCC 2.95.2+’s -finstrument-function is used, then VT will be called at
function entry/exit. Before logging these events it must map from the function’s address in
the executable to its name.

This is done with the help of an external program, usually nm. You can override the default if it
is not appropriate on your system. The executable’s filename (including the path) is appended
at the end of the command, and the command is expected to print the result to stdout in the
format defined for POSIX.2 nm.

UNIFY-SYMBOLS
Syntax : [on|off]

Variable : VT UNIFY SYMBOLS

Default : on

During post-processing Vampirtrace unifies the ids assigned to symbols on different pro-
cesses. This step is redundant if (and only if) all processes define all symbols in exactly the
same order with exactly the same names. As Vampirtrace cannot recognize that automat-
ically this unification can be disabled by the user to reduce the time required for trace file
generation. Make sure that your program really defines symbols consistently when using this
option!

UNIFY-SCLS
Syntax : [on|off]

Variable : VT UNIFY SCLS

Default : on

Same as UNIFY-SYMBOLS for SCLs.

57

CHAPTER 6. VAMPIRTRACE CONFIGURATION

UNIFY-GROUPS
Syntax : [on|off]

Variable : VT UNIFY GROUPS

Default : on

Same as UNIFY-SYMBOLS for groups.
UNIFY-COUNTERS

Syntax : [on|off]

Variable : VT UNIFY COUNTERS

Default : on

Same as UNIFY-SYMBOLS for counters.

6.6 How to Use the Filtering Facility

A single configuration file can contain an arbitrary number of filter directives that are evaluated
whenever a state is defined. Since they are evaluated in the same order as specified in the
configuration file, the last filter matching a state determines whether it is traced or not. This
scheme makes it easily possible to focus on a small set of activities without having to specify
complex matching patterns. Being able to turn entire activities (groups of states) on or off helps
to limit the number of filter directives. All matching is case-insensitive.

Example:

disable all MPI activities
ACTIVITY MPI OFF
enable all send routines
SYMBOLMPI_*send ON
except MPI_Bsend
SYMBOLMPI_bsend OFF
enable receives
SYMBOLMPI_recv ON
and all test routines
SYMBOLMPI_test* ON
and all wait routines, recording locations of four calling levels
SYMBOLMPI_wait* 4
enable all activities in the Application class, without locations
ACTIVITY Application 0

In effect, all activities in the class Application, all MPI send routines except MPI Bsend(), and all
receive, test and wait routines will be traced. All other MPI routines will not be traced.

Beside filtering specific activities or states it is also possible to filter by process ranks in MPI -
COMM WORLD. This can be done with the configuration file directive PROCESS. The value of
this option is a comma separated list of Fortran 90-style triplets. The formal definition is as follows:

<PARAMETER-LIST> := <TRIPLET>[,<TRIPLET>,...]
<TRIPLET> := <LOWER-BOUND>[:<UPPER-BOUND>[:<INCREMENT>]]

The default value for <UPPER-BOUND> is N (equals size of MPI COMM WORLD) and the de-
fault value for <INCREMENT> is 1.

For instance changing tracing only on even process ranks and on process 1 the triplet list is:
0:N:2,1:1:1, where N is the total number of processes. All processes are enabled by default, so
you have to disable all of them first (”PROCESS 0:N OFF”) before enabling a certain subset again.
For SMP clusters, the ”CLUSTER” filter option can be used to filter for particular SMP nodes.

58

6.6. HOW TO USE THE FILTERING FACILITY

The ACTIVITY/SYMBOL rule body may offer even finer control over tracing depending on the
features available on the current platform:

On the SX-5 platform special filter rules make it possible to turn tracing on and off during runtime
when certain states (aka functions) are entered or left. In contrast to VT traceon/off() no changes
in the source code are required for this. So called ”actions” are ”triggered” by entering or leaving
a state and executed before the state is logged.

If folding is enabled for a function, then this function is traced, but not any of those that it calls. If
you want to see one of these functions, then you must unfold it. For example, if foo:bar first calls
foo:bar1 and then foo:bar2, then

ACTIVITY foo FOLD

will only trace the call to foo:bar and ignore the other two function calls. One can unfold certain
functions:

ACTIVITY foo FOLD
SYMBOLbar2 UNFOLD

will trace foo:bar, ignore the call to foo:bar1 (because foo:bar is folded) and unfold again when
foo:bar2 is called.

Counter sampling can be disabled for states (and in a similar way for OpenMP regions).

Here’s the formal specification:

<SCLRANGE> := on|off|<skip>|<skip>:<trace>

<ACTION> := traceon|traceoff|restore|none
<TRIGGER> := [<TRIPLET>] <ACTION>
<ENTRYTRIGGER> := entry <TRIGGER>
<EXITTRIGGER> := exit <TRIGGER>
<COUNTERSTATE> := counteron|counteroff
<FOLDING> := fold|unfold
<RULEENTRY> := <SCLRANGE>|<ENTRYTRIGGER>|<EXITTRIGGER>|<COUNTERSTATE>|<FOLDING>

The filter body of a filter may still consist of a <SCLRANGE> which is valid for every instance of
the state (as described above), but also of a counter state specification, an <ENTRYTRIGGER>
which is checked each time the state is entered and an <EXITTRIGGER> for leaving it. The body
may have any combination of these entries, separated by commas, as long as no entry is given
more than once per rule.

Counter sampling can generate a lot of data, and some of it may not be relevant for every function.
By default all enabled counters are sampled whenever a state change occurs or when an Open-
MP region starts or ends. The ”COUNTERON/OFF” rule entry modifies this for those states that
match the pattern. There is no control over which counters are sampled on a per-state basis,
though, you can only enable or disable sampling completely per state. This example disables
counter sampling in any state, then enables it again for MPI functions:

SYMBOL * COUNTEROFF
ACTIVITY MPI COUNTERON

For each state, only one action for entering and one action for leaving is active, and as usual
rules later in the config file overwrite the actions specified in previous rules. The optional triplet
specifies for which instances of this state the specified action is triggered. For example, ”SYMBOL
MPI Barrier ENTRY 1:9:2 TRACEON” performs the equivalent of a VT traceon() the first, third, 9th
time MPI Barrier() is called. Without the triplet, the action is always triggered. Calling a recursive
function counts as one instance of this function.

Currently supported actions are TRACEON (same effect as VT traceon()), TRACEOFF
(VT traceoff()), RESTORE (only valid as an exit action, restores the logging state that was ac-

59

CHAPTER 6. VAMPIRTRACE CONFIGURATION

tive when the state was entered) and NONE (removes actions specified in earlier filter rules).

Here’s a complex example that shows several legal combinations:

ACTIVITY MPI ON, ENTRY 1 TRACEON, EXIT 2 TRACEOFF
ACTIVITY MPI ENTRY 1 TRACEON , OFF , EXIT 2 TRACEOFF
ACTIVITY MPI ENTRY 1 TRACEON, EXIT 2 TRACEOFF OFF
SYMBOL MPI_* ON
SYMBOL MPI_* 0
SYMBOL "Function with spaces" 1:5
SYMBOL MPI_Comm_rank ENTRY 1:2 TRACEOFF
ACTIVITY MPI EXIT 1:2:2 RESTORE
ACTIVITY MPI ENTRY TRACEOFF

reset actions
ACTIVITY * ENTRY NONE, EXIT NONE
all processes log MPI, even if tracing is off when they
are entered, and restore the previous state
ACTIVITY MPI ENTRY TRACEON, EXIT RESTORE
dummy rule which is overwritten
SYMBOLMPI_Barrier ENTRY 1:N:1 TRACEON
second barrier turns on, third turns off
SYMBOLMPI_Barrier ENTRY 2 TRACEON
SYMBOLMPI_Barrier EXIT 3 TRACEOFF
every second instance of function_a turns on logging, starting with 2
SYMBOL"function_a" ENTRY 2:N:2 TRACEON

The following rules are illegal for various reasons:

RESTORE not valid for ENTRY
ACTIVITY MPI ENTRY 1 RESTORE
more than one entry trigger
ACTIVITY MPI ENTRY 1 TRACEON, ENTRY 2 TRACEOFF
more than one logging state definition
ACTIVITY MPI ON, OFF, 1:5
invalid action
ACTIVITY MPI ENTRY 1 XYZ - invalid text

6.7 The Protocol File

The protocol file has the same syntax and entries as a Vampirtrace configuration file. Its extension
is .prot, with the basename being the same as the tracefile. It lists all options with their values
used when the program was started, thus it can be used to restart an application with exactly the
same options.

All options are listed, even if they were not present in the original configuration. This way you can
find about f.i. the default value of SYNCED-HOST/CLUSTER on your machine. Comments tell
where the value came from (default, modified by user, default value set explicitly by the user).

Besides the configuration entries, the protocol file contains some entries that are only informa-
tive. They are all introduced by the keyword INFO. The following information entries are currently
supported:

INFO NUMPROCS
Syntax : <num>

Number of processes in MPI COMM WORLD.
INFO CLUSTERDEF

Syntax : <name> [<rank>:<pid>]+

60

6.7. THE PROTOCOL FILE

For clustered systems, the processes with Unix process id <pid> and rank in MPI COMM -
WORLD <rank> are running on the cluster node <name>. There will be one line per cluster
node.

INFO PROCESS
Syntax : <rank> ”<hostname>” ”<IP>” <pid>

For each process identified by its MPI <rank>, the <hostname> as returned by gethost-
name(), the <pid> from getpid() and all <IP> addresses that <hostname> translates into
with gethostbyname() are given. IP addresses are converted to string with ntoa() and sepa-
rated with commas. Both hostname and IP string might be empty, if the information was not
available.

INFO BINMODE
Syntax : <mode>

Records the floating-point and integer-length execution mode used by the application.
There may be other INFO entries that represent statistical data about the program run. Their
syntax is explained in the file itself.

61

CHAPTER 6. VAMPIRTRACE CONFIGURATION

62

Chapter 7

How to Create an Error Report

In this chapter you will find some helpful information on how to create an error or problem report
for Vampirtrace. We really encourage you to provide us with the required information. This will
keep the turnaround time for your problem report as low as possible.

If this is a new issue there are several things that you can do right now to help us solve your
problem. Start by gathering information about your unique environment:

Operating system version, architecture, compiler version and command line, shell variables, par-
allel run-time version, program version, command line and stdout, and the run-time environment
in which you encountered the problem.

You should also document the steps that lead up to the unusual behavior you are seeing, take
screen captures and Save Window to Files. You may also want to take a snapshot of your work:
source code, makefiles, executables, DLLs and corefiles.

7.1 Vampirtrace Problem Report Form and Instructions

Copy and paste the form listed below into your email editor. Then, complete and return the form
to support@pallas.com.

Document just one problem on a form. Remove or replace all data fields with a selection or
with contents. All data requested below is helpful to us, though not all is necessary to solve each
problem. Supply as much data as you can. If your problem involves Vampirtrace execution, attach
or FTP a reproducible example.

To: support@pallas.com

Subject: <copy value of Synopsis field, below >

Submitter-Id: <primary contact’s *simplest* E-mail address (one line)>
Originator: <originator’s name (one line)>
Confidential: <[no | yes] (one line)>
Synopsis: <synopsis of the problem (one line)>
Category: vampirtrace
Class: <[sw-bug | doc-bug | change-request | support] (1 ln)>
Release:

63

CHAPTER 7. HOW TO CREATE AN ERROR REPORT

Environment:

System: <‘uname -a‘ output >
Platform: <machine make&model, processor, etc. >
OS: <OS version and patch level >
ToolChain: <compiler version, linker version, etc. >
Libraries: <versions of parallel runtimes or standard libraries . >

Description:
<precise description of the problem (multiple lines)>

How-To-Repeat:

<step-by-step: how to reproduce the problem . . . (multiple lines)>

Fix:
<how to correct or work around the problem, if known (multiple lines)>

7.2 How to Prepare and Send Your Example

Create a directory named repro and place your problem files in it. Add the following files to repro:

• Include the target executable. A test program or code fragment is preferable to a large
amount of production code.

• Build the executable statically. If possible, use -v .

• Show the compiler version used.

• Show the compile/build session (stdin/stdout/stderr).

• Include sources (not always necessary, but usually helpful).

• Include any special libraries or input files required.

• Describe the problem. Please be very specific.

64

Appendix A

FAQ - Frequently asked questions

This chapter is divided into a more general and a platform specific part. Please refer to the
appropriate part for your questions.

A.1 General questions

A.1.1 Interpretation of a version number

The version numbers consist of a string and four separate numbers:

<product> <major>.<minor>.<release>.<internal>

The <product> string is necessary because there are many different distributions of Vampirtrace
which are all numbered independently of each other. Some of these distributions are:

PRODUCT: the official product version

ASCI/VGV: a version produced for the Advanced Simulation and Computing Initiative

NEC: Vampirtrace/SX, as distributed by NEC

COMPAQ: Vampirtrace/SC, an enhanced version produced for HP (formerly Compaq)

<major> and <minor> are incremented if and only if new features are added. Together they can
serve as a label for the functionality of a product, as in ”release 3.1 has feature xyz that was not
found in 3.0”. <major> is only incremented after significant changes.

<internal> is incremented each time a new package is prepared and ensures that two files
with different content also have different versions. It is called ”internal” because it is incremented
even if the package is not released to the end customer.

Once the package has been released to the customer, the <internal> counter is reset to 0
and the <release> counter is incremented. From this rule follows that the version with the
highest <internal> counter is the one delivered to the customer, and that this counter is not
necessarily zero. In general, two packages with the same <major> .<minor> version, but a
different <release> number only differ in the number of bug fixes, so one could say ”release
3.1.0 has bug abd which is fixed in 3.1.1”.

65

APPENDIX A. FAQ - FREQUENTLY ASKED QUESTIONS

A.1.2 How to limit the tracefile size

Although Vampirtrace uses a compact binary format to store the trace data, tracefile sizes for
real-world applications can get immense. The best approach it to limit the number of events to be
logged by scaling down the application, like f.i. iteration count, number of processes, problem size
etc. This also shortens the time required to run a test. Quite often, this is not acceptable because
reduced input datasets are not available or performance analysis for reduced problems is simply
not interesting. In that case there are basically four other options:

• Enable trace data collection for a subset of the application’s runtime only: by inserting calls
to VT traceoff() and VT traceon(), an application programmer can easily limit the profiling to
interesting parts of an application or a subset of iterations. This will require recompilation of
(a subset of) the application though, which may not be possible, or at least inconvenient.

• If the application has a complex call graph e.g. due to automatic function tracing, then
folding of functions can prune the call tree a lot at run-time and thus cut down the trace file
size. This feature is not supported by all Vampirtrace versions.

• Use the activity/symbol filtering mechanism to limit the set of logged events. For this the
application doesn’t need to be changed in any way. However, the user must have an idea
of which events are interesting enough to be traced, and which events can be discarded.
As every MPI routine call generates roughly the same amount of trace data the possible
reduction in data volume is quite high: concentrate on the calls actually communicating
data, and don’t trace the administrative MPI routines.

• Use the process or node or time interval filters to limit data collection to a subset of pro-
cesses.

A.1.3 How to limit the memory consumption

During the application run, Vampirtrace first stores trace data in memory buffers. There
are two options that control the allocation of these buffers: MEM-BLOCKSIZE specifies
the size of each memory block in bytes, and MEM-MAXBLOCKS determines the maxi-
mum number of memory blocks. Vampirtrace will not exceed the memory limits set by
MEM-BLOCKSIZE*MEM-MAXBLOCKS. When this trace data memory is exhausted, one of three
actions are taken:

• If the AUTOFLUSH option is enabled (the default), the collected trace data is flushed to
disk, and the trace collection continues. The spill files are automatically merged when the
application finalizes, so that all records will appear in the tracefile.

• If AUTOFLUSH is disabled and MEM-OVERWRITE is enabled, the trace buffers will be
overwritten from the beginning, in effect recording the last n records.

• Else, the trace collection will be stopped, in effect collecting the first n records.

Placing trace data in main memory can slow down the application if it needs the memory itself.
Setting MEM-MAXBLOCKS puts a hard limit on the amount of memory used by Vampirtrace, but
can disrupt the application when a process must wait for flushing of trace data. To avoid this,
Vampirtrace can be told to start flushing earlier in the background with the MEM-FLUSHBLOCKS
option. This option is only available in more recent thread-safe versions of Vampirtrace.

In order to understand how much memory is currently in use, Vampirtrace can add counter data
to the trace:

66

A.1. GENERAL QUESTIONS

Counter Class: VT BUFFERING

Counter Name Unit Comment
data in ram bytes amount of trace data stored in main memory
data in file bytes amount of trace data stored in flush file
flush active boolean unequal zero if background flushing is active

If enabled, each process will store its own values for these counters in the trace each time they
change. This makes it possible to take the effect of buffer handling into account when doing
the analysis of the trace. These counters are not enabled by default. It is necessary to add
the following lines to a configuration file (see usage of VT CONFIG) to enable each counter:
COUNTERdata_in_ram ON
COUNTERdata_in_file ON
COUNTERflush_active ON

At runtime, Vampirtrace also provides feedback on the amount of data collected: with the default
setting of 500MB for the MEM-INFO configuration option a message is printed each time more
than this amount of new data is recorded by a process. The value is chosen so that the message
serves as a warning when the amount of trace data exceeds the amount that can usually be
handled without problems. In order to use it as a kind of progress report a much lower value
would be more appropriate.

A.1.4 How to manage Vampirtrace API calls

The API routines greatly extend the functionality of Vampirtrace. Unfortunately, manually instru-
menting the application source code with the Vampirtrace API makes code maintenance harder.
An application that contains calls to the Vampirtrace API requires the Vampirtrace library to link
and incurs a certain profiling overhead. The dummy API library libVTnull.a helps in this situa-
tion: all the API calls map to empty subroutines, and no trace data is ever gathered if an application
is linked to it. Still, the extraneous function calls remain and may cause a slight overhead.

It is recommended that the C pre-processor (or an equivalent tool for Fortran) be used to guard all
the calls to the Vampirtrace API by #ifdef directives. This will allow easy generation of a plain
vanilla version and an instrumented version of a program.

A.1.5 What happens if a program fails ?

The Vampirtrace library stores trace data first in buffers in the application memory, and then in
flush files (one per MPI process) when the buffers have been filled. In normal operation, the
library will merge the trace data from each process during execution of the MPI_Finalize()
routine, and write the trace data into a single tracefile suitable for input to Vampir. If a program
fails, MPI_Finalize() is never executed, and no Vampir tracefile is written.

A.1.6 Troubleshooting

The Vampirtrace library can report four basic error classes:

1. Setup errors

2. Invalid configuration file format

3. Erroneous use of the API routines

67

APPENDIX A. FAQ - FREQUENTLY ASKED QUESTIONS

4. Insufficient memory

The first category includes invalid settings of the VT_ environment variables, failure to open the
specified tracefile etc. A warning message is printed, the library ignores the erroneous setup and
tries to continue with default settings.

For the second class, a warning message is printed, the faulty configuration file line is ignored,
and the parser continues with the next line.

When a Vampirtrace API routine is called with invalid parameters, a negative value is returned (as
a function result in C, in the error parameter in Fortran), and operation continues. Invoking any
API routines before MPI_Init() or after MPI_Finalize() is considered erroneous, and the
call is silently ignored.

An insufficient memory error can occur during execution of an API routine or within any MPI routine
if tracing is enabled. In the first case, an error code (VT_ENOMEMor VTENOMEM) is returned to the
calling process; in any case, Vampirtrace prints an error message and attempts to continue by
disabling the collection of trace data. Within MPI_Finalize() , the library will try to generate a
tracefile from the data gathered before the insufficient memory error.

Although Vampirtrace tries to handle out-of-memory situations gracefully, library calls in the ap-
plication might not be as tolerant, or the operating system does not handle such a situation well
enough. To avoid a memory error in the first place, try to limit the amount of trace data as ex-
plained in the section “Limiting Memory Consumption” (A.1.3). The memory requirements of Vam-
pirtrace can be reduced with the MEM-BLOCKSIZE and MEM-MAXBLOCKS config options. The
AUTOFLUSH option needs to remain enabled if you want to see a trace of the whole application
run.

A.1.7 Can’t find the tracefile

Unless told otherwise in the configuration file, Vampirtrace will write the trace data to the
file argv[0].stf , with argv[0] being the application name in the command line (same as
getarg(0) in Fortran). Note that your MPI library or the MPI execution script may interfere with
argv[0] , and that only the process actually writing the tracefile (usually the one with rank 0 in
MPI_COMM_WORLD) will look at it. A relative pathname will be interpreted relative to that process’
current working directory.

You can however change the tracefile name with the LOGFILE-NAME directive in a configuration
file.

If it turns out that Vampirtrace can’t create the specified tracefile, it will attempt to write to the file
/tmp/VT-<pid>.stf , with <pid> being the Unix process id of the tracefile-writing MPI process.

In any case, an information message with the actual tracefile name will be printed by Vampirtrace
within MPI_Finalize() .

On systems where not all processes see the same files, be sure to look for the tracefile in the
correct process’ filesystem. You can influence which process will write the file by setting an
environment variable or by a directive in the configuration file.

A.1.8 User-defined activities don’t work

In order to minimize the instrumentation overhead, Vampirtrace does not check for global con-
sistency of the activity codes specified by calls to VT symdef() or VTSYMDEF(). It is the user’s
responsibility to ensure that

68

A.1. GENERAL QUESTIONS

• The same code is used for the same activity in all processes

• Two different symbols never share the same code

If these rules are violated, Vampir might complain about duplicate activities, or activities may be
mis-labeled in Vampir displays.

A.1.9 Messages are not shown

In order for messages to be indicated in the Vampir displays, both the calls to the sending and the
receiving MPI routine must have been traced. For nonblocking receives, the call to the MPI wait
or test routine that did complete the receive request must be logged.

If tracing has been disabled during runtime it can happen that for some messages, either the
sending or the receiving call has not been traced. As a consequence, these messages are not
shown by Vampir, and other messages can appear to be sent to or received at the wrong place.
Similarly, filtering out some of the above mentioned MPI routines has the same effect.

A.1.10 Does Vampirtrace support MPI-IO?

MPI-IO statistics can be investigated in Vampir with the display (Global Displays:I/O Events Statis-
tics). The display option is available in all Vampir 3.x versions. If a Vampitrace file contains MPI-IO
trace data, this option can be used to display it. If a trace file does not include MPI-IO data, then
there is nothing to be displayed.

Vampirtrace only supports standard MPI-IO, that is if the according MPI release implements the
full and standard compliant MPI-IO functionality.

Platforms on which Vampirtrace can record MPI-IO trace data:

• IBM AIX 5.1 (Vampirtrace Product 3.0 and above)

• Sparc Solaris 2.8 (Vampirtrace Product 3.0 and above)

• Intel Itanium with SGI MPT 1.8 (Vampirtrace Product 3.1 and above)

• Fujitsu VPP

• Hitachi SR8000

• NEC SX

A.1.11 Does Vampirtrace support ROMIO?

The MPIO_Request structure as used in ROMIO will not be supported in Vampirtrace, as it
does not comform to the MPI-2 standard for parallel I/O. If an MPI implementation advances to
compliance with standard MPI_Request structures it can be considered for MPI-I/O trace support
in a subsequent release of Vampirtrace.

We would encourage users who need to trace I/O relevant information with Vampirtrace to use
the MPI-2 standard for parallel I/O.

69

APPENDIX A. FAQ - FREQUENTLY ASKED QUESTIONS

A.2 Platfrom specific questions

A.2.1 Linux: Can’t find libelf

If you compile your MPI program on Linux you may run into the following linker problem.

/usr/bin/ld: cannot find -lelf

This means that the linker cannot find the libelf.a library Some distributions don’t install this library
by default, so you have to install this package from your Linux installation media.

A.2.2 AIX 5.1: Undefined symbol

If you get the following error message on IBM AIX 5.1 when linking a MPI program:

mpxlf90 -o hello hello.f -L$ PAL ROOT/lib -lVT -lld
** hello === End of Compilation 1 ===
1501-510 Compilation successful for file hello.f.
ld: 0711-317 ERROR: Undefined symbol: mpi_status_ignore
ld: 0711-317 ERROR: Undefined symbol: mpi_statuses_ignore
ld: 0711-345 Use the -bloadmap or -bnoquiet option
to obtain more information.

Please compile/link with mpxlf90_r or mpxlf_r which use an updated version of MPI.

A.2.3 Vampirtrace and ScaMPI

In addition to page 4 in the Vampirtrace UserGuide, we have to admit that there is an exception to
the rule that libVT.a has to be included before the systems MPI libraries. If you use the Scali MPI
implementation ScaMPI than you need to use

-lfmpi -lVT -lmpi

This is necessary because the ScaMPI Fortran library libfmpi.so is a Fortran wrapper to the MPI
functions in the libmpi.so library. The libmpi.so library have weak symbols on MPI_* with true
functions PMPI_ to support an external trace library. Since the functions in libfmpi.so (mpi_*)
calls the MPI_* functions, the Vampirtrace library for C should be suited for generating the trace
info.

70

INDEX

Index

--convert
command line switch definition, 19

--dump
command line switch definition, 20

--extended-vtf
command line switch definition, 20

--frame
command line switch definition, 21

--frames
command line switch definition, 20

--logfile-format
command line switch definition, 20

--logfile-name
command line switch definition, 20

--matched-vtf
command line switch definition, 21

--message-thumb-size
command line switch definition, 21

--move
command line switch definition, 19

--print-files
command line switch definition, 19

--print-frames
command line switch definition, 19

--print-statistics
command line switch definition, 19

--print-threads
command line switch definition, 19

--print-thumbnails
command line switch definition, 19

--redo-frames
command line switch definition, 20

--remove
command line switch definition, 19

--request
command line switch definition, 20

--thumbnail
command line switch definition, 21

--verbose
command line switch definition, 21

∼VT Function
VT Function, 42

∼VT Region

VT Region, 44

ACTIVITY
config directive definition, 50

ALL-FRAME
config directive definition, 54

ALL-PROCS-FRAME
config directive definition, 54

AUTOFLUSH
config directive definition, 52

begin
VT Region, 44

CLUSTER
config directive definition, 51

COUNTER
config directive definition, 50

CURRENT-DIR
config directive definition, 49

DATA-PER-FRAME
config directive definition, 55

DYNAMIC-STATS
config directive definition, 53

end
VT Region, 44, 45

ENVIRONMENT
config directive definition, 52

environment variable
PAL LICENSEFILE, 5
PAL ROOT, 5
VT CONFIG, 8
VT CONFIG RANK, 8
VT ROOT, 5

EXTENDED-VTF
config directive definition, 49

FLUSH-PID
config directive definition, 52

FLUSH-PREFIX
config directive definition, 52

FRAME

71

INDEX

config directive definition, 56
FRAME-GROUP

config directive definition, 54
FRAME-USE-HW-STRUCTURE

config directive definition, 54
FRAMES-MAXNUM

config directive definition, 55
FRAMES-PER-RUNTIME

config directive definition, 55

GetHandle
VT FuncDef, 40
VT SclDef, 41

GROUP
config directive definition, 56

INFO BINMODE
config directive definition, 61

INFO CLUSTERDEF
config directive definition, 60

INFO NUMPROCS
config directive definition, 60

INFO PROCESS
config directive definition, 61

LOGFILE-FORMAT
config directive definition, 49

LOGFILE-NAME
config directive definition, 48

LOGFILE-PREFIX
config directive definition, 49

LOGFILE-RANK
config directive definition, 50

MEM-BLOCKSIZE
config directive definition, 51

MEM-FLUSHBLOCKS
config directive definition, 52

MEM-INFO
config directive definition, 51

MEM-MAXBLOCKS
config directive definition, 51

MEM-MINBLOCKS
config directive definition, 51

MEM-OVERWRITE
config directive definition, 52

MESSAGE-THUMB-SIZE
config directive definition, 56

NMCMD
config directive definition, 57

PAL LICENSEFILE
environment variable, 5

PAL ROOT

environment variable, 5
PCTRACE

config directive definition, 50
PROCESS

config directive definition, 50
PROCS-PER-FRAME

config directive definition, 54
PROGNAME

config directive definition, 48
PROTOFILE-NAME

config directive definition, 49

SECONDS-PER-FRAME
config directive definition, 55

STATISTICS
config directive definition, 53

STF-CHUNKSIZE
config directive definition, 54

STF-PROCS-PER-FILE
config directive definition, 53

STF-USE-HW-STRUCTURE
config directive definition, 53

SYMBOL
config directive definition, 50

SYNC-DURATION
config directive definition, 56

SYNCED-CLUSTER
config directive definition, 57

SYNCED-HOST
config directive definition, 57

THUMBNAIL
config directive definition, 56

UNIFY-COUNTERS
config directive definition, 58

UNIFY-GROUPS
config directive definition, 58

UNIFY-SCLS
config directive definition, 57

UNIFY-SYMBOLS
config directive definition, 57

VERBOSE
config directive definition, 49

VT.h
VT begin, 30
VT beginl, 30
VT CAT ANY DATA, 37
VT CAT COLLOPS, 37
VT CAT COUNTERS, 37
VT CAT FILEIO, 37
VT CAT FUNCTIONS, 37
VT CAT MESSAGES, 37

72

INDEX

VT CAT OPENMP, 37
VT CAT SCOPES, 37
VT Categories, 37
VT classdef, 28
VT COUNT ABSVAL, 35
VT COUNT DATA, 35
VT COUNT DISPLAY, 35
VT COUNT FLOAT, 35
VT COUNT INTEGER, 35
VT COUNT INTEGER64, 35
VT COUNT RATE, 35
VT COUNT SCOPE, 35
VT COUNT VALID AFTER, 35
VT COUNT VALID BEFORE, 35
VT COUNT VALID POINT, 35
VT COUNT VALID SAMPLE, 35
VT CountData, 35
VT countdef, 36
VT CountDisplay, 35
VT CountScope, 35
VT countval, 37
VT end, 30
VT endl, 30
VT enter, 31
VT finalize, 24
VT flush, 26
VT FRAME PROCESS, 38
VT FRAME THREAD, 38
VT framebegin, 39
VT framedef, 38
VT frameend, 39
VT FrameScope, 38
VT funcdef, 28
VT getprocid, 33
VT getrank, 24
VT getthreadid, 34
VT Group, 33
VT GROUP CLUSTER, 33
VT GROUP PROCESS, 33
VT GROUP THREAD, 33
VT groupdef, 34
VT initialize, 24
VT leave, 31
VT ME, 33
VT NOCLASS, 29
VT NOSCL, 27
VT SCL DEF CXX, 41
VT scldef, 27
VT scopebegin, 32
VT scopedef, 32
VT scopeend, 33
VT symdef, 29
VT symstate, 26
VT thisloc, 27

VT timestamp, 26
VT timestart, 26
VT traceoff, 25
VT traceon, 25
VT tracestate, 25
VT VERSION, 23
VT VERSION COMPATIBILITY, 23
VT wakeup, 31

VT ACTIVITY
env variable definition, 50

VT ALL FRAME
env variable definition, 54

VT ALL PROCS FRAME
env variable definition, 54

VT AUTOFLUSH
env variable definition, 52

VT CLUSTER
env variable definition, 51

VT COUNTER
env variable definition, 50

VT CURRENT DIR
env variable definition, 49

VT DATA PER FRAME
env variable definition, 55

VT DYNAMIC STATS
env variable definition, 53

VT ENVIRONMENT
env variable definition, 52

VT EXTENDED VTF
env variable definition, 49

VT FLUSH PID
env variable definition, 52

VT FLUSH PREFIX
env variable definition, 52

VT FRAME
env variable definition, 56

VT FRAME GROUP
env variable definition, 54

VT FRAME USE HW STRUCTURE
env variable definition, 54

VT FRAMES MAXNUM
env variable definition, 55

VT FRAMES PER RUNTIME
env variable definition, 55

VT GROUP
env variable definition, 56

VT LOGFILE FORMAT
env variable definition, 49

VT LOGFILE NAME
env variable definition, 48

VT LOGFILE PREFIX
env variable definition, 49

VT LOGFILE RANK
env variable definition, 50

73

INDEX

VT MEM BLOCKSIZE
env variable definition, 51

VT MEM FLUSHBLOCKS
env variable definition, 52

VT MEM INFO
env variable definition, 51

VT MEM MAXBLOCKS
env variable definition, 51

VT MEM MINBLOCKS
env variable definition, 51

VT MEM OVERWRITE
env variable definition, 52

VT MESSAGE THUMB SIZE
env variable definition, 56

VT NMCMD
env variable definition, 57

VT PCTRACE
env variable definition, 50

VT PROCESS
env variable definition, 50

VT PROCS PER FRAME
env variable definition, 54

VT PROGNAME
env variable definition, 48

VT PROTOFILE NAME
env variable definition, 49

VT SECONDS PER FRAME
env variable definition, 55

VT STATISTICS
env variable definition, 53

VT STF CHUNKSIZE
env variable definition, 54

VT STF PROCS PER FILE
env variable definition, 53

VT STF USE HW STRUCTURE
env variable definition, 53

VT SYMBOL
env variable definition, 50

VT SYNC DURATION
env variable definition, 56

VT SYNCED CLUSTER
env variable definition, 57

VT SYNCED HOST
env variable definition, 57

VT THUMBNAIL
env variable definition, 56

VT UNIFY COUNTERS
env variable definition, 58

VT UNIFY GROUPS
env variable definition, 58

VT UNIFY SCLS
env variable definition, 57

VT UNIFY SYMBOLS
env variable definition, 57

VT VERBOSE
env variable definition, 49

VT CONFIG
environment variable, 8

VT CONFIG RANK
environment variable, 8

VT ROOT
environment variable, 5

VT begin
VT.h, 30

VT beginl
VT.h, 30

VT CAT ANY DATA
VT.h, 37

VT CAT COLLOPS
VT.h, 37

VT CAT COUNTERS
VT.h, 37

VT CAT FILEIO
VT.h, 37

VT CAT FUNCTIONS
VT.h, 37

VT CAT MESSAGES
VT.h, 37

VT CAT OPENMP
VT.h, 37

VT CAT SCOPES
VT.h, 37

VT Categories
VT.h, 37

VT classdef
VT.h, 28

VT COUNT ABSVAL
VT.h, 35

VT COUNT DATA
VT.h, 35

VT COUNT DISPLAY
VT.h, 35

VT COUNT FLOAT
VT.h, 35

VT COUNT INTEGER
VT.h, 35

VT COUNT INTEGER64
VT.h, 35

VT COUNT RATE
VT.h, 35

VT COUNT SCOPE
VT.h, 35

VT COUNT VALID AFTER
VT.h, 35

VT COUNT VALID BEFORE
VT.h, 35

VT COUNT VALID POINT
VT.h, 35

74

INDEX

VT COUNT VALID SAMPLE
VT.h, 35

VT CountData
VT.h, 35

VT countdef
VT.h, 36

VT CountDisplay
VT.h, 35

VT CountScope
VT.h, 35

VT countval
VT.h, 37

VT end
VT.h, 30

VT endl
VT.h, 30

VT enter
VT.h, 31

VT finalize
VT.h, 24

VT flush
VT.h, 26

VT FRAME PROCESS
VT.h, 38

VT FRAME THREAD
VT.h, 38

VT framebegin
VT.h, 39

VT framedef
VT.h, 38

VT frameend
VT.h, 39

VT FrameScope
VT.h, 38

VT FuncDef
VT FuncDef, 40

VT FuncDef, 40
GetHandle, 40
VT FuncDef, 40

VT funcdef
VT.h, 28

VT Function, 41
∼VT Function, 42
VT Function, 42

VT getprocid
VT.h, 33

VT getrank
VT.h, 24

VT getthreadid
VT.h, 34

VT Group
VT.h, 33

VT GROUP CLUSTER
VT.h, 33

VT GROUP PROCESS
VT.h, 33

VT GROUP THREAD
VT.h, 33

VT groupdef
VT.h, 34

VT initialize
VT.h, 24

VT leave
VT.h, 31

VT ME
VT.h, 33

VT NOCLASS
VT.h, 29

VT NOSCL
VT.h, 27

VT Region, 43
∼VT Region, 44
begin, 44
end, 44, 45
VT Region, 43

VT SCL DEF CXX
VT.h, 41

VT SclDef
VT SclDef, 41

VT SclDef, 41
GetHandle, 41
VT SclDef, 41

VT scldef
VT.h, 27

VT scopebegin
VT.h, 32

VT scopedef
VT.h, 32

VT scopeend
VT.h, 33

VT symdef
VT.h, 29

VT symstate
VT.h, 26

VT thisloc
VT.h, 27

VT timestamp
VT.h, 26

VT timestart
VT.h, 26

VT traceoff
VT.h, 25

VT traceon
VT.h, 25

VT tracestate
VT.h, 25

VT VERSION
VT.h, 23

75

INDEX

VT VERSION COMPATIBILITY
VT.h, 23

VT wakeup
VT.h, 31

76

	Contents
	Introduction
	What is Vampirtrace?
	System Requirements and Supported Features
	Multithreading
	About this Manual

	Installation
	How to Use Vampirtrace
	Tracing MPI Applications
	Single-process Tracing
	Recording Statistical Information
	Recording Source Location Information
	Tracing Application Subroutines
	Recording Hardware Performance Information
	Using the Dummy Libraries

	Structured Tracefile Format
	Introduction
	STF Components
	Single-File STF
	Configuring STF

	User-level Instrumentation with the API
	The Vampirtrace API
	Initialization, Termination and Control
	Defining and Recording Source Locations
	Defining and Recording Functions or Regions
	Defining and Recording Overlapping Scopes
	Defining Groups of Processes
	Defining and Recording Counters
	Defining Frames
	C++ API

	Vampirtrace Configuration
	Configuring Vampirtrace
	Specifying a Configuration File
	Configuration Format
	Syntax of Parameters
	Supported Directives
	How to Use the Filtering Facility
	The Protocol File

	How to Create an Error Report
	Vampirtrace Problem Report Form and Instructions
	How to Prepare and Send Your Example

	FAQ - Frequently asked questions
	General questions
	Platfrom specific questions

