
Vampir 4.0

User’s Guide 4.0.0.0

PALLAS GmbH
Hermülheimer Straße 10
D–50321 Brühl, Germany

This product includes software developed by the University of California, Berkley and its contribu-
tors, and software derived from the Xerox Secure Hash Function.

2

CONTENTS

Contents

1 Introduction 3

1.1 What is Vampir? . 3

1.2 What is new in Vampir 4.0 . 4

1.3 What is new in Vampir 3.0 . 5

1.4 What Do You Need to Run Vampir? . 6

2 Using Vampir to Understand Performance 7

2.1 MPI Performance Versus Application Performance 7

2.2 Identifying Performance Costs with Vampir . 8

2.3 Identifying Load Balance Problems with Vampir . 12

2.4 Summary . 14

3 Getting Started with Vampir 17

3.1 Setup Procedure . 17

3.2 Vampir Basics . 18

3.3 File Handling . 23

3.4 Global and Process Displays Menus . 33

3.5 Filters . 47

3.6 Preferences . 51

3.7 Using One Vampir Main Window to Compare Trace Files 54

1

CONTENTS

2

Chapter 1

Introduction

1.1 What is Vampir?

Vampir is the market leader in performance analysis for parallel applications. Vampir provides
a convenient way to graphically analyse runtime event traces produced by MPI applications. It
excels in enabling the user to focus quickly at the appropriate level of detail to analyse application
performance issues.

The role of parallelism in computing is motivated by the need to achieve more computing power
than a single processor can provide. With a parallel programming approach users are able to
reduce the time taken to solve a problem while also tackling larger problems by distribution of
data, and tasks, over multiple processors. The different parallel concepts can be divided in a
shared memory and a message passing approach. The message passing model allows for par-
allel scalability on distributed memory as well as on shared memory architectures, and presents
the opportunity for unrivaled performance. However, in providing this flexibility and portability the
parallel programming approach requires that the programmer must take care of explicit commu-
nication and load balancing, and this often results in complex code. The message passing model
is represented by different implementations of the very successful, and widely used, Message
Passing Interface (MPI). These implementations follow either the MPI-1 or MPI-2 standards that
are available on almost all platforms. The MPI standard has enabled many applications to run on
a large variety of parallel architectures such as shared-memory, distributed memory and, cluster
architectures without (or with only little) modification of the source. The shared memory model is
based on a global address space for all processors and directives are added to the serial source
code to enable forking (joining) from (to) the root process at runtime. Compiler directives can make
programming easier because they hide the parallel details from the programmer, but performance
gains are harder to achieve with them.

Many parallel applications do not benefit from the increasing peak performance of either sym-
metric multi-processor systems, parallel processor systems, or clusters of workstations. This is
because most applications are not designed (or programmed) to run efficiently on a large number
of processors, or architectures with different interconnect fabrics. Typically they use less efficient
communication patterns such as frequent global operations or blocking communication. This
leads directly to a lack of scalability, or load balancing problems, or both, and poor performance
of the parallel application. Efficient communication patterns are often difficult to code even for an
experienced MPI programmer due to the complexity of interaction between algorithm and com-
munication methods. Therefore, the need for performance optimisation and sophisticated tools
remain key requirements for the next decade and will grow in importance. Vampir meets this re-
quirement and its genesis is in the long-standing experience in high performance computing that

3

CHAPTER 1. INTRODUCTION

Pallas offers customers. This experience is centred on well-balanced tools and expertise in the
field of parallel performance analysis.

Parallel programs can produce a large amount of trace data during a trace session. Finding per-
formance bottlenecks requires appropriate tools that can handle this information efficiently. Text
oriented tools (such as prof) that are used for serial performance analysis are disadvantageous
when dealing with large amounts of sampled data. Also graphical user interfaces that represent
the collective profiling data are often unable to identify problems. An event-based, trace-based
performance analysis tool like Vampir can directly handle program traces and is capable of show-
ing accumulated measurements in different types of statistical displays for arbitrary time intervals.
Performance problems that are related to imbalanced code or poor synchronisation can be easily
detected because they cause irregular communication patterns.

Future versions of Vampir/Vampirtrace will support other parallel programming paradigms such
as OpenMP, multithreaded, and hybrid approaches (OpenMP/MPI). Vampir translates trace file
information into a variety of graphical displays that help the programmer understand trace results.
Examples of Vampir graphical displays include:

• timeline displays showing state changes and communication,

• profiling statistics displaying the execution times of routines,

• communication statistics indicating data volumes and transmission rates.

One of the key features of Vampir is the advanced navigation functions that easily allow zooming
onto arbitrary time intervals. Thus, the programmer proceeds from a bird’s eye view of the whole
trace to finer granularity of detail. The profiling and communication statistics help in identifying
performance bottlenecks, while the detailed timeline display gives clues as to their cause. The
combined effect of these features is to lead the programmer rapidly and efficiently to the source
of performance bottlenecks in the application.

Specific parallel performance problems that Vampir can help with include:

• excessive communication cost,

• load balance between CPU and cache, or memory,

• communication bottle-neck detection on the interconnect fabric.

All three of these issues determine how well a parallel application’s performance scales with an
increasing number of parallel processors.

This User’s Guide is intended to reveal details of Vampir’s features and can be used both as a
learning guide and as a reference. While not all features of Vampir are covered at the deepest level
of detail the coverage is sufficient to allow rapid start-up for the programmer while encouraging
further exploration. To this end this User Guide is organized into a demonstration of how Vampir
may be used to understand code performance in Chapter 2, followed by a quick-start section in
Chapter 3. The remaining sections in this chapter cover some preliminary requirements before
Vampir can be started on the user’s platform.

1.2 What is new in Vampir 4.0

Vampir 4.0 adds several new features that extend the traditional event-based performance analy-
sis. A new file format, the Structured Trace Format (STF) is used to store the event data in a more
compact format as well as meta data about the events. These extensions allow:

4

1.3. WHAT IS NEW IN VAMPIR 3.0

• preview of the event data without loading it (FRAME DISPLAY, Section 3.3.5)

• fast, random access to parts of the trace (Loading Data , Section 3.3.5.1)

• statistical analysis of a program run without storing or loading trace data (STATISTICS

VIEWER, Section 3.3.7)

• a redesigned PROCESS FILTER that makes better use of grouping (Section 3.5.2)

1.3 What is new in Vampir 3.0

To allow an efficient in-depth investigation of MPI programs and to provide support for modern
SMP clusters, Pallas introduces a new generation of Vampir and Vampirtrace. Vampir 3.0 graph-
ics performance has been drastically improved, and it incorporates new displays for the analysis
of hardware or OS performance information: the values are shown in the global or local timelines,
and a by-routine profile is also available. On SMP clusters, the message statistics can be com-
puted either between processes or between nodes. The new Vampir 3.0 release includes new
and improved features while keeping all the unique features of Vampir 1.x and 2.x.

The current release has many new added features, these include:

• improved performance

• better scalability

• explicit support for clustered systems allows analysis of communication between nodes

• support for hardware or OS performance counters

• unified filtering capabilities

• maximum/minimum values are available in statistic displays

• trace file specific configuration files.

As an aid to users familiar with Vampir 2.5 the following is a list of some changes especially
relevant to getting started with Vampir 3.0 and in using this document:

• PARALLELISM TIMELINE has been renamed to SUMMARY TIMELINE.

• The new PROCESS PROFILE complements the ACTIVITY CHART.

• The call tree may also be displayed for all processes simultaneously (GLOBAL CALL TREE).

• The Filter Processes entry of the Global Displays menu and several context menu entries
in various displays were moved to the global Filter menu.

• Vampir now starts with the SUMMARY CHART display by default. This default may be
changed in the new PREFERENCES/DISPLAYS/STARTUP requester.

• The file format has evolved such that a trace written with 3.0 cannot be loaded in 2.5.
Therefore the file suffix was changed from .bpv/.pv to .bvt/.avt. However, traces written with
previous versions of Vampirtrace should, in general, still be readable in 3.0.

5

CHAPTER 1. INTRODUCTION

1.4 What Do You Need to Run Vampir?

1.4.1 Supported Platforms

Vampir is currently available on all major UNIX platforms and to see the full current list visit the
Pallas website at http://www.pallas.com/e/products/vampir/index.htm . A graphical
display running an X server (X11R5 or later) is also required.

1.4.2 Trace Generation Software

To generate trace files from MPI applications the Vampirtrace instrumentation library from Pallas
must be used. Vampirtrace is the link between the MPI application and performance analysis or
prediction: it gathers information about the execution behavior that can be fed into Vampir. It is
easy to use since re-linking the application with the Vampirtrace library is sufficient in most cases.
A powerful configuration mechanism allows customisation of Vampirtrace’s operation, e.g. by fil-
tering the trace data during runtime. The low-overhead Vampirtrace library works with all major
MPI implementations in combination with programs written in Fortran 77, Fortran 90/95, Java,
C and C++. The instrumentation functionality does vary across platforms with respect to auto-
matic instrumentation and viewing source code references. Further information on availability,
supported platforms and supported MPI implementations may be found in Vampirtrace documen-
tation.

1.4.3 Downloading Vampir

The latest version of Vampir is available to download on the Pallas website. The Vampir distribu-
tion includes the Vampir binaries, example trace files, and documentation.

The Pallas website can be found at http://www.pallas.com/e/products/vampir where
the products and Vampir hyperlinks should be followed to find the Vampir pages.

1.4.4 More Information about Vampir

Additional (and current) information about Vampir is available from the Pallas web pages. User’s
of Vampir are always invited to direct questions and suggestions about the Pallas tools via email
to support@pallas.com.

6

http://www.pallas.com/e/products/vampir/index.htm
http://www.pallas.com/e/products/vampir

Chapter 2

Using Vampir to Understand
Performance

2.1 MPI Performance Versus Application Performance

It is often stated that enhanced parallel performance comes from enhanced simultaneous activi-
ties. Usually this devolves into the separation of communication performance and application per-
formance. The latter is a function on the choice of algorithm, data structure/partition, etc. whereas
the former is a function of the communication costs for the chosen MPI procedures. Vampir can
give insights into both categories of performance issues because, through the many displays of a
trace file that it offers, it can reveal subtle performance issues. It supports the programmer both in
the discovery of problems and in the quantitative analysis of performance improvements between
different versions of a program after code changes have been made. This chapter demonstrates
this with specific examples without providing distracting details of how the corresponding displays
are obtained. Whereas the next chapter Getting started with Vampir explains exactly how the
Vampir displays shown here are produced.

Two algorithms are discussed in the following examples. The first is a Poisson solver with a
finite difference method and the second is a sort algorithm. The naive version of the Poisson
solver uses MPI_Sendrecv to exchange data in a clock-wise strategy where the process of rank
i exchanges data with the rank i+1 neighbour after message exchange with the rank i-1 neighbour
is complete. As this chapter will show, this causes excessive costs for communication that can be
reduced by replacing these calls with non-blocking communication. The corresponding trace files
are located as follows:

$PAL_ROOT/examples/redblack_sndrcv.stf

$PAL_ROOT/examples/redblack_icomm.stf

The sort problem will serve as an example where a bad choice of the application algorithm causes
a load balance problem. Two versions were implemented, both using a (qsort-like) algorithm.
First, all processes sort their local parts with qsort. Second, these sorted parts are merged with
an operation of linear complexity. In the first version, the merge part gathers data to the rank
0 process where all remaining work is performed. The more advanced algorithm distributes the
work by organising the processes in a tree and doing a receive/merge/forward operation in each
process. The corresponding trace files are located in the directory:

$PAL_ROOT/examples/sort_lin.stf

$PAL_ROOT/examples/sort_tree.stf

7

CHAPTER 2. USING VAMPIR TO UNDERSTAND PERFORMANCE

This demonstration shows that with Vampir/Vampirtrace it is easy to identify both the problem
and quantitative metrics for measuring performance improvements. These methods also apply in
more complex cases that would otherwise be hard to approach without a tool such as Vampir.

2.2 Identifying Performance Costs with Vampir

2.2.1 Statistical Overview

When Vampir is started as follows:

vampir $PAL_ROOT/examples/redblack_sndrcv.stf &

it opens the STF trace without actually loading event data. Instead it just loads the much smaller
meta data and opens the FRAME DISPLAY to present a preview of the trace. This is explained
in more detail in Section 3.3.5. To proceed to the traditional analysis of the real trace data, use
the right mouse button to show the context menu and select Load/Whole Trace , or use the L
keyboard shortcut.

After loading the trace data Vampir opens with the SUMMARY CHART display by default. This
shows the sum of the time consumed by all activities over all selected processes for the trace file
redblack_sndrcv in 2.1(a). This is a very condensed view of the entire program run that clearly
shows more time is spent in MPI procedures compared to user code. However, even more detail
is easily accessible. For example, for a better view of MPI procedures consider the summary chart
display shown in 2.1(b). This display was modified to show only MPI function calls, and instead
of absolute times the labels now show percentages of the total runtime. This performance metric
pinpoints the dominant MPI procedures, but it is not yet clear why they take so much time.

(a) with absolute times (b) with relative times for MPI

Figure 2.1: SUMMARY CHART display

2.2.2 Runtime Analysis

An in-depth-analysis of the runtime behaviour addresses the issue as to why MPI procedures
dominate. Because Vampir has access to a trace that exactly describes when an event occurred
in the application, it can draw these changes over time in so-called Timeline Displays. One such
timeline is the SUMMARY TIMELINE, which shows all analysed state changes for each process
(over the chosen time interval) in one display as a histogram over time bins. Within each time bin
the number of processors in either an MPI (red) or Application (green) state is shown as a stacked
column bar chart. An example of the summary timeline is shown in 2.2 for redblack_sndrcv

8

2.2. IDENTIFYING PERFORMANCE COSTS WITH VAMPIR

and from this display the overall structure of the program becomes clear. First there is a setup
phase where new process become active and wait for others to get ready, then a phase of several
iterations with increasing and decreasing MPI activity. Because a histogram is used the SUMMARY

TIMELINE display works well even for long trace times.

Figure 2.2: SUMMARY TIMELINE display

On the other hand, the GLOBAL TIMELINE by default shows all events and thus supports de-
tailed analysis at the function (or procedure) level. Because the whole program run is visible
in 2.3(a), there is only enough space to print the name of the long-running MPI_Bcast and
User_Code states at the beginning of the run. The color map has used red for MPI, green for the
application, but also introduces purple for collective operations. In this example there are many
MPI_Allreduce calls and this is why purple dominates (however, an option is available to turn
off display of collective procedures). It is possible to identify individual states by clicking on them
with the left mouse button. This action marks them in the timeline display and opens a display
similar to that shown in the MPI example of 2.4 for individual processes.

However, the performance situation looks quite different after magnification of part of the timeline
in 2.3(a) with the zooming feature of Vampir. The result is in 2.3(b) which shows a few itera-
tions in the application. At this level of granularity the MPI symbols for MPI_Allreduce and
MPI_Sendrecv are visible. The purple horizontal arrowheads indicate the beginning and end
of time intervals for collective MPI communication. Also visible are messages between different
processes shown as thin black lines connecting different points in the respective time series.

For the case of redblack_sndrcv 2.3(b) shows there is a clear asymmetry of the time in-
terval for MPI procedure calls as a function of processor rank (increasing for MPI_Sendrecv ,
decreasing for MPI_Allreduce). This asymmetry is due to the choice of algorithm with a clock-
wise message passing algorithm that is contingent on ascending rank order (as described later).
Higher rank processes wait longer for completion of MPI_Sendrcv because more processes of
lower rank must first complete their message transactions. Conversely, MPI_Allreduce has the
inverse behaviour where the lowest rank process starts the operation soonest and must wait for
the highest rank process to complete first.

2.2.3 Evaluation of Alternative Data Exchange Implementations

In evaluating alternative coding methods trace files may be compared in Vampir by either:

• using multiple main windows to open multiple trace files simultaneously, or

• using only one main window with selected displays for multiple trace files.

9

CHAPTER 2. USING VAMPIR TO UNDERSTAND PERFORMANCE

(a) whole trace

(b) a few iterations

Figure 2.3: GLOBAL TIMELINE display for redblack sndrcv

In the first comparative method all Vampir displays (or dialog boxes) may be compared side-by-
side while in the second only some displays can be used to show results from multiple trace files.
This chapter uses the first comparative method for trace files, and the next chapter explains the
second method.

It is clear from the previous analysis that something needs to be done to improve the performance
of the code. For Poisson solvers with finite difference methods the standard MPI monographs
compare blocking and non-blocking communication strategies for halo exchange. The first MPI
case discussed above (redblack_sndrcv) uses blocking MPI_Sendrecv procedure calls while
an alternative MPI case, introduced below (redblack_icomm), replaces the MPI_Sendrecv
calls with MPI_Isend and MPI_Recv pairs, together with a MPI_Waitall procedure call. These
are implemented in decoupled blocks where non-blocking sends are performed in the same order
messages are received. Therefore performance differences are to be expected when the two MPI
cases are compared, even though they are functionally equivalent. The standard MPI monographs
make generalized comments about such performance differences, but only by using Vampir is a
quantitative, in-depth, understanding of the specifics of performance differences possible. The
analysis described below demonstrates how this understanding is reached by using Vampir to

10

2.2. IDENTIFYING PERFORMANCE COSTS WITH VAMPIR

Figure 2.4: IDENTIFIED ACTIVITY dialog

compare the first approach with the improved one.

Figure 2.5: SUMMARY CHART display for redblack icomm

A comparison of the respective SUMMARY CHART displays 2.1(a) and 2.5 shows that the
case of redblack_icomm consumes only 0.599 seconds compared to 0.836 seconds for
redblack_sndrcv . It is also obvious that the dominance of the MPI time portion has been
reversed. By switching to displaying function counts, one also finds that the dominating calls in
redblack icomm MPI_Comm_split and MPI_Bcast are only called once and can be ignored, as
their relative importance decreases for higher number of iterations and bigger problem sizes.

Nevertheless, to obtain a quantitative measure of communication-to-computation load balance in
the body of the application, the zoom feature of Vampir may be used to exclude the MPI_Bcast
and MPI_Finalize from the global timeline display. In Vampir performance information viewable
in different displays is linked in a context sensitive way. Therefore the corresponding summary
chart displays, shown in 2.6(a) and 2.6(b), are the result after zooming in the timeline display.
When looking at these statistics, it becomes obvious that the optimization was successful: time
wasted in MPI was reduced from 0.344 to 0.068 seconds.

Finally, to confirm the change in communication pattern, and the performance improvement,
2.7 shows magnification with the zooming feature of Vampir for the redblack_icomm timeline
display, similar to 2.3(b) for redblack_sndrcv . The contrast in communication patterns with
redblack_sndrcv is clearest if the zooming time interval for both zoomed displays is chosen

11

CHAPTER 2. USING VAMPIR TO UNDERSTAND PERFORMANCE

(a) redblack sndcv (b) redblack icomm

Figure 2.6: SUMMARY CHART display, just the iterations, absolute times

to show a few iterations. The display for redblack_icomm shows that the data exchange is
done by all processes at the same time and more quickly. However, the ratio of communication to
computation still poses a problem, which can possibly be addressed by increasing the work to be
done by each process.

Figure 2.7: GLOBAL TIMELINE display for redblack icomm, a few iterations

2.3 Identifying Load Balance Problems with Vampir

2.3.1 Activity Statistics

Another statistical display in Vampir is the ACTIVITY CHART. It is especially useful in looking at
distribution of time between MPI and user code for all processes at a glance. This display shows
a pie chart for each MPI process with proportionate division by application, MPI, and Vampirtrace
(VT_API) based on the total time utilization. VT_API is listed in addition to MPI and Application
because there was one or more calls to a Vampirtrace API function. However, such calls typically
take negligible time and thus the display helps to understand the uniformity of the load distribution
by process at-a-glance. To demonstrate the usefulness of the ACTIVITY CHART display the sort
cases are used. The corresponding Activity Chart displays are shown in 2.8(a) and 2.8(b) for the
sort cases of sort_lin and sort_tree , respectively.

12

2.3. IDENTIFYING LOAD BALANCE PROBLEMS WITH VAMPIR

It is no surprise that in the serial merge version of the sort example, sort_lin , the processes
with rank 0 does all of the merge and thus more work than the others, while all other processes are
blocked in MPI, waiting for process 0 to communicate with them. Because process 0 deals with
one process after the other, the processes with higher ranks are blocked longer. Whereas, the
optimized sort code, sort_opttree , is a textbook example that uses the tree-based approach
and results in a more even distribution of the work load, which in turn shortens the total runtime
from 52.684 to 7.226 seconds.

(a) sort lin

(b) sort tree

Figure 2.8: ACTIVITY CHART display

2.3.2 Message Statistics

Another important indicator of possible MPI performance problems is in the details of messages
passed between processes. For this Vampir provides a feature-rich MESSAGE STATISTICS display
for message counts, or the minimum, maximum, or average of message length, rate, or duration.
The default is to display the sum of all message lengths and these displays are shown in 2.9(a)

13

CHAPTER 2. USING VAMPIR TO UNDERSTAND PERFORMANCE

and 2.9(b), for the cases of sort_lin and sort_opttree , respectively. The differences in the
two algorithms are well illustrated. In the former case, (sort_lin), messages are received only
by the process with rank 0 (from all other processes with rank ≥ 0). They are all the same size.
In the latter case, (sort_tree), interprocess communication occurs for processes with rank ≥ 0
, dependent on the process location in the sort tree. The message size doubles at each level in
the sort tree.

(a) sort lin (b) sort tree

Figure 2.9: MESSAGE STATISTICS display (zoomed to exclude empty right half)

2.4 Summary

This purpose of this brief introduction was to introduce the power of Vampir in revealing per-
formance details for parallel algorithms and MPI implementations. Two examples were used: a
Poisson solver and a sort algorithm and each was implemented in two MPI versions. It may seem
obvious that performance differences are to be expected. However, it has been demonstrated
that only with Vampir can the details of performance issues be revealed and quantitative informa-
tion analysed. Furthermore, the quantitative information that Vampir provides is instrumental in
determining where the performance bottlenecks are and suggesting what can be done to relieve
them.

In the case of the Poisson solver a Vampir summary chart display gives a snapshot of application
versus MPI time utilization. Diving into this display type reveals details of individual MPI procedure
calls. A timeline display, especially with the zoom feature, reveals computation-to-communication
patterns as a time series. The summary chart display reveals the extent of concurrency in this
pattern. Taken together, the Vampir summary chart, timeline display, and summary timeline, give
clear, quantitative measures of the superiority of the choice of MPI algorithm in redblack_icomm
over redblack_sndrcv .

Vampir’s statistics displays may also be used for load-balance information. The activity chart en-
ables a quick and easy decision between MPI usage choices such as sort_opttree versus
sort_lin . Another statistics display is the message statistics display which focuses exclusive
attention on the MPI communication as it appears over the whole execution time. In the mes-
sage statistics display communication bottlenecks are easily detected by choosing one of several
display options.

14

2.4. SUMMARY

In both the redblack_sndrcv versus redblack_icomm , and the sort_lin versus
sort_opttree , the preferred algorithm has the shorter wall clock time. However, only with
Vampir is the detail of the reasons for the improved efficiency clear:

• for redblack—removing rank-ordered time dependence effects due to the way
MPI_Sendrecv and MPI_Allreduce are used, and

• for sort—replacing linear message passing with tree communication patterns.

15

CHAPTER 2. USING VAMPIR TO UNDERSTAND PERFORMANCE

16

Chapter 3

Getting Started with Vampir

3.1 Setup Procedure

To install Vampir follow these steps:

1. Download the package for the appropriate platform from the Pallas web site (http://www.
pallas.com/e/products/vampir).

2. Create a directory for Vampir as a root for all Vampir files and directories.

3. cd into this directory and uncompress the Vampir package.

4. Run the install-Vampir script to update the file and directory permissions.

If $PAL_ROOTis the root directory of the Vampir installation, e.g. /usr/local/vampir , then
the Vampir executable image resides in the directory $PAL_ROOT/bin .

3.1.1 License File

In order to run Vampir on a system, a license key must first be obtained from Pallas. The license
keys are stored in a plain ASCII file, the pathname of which must be made known to Vampir by
setting one of two environment variables:

• PAL_LICENSEFILE specifies the complete pathname of the license key file.

• PAL_ROOTpoints to the root of the Vampir installation.

The pathname of the license file is assumed to be $PAL_ROOT/etc/license.dat .

If called without a valid license, or with invalid settings of the above environment variables, Vampir
aborts with an error message, e.g.:

VAMPIR: could not access license file
VAMPIR: need license for product VA30, arch SPRC-SOL, hostid 2155491417, uid E0
VAMPIR: network address 192.168.3.4
VAMPIR: environment var PAL_ROOT not set
VAMPIR: environment var PAL_LICENSEFILE not set

17

http://www.pallas.com/e/products/vampir
http://www.pallas.com/e/products/vampir

CHAPTER 3. GETTING STARTED WITH VAMPIR

In this case make sure that the correct license key file is specified with the above mentioned
environment variables. If they are set, ensure that the files they point to are readable and contain
a valid license.

3.1.2 Support Tools

Vampir accesses several external tools to perform some of its tasks. These tools are described
below and they are required only if the features they support are needed. Otherwise Vampir can
be run without the corresponding tools. If they are installed these tools must be located in a
directory included in the shell’s executable search path (path shell variable or PATHenvironment
variable). The tools and the features they support include:

• A print command for lists and window snapshots (like lp or lpr). Lists are printed as plain
ASCII files and window snapshots as PostScript.

• Import, a screen snapshot utility from the ImageMagick package to export or print window
contents. It is included in the Vampir package and installed in the same directory as
the Vampir executable. ImageMagick can also be downloaded from several ftp servers,
including:

– ftp.x.org , directory /contrib/applications/ImageMagick , or from

– ftp.zam.kfa-juelich.de , directory pub/graphics/ImageMagick .

• If trace files are compressed with gzip or compress, Vampir can extract them automatically
if their counterparts gunzip or uncompress, respectively, are available. The GNU gzip
package can be downloaded from

– prep.ai.mit.edu , directory pub/gnu , file gzip-1.2.4.tar , or

– other GNU software ftp servers.

3.1.3 Tracefiles

Sample trace files generated with Vampirtrace are available in the directory
$PAL_ROOT/examples/ for use with Vampir. Please refer to the READMEfile there for
further information. Some of the trace files found there were used in the previous chapter
to demonstrate how Vampir helps in understanding performance. In this chapter the tracefile
redblack_sndrcv is used to introduce Vampir features.

3.2 Vampir Basics

Vampir has many displays and features, and their interaction can be quite complex. Therefore it
is important to keep in mind that there are four basic display window styles in Vampir:

• Timeline displays that show changes in the program over a certain time interval

• Statistic displays that show values derived from the trace data of a time interval selected in
one of the timeline displays (often in graphical and/or textual format).

• Global displays independent of any time interval (source listings, call tree).

18

3.2. VAMPIR BASICS

• Configuration dialogs.

A complete description of all possibilities in the style of a reference guide would not be a good
starting point for the novice user. Therefore the following is intended as a quick start guide to
some essential functions and Vampir displays that represent a basic subset. It is hoped that this
approach will inspire the reader to explore the full potential of Vampir after familiarisation with the
basics.

3.2.1 Vampir Activities and Symbols

Visualisation in Vampir is based on the concept of Activities and associated Symbols. The combi-
nation of Activity and Symbol is called a State. This is not quite the same as a Symbol, because
the same symbol name may appear in different activities while a state is a unique entity. For MPI
programs the major activity is named MPI and all MPI functions are defined as symbols inside
this activity. With the help of these elements it is possible to show the different states in a parallel
program. In general, Activities may be thought of as classes of Symbols. Symbols are detailed
descriptions of Activities. In detail, the Activity MPI has all MPI functions, such as MPI_Bcast ,
defined as associated Symbols. With this hierarchical dependence it is possible to reduce the
amount of information initially presented by statistical displays, because every statistic display
shows only the different Activities of the traced program in the first display it opens.

To distinguish one Activity from another it is useful to assign an individual color to each Activity.
Symbols inherit the Activity color in Timeline Displays and in most Statistic Displays. It is also pos-
sible to rearrange the assignment of Activities and Symbols with a dialog, which can be reached
from the main menu.

Vampirtrace also allows for user-defined (source code level) Activities and Symbols and these
will also appear alongside predefined Activities (such as MPI), in Vampir graphical displays with
colors definable by the user as described later.

3.2.2 How does Vampir work?

Vampir supports three different approaches to performance analysis that can be used to progress
from a rough overview to a very detailed view of single events:

3.2.2.1 Statistical Analysis

The STATISTICS VIEWER visualizes statistical information about the whole program run and cov-
ers:

• function calls

• sent messages

• collective operations

• OpenMP regions (if contained in the trace)

This analysis does not require collection of any trace events, therefore it is a good starting point
for trying to understand an unknown application that might produce an unmanageable trace. How
to do this is explained in more detail in Section 3.3.7.

19

CHAPTER 3. GETTING STARTED WITH VAMPIR

3.2.2.2 Thumbnail Previews

If Vampirtrace has collected trace data and generated frames for this data, then attached to each
frame there are so called thumbnails: they provide statistical information similar to the one de-
scribed in the previous section, but in contrast to that statistics data thumbnails are restricted to
the data covered in their frame. In other words, they provide a preview of the data that Vampir
would find when loading just a specific frame.

As soon as one has identified a problem in these previews, one can proceed to load trace data and
continue with Event-based Analysis as described in the next section. Under some circumstances
it may be sufficient to just look at the previews without ever loading the real data: for that purpose
Vampirtrace supports the DISCARD configuration option which collects events and generates
thumbnails, but never writes the event data into the trace.

3.2.2.3 Event-based Analysis

Vampir loads a trace file filled with trace data that describes exactly when and in which process
certain events occurred. An event includes a time stamp and a process number, plus additional
event-specific information. For example, a function would generate one event for entering the
function and one event for leaving it and the additional information for these events is the number
of a state (as defined in the previous section). In other words, a state referenced by certain events,
but is not an event itself. Other events are used to represent messages and collective operations.

A trace file is generally extensive and after the trace file has been loaded (opened in Vampir) sub-
sets of this data are viewed. Which part of the trace data is viewed depends on the Vampir display
chosen. A variety of different displays are available in Vampir to show time series, statistical data,
etc. Because of the volume of information in the trace file, data viewed in a Vampir display is
generally defined by filters. Some filters depend on the display chosen, while others may be set
by menu choices. As, examples, filters may be on processes, on time, by Activity, or by Symbol,
depending on the display and menu options chosen. Filters are introduced in Section 3.5.

If a trace is too large to be loaded completely, the new Structured Trace Format (STF) and the
FRAME DISPLAY support loading a subset of the data. The analysis described above then only
takes the loaded data into account.

3.2.3 Visible Time Interval

Crucial to understanding the event trace file and its displays in Vampir is the concept of time
interval and displays that are time series defined on it. The time interval is by default the wall
clock time for the whole execution and different displays may show results specific to it. However,
the time interval displayed may be changed interactively, and a zoom feature in Vampir allows for
the time interval in a time series display to be magnified (see Section 3.2.5 below for a description
of how zooming is performed). An example of a zoomed timeline display in Vampir was shown in
2.3(b) for the trace file redblack_sndrcv . By default other displays that are open will respond to
the zoom (or magnification) in the time series, in a context sensitive way, and also display statistics,
or results, for the magnified time interval. However, this default behavior may be disabled with a
toggle button for a use timeline portion switch and in this way other open displays will have a
frozen time interval not correlated with further zooming in the timeline display. Further discussion
of this behavior is given below.

20

3.2. VAMPIR BASICS

3.2.4 Vampir GUI Common Features

The following sections describe in more detail the types of graphical displays offered by Vampir
and how to manipulate them. The description in this chapter is only a survey of some specific,
often-used, features. However, before details on each feature are presented a few characteristics
common to most Vampir displays are described.

Figure 3.1: Vampir main window panel.

Vampir opens with a simple Main Window displaying a panel of main menu buttons, as shown
in Figure 3.1, and each is described in more detail in the following Sections. The main menu
buttons each have drop-down menus used to select different features and viewing windows. Each
main menu may be detached (“torn-off”) from the main window panel and moved elsewhere on
the desktop. This, “tear-off” feature makes it easier to repeat menu selections without having
to pass through the drop-down selection each time. Usually when a user selects a drop-down
menu, it is only displayed until a selection is made, after which it is removed. However, a torn-off
menu is not removed after a selection and the user may make repeated selections from it. When
tear-off functionality is enabled in Vampir, the first item in the drop down menu is a dashed line.
By selecting this item with the left mouse button the menu is placed in a separate window with
limited window manager decorations. The menu remains torn off until the user cancels the menu
by pressing the ESCAPE key within the window or selecting Close from the window manager
menu.

Inside Vampir displays all three mouse buttons have functions assigned to them. Generally a
single click functions as follows:

• The left mouse button is used to select or identify something.

• The middle mouse button is used to deselect all prior selected processes (if process selec-
tion is applicable).

• The right mouse button is used, inside a display, to pop up a context menu with display-
specific options and functions.

Selecting a function with the right mouse button from the display’s context menu may change
the meaning of a left mouse button click. To indicate this the mouse cursor shape inside the
corresponding display will be changed to a special pixel map such as cross-hairs or a target
symbol. This will indicate that a function from a context menu is activated but needs further input,
such as an additional mouse click, or selection of an area to complete the previously selected
function.

3.2.5 Zooming

The left mouse button also has another special purpose. Moving the mouse with the left button
depressed is used to zoom into a display, or if zooming is not applicable, to mark an area which
is used for multiple process selection. In most Vampir graphic windows zooming is possible. The

21

CHAPTER 3. GETTING STARTED WITH VAMPIR

only exception is the pie chart mode of the statistic displays. To zoom in (i.e. magnify) a part of a
display, press the left mouse button at the start of the region to be magnified. Then, while holding
the left mouse button down, drag the mouse to the end of the desired region. In this process
a rectangle will be drawn to define the area of the display to be magnified. Once the desired
endpoint is reached release the mouse button. After this the display window will be redrawn to
show only the magnified portion and the scales are adjusted accordingly.

3.2.6 Filtering

In configuration dialogs one may customize the behaviour of Vampir and filter data to be viewed
in other displays. More detail on filtering is given in Section 3.5. Most of the filter dialogs present
the current configuration, which may then be modified, and activated when the Apply button is
pressed. This last action does not close the dialog so that it may be repeatedly used to try out
various configurations in rapid succession. Often an Undo button is provided to restore the initial
configuration. If configuration settings are changed and the dialog is closed without activation of
the Apply button all changes are discarded. The other type of configuration dialog has no direct
influence on the appearance of other displays, so it has only Okay and Cancel buttons that close
the display in addition to accepting (or rejecting) the new configuration.

3.2.7 Context Menus

Usually Vampir displays have context menus available that are accessible through a single click
with the right mouse button inside the corresponding display (as discussed in Section 3.2.4).
All display-specific functions and settings (or options) are available through such context menus.
These context menus may appear to be similar, but differ depending on the display they origi-
nate from. Only some context menus and some common options they offer are described in the
following sections.

Some common features are listed here. Most selections from a context menu have a primary
menu and a submenu. Examples of common selections available from the primary menu are
items described in the following table. Secondary items from submenus can be numerous and
some are introduced as needed in the following Sections. They control the form of the display and
their inter-relationships.

Item Function

Components Add/remove certain parts of a display (such as legends, scales,etc.).
Display Show a certain attribute (such as message length, count, etc).
Hiding In statistical displays: remove entries from the visible list.
Mode Switches the visual appearance of the display (e.g. bar vs. pie chart)
Options Modifies how information is calculated or triggers certain operations.
Print Bring up the print dialog (see Section 3.6.4).
Ruler Bring up a message box with the time for a mouse-defined region.
Select Chooses the entities that are displayed.
Sort (or Sort by) Sets the order in which entries are displayed.
Timeline Determines which time interval is used:

Global = the shared time interval
Local (Freeze) = the current time interval remains visible
All = the whole trace

Sync Timeline show same time interval as elsewhere if enabled,
otherwise use a separate time interval for the display

22

3.3. FILE HANDLING

Use Timeline Portion show same time interval as elsewhere if enabled,
otherwise the whole trace

Zoom Perform a zoom operation.
Undo zoom Undo zoom operation(s).

3.3 File Handling

3.3.1 Structured Trace Format (STF)

The conventional approach of handling trace data in a single trace file is not suitable for large
applications or systems, where the trace file can quickly grow into the tens of gigabytes range.
On the display side, such huge amounts of data cannot be squeezed into one display at once.
Mechanisms must be provided to start at a more general level of display and then resolve the
display into more detailed information. A more general view of the data will be represented by
frames, which are simply parts of the trace tied together. Several frames may exist in one trace
and the user will be able to navigate through the frames and select one or more to request addi-
tional detailed information. The subdivision of a trace into frames can occur along three principal
dimensions:

1. along the time axis different frames represent different time intervals

2. along the task/thread axis different frames represent different threads, tasks, or groups

3. along the kind of trace data a frame can contain any combination of the following categories
of data: state changes, collective operations, point-to-point messages, HPM counter values,
OpenMP region data, and finally file I/O data (for MPI/O)

For an application, the subdivision of trace data into frames can be defined at compile time with
calls to the frame definition routines in the Vampirtrace API, or at runtime by specifying the con-
figuration options discussed in Section 3.3.1.3.

These design goals require a more powerful data organization than the traditional Vampir trace
file format can provide. In response to this, the Structured Trace File Format (STF) has been
developed. The aim of the STF organization is to provide a file format which:

1. can arbitrarily be partitioned into several files, each one representing one or several frames

2. allows fast random access and easy extraction of data

3. is extensible, portable, and upward compatible

4. is clearly defined and structured

5. can efficiently exploit parallelism for reading and writing

6. is as compact as possible

The traditional trace file format is only suitable for small applications, and cannot efficiently be
written in parallel. Also, it was designed for reading the entire file at once, rather than for extracting
arbitrary data. The structured trace file implements these new requirements, with the ability to
store large amounts of data in a more compact form.

Fixed size overview data (such as summary routine profiles, OpenMP statistics) will be shown
using the existing Summary Chart display techniques, which can show average, minimum, and

23

CHAPTER 3. GETTING STARTED WITH VAMPIR

maximum statistics, among other scalars that are tracked. To accommodate a large number of
different components, such as states, registers, OpenMP regions, and communication operations,
the displays will be scrollable and can be sorted by name or value.

The current release of Vampir and Vampirtrace still support the traditional Vampir file format.
See Vampirtrace’s configuration option LOGFILE-FORMAT for information on how to generate
the older formats.

3.3.1.1 Components of a Structured Trace File

A structured trace file actually consists of a number of files. Depending on the number of pro-
cesses and their distribution to actual files, the following component files will be written, with
¡trace¿ being the basename of the file:

1. one index file with the name <trace>.stf

2. one declaration file with the name <trace>.stf.dcl

3. one frame file with the name <trace>.stf.frm

4. one statistics file with the name <trace>.stf.sts

5. one message file with the name <trace>.stf.msg

6. one global operation file with the name <trace>.stf.gop

7. one or several process files with the name <trace>.stf.pr.<index>

8. for the above three kinds of files, one anchor file each with the added extension .anc

The records for routine entry/exit, counters and OpenMP regions are contained in the process
files. The anchor files are used by Vampir to fast-forward within the record files. They can be
deleted, but that will result in slower operation of Vampir.

Please make sure that you use different names for traces from different runs; otherwise, you will
experience difficulties in identifying which process files belong to an index file, and which ones are
left over from a previous run. To catch all component files, use shell wildcards like <trace>.stf.*,
and put the files into a tar-archive for transmission, or convert to the single-STF format with the
stftool (see next section).

The number of actual process files will depend on the setting of the STF-USE-HWSTRUCTURE
and STF-PROCS-PER-FILE configuration options described below.

3.3.1.2 Single-file STF

Because of the many components of a normal STF file, file handling can become difficult and for
transmission these files must be packed together. The single-file STF format addresses these
problems by putting all the components into one file. This can be done by Vampirtrace, albeit
at the cost of reduced performance when writing the trace and some wasted file space. The
suggested file suffix is .stf.single.

The other method is to convert a normal STF into single-file STF with the stftool. This can be
combined with e.g. gzip to to produce a compressed .stf.single.gz file in one step as described in
Section 3.3.1.4. Vampir is able to read single-STF files without any performance hit, but it needs
to create a decompressed temporary file if compression was used.

24

3.3. FILE HANDLING

3.3.1.3 Tracefile Configuration Options

Vampirtrace configuration options control how a tracefile is written. These options and how they
are used is explained in more detail in VT.pdf and the manpage for VT_CONFIG(the environment
variable) that sets a Vampirtrace configuration.

The configuration option LOGFILE-FORMAT switches between the traditional Vampirtrace for-
mats:

STF the default Structured Trace Format

STFSINGLE single-file STF

BINARY the traditional Vampir format

ASCII the traditional human-readable Vampir format

The two main aspects of the STF behavior that can be configured are:

• frame definition: frames can be defined by a regular subdivision of the process and execu-
tion time space, and also depend on the hardware structure of the machine (where all of the
processes are running on the same SMP node in one frame).

• mapping to files: frames are just a logical concept, and need not coincide with the set of files
actually written. Vampirtrace allows the event data to be partitioned in the process files by
blocking, or coinciding with the hardware structure, such that events from processes running
on the same SMP node end up in one file.

The most important mechanisms for defining frames supported in the current release are:

• FRAME-USE-HW-STRUCTURE is enabled by default unless each process has its own
node; it combines all processes running on the same SMP node into the same frame. It
can be combined with the next two configuration options.

• DATA-PER-FRAME <number of bytes> starts a new frame as soon as the raw trace data
in memory of all processes exceeds the given threshold. This results in frames that cover
equal amounts of trace data and allow the user to split the trace into chunks that can be
loaded well by Vampir.

To determine the file layout, the following options can be used:

• STF-USE-HW-STRUCTURE is enabled by default. It will save the local events for all pro-
cesses running on the same SMP node into one process file. It can be combined with the
STF-PROCS-PER-FILE directive.

• STF-PROCS-PER-FILE <number> limits the number of processes whose events can be
written in a single process file. If STF-USE-HW-STRUCTURE is not enabled, this will result
in a regular subdivision of the process space in <number>-sized blocks depending on the
rank in MPI_COMM_WORLD, the local events for all the processes from one block ending up
in a single process file. If STF-USE-HW-STRUCTURE is set, this can produce more than
one process file per SMP node. The default value is 16.

• STF-CHUNKSIZE <bytes> determines at which intervals the anchors are set. The default
value is 64 kilobytes. Setting a smaller value will increase the performance of Vampir, but it
will use up more disk space. Increasing the number will likewise save disk space, but may
result in a slower Vampir operation.

25

CHAPTER 3. GETTING STARTED WITH VAMPIR

3.3.1.4 Handling STF files with stftool

To translate between the new STF format to the traditional BVT or AVT formats, the stftool com-
mand line converter is available in the Vampirtrace package. To just convert between STF and
binary format, simply type:

stftool <input file> --logfile-name <output file> --logfile-format BINARY

In the line above <input file> is the STF file, and <output file> is the BVT (or AVT) file.
To convert to a human-readable traditional format, specify ASCII instead of BINARY.

The stftool tool can do much more: it checks the integrity of a structured trace file, and can extract
all the various bits and pieces of information contained in it. A brief description of its usage can
be displayed by simply running it without any arguments, and detailed information about the many
options is available in the stftool.1 man page. Five command-line options are described here for
stftool, because the reader may find them useful in regard to stftool and also the utility xstftool,
which is documented below.

--convert <filename>

Converts the entire file into the file format specified with –logfile-format or the filename
suffix. Options that normally select a subset of the trace data are ignored when this low-
level conversion is done. Without this flag writing is restricted to ASCII and BINARY format,
while this flag can also be used to copy any kind of STF trace.

Converting from normal stf to compressed single-file STF is done like this:
stftool <trace>.stf --logfile-format STFSINGLE --convert - |
gzip -c > <trace>.stf.single.gz

--logfile-format [ASCII—BINARY—STF—STFSINGLE]

Specifies the format of the trace file. ASCII and BINARY are the traditional Vampir file
formats where all trace data is written into one file. ASCII is human-readable, whereas
BINARY is a more compact machine-readable format.

--matched-vtf When converting from STF to ASCII-VTF communication records are usually split
up into conventional VTF (Vampir Trace Format) records. If this option is enabled, an ex-
tended format is written, which puts all information about the communication into a single
line, but this is an extension of the format and therefore not understood by Vampir.

--move <file/dirname>

Moves the given file without doing other changes to it. The target can be a directory.

--request ’<type>’, <thread triplets>, <categories>,<duration>, <window>

This option has the same arguments as the --frame option below, but in contrast to defining
a new frame, it restricts the data that is written into the new trace to that which matches the
arguments. This option can be used more than once and then data matching any request is
written.

--print-statistics/frames/thumbnails All of the --print options extract some of the meta informa-
tion and print it in a human-readable form.

3.3.1.5 The xstftool Utility

There may be occasions when a user may wish to organize the trace data from Vampirtrace into
an ASCII format for possible viewing with a spreadsheet browser or analyze the data in a script.
The utility called xstftool has been developed for such purposes. The tool will do a translation

26

3.3. FILE HANDLING

from STF format into ASCII text that extends the stftool’s conversion to Vampir ASCII format. The
xstftool is part of the Vampirtrace package and more detailed documentation is found there.

3.3.2 File Menu

The file menu in Vampir is used to open a tracefile and select a configuration file and the following
Sections describe these features. For this introduction the important elements of Vampir are
introduced by using the trace file redblack_sndrcv.stf from the Vampir distribution. This
trace file is found in:

$PAL_ROOT/examples/redblack_sndrcv.stf

3.3.3 Opening a File

There are several methods by which a trace file may be opened in Vampir. The first method is
used if the trace file name is known and is entered in command line mode as in

vampir redblack_sndrcv.stf &

The suffix .stf stands for the new Structured Trace Format. The traditional Vampir formats use
the suffix .bvt for a binary trace file, or .avt for an ASCII trace file. It is recommended that these
extensions be used to identify file types when Vampir is used.

The second method of opening a trace file is to enter Vampir in the command line without any
parameters as in

vampir &

After Vampir has completed start up the main window shown in 3.1 is displayed. If it is not already
open, the trace file is opened by selecting the menu option File and pressing the Open Tracefile
button shown in the File menu.

A Motif-style file selector drops down and, from this selector, navigate to the trace file and press
the OK button. Alternatively, to re-open a tracefile from an earlier session, it often is easier to open
the RECENT TRACEFILE dialog reachable via File/Recent Tracefiles . This last choice will list all
trace files examined by Vampir in previous sessions. Selecting the file redblack_sndrcv.stf
from the list and pressing the OK button will open the file for visualization.

Compressed tracefiles are identified by their suffix and are uncompressed transparently. The
required external uncompress programs have to be registered as external converters with the
dialog reachable via Preferences/Tracefile/External Converters . The suffixes .Z and .bz2 are
registered by default and decompression of .gz files is already built into Vampir.

3.3.4 Loading Trace Data

As explained before, Vampir needs to load the event data before it can visualize it. For the
traditional Vampir .avt and .bvt files, opening the file immediately starts loading it. The progress
of loading the data is visualized in the status line below the menu bar of the main window where
a progress bar shows the percentage value of analysed events as well as the absolute number of
scanned events. If the trace file is small the progress bar may appear only briefly, whereas if the
file is large more time is needed for completion of loading. The load operation may be interrupted
at any point by pressing the pause button on the progress panel and Vampir opens a display for
the portion of the trace file that has been processed up to that point.

Loading trace data from STF files is done in the FRAME DISPLAY and therefore described below
in Section 3.3.5.1.

27

CHAPTER 3. GETTING STARTED WITH VAMPIR

3.3.5 FRAME DISPLAY

For STF, loading of data is only triggered automatically if no frame information is available. Other-
wise the FRAME DISPLAY is opened and the real event data can be loaded from there by opening
the context menu with a right mouse click. There are options to load the whole trace, just the
selected frames, and a certain time interval that is selected interactively in the FRAME DISPLAY.

As soon as loading starts the FRAME DISPLAY window is closed automatically because it is usually
no longer needed. It can always be reopened with the File/Frame Display menu item in the main
Vampir panel to load a different part of the trace.

In order to identify an interesting part of the trace for loading, the FRAME DISPLAY shows frames in
a two-dimensional grid aligned along the execution time (horizontal axis) and type (vertical axis).
The type string of the frames generated automatically by Vampirtrace usually includes the node
name and a triplet representing the process numbers that ran on this node, as seen in Figure 3.2.

Figure 3.2: FRAME DISPLAY

Frames can be selected by clicking on them, or by using the Select All Frames option from the
context menu. Selected frames are indicated by a bold outline (see frame #1 in 3.2). The selection
status of all frames can be cleared by the Unselect All Frames option of the context menu. The
Select/Deselect Frames option requires you to draw a rectangle around some frames, and then
toggles the selection status of the contained frames.

It is possible to select frames that are not adjacent in time and then load their data. However,
this will lead to missing data in the middle and these gaps can have a negative influence on the
analysis of the data. F.i. it is technically not feasible to accurately identify messages that occur in
both parts of a trace, so Vampir might count the same message twice.

In each frame, a minuscule rendition of a preview thumbnail is shown. Currently, the following
thumbnails are available:

Activity Timeline showing the distribution of execution time between activities, usually MPI ver-
sus user code.

Symbol Statistics showing min/average/max execution times for the routines contained in the
frame.

28

3.3. FILE HANDLING

Region Statistics showing min/average/max execution times for the OpenMP regions contained
in the frame.

Sent Message Statistics showing a message matrix for messages sent within the frame.

The selection of a thumbnail is made via the Display entry of the context menu. However, only
the default Activity Timeline is really suitable for usage in the FRAME DISPLAY. The others are
better suited for detailed analysis of data in one frame with the THUMBNAIL DISPLAY.

3.3.5.1 Loading Data from the F RAME DISPLAY

The Load context menu contains three different entries:

Whole Trace loads all data found in the trace file.

Selected Frames loads just the data covered by the currently selected frames, or the whole trace
if no frames are selected.

Time Interval is used to select data interactively, independent of predefined frames.

After selecting Time Interval the cursor changes into a cross-hair and one can select a time
interval by dragging the mouse over the FRAME DISPLAY while the left mouse button is pressed.
When the button is released, the dialog from Figure 3.3 pops up. Its values default to the time
interval that was just selected and all processes and data categories in the trace file enabled, but
this can be changed. Sometimes it is useful to e.g. deselect COLLOPS (aka collective operations),
because that can speed up loading and redrawing of timeline displays considerably.

Figure 3.3: loading arbitrary data from the FRAME DISPLAY

As soon as OK is pressed, loading of the selected data starts. When loading of trace data com-
mences (regardless of how it was started), the FRAME DISPLAY is closed automatically because
usually it is no longer needed after switching to the more detailed analysis of the original trace
data. It can be reopened e.g. to load a different subset of the trace with the File/Frame Display
menu entry of the main panel.

3.3.5.2 Using the T HUMBNAIL DISPLAY

The minuscule thumbnail renditions in the frame display are only useful to select the frames that
warrant further inspection. For each frame, a large thumbnail display can be opened that shows

29

CHAPTER 3. GETTING STARTED WITH VAMPIR

the data for the frame, and which can be switched to show any kind of thumbnail information
present. Generally, the thumbnail displays have been derived from existing Vampir statistics dis-
plays, with the exception of the combined min/average/max statistics for symbols and regions,
which do not yet appear in other Vampir displays.

To open a full size thumbnail display, use the Open Thumbnail entry of the context menu, move
the crosshair cursor over the frame to be analyzed, and click on the left mouse button. In the
example, opening up Thumbnail Displays for frame #0 will produce displays like those shown in
Figure 3.4.

(a) message count (b) symbol count

Figure 3.4: THUMBNAIL DISPLAY

Within each of the THUMBNAIL DISPLAYS, use the Display entry of the context menu to select
different kinds of thumbnail data. The default is to show the same kind as in the FRAME DISPLAY.

3.3.6 TRACEFILE INFO Dialog

The TRACEFILE INFO dialog displays the tracefile info record(s) of the loaded trace file and is
invoked with the File/Tracefile Info menu entry. The information shown includes the event count,
the version number of the tracefile format, and the creator record(s).

3.3.7 STATISTICS VIEWER

This Section will discuss the Statistical Analysis methodology for performance analysis with Vam-
pir and Vampirtrace. It is based on doing a cursory analysis of application performance using
the statistics capabilities of Vampirtrace, and then using the statistical data to direct what addi-
tional types of instrumentation analysis should be done to achieve improved MPI and/or OpenMP
execution performance.

In reference to the trace output file, MPI and/or OpenMP applications can generate so much
performance data that the trace output can grow prohibitively large. Therefore, this section will
focus on the use of statistic data to help guide the instrumentation process so that the user may
focus on execution bottlenecks in terms of providing performance tuning for an application.

30

3.3. FILE HANDLING

3.3.7.1 Controlling the Gathering of Statistics and Tracing Information

The Vampirtrace documentation describes how to set configuration options before running an
application. To enable statistics gathering, this option must be enabled in a configuration file:

STATISTICS ON

Also, to disable the recording of an event trace, include another directive:

PROCESS 0:N OFF

Both options can also be set as environment variables; in Bourne shell syntax:

VT_STATISTICS=ON
VT_PROCESS="0:N OFF"
export VT_STATISTICS VT_PROCESS

A tracefile will be generated, but it will only contain definition and environment records and will be
very short. To use the STATISTICS VIEWER within Vampir, do the following:

1. Start Vampir without specifying a trace file.

2. Select the menu item File/Statistics Viewer from the main panel.

3. Press Load Statistics from the context menu.

4. Select the tracefile that has the suffix .stf or .stf.single.

Alternatively, one can start Vampir and tell it to go to the statistics viewer for a given trace directly:

vampir --statistics-viewer <STF trace>

If you are already using a structured trace file in Vampir, this trace file is automatically chosen if
you select File/Statistics Viewer in the main menu.

The STATISTICS VIEWER can view symbol statistics, region statistics, and message statistics. With
these categories of statistics, users can ascertain a cursory analysis of how well an executing
application is performing.

3.3.7.2 Symbol Statistics

After the STF file has been loaded, the statistics display will show a histogram of symbol (aka
function call) statistics as depicted in Figure 3.5(a). For each symbol occurring in the tracefile,
an entry is associated with the value of the chosen execution metric, and with a histogram bar
visualizing that value. With the Display entry of the context menu, one of the following metrics
can be selected:

• Number of calls (Occurrences)

• Minimum, maximum and aggregated execution time (excluding time spent in called routines)

• Minimum, maximum and aggregated execution time (including time spent in called routines)

• Average execution time, both including and excluding time spent in called routines

The statistics viewer indicates the chosen metric in the lower right corner. Using the Select entry
of the context menu, it is possible to specify if the display should show all entries in the trace file
separately (that means a single histogram bar for each process) or cumulated values for each
symbol (which is the default selection) or for each activity. If Select/All Entries was chosen

31

CHAPTER 3. GETTING STARTED WITH VAMPIR

(a) aggregated by symbol (default) (b) for individual processes

Figure 3.5: STATISTICS VIEWER for symbol statistics

the entries have the form <symbol name> @ <process rank> indicating the process they
belong to. In Figure 3.5(b), it is easy enough to compare the time spent in the MPI_Recv routine
across all processes. Using the Sort/Value Up or Sort/Value Down entries of the context menu,
the display will show symbol statistics sorted by value, like in Figure 3.5(b). Here, it becomes
immediately clear that MPI_Allreduce consumes a lot of the execution time in processes with
high rank numbers, while MPI_Sendrcv dominates in those with small ranks. Zooming in both
the horizontal and vertical directions can be performed in the usual way by clicking the left mouse
button and drawing a rectangle. Zoom undo also works in the usual way with the Undo or Reset
Zoom entries of the context menu.

Use the Mode entry of the context menu to switch to a list-based display of one metric, or to a
table that shows all available metrics. Besides the symbol statistics, execution metrics for OpenMP
regions (if available in the trace) and MPI messages can be displayed. Use the Category entry
of the context menu to switch between these three kinds of statistics.

3.3.7.3 Region Statistics

Figure 3.6 shows an OpenMP region statistics histogram for the sweep3d example trace file, as
found in the ASCI 3.2.0.0 example archive. Only one OpenMP region has been recorded (r002),
and the histogram clearly shows a severe load imbalance across processes for this region. Other
metrics available via the Display context menu entry are:

• number of executions of a region (occurrences)

• minimum, maximum and aggregated execution time

• average execution time

3.3.7.4 Message Statistics

Figure 3.7 shows a message statistics matrix: for each pair of sending (on the Y axis) and receiv-
ing (on the X axis) processes, one of these metrics is displayed:

• number of messages

• minimum, maximum, or aggregated message length

32

3.4. GLOBAL AND PROCESS DISPLAYS MENUS

Figure 3.6: STATISTICS VIEWER for sweep3d region statistics

Figure 3.7: STATISTICS VIEWER for message statistics

3.3.7.5 Statistics in ASCII Format

The protocol file that is written together with each trace by Vampirtrace also contains the statis-
tics mentioned above, but in a format that can be parsed by scripts. In addition to that, using
stftool <STF file> --print-statistics on the command line will also print the statis-
tics in the same format as in the protocol file, which can be useful if the protocol file got lost. The
Vampirtrace documentation explains this ASCII format and how it can be parsed.

3.3.8 Configuration

Starting Vampir for the first time creates a configuration file called VAMPIR3.cnf resp.
VAMPIR2.cnf in the directory $HOME/.VAMPIR_defaults , where $HOMEreferences the home
directory of the current user. This file contains all configuration settings for Vampir and enables
Vampir to preserve settings from one session to the next. In order to restore the default settings,
simply ensure that Vampir is not running, delete the VAMPIR3.cnf file, and restart Vampir.

Many settings (e.g. colouring) are file-specific, so it can be useful to associate them with a trace
file instead of saving them as global defaults. This is done with so-called local configs that are
created with the Save Local menu item. The latter action saves the current configuration together
with the trace file, using the base name of the trace file and the suffix .cfg . The next time Vampir
opens this trace file it will automatically use this local configuration and not the global default.

3.4 Global and Process Displays Menus

This section reviews some Vampir graphical displays. Displays are reached by drop down menus
that open when the corresponding button on the main window panel (3.1) is pressed. All global

33

CHAPTER 3. GETTING STARTED WITH VAMPIR

displays are able to show data for more than one process, thus supporting either analysis of the
whole program (e.g. SUMMARY CHART) or quick comparison of different processes (e.g. ACTIVITY

CHART).

When the trace file contains many processes, the display of individual processes in a global
display can become very dense and uninformative, or is aggregated in the first place. To help in
this situation, Vampir can be used to open additional windows containing information for only one
process at a time:

Vampir maintains a list of currently selected processes. If a process is selected, then it is drawn
differently in the global displays. Its selection state can be modified there (and only there), as
described below. As soon as (at least) one process is selected, then the menu items in the
Process Displays drop-down menu shown in can be chosen. This action brings up process
displays for all selected processes. Vampir keeps track of which displays have been opened
already and does not open any of them twice.

3.4.1 Summary Chart Display

Vampir opens with the SUMMARY CHART display as the default. This display shows the sum of
the time consumed by all instrumented activities over all selected processes and is analogous to
the information displayed by conventional profilers. This display may also be opened by selecting
Global Displays/Summary Chart from the main menu. An example of this default display for the
trace file redblack_sndrcv was shown in 2.1(a).

By default, the SUMMARY CHART display shows a horizontal bar chart of those activities that
occur in the time interval displayed in the window’s top panel. However this may be changed by
use of the context menu. This opens with a right mouse click inside the summary chart display
window. The Mode option offers a pie chart (as seen in 3.8(a)), vertical bar chart, or tabular
representations of the same information, in addition to the horizontal bar chart default shown in
2.1(a).

(a) absolute times (b) relative times

Figure 3.8: SUMMARY CHART in pie mode

Various other options accessible from the context menu provide information on the symbols of any
(or all) activities, a switch from exclusive to inclusive profiling, customisation of the display style

34

3.4. GLOBAL AND PROCESS DISPLAYS MENUS

etc. The Comparison entry of the context menu allows for a comparison of the summary profiling
information from different trace files as is described in Section 3.7. The Options/Per Process
option in the context menu changes the display to show the average execution time per process
(which is also the default). One way to use the context menu here is to change the appended
values in 3.8(a) from absolute times to percentages. To show the relative times (in percent), as in
3.8(b), choose Options/Absolute Scale from the context menu and deselect absolute values.

The displays in 2.1 show the aggregate results for MPI and the Application. Details for MPI
procedures may be seen by choosing Select/MPI from the context menu. If a tabular presentation
is preferred then also choosing Mode/Table from the context menu shows the display in 3.9.

Figure 3.9: SUMMARY CHART display for MPI procedures only in tabular form.

3.4.2 Timeline Displays

This is the timeline display available by selecting Global Displays/Timeline and shows all anal-
ysed state changes for each process over the complete period of time in one display as in 3.10.

Figure 3.10: GLOBAL TIMELINE display, zoomed

In this timeline display predefined activities show up as different colors by default: red is used for
MPI, green for user application subroutine events, and purple is used for MPI collective operations.
However, the default colors may be changed as described in Section 3.6.1. The purple lines tend
to dominate displays and may be turned off by deselecting Components/Collective Operations
from the context menu1.

1Because loading their data can cost quite some time, it might make sense to load the trace with the FRAME DISPLAY’s
Load/Time Interval menu: in the dialog that pops up after selecting a time interval one can suppress loading of certain
data categories, among them Collective Operations.

35

CHAPTER 3. GETTING STARTED WITH VAMPIR

In the example of 3.10 the process label and numbering is shown on a vertical scale on the left
side. For the time series the tick marks are shown horizontally at the top of the drawing area and,
on the right side, the legend for colors and activities appears. Messages between processes are
shown as black lines that often appear as solid black message passing clusters in the display.

The default timeline display for the whole execution interval is often of too coarse a granularity for
the runtime behaviour of the traced program. To see a finer granularity in the timeline display use
the zooming feature. The scrollbar at the bottom and the cursor keys allow for ease of panning in
the horizontal direction of the timeline.

This zooming method can be repeated to an unlimited depth and will show the names of symbols
or at least their number when a sufficient depth is reached. The reverse action, undo zoom, is
invoked by the timeline context menu choice Undo Zoom . To return to the original timeline trace
from any level of zooming, use the Window/Adapt Zoom entry of the context menu.

The timeline display exists in either a global (all processes shown as above), or an individual
version. To see the display for the individual version of a process use the left mouse button to
select it by clicking on its label. Several processes can be selected or deselected by dragging the
mouse over their labels. Then, navigate to the main menu selection Process Displays/Timeline
to open a display similar to that shown in 3.11. Note that as in this example the initial time interval
of the PROCESS TIMELINE is the same as the current one in the GLOBAL TIMELINE, but apart from
that it is completely independent of the global displays.

Figure 3.11: TIMELINE display for a single process.

In 3.11 the vertical window scale is used to display different states at different heights. One way
to envision this is to think of this display as a function that has time as its input parameter and
the system state as the function result. Separating the state display in the vertical direction has
another advantage: short time durations of one state cannot be masked by long time periods of
another state. For example, if a state existed for a few nanoseconds (less than one pixel on the
horizontal scale), it would still be visible in this display.

The ruler function is available from the context menu (reachable with the right mouse button) and
may be used to measure the exact lengths of time periods. Select Ruler from the context menu
and a cross-hair appears for the mouse cursor. Then press the left mouse button and drag the
cursor symbol over the desired time period and release the mouse button. The measured range
is then shown in a message box.

3.4.3 SUMMARY TIMELINE Display

In addition to the timeline display described above another timeline is available by selecting Global
Displays/Summary Timeline from the main panel to show a display similar to the one shown in
3.12.

The summary timeline shows all analysed state changes for each process (over the complete
time interval in one display), as a histogram over time bins. Within each time bin the number of
processors in either an MPI (red) or Application (green) state is shown. Just as in the case of

36

3.4. GLOBAL AND PROCESS DISPLAYS MENUS

Figure 3.12: SUMMARY TIMELINE display

the global timeline, there is a context menu and zooming is possible to show magnified displays
within subintervals. It is important to note that the rows in the display do not correlate to specific
processes, as in the global timeline.

This display is also available (in a vertically condensed version) as an addendum along the bot-
tom of the global timeline by choosing from its context menu Components/Parallelism Display .
These displays are particularly useful in the study of communication overhead issues as a function
of time since wider and higher green regions indicate a greater degree of parallelism.

3.4.4 Displaying Counter Data

If counter sample data is stored in the trace, then Vampir can display it both in the global COUNTER

TIMELINE and the PROCESS TIMELINE. The difference is that the COUNTER TIMELINE as seen in
3.13 displays just one counter, but for all selected processes at once. By synchronizing the visible
time interval with other displays the counter values are correlated with other events.

Figure 3.13: COUNTER TIMELINE display

37

CHAPTER 3. GETTING STARTED WITH VAMPIR

The PROCESS TIMELINE on the other hand can display more than one counter and relates it
directly with the function calls.

Figure 3.14: PROCESS TIMELINE display with counters

Both kinds of displays share the same kind of context menu options to control which and how
counter data is displayed: the Counters context menu contains one submenu for each class
of counters and inside these submenus one can select counters—exactly one in the COUNTER

TIMELINE, more than one in the PROCESS TIMELINE.

Counter values can be used to store not just hardware performance counters, but arbitrary sample
values. Vampirtrace uses them to provide information about its internal memory management.
By enabling Vampirtrace’s internal counters in a Vampirtrace VT CONFIG file (see Vampirtrace
documentation for details on how to use a configuration file), one can see how many bytes of
trace data were kept in main memory (data_in_ram), in a flush file (data_in_file) and when
flushing was active to transfer data from main memory into the flush file (flush_active). This
is demonstrated in 3.15.

Depending on the definition of a counter, Vampir will interpret its samples differently. In 3.16 the
values from 0 to 15 are logged at the same points in four counters with different definitions: for the
first counter before a sample value is valid (and thus displayed) before the point in time where
it was logged, for the second one (after) it is valid afterwards. In both cases the value does
not change unless a new value is logged. In the third case, the value is only displayed exactly at
the point in time where it is logged as a peak. Finally, values can be treated as samples of a
contiguous curve that Vampir tries to approximate with linear interpolation of sample values.

Examples of how an programmer could use the Vampirtrace API to log information about his pro-
gram run as counter data include logging values associated with events (like receiving messages
of variable length, as the msg counter in 3.17) or the epsilon in an iterative approximation of the
final result (epsilon). Note that the artificial message sizes were chosen so that they follow
a sine curve with amplitude 1024 and period 0.1 seconds. They even become negative, which
Vampir indicates by drawing them in red—not quite realistic for a message size, but aesthetically
pleasing. . .

These sine values are also logged as a sampled curve (sine in 3.18(a)). Vampir is able to
display the absolute sample values of a counter or the first derivative (aka rate), i.e. the difference

38

3.4. GLOBAL AND PROCESS DISPLAYS MENUS

Figure 3.15: PROCESS TIMELINE display with Vampirtrace memory management counters

Figure 3.16: PROCESS TIMELINE display with counters of different scope

Figure 3.17: PROCESS TIMELINE display with (artificial) application counters

39

CHAPTER 3. GETTING STARTED WITH VAMPIR

between adjacent sample values divided by the time delta between them. The first derivative is
always displayed as a constant value between the original sample values. The default display
mode depends on how the counter was defined. For hardware counters the default is to display
the first derivative, because otherwise one just gets a continuously increasing curve with very little
variation which is not very useful. Vampir is able to override the default presentation mode in
the Options/Differentiate Values context menu. Not surprisingly, the first derivative of the sine
counter is a cosine with the same period, but a different phase (3.18(b)).

(a) sine counter

(b) first derivative = cosine

Figure 3.18: COUNTER TIMELINE display

In addition to these sampled counter values in a trace file, Vampir can also calculate the amount
of data currently in transit in the network at each point in time and makes this available as the
counter Global Message Volume. In the SUMMARY TIMELINE it can also display the data in transit
inside the currently selected groups (see 3.5.2 for details), as shown in 3.19. This counter is called
Cluster Message Volume because usually it is used to analyse the behaviour of clustered nodes,
as in this example.

3.4.5 MESSAGE STATISTICS Display

Message statistics may be displayed by selecting Message Statistics from the Global Displays
drop down menu in the Vampir main panel shown in 3.1. The default display is shown in 3.20
for the cumulative length of all messages in pair-wise communications between processors. The
left hand side scale gives the rank of the sending process and the top scale gives the rank of the
receiving process. The right hand legend gives the color map for the total length of all messages.
Note that zooming is allowed in this display and for a description of how to apply it see Section
3.2.5.

Information shown in this display is changed by selecting the Display button from the context
menu. Then the quantity of interest is chosen from a list that includes: counts, length, rate, or

40

3.4. GLOBAL AND PROCESS DISPLAYS MENUS

Figure 3.19: SUMMARY TIMELINE and message volume

Figure 3.20: MESSAGE STATISTICS display, summarized length, zoomed

duration, for minimum, maximum, or average values. For example, 3.21 shows the results of the
context menu selection Display/Max. Duration . In contrast to the message lengths which are
the same for each pair of processes in this example, the message duration varies considerably.
The minimum and maximum value are marked with a thicker border around the square—f.i. the
highest duration is found for sending a message from process 0 to process 1.

In this example this is not caused by a slow communication path between these two processes,
but rather due to the way the message duration is calculated: it is the time between starting
transmission and successful reception of the message. If the recipient delays reception for some
reason, then the duration is increased by this delay and the message rate, which is just the size
of the message divided by the duration, decreases accordingly. As demonstrated in section 2.1,

41

CHAPTER 3. GETTING STARTED WITH VAMPIR

in redblack_sndrcv such a delay is caused by the communication pattern.

Figure 3.21: MESSAGE STATISTICS display, maximum duration

The LENGTH STATISTICS display is invoked by clicking on the Length Statistic entry of the context
menu to show a LENGTH STATISTICS window, similar to those shown in 3.22, with a histogram of
the distribution of message lengths. The Length Statistics context menu also allows the display
of counts, length, or rates. For redblack_sndrcv all messages have the same length, so in
addition to the summary there is only one entry. For sort_tree the message length increases
by a factor of two at each level in the merge tree, while the number decreases by the same factor.

(a) sort tree, message counts (b) redblack sndrcv, average rates

Figure 3.22: LENGTH STATISTICS dialog

3.4.6 PROCESS PROFILE Display

The selection of Global Displays/Process Profile from the main panel shows a display similar
to the ones in 3.23. This display is similar to the ACTIVITY CHART in the sense that it compares
values between different processes and could be used to detect imbalances. But in contrast to the
ACTIVITY CHART it is possible to concentrate on a specific activity or state by choosing Select from
the context menu to open a SELECT ACTIVITY/STATE dialog box, as seen in 3.23(a). From this
dialog individual activities (typically MPI or Application) may be selected followed by depression

42

3.4. GLOBAL AND PROCESS DISPLAYS MENUS

of the Apply button. 3.23(a) shows the initial state, which is the Activity User Application and
the Symbol User Code. Selecting MPI_Sendrecv resp. MPI_Allreduce in 3.23(b) and 3.23(c)
confirms the observation that there is a severe imbalance. Not shown here, but also possible in
the SELECT ACTIVITY/STATE dialog is the selection of just an activity like MPI instead of a specific
state like MPI:MPI_Sendrecv .

(a) default state and state selection (b) MPI Sendrecv() (c) MPI Allreduce()

Figure 3.23: PROCESS PROFILE dialog

3.4.7 Statistic Displays

In addition to the small statistics field contained in the process state display described above,
other Vampir statistical display types include:

• Global activity, and

• Individual activity.

The first of these can be reached by selecting the Global Displays/Activity Chart menu entry
of the main panel, and a window will appear similar to the one shown in 3.24. This depicts the
statistics of the complete trace file in a chart for each process subdivided by activity (e.g. MPI
versus Application). This display is very useful for determining load balance issues for different
processes at-a-glance. Different presentation modes can be selected in the context menu. There
is a setting that determines the initial setting for this mode and other context menu options: Pref-
erences/Displays/Activity Charts . Previous versions of Vampir ignored these default settings
and chose the pie mode by default, now the global default of a bar chart is used.

To select processes for which individual statistics are desired, simply click on each, in turn, on
the global display, with the left mouse button, and the corresponding process caption will change
color. Then, from the main menu, select Process Displays/Activity Chart to show the activity

43

CHAPTER 3. GETTING STARTED WITH VAMPIR

Figure 3.24: GLOBAL ACTIVITY CHART

charts for the selected local processes. The case of processes 0 and 31 are shown in 3.25. For
a description of how this may also be done in the global display by filtering methods see Section
3.5.

(a) first process (b) last process

Figure 3.25: PROCESS ACTIVITY CHART dialog

It is also possible to press the left mouse button and draw a rectangle over a group of processes to
select them with one action, or, press the middle mouse button to deselect all processes. Then, to
generate statistics window(s), select Process Displays/Activity Chart from the opening main menu
panel. Vampir keeps track of the processes for which statistics windows are opened or closed and
thereby avoids duplicate windows.

The usage and principles of operation for the global statistics display and the local statistics win-
dows are similar, so only the local windows are described in the following paragraphs. By analogy,
everything said about an local window is also valid for the corresponding statistics display window.

The local statistics look much like the global statistics with the difference that the activity names
are directly displayed on the corresponding pie sectors (however, only for portions that are not
too small). Color is used to indicate the activity of a symbol. For the global display this provides
a better overview, but exact identification of entries in individual processes is only possible with
the Identify State context menu entry. Selecting it changes the cursor into a cross-hair and then
clicking on an entry pops up a dialog with more detailed information. The behaviour of previous

44

3.4. GLOBAL AND PROCESS DISPLAYS MENUS

Vampir versions which assigned random colors to each entry of the global ACTIVITY CHART is still
available by selecting its context menu entry Options/Use Random Colors , but it is no longer the
default because the colors often just make the display confusing.

To show statistics for all MPI events on a process bring up the context menu and then choose
Select/MPI from it. The results shown are similar to 3.26. Due to the imbalance either the
MPI_Sendrcv or the MPI_Allreduce symbol uses the most significant amount of the time
in both cases and the remaining symbols are not easy to see in this display because they are
relatively small on this scale.

(a) first process (b) last process

Figure 3.26: PROCESS ACTIVITY CHART dialog for MPI only

However, information on the remaining symbols (other than MPI_Sendrecv resp.
MPI_Allreduce) can be viewed by hiding those that used the largest amount of time. For
example, from the context menu (accessible via the right mouse button), selecting the option Hid-
ing/Hide Max removes from the statistics display the symbol with the maximal time portion. The
result of this operation, in each of the displays in 3.26, is shown in 3.27 after deselecting Op-
tions/Absolute Scale from the respective context menus. In the global chart display, if use of the
Hide/Max option is followed by a left mouse click on one process, then the activity representing
the largest portion of the time for that process will be removed from all charts. Note that the mouse
cursor changes to a small eye symbol to suggest click action is pending for process selection.

(a) first process (b) last process

Figure 3.27: PROCESS ACTIVITY CHART dialog after hiding maximum once, with relative scale

The process of removing the symbol with the maximum time portion from the statistics display
may be repeated for the next symbol in the time portion hierarchy. If the maximum time portion

45

CHAPTER 3. GETTING STARTED WITH VAMPIR

symbol is already hidden then selecting Hiding/Hide Max again, hides the symbol with the next
largest time portion, etc. Generally speaking, multiple use of this context menu item will hide
more and more symbols until finally the chart is entirely empty. The hiding process may be un-
done altogether by selecting Hiding/Reset Hiding from the context menu to return to the original
display. Alternatively, the hiding may be undone incrementally (one step at a time) by selecting
Hiding/Undo Hiding from the context menu. Another way to view symbols with large and small
time portions more easily, side-by-side, is to switch on a logarithmic horizontal scale by selecting
Options/Logarithmic from the context menu.

3.4.8 CALL TREE Displays

The global and local CALL TREE displays show the dynamic calling tree of all instrumented rou-
tines, either locally (for one selected process), or globally (for all selected processes combined).
These displays depend on proper instrumentation of the application, and on system-dependent
support for automatic subroutine instrumentation.

In addition to the caller-callee relationship, the displays present the number of calls and the time
spent in each particular routine. An example for a global calling tree is shown in 3.28.

Figure 3.28: GLOBAL CALL TREE display (default)

The global call tree is invoked with the Global Displays/Call Tree menu entry. If processes are
selected in a TIMELINE or ACTIVITY CHART display, their local call tree displays can be opened
with the Global Displays/Call Tree menu entry. The levels of the tree display is expanded by
pressing the down-arrowhead to the left of the text window in the bottom of the display, to give the
display in 3.29. Conversely, the up-arrowhead on the right hand side collapses the calling tree. It
is also possible to double-click on an entry to fold or unfold it. The context menu for this display
offers several options, such as a sort by name, counts or time with the Sort tab.

3.4.9 SOURCE VIEW Display

Vampir can relate a trace event or a symbol to a specific location in the source program, and dis-
play this source location from the TIMELINE, SUMMARY CHART, ACTIVITY CHART and PROCESS

DISPLAY displays. This feature depends on the information present in the tracefile, and ultimately
on the instrumentation of the application with Vampirtrace.

If the source location information is present in a tracefile, and if Vampir can access the source
code itself, a window like Figure 3.30(b) will be opened when pressing the Source button in an
IDENTIFY STATE or IDENTIFY MESSAGE dialog in a TIMELINE, SUMMARY CHART, or ACTIVITY

CHART display. Vampir’s Preferences/Tracefile/Source main panel menu item can be used to
set a search path for source files which may contain one or more directories.

46

3.5. FILTERS

Figure 3.29: GLOBAL CALL TREE display, completely unfolded

(a) TIMELINE with identified message (b) SOURCE VIEW for sender and receiver

Figure 3.30: Jumping to source code

If the trace was generated using automatic program counter tracing, then the source location
information might cover more than one level. By using the context menu items Up resp. Down
one can jump between different levels.

3.5 Filters

3.5.1 Basics

Vampir allows the simultaneous display of thousands of processes and a time period only limited
by main memory. Of course, displaying such an enormous amount of data on one screen would
be incomprehensible. Therefore for large trace files Vampir offers several filtering functions to
enable the viewing of a subset from the whole tracefile. The Filters menu shown is reached from
the Vampir main window in 3.1 and allows filtering of certain events in the tracefile: Processes ,
Messages , Collective Operations , and I/O Events .

Filtering in Vampir may be divided into three stages:

47

CHAPTER 3. GETTING STARTED WITH VAMPIR

1. A filter dialog is opened and options are selected in it.

2. Vampir is directed to Apply the new filter rules.

3. All displays redraw themselves, often restricting themselves to an even smaller subset of
the trace data (e.g. just one specific activity)

The way in which the selection of interesting objects is done in the filter dialogs depends on the
objects type, but can generally be divided into two methods:

• explicitly by the user, or

• automatically by Vampir based on user defined criteria.

Vampir supports filtering in several ways:

in time: Filtering in time is provided by the zooming facility of timeline
displays. As stated earlier, the options to influence the time
period visible in a timeline display are extremely versatile and
would go beyond the scope of this overview.

by processes: Filtering by process is the other major dimension either because
processes behave similarly, or inspection of a subset already
demonstrates a problem. Therefore this feature is described in
this brief introduction.

by event: The choice of event (message, collective operations, or I/O)
depends on specifying criteria that the event must fulfill.

3.5.2 PROCESS FILTER and Grouping

Previous releases of Vampirtrace and Vampir had a fixed two-level hierarchy built in: processes
(or CPUs) at the lower level, and cluster nodes at the upper level. The so called Grouping sup-
port extends this concept and makes it configurable during tracing, both with Vampirtrace API
calls and configuration options (see VT_groupdef() call and GROUPconfiguration option in the
Vampirtrace documentation for details).

The default grouping is still based on the hardware hierarchy, starting with the group All Nodes
that contains one entry for each node in a cluster. Each node contains the processes that ran on
it. If the application was multi-threaded in the sense that it had several independent threads of
control, then each process entry itself is a group that contains all of its threads. As a process can
also be regarded as one thread of control, this section uses the term thread instead of mentioning
process and threads all the time. Vampir also presents one event stream for each thread resp.
process in single-threaded applications.

More than one hierarchy can be defined. By default, the groups All Processes, All Master Threads
and All Threads are also defined to provide faster access to threads than through the All Nodes
hierarchy, with All Threads only being defined if there are threads. Figure 3.31 shows these
groups after unfolding All Nodes and the first node, frost044.pacific.llnl.gov. This reveals that the
first eight processes ran on this node.

The PROCESS FILTER serves two independent purposes:

• selecting threads

• selecting groups to aggregate threads

48

3.5. FILTERS

Figure 3.31: PROCESS FILTER and Grouping

Only selected threads (or processes, if the applications is not multi-threaded) are considered
by Vampir’s displays. This allows one to interactively restrict the analysis to a subset of the
application run. Selecting groups has the effect that some displays aggregate the data from all
selected threads in a group and present statistics for the groups instead of individual threads. This
is explained in more detail below.

The PROCESS FILTER is implemented as a text view, as seen in Figure 3.31. In order to execute
one of the available actions like folding/unfolding or selection, one first has to click on the list entry
that is to be modified. This highlights the line in the text view with this entry. Then one presses
the button for the desired action, selects the corresponding context menu item or uses a keyboard
shortcut. The shortcuts are listed in the context menu. When changing several items in a row it
is often fastest to keep one finger on e.g. the ”s” key and then click with the mouse on an item
followed by pressing the button to select it. This can be repeated quickly for several items.

Folded groups are marked with a + sign in front of them and unfolded ones with a - sign. An *
indicates that a thread is selected. In front of a group an * is printed if all threads inside this group
are selected and an x if only some of them are selected.

Because some displays like the GLOBAL TIMELINE only care for which threads are selected and
ignore the group selection, the selection state of each thread is kept consistent throughout the
process filter, even though it may appear in several groups at once.

To select threads there are several shortcuts:

• All selects all threads.

• None deselects all threads.

• Clicking on a group and then Select/Deselect selects all members if none or only some were
selected. Otherwise it deselects them.

The last action has another effect: it also selects all top-level groups inside the group. For ex-
ample, highlighting the All Nodes group and then selecting it with Select/Deselect will select all

49

CHAPTER 3. GETTING STARTED WITH VAMPIR

threads in the whole application run and all nodes. Several displays use the group selection to
display statistics for the selected groups instead of individual threads. This is often more scal-
able and it allows one to concentrate on e.g. messages sent between nodes in a cluster in the
MESSAGE STATISTICS DISPLAY as in 3.33.

Group selections are marked in the text view with angle brackets around the * or x as follows: <*>
or <x>. It is possible to do by-group analysis without having selected all threads inside the group,
but as soon as the last thread in a group is deselected no data would contribute to the group and
thus the group is automatically deselected. The Select/Deselect Group has the opposite effect if
applied to a group without any selected threads: all threads are automatically selected in addition
to the group itself. In other situations this button just changes the selection state of the highlighted
group. This can be used to quickly select all threads and just the threads inside a specific group:
simply highlight the group, then hit Select/Deselect Group twice.

The two figures in 3.32 show the result of selecting different groups upon the SUMMARY TIMELINE

display. In 3.32(a) all processes, but no groups were selected (the default setting). This is indi-
cated in the display with the string Single Processes. After pressing None, highlighting All Nodes
and pressing Select/Deselect, all process are selected again, but also each node group itself is
selected. This leads to the display in 3.32(b), where one summary timeline is presented for each
selected group.

(a) no groups selected (b) all node groups selected

Figure 3.32: SUMMARY TIMELINE and Grouping

The MESSAGE STATISTICS and the COLLECTIVE OPERATION STATISTICS displays adapt in a sim-
ilar manner. Instead of looking at messages sent between processes, one might learn more from
looking at messages sent between and inside nodes: in 3.33 the top-left to bottom-right diagonal
represents messages sent inside a node and the other squares represent those messages that
were sent over the network. As shown in 3.33 most of the data is sent between processes running
on the same node. Due to redblack_sndrcv ’s communication pattern message duration is not
determined by the transfer speed of the hardware at all. In redblack_icomm receives from the
right neighbor are always completed first, which causes a visible bias in the average message
duration, as seen in 3.34.

50

3.6. PREFERENCES

Figure 3.33: by-node message volume for redblack sndrcv

Figure 3.34: by-node message transfer rate for redblack icomm

To actually measure the true hardware performance one has to ensure that receives are posted
or active before the sender starts transmitting data. In these application runs the distribution of
processes to nodes was chosen by the MPI so that consecutive process ranks ran on the same
node, which happened to maximize the number of messages sent inside a node. For mpich the
same effect is only achieved when invoking the mpirun command with a machine file. Without this
additional parameter, processes would have been distributed in a round-robin fashion, leading to
an arrangement with e.g. processes #0 and #1 on different nodes.

3.6 Preferences

The Preferences menu is reached from the Vampir main panel and allows changes in default
settings for several aspects of Vampir, among them: Color Styles , Fonts , Displays , General ,
Symbols , and Tracefile . Some of these choices have submenus or dialogs and these are de-
scribed in the following.

51

CHAPTER 3. GETTING STARTED WITH VAMPIR

3.6.1 Color Styles

This menu choice allows the change of color options for the following entities: Activities , Mes-
sages , Collective Operations , I/O Events . Desktop changes the window colors and Color
Mode allows switching between a color, grey-scale and black-and-white mode.

Selecting the Color Styles/Activites menu item shows the dialog window in 3.35. From the
Activities panel in this window the specific activity may be selected and the Example panel shows
the default color, e.g. green for Application, red for MPI, etc. This default may be changed
by mouse selection of a color from the circular color palette in the bottom right-hand corner.
Alternatively, to mix an arbitrary color, the three scroll bars may be adjusted for red, green, and
blue. Activities may be deleted or added in the dialog box above the corresponding buttons with
these function names. Also, the color system used may be selected from the following choices:

• RGB Color composed from adding three components: red, green, and blue.

• CMY The inversion of RGB uses the complimentary colors: cyan, magenta, and yellow.

• HLS This is the Hue, Saturation, and Luminance (brightness) scheme.

Figure 3.35: ACTIVITY DISPLAY STYLE dialog

A similar dialog window is available in the other Color Styles menu items. These other windows
also support selecting different line styles. These settings can be chosen based on properties of
the items. Colors for individual states cannot be set because there are too many of them—they
inherit the color of their activity.

3.6.2 Displays

The Preferences/Displays menu choice allows the set up of how Vampir presents its displays.
One can choose the default display that is opened after trace data has been loaded (Startup) and
default values for several of the context menu items in some displays.

3.6.3 Tracefile

These options are available within the Preferences/Tracefile menu. They cover aspects of load-
ing trace data and file handling. Source selects a search path for source files. This is used by the
SOURCE CODE DISPLAY to find the source files of the program that generated a trace (see 3.4.9).

52

3.6. PREFERENCES

External Converters chooses programs that are started by Vampir whenever the suffix of a trace
file matches the extension given for the converter in the Vampir preferences list. A dollar sign ($)
in the conversion command is replaced with the file name and the command string may contain
further arguments to the program. Once the program is started, it must produce a standard Vampir
trace file on stdout. This is meant to be used to read compressed files in formats that Vampir does
not support directly.

3.6.4 Extras

Selecting the Extras menu item from the Vampir main window allows control of printout and two
viewing windows for errors or pending messages. The first choice on the Extras menu brings up
the dialog box shown in 3.36. Most graphical displays in Vampir feature the Print entry in their
context menus and its output serves the same purpose as the Snapshot function but is of much
better quality and can easily be included into documents. Depending on the options selected in the
print dialog, the display contents (always excluding the window frame) is converted to PostScript
and put into a file or printed. Printing is started by clicking on the OK button.

Figure 3.36: PRINT dialog

The last two choices bring up the status windows shown in 3.37 and 3.38, respectively. Vampir
redirects messages to standard error from the terminal window (where it was started) to the
ERROR LOG window (while it is open). If the ERROR LOG window is closed, messages continue
to appear in the terminal window. In this example, an external converter was not found.

Figure 3.37: ERROR LOG dialog

Messages sent but not received are listed in the Pending Messages window in chronological order
(with last message sent at the bottom of the list). Possible reasons for not received messages
are either program errors or incomplete tracing. In the case of incomplete tracing the display may
also show messages that were only receiving, and no sending was traced.

53

CHAPTER 3. GETTING STARTED WITH VAMPIR

Figure 3.38: PENDING MESSAGES in an incomplete trace

3.7 Using One Vampir Main Window to Compare Trace Files

In the following a step-by-step process guides the reader through side-by-side comparisons of
two separate trace files by the use of one Vampir main window. This allows comparison of results
from two trace files only in some Vampir displays and dialogs.

In Vampir, profiling statistics displays such as SUMMARY CHART and local ACTIVITY CHART allow
profiling data from multiple traces to be compared. To demonstrate usage of this comparison
procedure follow these steps:

1. Load the trace file redblack_sndrcv .

2. Open the global timeline display.

3. Zoom to exclude the MPI start up and finalisation procedures.

4. Open the SUMMARY CHART display.

5. From the context menu ensure that:

• Timeline/Global is enabled,

• Options/Include Sum is enabled, and

• Options/Store Values is selected.

6. In the SELECT OUTPUT FILE dialog box that opens, save the file as sndrcv.dat .

7. Load the trace file redblack_icomm into Vampir.

8. Open the global timeline display.

9. Zoom to exclude the MPI start up and finalisation procedures.

10. Open the SUMMARY CHART display.

11. From the context menu ensure that:

• Timeline/Global is enabled,

• Options/Include Sum is enabled, and

• Options/Load Values is selected.

12. In the SELECT INPUT FILE dialog box that opens load the previously generated
sndrcv.dat .

54

3.7. USING ONE VAMPIR MAIN WINDOW TO COMPARE TRACE FILES

(a) comparing absolute values (b) quotient

Figure 3.39: SUMMARY CHART comparison of redblack sndrcv and redblack icomm

A comparative summary chart display similar to 3.39(a) should appear. This shows the current
(open) trace file results in the upper bar of each pair, and the results of the saved (and then
loaded) trace file in the lower bar for each pair.

When comparing trace files by this method note the following:

• Keep in mind that only the data in the current display is saved, e.g. if the display is showing
activity data only, no symbol-specific data will be present in the saved file.

• When analysing different trace files, change the profiling display to show a horizontal his-
togram (Mode/Hor. Histogram) and use the same options for both displays.

• With the Comparison submenu of the context menu, the comparison style can be selected
to display both sets of values (Show) as in 3.39(a), the difference (Difference), or the quo-
tients (Quotient , once for current trace divided by the other one as in 3.39(b), once for the
inverse). If multiple sets of comparison data have been loaded, the Comparison/Compare
to selection from the context menu allows switching between them.

55

	Introduction
	What is Vampir?
	What is new in Vampir 4.0
	What is new in Vampir 3.0
	What Do You Need to Run Vampir?

	Using Vampir to Understand Performance
	MPI Performance Versus Application Performance
	Identifying Performance Costs with Vampir
	Identifying Load Balance Problems with Vampir
	Summary

	Getting Started with Vampir
	Setup Procedure
	Vampir Basics
	File Handling
	Global and Process Displays Menus
	Filters
	Preferences
	Using One Vampir Main Window to Compare Trace Files

